
Title: Exploration of O-GlcNAc-transferase (OGT) glycosylation sites reveals a target 

sequence compositional bias 

 

Authors:  P. Andrew Chong1, Michael Nosella1,2, Manasvi Vanama1, Roxana Ruiz-Arduengo1, 

Julie D. Forman-Kay1,2* 

Affiliations: 

1Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada. 

2Department of Biochemistry, University of Toronto, Toronto, ON, Canada. 

* Correspondence to: 

Julie D. Forman-Kay 

Program in Molecular Medicine, 

Peter Gilgan Centre for Research and Learning, 

686 Bay St., 

Toronto, ON, 

M5G 0A4 

forman@sickkids.ca. 

 

Running Title: 

OGT compositional bias 

 

Keywords: Post-translational modification, O-linked N-acetylglucosamine (O-GlcNAc), O-

GlcNAc transferase (OGT), proteomics, intrinsically disordered protein, glycosylation 

Abbreviations: O-GlcNAc, O-linked N-acetylglucosamine; OGT, O-GlcNAc transferase; 

PSSM, position-specific scoring matrix; PTM, post-translational modification; TPR, 

tetratricopeptide repeat; FUS, fused in sarcoma; IDR, intrinsically disordered region; LCRN, N-

terminal low-complexity region 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507593doi: bioRxiv preprint 

mailto:forman@sickkids.ca
https://doi.org/10.1101/2022.09.12.507593
http://creativecommons.org/licenses/by-nc-nd/4.0/


OGT compositional bias 

 2 

Abstract 

O-GlcNAc transferase (OGT) is an essential glycosylating enzyme that catalyzes the addition of 

N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. The 

enzyme glycosylates a broad range of peptide sequences and prediction of glycosylation sites has 

proven challenging.  The lack of an experimentally verified set of polypeptide sequences that are 

not glycosylated by OGT has made prediction of legitimate glycosylation sites more difficult. 

Here, we tested a number of intrinsically disordered protein regions as substrates of OGT to 

establish a set of sequences that are not glycosylated by OGT. The negative data set suggests an 

amino acid compositional bias for OGT targets. This compositional bias was validated by 

modifying the amino acid composition of the protein Fused in sarcoma (FUS) to enhance 

glycosylation. NMR experiments demonstrate that the tetratricopeptide repeat (TPR) region of 

OGT can bind FUS and that glycosylation-promoting mutations enhance binding. These results 

provide evidence that the TPR recognizes disordered segments of substrates with particular 

compositions to promote glycosylation, providing insight into the broad specificity of OGT. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507593doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507593
http://creativecommons.org/licenses/by-nc-nd/4.0/


OGT compositional bias 

 3 

Introduction 

Intracellular O-linked-β-N-acetylglucosamine (O-GlcNAc) is an essential post-translational 

modification (PTM). Since discovery of the modification more than three decades ago(1), 

various proteomic studies have identified thousands of proteins with the modification(2–6). 

Underscoring the importance of the modification, the single enzyme responsible for adding O-

GlcNAc onto proteins,  O-GlcNAc transferase (OGT), is required for the viability of dividing 

mammalian cells and embryogenesis(7, 8). O-GlcNAc is thought to play essential roles in 

nutrient sensing and stress response with implications for diabetes, cancer and diseases of aging, 

including neurodegenerative disease(reviewed in (9)). O-GlcNAc-modified proteins implicated 

in neurodegenerative diseases including amyloid precursor protein(10), tau(11), α-synuclein(12) 

and superoxide dismutase(13). Mutations in OGT have also been implicated in intellectual 

disability(14). Unlike other glycan modifications, which are often multimeric(15), O-GlcNAc 

modification involves addition of a single GlcNAc moiety to serine or threonine hydroxyls. O-

GlcNAc significantly affects protein thermodynamic and solvation properties and modulates 

protein thermal stability(16) and aggregation propensity(11, 17, 18). In addition, O-GlcNAc 

modification has been recently demonstrated to modulate protein phase separation, based on 

experimental work with EWS, CAPRIN1 and SynGAP/PSD-95 as well as broader 

bioinformatics results(19–21).  

Given the significant biological impact of this PTM, several studies have grappled with defining 

OGT sequence specificity(22–26) using O-GlcNAc-modified sites identified in cell extracts by 

mass spectrometry or by utilizing high throughput assays performed on peptide or protein 

microarrays(22, 27). O-GlcNAc status in vivo is a convolution of multiple factors. These include 

the specificity of OGT and the specificity of the enzyme that removes O-GlcNAc moieties, O-

GlcNAcase (OGA)(28). The efficiency and specificity of OGT is also influenced by the 

expressed splice isoform(29), since different OGT isoforms contain different numbers of 

tetratricopeptide (TPR) repeats and TPR repeats  are involved in peptide substrate 

recognition(24, 26, 30–32). OGT may also be recruited to substrates by adaptor proteins(33–35). 

The concentration of glucose and insulin as well as tissue type and developmental stage also 

contribute(36, 37). Finally, OGT modification sites are primarily found in extended loops or 

intrinsically disordered regions (IDRs)(5) that can access the catalytic site.  

Several closely related OGT recognition sequences have been identified. For example, Pathak et 

al. identified the OGT recognition sequence as [TS][PT][VT]S/T[RLV][ASY](22). Nevertheless, 

a scan of O-GlcNAcylated peptide sequences in the PhosphoSite database(38) indicates that most 

substrates fall outside of this definition, as well as definitions put forward by other groups. 

Computational methods that make use of machine learning or neural networks to predict sites of 

O-GlcNAc modification(23, 39–46) have been used to address this shortcoming. These 

computational methods take both sequence and amino acid combinations into account when 

making their predicitions. Predictors include YinOYang(43), OGTSite(42), O-GlcNAcscan(46) 

and O-GlcNAcPRED-II(41), although not all of these predictors are still available online. 

Evaluating the effectiveness of these predictors is very challenging, in part because of the lack of 

experimentally verified negative sites. Particular attention must be paid to sensitivity when 
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evaluating these O-GlcNAc predictors, because only a small minority of serines and threonines 

are expected to be modified. While many proteins can be modified by OGT, the proportion of 

individual serines and threonines that are modified may be as low as 1.4% (45). The small 

number of modified residues makes it easy to achieve a high level of accuracy (combined 

proportion of correctly identified positive and negative sites) by setting a very high threshold for 

positive site identification. A high threshold enables correct identification of negative sites, 

which represent the vast majority of sites. The trade-off is that many positive sites will be 

missed, yielding a low sensitivity (proportion of positive sites correctly identified). Thus, when 

evaluating O-GlcNAc site predictors, sensitivity is a critical parameter. Taking sensitivity into 

consideration, O-GlcNAcPRED-II seems to outperform other prediction methods(41, 45). 

Despite the extensive effort put into these computational methods, they yield many false positive 

and false negative sites, so experimental validation is still necessary(47, 48). 

The inability to clearly define OGT specificity is the result of at least two contributing factors. 

First, many of these attempts to define specificity have focussed on peptide regions in the 

immediate vicinity of the glycosylated region, roughly the length of peptide than can be 

accommodated in the catalytic site of the enzyme. It is now known that efficient substrate 

recognition can involve a more extended peptide region than what is incorporated into existing 

predictors(31). For example, efficient glycosylation of the RNA Polymerase C-terminal domain 

requires more than 20 heptad repeats or over 140 residues(30). The largest isoform of OGT 

(ncOGT) is comprised of a catalytic domain preceded in sequence by 13 tetratricopeptide (TPR) 

repeats (24, 49, 50). The TPR region forms a large superhelix that has been shown to influence 

recognition of extended lengths of substrate peptides(30, 51, 52). Thus, improving predictors will 

require consideration of a broader sequence context. 

Secondly, the inability to clearly define OGT specificity is due to the lack of an experimentally 

verified negative data set for prediction purposes. Existing predictors have used protein regions 

not annotated as glycosylated, but found in proteins that are glycosylated by OGT, as a negative 

dataset(39, 42), or alternatively human proteins from the UniProt database(53) that are not 

explicitly known to be glycosylated or predicted to be glycosylated(40). Taking protein regions 

not annotated as glycosylated, but found in proteins that are glycosylated has the advantage that 

the proteins are known to exist spatially and temporally near to OGT, an important 

consideration(54). Nevertheless, the assumption that the absence of mass spectrometry data 

supporting glycosylation at a specific site is evidence that the site is not glycosylated is a poor 

one. Mass spectrometry studies often do not achieve full coverage for a particular protein and 

certainly not for the entire proteome(55). Coverage of the proteome in higher organisms typically 

does not exceed 10%. In one study where over 1500 O-GlcNAc modified proteins were 

identified, modification sites could only be assigned in 80 proteins(3). Even when a high degree 

of coverage is achieved, the identification of post-translational modification sites depends 

heavily on the abundance of a particular protein(5), especially when the sites are sub-

stoichiometrically modified as is often the case for O-GlcNAc. Finally, identification of specific 

sites is hindered by the lability of the O-GlcNAc modification in MS/MS experiments(56, 57). 

For these reasons, construction of a negative dataset based on sites that are not annotated as 

glycosylated is not a good strategy. In one recent study the majority of proteins identified as 
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being O-GlcNAc modified were not previously known to be modified(16). The case of Lamin A 

serves to illustrate the point. Prior to 2018, Lamin A was shown to have two glycosylated 

sites(57); more recently, an additional nine sites were identified(47). Only two of the Lamin A 

sites (S612 and T643) are currently listed in the PhosphoSite O-GlcNAc database. Interestingly, 

the double mutant S612A/T643A of Lamin A is as robustly O-GlcNAc modified as the WT 

protein. Inclusion of the nine additional sites in the negative database would clearly impair 

prediction. The Ewing sarcoma protein (EWS) is another excellent illustration, since it is a well-

documented OGT substrate(58) but is not present in the PhosphoSite O-GlcNAc database which 

was used as the basis for most of the existing predictors. 

Here we explored the utility of an experimentally verified negative dataset for prediction of 

likely glycosylation target sites for the longest isoform of OGT. Initial work on glycosylation of 

the three FET family proteins, Fused in sarcoma (FUS), EWS and TATA binding protein-

associated factor 15 (TAF15), provided insight and suggested a way forward for site prediction. 

As in previous examples, we used the PhosphoSite O-GlcNAc database as our positive set, but 

extended the length of the peptide region considered. To obtain a negative dataset, we purified a 

set of IDRs and subjected them to optimized glycosylation reactions with purified recombinant 

OGT, then used whole protein mass spectrometry rather than MS/MS to identify proteins that 

were not being glycosylated. We computationally optimized a scoring matrix to distinguish 

between the positive set and our experimental negative dataset. The scoring matrix suggests that 

OGT substrates have an amino acid compositional bias that extends beyond the polypeptide 

region that can be accommodated in the catalytic site of the enzyme. Compositional mutants of 

the FUS N-terminal low-complexity region (LCRN) support an OGT compositional bias. We 

verified that the TPR region of OGT (OGT-TPR) can bind to FUS and an enhanced-

glycosylation mutant of FUS, leading us to speculate that the TPR region enables OGT to 

glycosylate substrates that are not optimally recognized by the catalytic site.   

Results 

Glycosylation Stoichiometry of the FET Proteins 

Previously, Kamemura reported that, of the three FET proteins FUS, EWS and TAF15, only 

EWS is glycosylated with high stoichiometry by OGT(58). Since the FET proteins are 

homologous, this suggested that further analysis of FET protein glycosylation might inform our 

understanding of OGT specificity. We assayed glycosylation levels on undigested protein 

samples using electrospray ionization mass spectrometry following in vitro glycosylation of 

purified human FUS, EWS and TAF15 fragments (Fig. 1a-c). Specifically, we measured 

glycosylation of the N-terminal low-complexity (LCRN) regions of these FET proteins, since this 

is the region of EWS which is glycosylated(19, 59): FUS (aa 1-214), EWS (aa 1-264), TAF15 

(aa 1-210), hereafter referred to as FUS, EWS and TAF15, respectively. A distribution of 

glycosylated states with three to ten added O-GlcNAc moieties was observed for EWS. No 

unglycosylated EWS was observed following the reaction. In contrast, the majority of the TAF15 

LCRN protein was not glycosylated, although a small amount of singly glycosylated protein was 

observed. Modest glycosylation of FUS LCRN was observed, with a median of two sugars 
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groups added. These experiments confirm that EWS can be heavily glycosylated, while FUS is 

modestly glycosylated and TAF15 is largely unglycosylated in vitro. 

Glycosylation Sites in EWS 

To identify specific EWS glycosylation sites, we subjected the EWS LCRN to chymotrypsin 

digestion followed by LC-MS/MS. As observed by others, we found that the O-GlcNAc group is 

labile and is removed during the peptide fragmentation step. Thus, we could determine which 

peptides are glycosylated, but could not identify specific serines and threonines that are 

glycosylated. Glycosylation sites were spread across the LCRN as indicated in Table 1. We can 

determine that there are more than 14 glycosylation sites, though we never observed EWS 

protein modified at 14 or more sites simultaneously. We speculate that glycosylation at some 

sites might inhibit glycosylation at nearby sites, thus making it unlikely to observe EWS 

glycosylated at all possible sites.  

Amino Acid Variation in the FET LC Regions 

The stark difference in FET protein LCRN glycosylation stoichiometry was surprising since their 

sequences share many features. These LCRN are primarily comprised of the amino acids glycine, 

alanine, serine, threonine, tyrosine, proline and glutamine, a composition that is similar to the 

RNA polymerase C-terminal domain (RNA Pol CTD), which is also known to be glycosylated 

by OGT. However detailed comparison of the sequences suggests explanations for their differing 

substrate specificity (Fig. 1d). EWS has a much higher percentage of alanine, proline and 

threonine residues than either FUS or TAF15. The fractional content of glycine and serine is 

lower for EWS than either FUS or TAF15. The RNA Pol CTD is noticeably depleted in glycine 

and glutamine residues relative to the FET proteins. TAF15 has a notably higher proportion of 

charged residues including arginine, aspartic acid and glutamic acid. Observing these 

differences, we decided to investigate the importance of amino acid composition outside of the 

immediate vicinity of the glycosylated sites. 

Computational Optimization of OGT Substrate Prediction 

The inability of OGT to appreciably glycosylate TAF15 suggested that it would be possible to 

develop an experimentally verified negative dataset to improve substrate prediction. To that end, 

a number of known IDRs were subjected to glycosylation under optimal conditions followed by 

intact mass spectrometry. The EWS LCRN served as a positive control for this experiment. High 

quality mass spectra for IDRs of SARA (aa 766-822, human)(60), DDX4 (aa 1-236, mouse)(61), 

TAF15 (aa 1-210, human), CFTR (aa 654-838, human)(62) and FMRP (aa 445-632, human)(63) 

demonstrated that these proteins were not glycosylated to any appreciable extent even after 15 

hours of reaction time(Fig. 2). Only one of the IDRs that we tested, from the yeast protein Sic1 

(aa 1-90)(64), was significantly glycosylated under our reaction conditions (not shown) and thus 

excluded from our negative data set. (Hereafter, these IDRs are referred to only by the name of 

the protein.) Close inspection of the DDX4 and TAF15 spectra showed a small fraction of 

protein glycosylation on a single site. Nevertheless, we decided to keep DDX4 and TAF15 in our 

negative data set, since the site(s) are clearly less than optimal and barely glycosylated even 

following overnight incubation. All peptides centered on serine or threonine residues were 
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extracted from the relevant TAF15, CFTR, DDX4, FMRP and SARA sequences to use as a 

negative dataset. The negative set includes a total of 135 peptides, though many contain 

overlapping sequences. Because of the small size of the dataset, we did not exclude any of the 

peptides for subsequent testing of the approach. Our positive dataset consists of the sites listed in 

the PhosphoSite O-GlcNAc database, which includes 1830 sites primarily from mouse, human 

and rat proteins. 

A simple computational strategy was used to optimize a substrate scoring matrix (Fig. 3a,b). The 

substrate scoring matrix had position relative to the potential glycosylation site along one axis 

and the amino acids along the other axis. Tryptophan and cysteine were excluded from the 

scoring matrix, as they were considered too rare to properly evaluate. Substrates in the positive 

and negative sets were scored by summing the value of the appropriate matrix positions for each 

amino acid in the sequence. Random modifications were made to the matrix and were kept if the 

distance between the median scores of the positive and negative dataset increased. The optimized 

matrices converged on similar matrices, despite starting from very different starting matrices. 

Matrices for peptide lengths of 15, 23, 31 and 39 were evaluated. As some of the observed trends 

spanned the longest 39 residue peptides, we chose this length for our further work, consistent 

with longer lengths being required for optimal glycosylation of some substrates.  

The optimized matrix (Fig. 3b) suggests that glycosylated peptides have a bias for the methyl 

group-containing amino acids alanine, valine, methionine, threonine, isoleucine and leucine; 

proline was also favorable. Glycosylated peptides were depleted in glycine, glutamine and 

asparagine as well as the charged amino acids, glutamate, aspartate and arginine. Trends for 

glycine, alanine, proline, asparagine and glutamine seemed to be consistent across the length of 

the matrix. The results of the optimization are shown in Figure 3c, which demonstrate that the 

positive and negative sets are largely separated. Notably, peptide scores for individual IDRs in 

the negative dataset are quite variable. Peptides derived from low-complexity IDRs that readily 

phase separate, such as DDX4, FMRP and TAF15, are overrepresented in the negative set due to 

the bias in protein availability in our lab. The smaller number of peptides derived from CFTR 

and SARA do not score as poorly as the other peptides in the negative set, indicative of a 

deficiency in the negative set (see below). The similarities of the matrix values along the length 

of the peptides suggested that OGT might select IDRs with particular amino acid makeups, 

rather than exclusively selecting short linear motifs via the active site. We refer to our predictive 

algorithm that utilizes the compositional bias of 39 residues around the modification site as 

OGTcomPred.  

Testing Compositional Bias 

To measure compositional bias in the positive and negative datasets, we used the program 

fLPS2.0(65). The background proportions of amino acid types were those derived from human 

UniProt records(53) or alternatively a dataset of disordered proteins (Fig. S1). To determine the 

proportions of amino acids in disordered proteins, we determined their abundance in a 

MobiDB(66) manually curated version of the DisProt database(67). We further selected only 

human proteins with greater than 50% fractional disorder. The compositional biases were more 

evident in the PhosphoSite database, due to the larger size of the database, when compared to the 
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experimental negative set (Table 2). As expected, there is a bias for inclusion of serine and 

threonine in the positive dataset, since these residues are present in every peptide in the database, 

that was observed when either the human proteome amino acid composition was used or when 

the disordered protein amino acid composition was used. In contrast, the negative dataset does 

not appear biased for threonine in either case, suggesting that threonines might be more 

favorable for glycosylation. As suggested by the substrate scoring matrix, there is a bias for 

inclusion of methyl-containing residues like alanine and valine and for isoleucine and methionine 

when using disordered protein amino acid composition. The positive set also has a bias for 

prolines, though this disappears when using the disordered protein composition. The negative set 

has a notable bias for inclusion of glycine and to a lesser extent glutamine and asparagine. Thus, 

analysis of the training datasets support a difference in the compositional biases of the positive 

and negative datasets and a role for amino acid compositional bias in glycosylation target 

selection.  

Compositional Mutations 

To test the effect of amino acid composition on glycosylation, we used the trends from our 

optimized matrix incorporated into our OGTcomPred algorithm and the compositional bias 

measures to predict mutations in the FUS LCRN that would enhance glycosylation. We made six 

constructs containing various combinations of mutations. Mutation were chosen on the basis of 

composition with no regard for local sequence motifs, in order to test the role of composition 

rather the role of specific glycosylation motifs. In total, thirteen glycines were mutated to 

alanine, threonine or proline. Long stretches of alanines were avoided to prevent α-helix 

formation. The remaining substitutions were glutamines mutated to threonine or proline, serines 

mutated to threonines and a single aspartate mutated to threonine. Mut-A contained the 

mutations Q31T, G34A, Q36A, G40T, Q43P, D46T and G49A. Mut-B contained the mutations 

G67A, Q69T, G74A, G76P, G79A, G80P, G82A, S83T and Q85P. Mut-C contained the 

mutations G99A, G101T, S107T, S108T, G111A, G114A and S115T. Mut-D combined Mut-A 

and B mutation. Mut-E combined Mut-B and C mutations. Mut-F combined mutations from 

Mut-A, B and C (Supplementary Table 1). The total number of serines and threonine increased 

by less than 10% going from WT to Mut-F. SUMO fusions of the mutants Mut-B through Mut-F 

were successfully purified, glycosylated and subjected to LC-MS. We failed to purify Mut-A. 

Unlike in the initial experiment with the three FET proteins (Fig. 1), SUMO fusions with the 

LCRN were used in the glycosylation reactions and the mass spectrometry experiments as we 

could not consistently get data without the fusion tag in place. However, the SUMO may have 

reduced the level of glycosylation possibly via transient steric inhibition. Under the conditions 

used in this experiment, we observed only a single O-GlcNAc modification on WT FUS. With 

an increasing number of mutations, higher O-GlcNAc stoichiometries were observed, with as 

many as seven on the mostly highly mutated construct, Mut-F (Fig. 4a). Comparing the 

maximum number of observed sites with the number of sites predicted by our OGTcomPred 

algorithm gave a Pearson correlation of 0.84 with a p value of 0.038 (Fig. 4b). In contrast, 

comparing the number of sites predicted by O-GlcNAcPredII, considered to be the best existing 

predictor(45), gave a Pearson correlation of 0.59 with a p value of 0.21 for this set. The data for 

individual mutants showed a distribution in the number of glycosylation sites, matching 
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expectation. However, for mut-D, peptides with one, three and four added sugars were observed, 

but peptides with two added sugars were not observed (Fig. 4a). The explanation for this is 

unclear, though it is possible that this peptide simply was not detected in the mass spectrometer. 

In summary, the FUS glycosylation mutations support the hypothesis that OGT can utilize amino 

acid composition over significant stretches within IDRs to recognize substrates and suggests that 

the relatively short peptide sequences used by O-GlcNAcPredII to identify glycosylation sites do 

not fully capture this compositional bias. 

NMR evidence for direct interaction between OGT-TPR and FUS 

Since it is known that some OGT substrates require the TPR for efficient glycosylation, we 

hypothesized that the TPR functions by binding to substrates to increase the likelihood of contact 

with the catalytic domain. NMR is a reliable means of confirming protein interactions involving 

conformationally flexible IDRs. Therefore, to test whether the TPR can bind to FUS, we 

generated NMR spectra of 15N-labelled WT FUS LCRN in the presence and absence of 

unlabelled TPR region of OGT (OGT-TPR, aa 2-474) fused to a SUMO tag. The 15N labelling 

allows us to observe spectral peaks (circles in Fig. 5) that correspond to individual amide protons 

in FUS. In the overlay of the WT FUS spectra with and without OGT-TPR (Fig. 5a), we observe 

that addition of OGT-TPR causes several peaks to largely disappear, specifically, peaks arising 

from the two SYXGY motifs (motifs found at aa 37-41 and 96-100) in FUS. In Fig. 5c, a plot of 

signal intensity ratios with and without OGT-TPR demonstrates the heterogeneity in peak 

intensity changes, with intensity losses ranging from none to 90% and an average peak intensity 

ratio of 0.48 +/- 024. The simplest mechanistic explanation is that FUS binds to the OGT-TPR, 

which is 50 kDa in size and is known to form a dimer, causing the rotational motion of FUS-

interacting residues to slow dramatically and leading to significant NMR signal loss. Residues 

further from the directly interacting residues experience less restriction in rotational motion and 

consequently less signal loss. The heterogeneous peak intensity loss provides solid evidence that 

the OGT-TPR binds to WT FUS in a dynamic manner, with multiple interacting elements of 

FUS exchanging on and off the surface of the TPR(68), and suggests that some parts of the FUS 

sequence are preferred binding sites. To test whether the compositional mutations enhance 

binding to OGT-TPR, we next recorded NMR spectra of FUS Mut-F in the presence and absence 

of OGT-TPR. The Mut-F overlay shows a more dramatic loss of signal intensity in the presence 

of OGT-TPR (Fig. 5b and 5d), with an average peak intensity ratio of 0.36 +/- 0.22, strongly 

suggesting that the compositional mutations enhance binding to the OGT-TPR. To control for 

possible binding of SUMO to WT FUS and FUS Mut-F, we repeated the experiment using OGT-

TPR not fused to SUMO. The results were qualitatively similar (Fig. S2) providing evidence that 

changes in the FUS spectra are due to TPR binding and not SUMO binding. However, in the 

absence of the SUMO, the samples with OGT-TPR phase separated which made quantitative 

comparison of the apo and plus OGT-TPR samples impossible. 

Test Case: CREB-binding protein (CBP) 

We next tested our compositional matrix glycosylation site predictor, OGTcomPred, on four 

known IDRs from human CBP (69–71) and then measured glycosylation experimentally using 

mass spectrometry. The four regions were the ID1 (CBP aa 1-344), ID3 (CBP aa 676-1080), ID4 
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(CBP aa 1851-2057) and ID5 (CBP aa 2124-2442). We predicted 13, 34, 15 and 6 sites in ID1, 

ID3, ID4 and ID5, respectively (Fig. 6), whereas only one site in each of ID1 and ID5 and no 

sites in ID3 and ID4 are listed in the PhosphoSite O-GlcNAc database. Following overnight 

glycosylation, mass spectrometry demonstrated glycosylation at a median of 3 sites in ID1 and a 

median of 2 sites in ID5 (Fig. 6). ID4 was predominantly unglycosylated, which could be due to 

secondary structure elements unaccounted for by the prediction (see Discussion).  We were 

unable to obtain mass spectrometry data on the full ID3, so we digested the glycosylated protein 

with trypsin and submitted the sample to MS/MS (Table 3). We found glycosylation at S709, 

with a further three sites between residues 715 and 768 and one between residues 972 and 998. 

Therefore, there are at least 5 possible glycosylation sites in ID3. These results confirm that OGT 

can glycosylate more sites than are listed in the PhosphoSite database, but indicates that our 

predictor shares a high false positive rate with previously developed predictors. 

 

Dataset Analysis 

To gain further insight into OGT substrate recognition, we analyzed matrix plots of position-

dependent amino acid frequencies for the positive and negative datasets used here and in the O-

GlcNAcPRED-II predictor development (Fig. 7). The O-GlcNAcPRED-II positive dataset (Fig. 

7b) and the PhosphoSite dataset (Fig. 7a) from which it is derived are highly similar. In contrast, 

the experimental negative set from this study (Fig. 7c) and the negative set for the O-

GlcNAcPRED-II study (Fig. 7d) are quite different. Although published details on how the O-

GlcNAcPRED-II negative dataset were obtained are limited, it contains approximately 51,000 

peptide sequences. This database is large and, at first glance, appears to have a very limited 

amount of residual sequence-specific information with nearly uniform amino acid frequencies 

along the length of the peptide. As such the database may have been useful as a way to normalize 

the positive dataset against expected amino acid frequencies, rather than primarily contributing 

information on sites that are difficult to glycosylate. Consistent with this, the O-GlcNAcPRED-II 

negative dataset matrix is very similar to the matrix for all human protein S/T centred peptides 

derived from UniProt (Fig. 7e).  Examination of the positive datasets demonstrates overall amino 

acid frequencies that are similar to the O-GlcNAcPRED-II negative set and the human proteome. 

For example, serines and to a lesser extent prolines, alanines, glycines and leucines are present 

with high frequency in the positive datasets and the O-GlcNAcPRED-II negative dataset. 

However, in the positive sets, one also sees amino acids that are over- or under-represented in a 

position-dependent manner relative to the O-GlcNAcPRED-II negative set. These primarily 

occur within the 4 residues before and after the serine/threonine glycosylation site and likely 

represent sequence specific elements that are recognized by the catalytic domain of OGT. For 

example, peptides with prolines in the i-3, i-2 and i+2 position seem to be favorably selected by 

OGT. The presence of many threonines in the i+1 through i+14 indicates a preference for 

threonines C-terminal to the serine/threonine glycosylation site, an observation that has 

previously been reported(72). In contrast to the O-GlcNAcPRED-II negative set, the 

experimental negative set presented here is extremely small, just 135 peptides with overlapping 

sequences, and is likely not a very good sampling of the OGT negative site proteome. The small 
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size of the dataset results in a rather noisy dataset. Nonetheless, the amino acid frequencies differ 

significantly from the human proteome as shown by the compositional bias results above. In the 

matrix representation of the negative set, glycine and to a lesser extent arginine, aspartate, 

asparagine and glutamine have a higher relative abundance compared to the other datasets. At 

the same time alanine, proline, valine, isoleucine, leucine and methionine are less abundant than 

in the other datasets. While the small size and biased nature of the negative dataset make strong 

conclusions unwise, the compositional bias is suggestive. Of note, the noise in the negative 

dataset precludes discernment of any sequence specific information. 

Comparison to other O-GlcNAcylation predictors 

Rigorous comparison of site predictors requires definitive knowledge of both positive and 

negative sites, since specificity and accuracy cannot be calculated without knowing the number 

of negative sites. Our knowledge of negative sites is still extremely limited, in part due to a focus 

on high-throughput approaches, which are better at identifying positive sites. Lamin A is an O-

GlcNAcylation target that has been studied in a targeted low-throughput approach, giving more 

confidence that sites not identified as glycosylated are in fact not glycosylated by OGT(47). We 

used Lamin A as a test case to crudely compare the different predictors (Table 4). Results from 

our simple predictor OGTcomPred compare favorably with early predictors, though they are not 

as good as more sophisticated tools such as O-GlcNAcPRED-II(41)). Interestingly, preliminary 

exploration suggests that adding some sequence specificity back into our predictor improves 

prediction results while decreasing the ability of our predictor to discriminate between our 

positive and negative datasets (not shown). This supports our suspicion that some sequence 

specificity is lost due to the small size of our experimental negative set. Nevertheless, the fact 

that our predictor OGTcomPred compares well with some of the other predictors, despite this 

loss, supports our contention that OGT substrates have a compositional bias. 

Discussion 

It is not yet possible to reliably predict O-GlcNAcylation sites despite there being a significant 

amount of effort put towards developing predictors for O-GlcNAcylation sites. Here we 

developed a small, experimentally-tested negative dataset, which suggests that OGT has the 

ability to distinguish between substrates and non-substrates based on amino acid composition 

over an extended sequence length, a factor that should be a consideration in predicting 

glycosylation. Specifically, methyl group-containing amino acids and proline were favorable, 

while glycine, glutamine and asparagine as well as the charged amino acids, glutamate, aspartate 

and arginine seem to inhibit glycosylation. Compositional mutations introduced into the FUS 

LCRN with no regard for specific active-site recognition motifs support this idea. Changes in 

glycosylation stoichiometry were correlated with the number of glycosylation sites predicted by 

our compositional matrix predictor OGTcomPred. NMR data provide evidence that 

glycosylation-promoting compositional mutations enhance OGT-TPR binding to the FUS LCRN. 

Together, these observations support a model in which interactions between intrinsically 

disordered substrates and the OGT-TPR can facilitate glycosylation of sites that have a 

suboptimal interaction with the catalytic site, as has been previously observed(73). 
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There are many factors that affect OGT recognition in vivo. Here we focused on factors that 

influence the ability of ncOGT (OGT with 13 TPR repeats) to directly recognize and glycosylate 

other proteins in vitro, including interactions of the substrate with the catalytic site and the TPR 

(Fig. 8). While some substrates seem to require the full TPR for efficient glycoslyation, others 

can be glycosylated with minimal TPR repeats. An example of the latter is a 12-amino acid 

substrate peptide derived from the casein kinase II (CKII), which can be glycosylated by a 

shortened OGT variant that is missing 5.5 TPR repeats relative to the full ncOCT variant(31). 

Furthermore, addition of TPR in trans does not competitively inhibit glycosylation of CKII(31), 

suggesting that the TPR region does not contribute significantly to recognition of CKII as a 

substrate. In contrast, other substrates like TRAK1(31) and the C-terminal domain of RNA 

polymerase II(30) require all of the TPR repeats for efficient glycosylation. OGT with a full TPR 

is known to glycosylate a broader range of substrates than OGT isoforms with fewer TPR 

repeats(26). This is consistent with OGT requiring a threshold level of affinity for efficient 

glycosylation, with that affinity being achieved either by optimal interaction between a short 

peptide segment of an IDR and the OGT catalytic region or alternatively by a combination of 

many weak interactions between a long IDR and the OGT catalytic region and the TPR.  

Catalytic Site Interactions 

From a structural perspective, it is not yet well understood how substrates are recognized by the 

catalytic site. Consistent with the wide array of OGT substrates, there are relatively few contacts 

between the catalytic site and the sidechains of peptide substrates, with crystal structures 

demonstrating that most contacts involved the backbone of substrate peptides (2, 22). 

Nonetheless, a screen of randomly-generated 13-residue peptides shows a highly specific 

selection of substrates for this class of short peptide, with less than 10% of the peptides in the 

screen being glycosylated as efficiently as the positive control. Crystal structures of multiple 

substrates demonstrate a highly constrained peptide backbone in the -3 to +2 region involving 

hydrogen bonds to the peptide backbone. These structures suggest the presence of size 

preferences or steric restrictions in the different positions along the substrate. For example, 

smaller amino acids are preferred in the -3 and +2 position, while the -2 position seems to 

disfavor small amino acids such as alanine and glycine. Even dramatic substitutions of single 

residues, for example, replacing serines and alanines in the +2 position with phenylalanine, 

merely reduce the efficiency of glycosylation, introducing energetic costs that might be 

overcome through TPR interactions with longer peptides. However, the additive effects of 

several unfavorable changes could possibly prevent glycosylation. So, rather than trying to 

define sequences that interact optimally with the catalytic site, it might be more helpful to look 

for sequences that prohibit glycosylation. The large number of possible sequence combinations 

will make uncovering prohibitive sequences difficult, but may be a key piece of solving the 

prediction puzzle. 

A second piece of the puzzle is trying to define the amino acid preferences for interactions with 

the OGT-TPR. In the crystal structure of OGT-TPR bound to a peptide derived from HCF-1, the 

substrate is in an extended conformation in the inside of the helix. A series of conserved 

asparagine residues arranged on the inside of the TPR helix(24) form bidentate interactions with 
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the substrate peptide backbone(72). Mutation of five of these asparagines selectively inhibited a 

substantial number of substrates that require the OGT-TPR for efficient glycosylation(52). Since 

these are backbone contacts, they likely play a minimal role in specificity. Structures with an 

HCF-1-derived peptide bound inside the helix also show four TPR aspartates forming hydrogen 

bonds with threonine sidechains in the HCF-1 peptide. This explains the prevalence of threonines 

C-terminal to the glycosylation site in the Phosphosite and O-GlcNAcPRED-II positive datasets. 

Our work suggests that glycines are unfavorable, possibly because they are less conformationally 

restricted, which would impose a greater entropic cost for binding to the asparagine ladder. We 

also found that small hydrophobic residues such as alanine, valine and proline are favorable. We 

speculate that these can make favorable van der Waals interactions with the concave surface of 

the TPR helix, possibly via transient, dynamic interactions(64) that allow substrate sidechains to 

be correctly positioned in the catalytic site. In contrast, amino acids with sidechains that can 

form hydrogen bonds seem unfavorable with the exception of threonines and serines. Hydrogen 

bond-forming amino acids such as asparagine, glutamine and glutamate may introduce geometric 

constraints that are difficult to satisfy. Glutamate may additionally be unfavorable because of the 

net excess of acidic residues on the concave surface of the TPR. Consistent with this, OGT 

constructs with fewer TPR repeats more readily glycosylate substrates with polar uncharged and 

charged residues such as glutamine, asparagine, lysine, glutamate and aspartate(26). 

Substrate structure impact on glycosylation 

Of note, based on existing OGT crystal structures, secondary structure elements and folded 

domains are predicted to be incompatible with glycosylation by OGT due to steric clashes(22). 

This could explain our observation that ID4 of CBP does not get glycosylated despite our 

prediction. In fact, the regions that flank the majority of our predicted target serines and 

threonines in this intrinsically disordered segment form alpha-helical structures with significant 

populations(70). We speculate that disruption of these secondary structure elements could 

promote glycosylation of ID4. Amino acids conducive to maintaining an extended or random 

coil structure significantly affect the propensity of a peptide to be glycosylated and may explain 

the preference for prolines and beta-branched residues(2). Although the vast majority of OGT 

substrates are in IDRs(5), there are a few examples of proteins that are glycosylated in folded or 

ordered regions, including HBGB-1(74), H2B(75) and αB-Crystallin(76). Glycosylation of these 

ordered sites could occur if the TPR is able to move away from the catalytic site, as has been 

suggested by a recent electron microscopy structure(77). Alternatively, the OGT-TPR might be 

able to unfold a select group of ordered regions, as the TPR-containing karyopherin proteins are 

known to behave as chaperones(78). Finally, glycosylation of these ordered regions could occur 

co-translationally before the proteins are fully folded(79, 80). Since most OGT ligands are IDRs, 

we intentionally picked IDRs to build our negative dataset. When making predictions for 

proteins for which the structure is unknown, we also couple the prediction to a disorder 

predictor. Attaining more accurate predictions will likely require incorporation of structural and 

steric constraints, which may be facilitated by recent advances in structure prediction(81, 82). 

How proximal structured elements impact glycosylation is not yet well defined. The range of 

possible OGT-TPR entry points and the effect of adjacent folded domains on TPR entry are 
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unknown. Examining the TPR structure, it appears that peptides do not need to enter the TPR 

helix from one end, since there is sufficient space for a peptide to enter the TPR interior from 

points along the helix. However, larger structural elements would not be able to enter the interior 

without significant rearrangement of the helix. Thus, our observation that the isolated IDR3 of 

CBP can be glycosylated in vitro does not mean that it can be glycosylated in vivo since it is 

flanked by folded regions in the full-length CBP protein. These considerations add further 

complexity to prediction efforts. Prediction approaches to date have taken a structure-agnostic 

approach, but pushing predictions towards higher accuracy will require addressing these 

structural issues. Overcoming this complexity is a worthwhile goal given the importance of O-

GlcNAc modification for modulating protein thermodynamics, aggregation and phase separation 

propensity. 

 

Experimental Procedures 

Expression and Purification of Proteins 

All DNA constructs were verified by sequencing. Proteins were expressed in E. coli BL21 (DE3) 

RIPL cells using LB media, unless otherwise stated. Cell cultures were grown to an optical 

density of 0.8 and then induced with 0.5 mM IPTG and harvested after 16 hours at 18 °C. 

Purifications were carried out at room temperature unless otherwise stated. Purified protein 

samples were further verified by mass spectrometry to ensure that they were the expected 

molecular weight. 

EWS, FUS and TAF15 LCRN purification 

His-tagged SUMO fusions of LCRN fragments of human EWS (aa 1-264), FUS (aa 1-214), and 

TAF15 (aa 1-210) were lysed by sonication and then purified by nickel affinity chromatography 

using a buffer containing 20 mM CAPS, pH 11, 500 mM NaCl, 4 M guanidinium chloride 

(GdmCl) with 20 mM imidazole added to the aliquot used for lysis and washing and 280 mM 

imidazole used in the elution aliquot. Proteins were then subjected to size exclusion 

chromatography using a buffer comprised of 40 mM arginine, pH 9. A HiLoad Superdex75 HR 

16/600 column (Cytiva) was used for all of the size exclusion chromatography described here. 

Only the purest fractions were retained for glycosylation reactions and mass spectrometry. ULP1 

protease (purified in-house) was used to remove the His-SUMO fusion protein. The LCRN 

protein was then loaded onto a size exclusion column without first concentrating the protein, 

since concentrating the protein led to significant loss. The same 40 mM arginine pH 9 buffer was 

used for this step. 

FUS and FUS mutant LCRN purification 

We modified the purification to more reliably obtain FUS or mutant FUS LCRN without the 

SUMO fusion tag. Nickel affinity chromatography and size exclusion chromatography were 

followed by consecutive purification on a HiTrap Q column (Cytiva) and a 8 ml phenyl Superose 

column(Cytiva) using buffer with 40 mM arginine, pH 9 and gradients from 50 mM to 1M NaCl 
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and 1 M to 0 M NaCl, respectively. Following cleavage with ULP1 the protein was again 

purified by phenyl Superose using the same gradient, to yield highly pure FUS LCRN. 

CBP ID1, ID3, ID4 and ID5 purification 

Human CBP IDRs (ID1 (1-344), ID3 (676-1080), ID4 (1851-2057) and ID5 (2124-2442) were 

lysed in a buffer containing 6 M GdmCl, 50 mM Tris-HCl, pH 8, 500 mM NaCl and 20 mM 

imidazole and then loaded onto nickel affinity resin. The protein was eluted from the column 

using 4 M GdmCl, 50 mM Tris, pH 8, 200 mM NaCl and 500 mM imidazole. The protein was 

then concentrated and purified by gel filtration chromatography using a buffer containing 20 mM 

KPO4, pH 6.5, 100 mM NaCl and 50 µM EDTA. 

OGT purification 

Following expression of human ncOGT (full length, 1-1046) in E.coli, cells were resuspended in 

a buffer containing 25 mM imidazole, 10 % glycerol, 250 mM NaCl and 25 mM HEPES, pH 7.5, 

5 mM β-mercaptoethanol. DNaseI and an EDTA-free protease inhibitor tablet (Sigma) were also 

added to the lysis buffer. Following lysis by sonication and French press, the protein was 

purified by nickel affinity chromatography and eluted in the same buffer with 250 mM instead of 

25 mM imidazole. Fractions containing pure protein were then dialyzed in 25 mM HEPES, pH 

7.5, 40 mM NaCl, 0.5 mM EDTA and 5 mM β-mercaptoethanol and then loaded onto a 5 ml 

HiTrap Q-XL column (Cytiva) and purified at 4 ºC using a gradient from 0.05 to 1.0 M NaCl. 

Although the protein appeared pure after this anion exchange step, we further purified the protein 

using a HiLoad Superdex 200 HR16/600 size exclusion column using a buffer containing 40 mM 

KPO4, pH 7.5, 125 mM NaCl, 0.5 mM EDTA, 0.5 mM benzamidine and 5 mM β-

mercaptoethanol to ensure that no contaminating proteases remained. 

OGT-TPR purification 

A construct containing SUMO fused to residues 2-474 of ncOGT representing the TPR region 

was purified by Ni affinity chromatography as for the full-length ncOGT purification. The 

SUMO tag was cleaved off using ULP. NaCl was then added to the sample to bring the total 

NaCl concentration up to 1M. This was followed by purification on a phenyl Superose column in 

a buffer of 25 mM Hepes, pH 7.5, 5 mM β-mercaptoethanol, using a 1 M to 150 mM NaCl. As a 

final purification step, the OGT-TPR was subjected to size-exclusion chromatography using a 

buffer of 44 mM KPO4, 137.5 mM NaCl, 0.55 mM EDTA and 0.55 mM benzamidine, pH 7.2. 

Purification of the OGT-TPR with the SUMO tag cleaved off was similar. 

Purification of negative set proteins 

Human SARA (aa 766-822)(60), DDX4 (aa 1-236)(61), CFTR (aa 654-838)(62) and FMRP (aa 

445-632)(63) were expressed and purified as described previously. 

Production of protein for NMR spectroscopy 

Isotopically labelled proteins for NMR spectroscopy were expressed in M9 minimal media using 
15N ammonium chloride as the sole source of nitrogen. 

OGT reaction conditions 
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Protein samples were dialyzed into 40 mM K2HP04, pH 7.5, 125 mM NaCl, 0.5 mM EDTA, 2 

mM betamercaptoethanol and 0.5 mM benzamidine. Reactions were performed at a protein 

concentration of 20 µM. Following addition of 1 µM ncOGT and 1 mM UDP-GlcNAc, samples 

were incubated at room temperature for 16 hours.  

Mass Spectrometry 

MS experiments were carried out at the Structural Genomics Consortium Toronto facility or at 

The Hospital for Sick Children SPARC Molecular Analysis facility. Samples were prepared by 

adding formic acid to a final concentration of 0.1% v/v. To determine glycosylation 

stoichiometry, purified glycosylated proteins and controls were either run on a Thermo-Fisher 

Orbitrap Q Exactive High Field instrument or on an Agilent UPLC-quadrupolar time-of-flight 

(Q-ToF) 6545 MS system equipped with a Dual JS electrospray ionization source. Samples were 

desalted online via a C18 column. Raw data were either processed using Agilent MassHunter 

software or Thermo-Fisher software and deconvoluted using the maximum entropy algorithm 

with appropriate mass ranges. The deconvoluted data were then plotted using MATLAB. To 

identify specific glycosylation sites in the EWS LCRN region or the ID3 region of CBP, the 

protein was digested with chymotrypsin or trypsin respectively, and then subjected to LC-

MS/MS on a Thermo-Fisher Orbitrap Q-Exactive mass spectrometer, using higher energy 

collisional dissociation (HCD). To identify glycosylation sites with confidence, we set the 

following thresholds: the parent ion error had to be less than 1 ppm and the number of fragment 

ions with a score of less than 7 ppm had to be greater than 8. As the O-GlcNAc modification was 

lost during the peptide fragmentation step, we were able to identify peptides that were 

glycosylated (parent ion had modification), but typically unable to identify exactly which 

residues were glycosylation sites. The MS/MS data were analyzed manually, since the software 

modification site assignment process assumed that the sugar was still present following the 

fragmentation step. 

NMR Spectroscopy 

HSQC experiments(83) were performed at 5 ºC in a buffer containing 40 mM KPO4, pH 7.2, 125 

mM NaCl, 0.4 mM EDTA, 0.5 mM benzamidine, 5 mM DTT and 10% D2O. Matched samples 

were recorded on 20 µM 15N labelled samples (below the threshold for phase separation) of 

either WT FUS LCRN or Mut-F FUS LCRN in the absence and presence of 32 µM SUMO-fused 

OGT-TPR. Spectra were processed with NMRPipe(84) and displayed in CCPNMR(85) software. 

Peak intensities were obtained using Sparky(86) software. Peak assignments for FUS LCRN were 

obtained from the BMRB(87, 88). However, since our sample conditions differed from the 

conditions used by Burke et al. (BMRB 26672), only peaks in less crowded regions of the 

spectrum could be assigned. The experiment was repeated using OGT-TPR with the SUMO 

tagged removed to rule out a significant role for SUMO in the interaction. 

Matrix Optimization and Score calculation 

The Phosphosite O-GlcNAcylation database (1829 peptides) was used as a positive dataset to 

optimize a scoring matrix. The negative dataset consisted of peptides extracted from IDRs, 

which we experimentally determined to not be glycosylated by OGT under optimal conditions. It 
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consisted of 135 peptides centered on serines or threonines extracted from these proteins. In-

house software was used to optimize the matrix to maximize the scoring difference between the 

positive and negative datasets, using an iterative process of random changes to the matrix. The 

final matrix was then used to score glycosylation sites. The threshold for a positive site was set at 

160, unless otherwise indicated. (For Table 4, the low, medium and high thresholds are 123, 148 

and 160 respectively). All existing predictors suffer from high numbers of false positive 

predictions. Setting a relatively high threshold increases the likelihood that a positive prediction 

is accurate, but results in poor sensitivity. 

Measuring Compositional Bias 

We measured compositional bias as defined by Harrison and Gerstein(89) and implemented in 

fLPS2.0(65). The background proportions of amino acid types were those derived from human 

UniProt records(53) or from a dataset of disordered proteins, determined from the MobiDB(66) 

manually curated version of the DisProt database(67). We further selected only human proteins 

with greater than 50% fractional disorder. The PhosphoSite database was used without 

modification. However, the negative dataset is composed of overlapping peptides and thus highly 

redundant, which we thought would significantly comprise the bias calculation. Therefore, we 

used the sequences of the protein regions containing the peptides in the database, rather than the 

database itself. Only biases related to the whole datasets are reported here.  

 

Data availability 

The LC-MS/MS data on EWS-LC and CBP ID3 glycosylation, an optimized scoring matrix and 

the script for scoring peptides can be downloaded from https://zenodo.org,  

DOI: 10.5281/zenodo.6986306. 

 

Supporting Information 

This article contains supporting information. 

Table S1. Sequences of WT and mutant FUS LCRN. 

Figure S1. Amino acid proportions in the human proteome and set of disordered proteins. 

Figure S2. 1H-15N HSQC spectra of WT FUS LCRN and Mut-F FUS LCRN in the presence and 

absence of OGT-TPR. 
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Table 1. Location of Glycosylation Sites in the EWS LCRN. Peptides identified by the MS-

MS sequence are listed. The number of glycosylation sites for each peptide was determined by 

the difference in the molecular weight of the parent ion. LC-MS/MS data: DOI: 

10.5281/zenodo.6986306. 

EWS peptide span Observed glycosylation sites (total number of 
serines and threonines in peptide) 

45-61 3 (6) 
87-112 3 (10) 

119-158 2 (9) 
145-170 2 (8) 
171-195 2 (6) 
209-226 1 (6) 
230-254 3 (8) 
248-264 1 (6) 

 

 

 

Table 2. Measurement of compositional bias in the positive and negative datasets. 

Compositional biases of low probability were assessed for the PhosphoSite database of O-

GlcNAc sites (positive set) and our experimentally determined negative set as a whole using the 

method of Harrison and Gerstein as implemented in fLPS 2.0.  The background amino acid 

composition was either the human proteome composition or the amino acid composition of a set 

of disordered proteins (see methods). 

Dataset Residues with Pbias < 10-3 using human proteome composition 

PhosphoSite 
database 
 

T (< 10-264), S (< 10-264), P (10-264), A (10-82), V (10-12), G(10-3)  

Experimental 
negative set 

G (10-16), S (10-8), Q (10-4), R (10-3), N (10-3) 

 Residues with Pbias < 1 x 10-3 using disordered protein database composition 

PhosphoSite 
database 
 

T (< 10-264), S (10-239), V (10-101), A (10-51), I (10-13), F (10-5),Y (10-4),M (10-4) 

Experimental 
negative set 

G (10-9), Y (10-5), S (10-4), N (10-4) 
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Table 3. Results of MS-MS experiments on CBP ID3. Peptides identified by the MS-MS 

sequence are listed. The number of glycosylation sites for each peptide was determined by the 

difference in the molecular weight of the parent ion. One site was identified unambiguously, with 

a further four sites for which the precise modification sites could not be determined. LC-MS/MS 

data: DOI: 10.5281/zenodo.6986306. 

CBP ID3 peptide span Observed glycosylation sites 
(total number of serines and 

threonines in peptide) 

Confirmed Sites 

676-714 1(1) S709 
715-742 2(3)  
743-768 1(6)  
972-998 1(6)  
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Table 4. Assessment of Sensitivity, Specificity and Accuracy for O-GlcNAc predictors using 

Lamin A as a test case. Known sites and prediction values for these sites are listed in the top 

half of the table and used to assess sensitivity, specificity and accuracy in the bottom half of the 

table. Assessments were performed at different threshold levels when possible. 

Lamin A 
Known 

Sites 

Predicted Sites 
OGTcomPred OGTSite YinOYang 

O-GlcNAcPRED-II 
low med. high med. high >1+ >2+ >3+ 

603 1 1 1   1   1 

612 1   1 1 1 1 1 1 

613 1 1    1   1 

615      1   1 

616 1 1       1 

618 1     1   1 

619         1 

621 1 1    1 1 1 1 

623    1 1 1   1 

628 1   1      

643       1 1       1 

           

Positive 
Sites Found 

7 4 1 4 3 7 2 2 10 

Total Sites 
Found 

26 10 2 27 6 25 11 4 27 

Predicted 
Sites 
Verified 

27% 40% 50% 15% 50% 28% 18% 50% 37% 

Sensitivity 64% 36% 9% 36% 27% 64% 18% 18% 91% 

Specificity 80% 94% 99% 76% 97% 81% 90% 98% 82% 

Accuracy 76% 86% 88% 68% 88% 77% 81% 88% 81% 
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Figure Legends 

Figure 1. FET protein glycosylation by OGT. Intact mass spectrometry profiles of the LCRN 

regions of (a) EWS, (b) FUS and (c) TAF15 before and after glycosylation by OGT. Spectra of 

the unglycosylated proteins are shown in blue and spectra following glycosylation (5 hours at lab 

temperature) are shown in red, with the number of added sugar groups shown. (d) Amino acid 

composition of FET protein LCRN and RNA Polymerase II CTD. Compositions are shown for 

FUS (aa 1-214), TAF15 (aa 1-210) and EWS (aa 1-264) and RNA Polymerase II subunit RPB1 

(aa 1586-1970) as labelled in the legend.  Only amino acids that are observed in at least one of 

these regions are shown. 

Figure 2. Development of an experimental negative dataset for OGT glycosylation. Mass spectra 

of EWS (positive control), SARA (aa 766-822), DDX4 (aa 1-236), TAF15 (aa 1-210), CFTR (aa 

654-838) and FMRP (aa 445-632) before (blue) and after (red) overnight glycosylation with 

OGT. 

Figure 3. Optimization of a matrix for prediction of OGT glycosylation sites. (a) Schematic for 

the optimization process. (b) Optimized matrix, with residue position along the horizontal axis 

and amino acid type along the vertical axis. Yellow represents residues favorable to 

glycosylation, while blue is used to show residues that are unfavorable to glycosylation. The 

histogram on the right shows average value for amino acids not in the i position. (c) Boxplots of 

peptide scores in the positive and negative sets, as well as boxplots of peptide scores for 

individual proteins in the negative set. 

Figure 4. Glycosylation of FUS compositional mutants. (a) Mass spectrum of SUMO fusions of 

WT and mutant FUS LCRN, before (blue) and after (red) overnight glycosylation by OGT. (b) 

Correlation plots of the maximum number of observed sites versus sites predicted by 

OGTcomPred or O-GlcNAcPredII. 

Figure 5. OGT-TPR interaction with FUS and Mut-F FUS. 1H-15N HSQC spectra of WT FUS 

LCRN (a) and Mut-F FUS LCRN (b) in the presence and absence of SUMO-OGT-TPR. Spectra 

of the FUS LCRN at 20 µM are shown in blue and spectra in the presence of 32 µM SUMO-

OGT-TPR are shown in orange. Spectra were recorded with a field strength of 600 MHz at 5°C 

in a buffer comprised of 40 mM KPO4, 125 mM NaCl, 0.5 mM EDTA, 0.5 mM benzamidine, 5 

mM DTT and 10% D2O, pH 7.2. Resonance assignments for some peaks in the WT spectrum 

were obtained by transferring some assignments from BMRB record 26672. SUMO-control 

experiments are shown in Figure S1. Plots (c) and (d) show intensity ratios (plus OGT-TPR/apo) 

for WT and Mut-F FUS LCRN respectively. Intensity ratios are shown in random order, since 

most of the residues were not assigned (see Experimental Procedures). 

Figure 6. CREB-binding protein (CBP) glycosylation. (a) OGTcomPred prediction of OGT 

glycosylation sites for 4 intrinsically disordered segments of CBP. (b) Mass spectrum of CBP 

ID1, ID4 and ID5 before (blue) and after (red) glycosylation. Peaks annotated as +1, +2, +3 and 

+4 are 203, 406, 609 or 1212 Da bigger than the unglycosylated material. Some of the peaks 

appear as doublets (ID1 and ID5) because a large fraction of the protein is modified by a single 
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oxidation event (+16 Da). ID4 is modified by several small chemical modifications in addition to 

the sugar modification (+203 Da).  

Figure 7. Prediction Dataset Analysis. Positional amino acid frequency plots for the (a) 

PhosphoSite Database of O-GlcNAc sites, (b) O-GlcNAcPredII positive dataset, (c) the 

experimental negative dataset developed here, (d) the negative dataset used in the development 

of the O-GlcNAcPredII predictor, and (e) the human proteome (UniProt database). Residue 

positions are relative to the serine or threonine at the glycosylation site. Frequency is indicated 

by a blue-yellow gradient, with yellow representing high frequency and blue indicating low 

frequency. 

Figure 8. OGT ligand selection model. The OGT catalytic domain and TPR helix are shown in 

blue, bound to a peptide ligand that has an optimal fit to the catalytic site and a TPR interacting 

region with a compositional bias that promotes interaction with the TPR. Glycosylation is 

indicated by the orange G. Short peptides with optimal fits for the catalytic site can be 

glycosylated, but short peptides with suboptimal fits are not glycosylated. Extended peptides 

with suboptimal catalytic site fit can still be glycosylated if the peptide has a compositional bias 

that is suitable for TPR interaction (green), but not if the compositional bias is less favorable for 

a TPR interaction (red). 
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Figure 1. 

 

Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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