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Faces and voices are the dominant social signals used to recognize individuals amongst 
human and nonhuman primates 1–5.  Yet, evidence that information across these signals 
can be integrated into a modality-independent representation of individual identity in the 
primate brain has been reported only in human patients 6–9.  Here we show that, like 
humans, single neurons in the marmoset monkey hippocampus exhibit invariant neural 
responses when presented with the faces or voices of specific individuals.  However, we 
also identified a population of single neurons in hippocampus that were responsive to the 
cross-modal identity of multiple conspecifics, not only a single individual. An identity 
network model revealed population-level, cross-modal representations of individuals in 
hippocampus, underscoring the broader contributions of many neurons to encode 
identity. This pattern was further evidenced by manifold projections of population activity 
which likewise showed separability of individuals, as well as clustering for family 
members, suggesting that multiple learned social categories are encoded as related 
dimensions of identity in hippocampus.  The constellation of findings presented here 
reveal a novel perspective on the neural basis of identity representations in primate 
hippocampus as being both invariant to modality and comprising multiple levels of 
acquired social knowledge. 
 
Effectively navigating the sophisticated societies that typify primates relies on the ability to rapidly 
recognize each individual encountered and to infer relationships between those conspecifics to 
make appropriate social decisions 10–13.  An abstract, modality-independent representation of 
identity would confer a significant advantage for this purpose as prior experiences are bound 
together rather than separated by sensory input 14.  Evidence of such mechanisms, however, has 
been limited to ‘concept cells’, a sparse population of highly-selective neurons in the human 
hippocampus responsive to a single individual across different views and modalities 6,7.  These 
neurons are significant for several reasons including their putative role in declarative memory 
functions 8 and their potential uniqueness to humans 9.  By contrast, evidence of identity coding 
in the nonhuman primate brain has been limited to unimodal faces or voices2,4,5,15–18.  Here we 
tested whether cross-modal representations of identity are evident in common marmoset 
monkeys (Callithrix jacchus) - a highly social New World primate - by recording the activity of 
single hippocampal neurons in response to the faces and/or voices of familiar conspecifics.  We 
presented subjects with multiple exemplars of individual marmoset faces - from different 
viewpoints (Figure 1A) - and voices as unimodal stimuli, consistent with previous studies6, as well 
as concurrently.  These cross-modal stimuli involved presentations of faces and voices from the 
same (identity match) or different individuals (identity mismatch; Figure 1A).  Overall, we observed 
no difference in visual behavior between the identity match and identity mismatch trials, but 
marmosets fixated significantly longer and made significantly fewer saccades in the voice-only 
trials relative to the face-only trials (Figure S1) indicating that these distinct social signals 
differentially affected marmoset visual behavior.  
 
To test whether— like humans— neurons in the marmoset hippocampus exhibit invariant identity 
representations, we performed analyses identical to those described previously6,19 and identified 
a small subpopulation of neurons in the hippocampus of marmoset monkeys (2.9%; N=67) that 
met the same criteria of modality invariant concept cells established in humans. This class highly-
selective neurons, therefore, is not limited to our own species.   Figure 1B plots the responses of 
an exemplar neuron to the face or voice of the preferred individual and two other conspecifics, 
while Figure 1C shows the Receiver Operator Characteristic (ROC) curve from the same 
recording session while the area under the ROC curve (AUC) quantifies the ability to predict the 
face or voice of the preferred individual.  Although the vast majority of putative concept cells in 
marmosets (91.3%) were selective to a single individual (Figure 1D), the magnitude of selectivity 
(Figure 1E) was not as pronounced as in humans (AUC≈1)6,19 and these neurons were widely 
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distributed in all subfields recorded in the marmoset hippocampus (Figure 1F).  A potentially 
important feature in our study that distinguishes it from prior human research is the familiarity of 
the individuals presented in the stimuli and the subjects.  Whereas previous studies in humans 
have typically presented stimuli from well-known celebrities with whom subjects did not likely have 
a personal relationship, or single family members 6,19, here we presented subjects with a large set 
of familiar individuals in our colony that included both family members and unrelated individuals 
(Nindividuals=12).  Given that both human and nonhuman primates live in stable societies 
characterized by intricate, long-term relationships with known individuals, the pattern of responses 
here may reflect how the identity of individuals within one’s social network are coded in this brain 
structure.   
 
A potential limitation on these highly-selective neurons being a cornerstone for various memory 
functions 8 is the inherent disparity between the near infinite amount of information in the world 
and the limited number of neurons in the brain.  A contrasting neural coding strategy would be for 
individual neurons to contribute to a range of different functions that collectively support 
population-level computations for complex behaviors 20–22.  In the case of social identity, this could 
be achieved by single neurons being sensitive to the cross-modal identity of multiple conspecifics, 
rather than only a single individual.  To test this, we broadcast the faces and voices of familiar 
conspecifics concurrently while manipulating whether these signals were from the same (identity 
match) or different (identity mismatch) individuals (Figure 2A).  We conjectured that if 
hippocampal neurons exhibited a significant change in activity between the identity match and 
mismatch trials, it would indicate that the cross-modal identities of multiple conspecifics are 
encoded in single hippocampal neurons.   Analyses revealed another subpopulation of individual 
neurons (Figure 2B) that exhibited a significant difference in median firing rate over the stimulus 
duration between identity match and mismatch trials (N=217; 9.2%; Figure 2C), thereby 
confirming the existence of a mechanism distinct from putative concept cells for representing 
individual identity across modalities within single primate hippocampal neurons.  
 
Quantifying firing rate differences over the entire stimulus, as in the previous analysis, however, 
may fail to capture more selective neural coding features relevant to cross-modal representations 
of identity, particularly for the long stimuli used here (>3s).  To test this, we identified intervals of 
time during which individual neurons exhibited a significantly different median firing rate between 
identity match and mismatch trials, which we labeled as predictive time bins (Figures 2D,S2).  
This analysis revealed 732 hippocampal neurons with at least one predictive time bin, with most 
responding more during identity match trials (Figure 2E).  Most of these predictive neurons only 
exhibited a single predictive time bin (Figure 2F).  The duration of our predictive time bins ranged 
from 0.20-3.60s (median: 0.40s, IQR: 0.20-0.80s), with a median significantly less than that of 
uniformly sampled time bins (Figure 2G) according to a Wilcoxon–Mann–Whitney test (p<0.001, 
N=2´968). 
 
Using an ensemble gradient-boosted decision tree model as our population-level decoder 23, we 
next analyzed whether identity match versus mismatch (MvMM) trials could be accurately 
classified using only those neurons with predictive time bins.  The predictive population yielded 
almost perfect classification of MvMM trials, while the non-predictive population performed at 
chance (Figure 2H).  The ROC curve for the predictive population further illustrates this success 
(Figure 2I), suggesting that this coding feature was highly reliable for distinguishing cross modal 
identity from hippocampal activity.  Remarkably, only a relatively small number of randomly 
chosen predictive time bins (N=50) were necessary for the typical decoding testing accuracy to 
exceed 80% (Figure 2J), suggesting accurate cross-modal identity information was encoded by 
many neurons at the population-level.  When holding the number of time bins fixed and equal to 
the total number of predictive time bins, our population-level decoder predicted MvMM with a 
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testing accuracy exceeding 80% despite having 50% of its predictive time bins replaced by 
random time bins.  When it considered the entire predictive population with an equal number of 
random time bins, our population-level decoder predicted MvMM with a testing accuracy 
exceeding 85% (Figure 2K).  Although this decoder is limited in the sense that it is completely 
agnostic to individual identity, these results overwhelmingly support robust encoding of cross-
modal identity at the population-level because distinguishing between identity match and 
mismatch trials relies on information about the faces and voices from multiple individual animals 
in each monkey’s social network. 
 
To explicitly test whether the primate hippocampus represents the identity of multiple marmosets 
within the same population, we developed an identity network model (INM) that integrated two 
different neural decoding approaches.  We analyzed data only from the three observers with at 
least three known relationships with the individuals.  The first approach was identical to the neural 
decoder described above, classifying MvMM trials blind to individual identity.  The second 
approach resulted in identity-specific decoders for each individual to detect the face or voice in 
any trial.  Our INM combined these two approaches to achieve cross-modal decoding of individual 
identity (Figure 3A).  This combination was critical because while the MvMM decoder was highly 
accurate at classifying MvMM trials, it performed poorly on its own classifying the specific 
individuals (Figure 3B).  By contrast, the identity-specific decoder performed almost perfect 
classification for individuals’ faces or voices, but not when the face and voice were presented 
together (Figure 3C).  Notably, performance of this latter decoder parallels results from putative 
concept cells, in which individuals are identified based on independent unimodal stimulus 
presentations 6,19, suggesting that recognition of an individual from their face or voice alone may 
be distinct from the mechanisms that integrate multiple modalities simultaneously into a 
representation of identity.  When combined across individuals, the INM successfully distinguished 
ten individuals, supporting the identity of the individual being represented across both modalities 
(Figure 3D).  Furthermore, decoding performance was at least 5´ above chance when 
distinguishing ten individuals (Figures 3E,S3).  Together, these results demonstrate for the first 
time that cross-modal representations of individual identity are evident at the population-level in 
the primate hippocampus.  
 
Because putative concept cells were included in these analyses, we investigated whether their 
contribution to cross-modal representations of identity were disproportionate to their sparse 
distribution.  To test this conjecture, we compared INM performance when these neurons were 
included and removed from the analysis.  As an important control, we considered only individuals 
for whom at least one concept cell exhibited a preference in this analysis.  The ROC curve 
averaged over all subjects (Figure 3F), as well as over each individual subject (Figures 3G,S4), 
was not appreciably affected by eliminating putative concept cells.  This suggests that putative 
concept cells are no more significant for decoding the identity of individuals than other neurons in 
the population, at least for familiar conspecifics in the social network.  Rather these neurons may 
function as a bellwether, indicating the presence of information pertinent to an identity concept 
within the broader hippocampal population.  

 
The success of the INM provided compelling evidence that an individual within a marmoset’s 
social network can be decoded from their face and/or voice, but an individual’s identity is also 
coupled to their social relationships, such as their family.  To test whether hippocampus encodes 
categorical attributes of social identity, we applied nonlinear dimensionality reduction techniques 
shown to be powerful tools for revealing elements of brain functions by projecting features of 
neural activity into low-dimensional manifolds 24, including in studies of hippocampus 25,26.  As a 
first step to this end, we tested whether the spatial clustering of manifold projects would replicate 
the findings of the INM.  
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Using the same individual-specific predictive time bins for marmoset faces and voices as in the 
INM (i.e. Figure 3C), manifold projections revealed a similar pattern of separability between 
individuals (Figure 4A), effectively replicating our previous result using an entirely different 
analysis.  Notably, further analyses showed that removal of predictive time bins significantly 
decreased separability of individuals in this analysis (Figure S5).  To investigate whether the 
representation of identity can be described by the relative timing of spike events, we 
complemented this rate-coded representation with an analysis of signed connection rate as a 
parameterless event-coded measure, which considered only the minimum of the hindsight delay 
and the foresight delay (Figure 4B, left).  We evaluated our signed connection rate at the spike 
times of each neuron to describe how one neuron “connects” with another, revealing statistical 
distributions specific to any given pair of neurons (Figure 4B, right).  Results using this event 
coded measure again revealed excellent separability for individual faces and voices (Figure 4C), 
effectively replicating the effect observed for the rate coded features and INM using a facet of 
neural activity that is entirely independent of time bins, further illustrating that cross-modal 
representations of identity are robustly encoded in the population activity of marmoset 
hippocampal neurons.  
 
Having shown that manifold projections can represent cross-modal identity in event-coded 
hippocampal activity, we tested whether other social categories pertinent to an individual’s 
broader identity may likewise be represented in the same manifold projections.  We calculated 
the mean squared range (MSR) of each individual from the mean over all individuals.  We then 
investigated the MSR of two social categories: cagemates (i.e. family members) and non-
cagemates.  In both subjects with at least three individuals presented as stimuli in each social 
category, we observed a significantly larger median MSR for family members compared to non-
cagemates (Figure 4D), suggesting hippocampal dynamics represent both individual identity and 
the relatedness of individuals.  Notably, while the initial individual identity analysis was supervised, 
the clustering that emerged based on respective social relatedness was unsupervised.  Figure 
4E shows the bundled edges from a two-dimensional manifold projection to visualize the 
relationships between conspecifics in hippocampal activity, which supports connections existing 
between identities in the neural representation.  We next computed an unsupervised latent firing 
rate as the manifold projection of the absolute value of our signed connection rate.  Though it did 
not demonstrate separation of individual identity, it did exhibit trajectories that appeared stable in 
time and comparable between trials (Figure 4F).   Averaging over N=12 recording sessions, we 
found the motion of mean latent firing rate was significantly larger at multiple time points while 
one observer, Baloo, was observing cagemates compared to non-cagemates (Figure 4G).  The 
other observer demonstrated similar motion for individuals from both social categories.  While 
idiosyncrasies in the face and voice directly convey individual identity, information about familial 
relationships must be abstracted based on experience observing conspecifics interacting with the 
other individuals around them 13,27.  These results suggest that neural representations of social 
identity in primate hippocampus are not only invariant to the sensory modality but reflect the rich 
corpus of acquired knowledge about the relationships between familiar marmosets in the social 
network.  
 
Here we showed that the cross-modal identity of multiple conspecifics are represented in the 
marmoset hippocampus.  Although we identified putative concept cells similarly to humans 6,8, we 
discovered that this population of highly selective neurons is not the only mechanism for 
representing concepts of individuals. Rather, both single neurons and the broader population in 
hippocampus encode the cross-modal identity of multiple conspecifics. Furthermore, analyses 
revealed that a population-level code represents not only the identity of multiple familiar 
individuals invariant to the modality of the social signal, but information pertinent to social 
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categories, as well.  Similar to the role of hippocampus in other contexts 28,  these representations 
likely reflect learned social schema for identity that facilitates the rapid recognition of individuals 
necessary for guiding decision-making during the complex interactions characteristic of complex 
societies.  The presence of unimodal representations of identity in the primate face and voice 
patches 17,18 with the close anatomical connectivity between the temporal cortex and medial 
temporal lobe 29,30 supports an integrative social recognition circuit in which substrates in the 
broader network plays distinct but complementary roles that together govern natural primate 
social brain functions 31–33.  Elucidating how such a schema confers an advantage for primates, 
however, will likely require experiments in which freely-moving monkeys leverage these neural 
representations to navigate their social landscape 22. 
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Methods 
Subjects. 
Four adult marmosets (2 male, 2 female) served as subjects in these experiments.  All animals 
are socially housed with 2-8 conspecifics in the Cortical Systems and Behavior Laboratory at the 
University of California San Diego (UCSD).  The UCSD marmoset colony in the Miller Lab houses 
~70 animals in 15 family groups. All procedures were approved by the Institutional Animal Care 
and Use Committee at the University of California San Diego and follow National Institutes of 
Health guidelines.  A total of 47 recording sessions were performed with these subjects over the 
course of the experiment and analyzed here.  
 
Experiment Design. 
Neurophysiological recordings were performed while subjects were head and body restrained in 
our standard marmoset chair 34,35.  Visual stimuli were presented on a LED screen from a BenQ 
monitor 1080 positioned 24 cm in front of the animal.  Acoustic stimuli were presented at 70-80 
dB SPL.  All behavior was collected in an anechoic chamber illuminated only by the screen, which 
had a dynamic range from 0.5 to 230 cd/m2, with luminance linearity verified by photometer. 
Stimulus presentation was controlled using custom software and eye position was monitored by 
infrared camera tracking of the pupil. For hardware, calibration, and validation, Ref. 36.  

Subjects initiated trials by holding fixation of gaze for 100ms at a center fixation dot on the 
screen, at which point stimulus presentation was initiated.  The 150ms period immediately post-
stimulus was discarded to account for the time for visual signals to propagate from the retina to 
the hippocampus. This latency has been measured to be in the range 100-200ms in macaques 
36–39 and relatively recent data suggests it is comparable in marmosets 40.  This biophysical 
argument supports our estimate of the stimulus onset t=0 occurring 150ms after stimulus was 
presented.  Unless otherwise specified, baseline firing rates were estimated from the 500ms 
preceding t=0.  Stimulus responses were initially measured by comparing the peristimulus 
baseline firing rate to firing rates averaged from t=0 to 3s. 

Stimuli were divided amongst unimodal – face-only and voice-only – and cross-modal – 
identity match and identity mismatch on a trial-by-trial basis.  Up to twelve conspecifics were 
represented per stimulus set (min 9, max 14).  Face stimuli comprised multiple examples of each 
individual marmoset from different head orientation. 

Each individual marmoset was represented in multiple distinct stimuli (N=36.0+/-15.3) 
for each individual in each recording session across each of the four stimulus modalities.  
Monkeys with fewer than 10 presentations per individual in a recording session were not 
considered in any analysis.  The stimulus duration of trials involving vocalizations (i.e. voice-only 
and cross-modal) necessarily varied because each “phee” call differed in duration (mean: 3.02+/-
0.74s).  The face stimulus duration was 3.5s.  Stimuli were presented in 10-trial blocks, with an 
inter-block active forage trial with juice reward to maintain attention.  Each recording set was 
composed of 400 face and/or voice stimuli, split into 2 subsets. 

All stimuli were composed of faces and/or voices of conspecific monkeys in our colony 
familiar to each subject.  A total of 16 individual monkeys were represented overall (9 male, 7 
female).  Test subjects were not included in their own stimulus sets.  Because our goal was to 
test for representations of individual identity rather than cross-modal perceptual integration of 
face/voice biomechanical movements (i.e. McGurk Effect 41), we presented subjects with static 
face stimuli so as not to introduce confounds that may emerge due to temporal misalignments of 
the face and vocalizations during identity mismatch trials.  

All face stimuli were photographs of monkeys from our colony taken while animals were 
in our standard marmoset chair 35,42 with a light background behind them.  The animals are trained 
to sit comfortably while a neck guard restricted their mobility.  While seated, subjects could freely 
change head direction.  Photographs of each subject were visually inspected and selected based 
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on image quality and suitable representation of multiple head orientations(Figure 1A,2A).  Photos 
used as stimuli were cropped to only show the neck guard and the face/head, so as to eliminate 
views of the rest of the body and chair.   

All voice stimuli were marmoset “phee” calls comprising two pulses, the species-typical 
long-distance contact calls 43. Previous work has shown that that marmosets are able to 
recognize the caller’s identity when hearing “phee” calls 44. Recordings were made at 44.1 kHz 
sampling rate while a monkey engaged in natural vocal interactions with a visually occluded 
conspecific in a soundproof chamber and hand-selected using custom code. Only examples 
with high SNR and minimal background noise were selected for stimuli.   
 
Surgical and neural recording details.  
The surgical procedure employed here has been described previously 45.  Briefly, we performed 
an initial surgery to affix a post to the skull on each animal to restrain subjects’ head during 
experiment preparation.  Following recovery, a second procedure was performed to embed the 
drive housing and the electrode array for stable chronic electrophysiological recording. We 
implanted a 64-channel microwire brush array (MBA, Microprobes 46) either unilaterally or 
bilaterally into the hippocampus using preoperative MRI stereotaxic coordinates.  Electrode 
locations were confirmed by postoperative MRI and histology.  All surgeries were performed under 
sterile and anesthetized conditions. The implants were inserted 7-13 degrees of angle off the 
vertical using the medial sulcus as reference before the operation has taken place. 
Neural recordings were performed with an Intan 512ch Recording Controller system via an 
RHD2164 64-channel amplifier chip, sampled at 30kHz 47.  Neurophysiology data was analyzed 
using Spyking Circus 48 yielding across all recording sessions 2,358 isolated single-units, 
referred to as neurons in the main text and in the remainder of Methods.  Standard procedures 
were employed to remove obvious recording errors, which resulted in less than 1% of trials 
being removed from the analysis a priori. 
 
Determining statistically significant differences in firing rates. 
Unless otherwise specified, the Wilcoxon-Mann-Whitney test was used to test for statistically 
significant differences between two samples of firing rates.  This includes the determination of 
preferential responses to the MvMM task averaged over the 3 seconds following stimulus onset 
(Fig. 2C) and during predictive time bins (Fig. 2E).  The Wilcoxon-Mann-Whitney test compares 
median values without making any assumption of normality 49. 
 
Identifying concept cells. 
Hippocampal neurons were tested for invariant response to individuals in the face-only and voice-
only trials using an ROC analysis identical to that described in human hippocampus 6.  For each 
isolated single neuron we performed the analysis for all identities where at least 3 unimodal stimuli 
(either face or voice but not both) were presented for either mode: face-only and voice-only. 
Above-threshold firing-rate responses to any stimulus of the preferred subject was considered a 
positive trial.  Significance of an ROC for a given subject was determined by comparison to 99 
surrogate ROC curves, which resulted from using the same labels with randomly selected trials.   
Curves that surpassed all surrogates were considered significant (p<0.01).  Neurons that met or 
exceeded these thresholds were determined to be putative concept cells for individual identity in 
marmosets.  
 
Identifying predictive time bins. 
Hippocampal neurons were analyzed in terms of their firing rate response during time bins that 
we identified as candidate.  For each neuron, our procedure consisted of three stages.  The first 
stage was to generate a large list of time bins of varying duration using an extension of the sliding 
window approach.  The second stage identified a subset of time bins as having a general ability 
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to distinguish trials.  We required this subset to be mutually disjoint.  Candidate time bins resulted 
from the third stage, which varied each time bin independently according to our refining 
procedure.  

The first stage extended the sliding window approach by using 200ms time bins evenly 
distributed between 0 and 3.6 sec, the maximum stimulus duration (Figure S2A).  Time bins of 
duration greater than 200ms were constructed by joining adjacent time bins, leading to a 
maximum allowed time bin duration of 3.6 seconds (Figure S2B).  A general ability to weakly 
distinguish trials was determined by splitting the training trials according to three-fold stratified 
cross-validation and then computing the training AUC of each fold (Figure S2C).  Training AUC 
was initially computed from the ROC curve that resulted from an above-threshold firing rate 
response determining a positive trial. Separately, training AUC was computed from a below-
threshold firing rate response as determining a positive trial.  In either case, if the training AUC 
was greater than chance (AUC>0.5) for all folds, then the time bin was retained for stage two 
(Figure S3D).  The same convention for above versus below firing rate response as determining 
a positive trial was used for stage two and for stage three.  All population-level decoders were 
blind to this convention of sign. 

The second stage selected a disjoint set of candidate time bins, optimizing for their ability to 
distinguish trials by maximizing the mean AUC averaged over the same cross-validation.  To 
achieve this, time bins were selected in decreasing order of their mean AUC and included if doing 
so maintained the disjointness of time bins retained (Figure S2D). 

The third stage refined the resulting disjoint set by considering a number of random 
perturbations of each remaining candidate time bin and keeping only the optimal 
perturbation.  The random perturbations shifted the start times and the end times independently 
by a random amount identically sampled from the normal distribution with zero mean and standard 
deviation equal to the duration of the unperturbed time bin.  We generated a sample of N=100 
perturbed time bins and removed those with a duration <10ms.  Perturbations were additionally 
removed if they exhibited a start time before stimulus onset t=0 or if they exhibited an end time 
after t=3.6 seconds.  A worsening AUC in any of the folds resulted in rejection of the given 
candidate time bin. 

If any of the resulting training AUC values were smaller than that of the unperturbed time bin, 
there that perturbation was removed from consideration.  The overall training AUC was computed 
for each perturbation using all training trials together.  The perturbed time bin with the largest 
overall training AUC was kept instead of the unperturbed time bin.  Perturbed time bins were 
allowed to overlap with other remaining time bins, thereby relaxing the condition of disjointness 
for the sake of parallelizability.  A flowchart summarizes the procedure (Figure S2E).  

If no perturbations remained under consideration, then the unperturbed time bin was kept from 
stage two.  Approximately 31.4% (N=304/968) of the predictive time bins in Figure 2 were 
unaffected by the refinement procedure of the third stage.  Any remaining candidate time bins 
were considered predictive only if they presented a statistically significant difference in median 
firing rate for the true (e.g. identity match) training trials compared to the false (e.g. identity 
mismatch) training trials (Figure S2F).  Significance was determined according to p<0.05, where 
p was the statistic computed as the mean p-value resulting from a Wilcoxon–Mann–Whitney test 
conducted over the training trials averaged over five stratified cross-validation folds over training, 
which was a sufficient statistic in the sense that all time bins with p<0.05 also exhibited a 
statistically significant difference in median value at the same level of significance according to a 
Wilcoxon-Mann-Whitney test conducted over all MvMM trials.  This procedure provided the 
sufficient features used in our population-level decoders.  Data and code are made available to 
the reader (see Author Contributions). 
 
Generating random time bins from the non-predictive population. 
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Time bins were randomly selected for neurons uniformly drawn from the population that exhibited 
zero predictive time bins (the ‘non-predictive population’).  Time bins possessed start and end 
times drawn from a uniform random sample from t=0 to 3.5 seconds, the latter of which was the 
median stimulus offset time.  Time bins with a duration briefer than 0.2 seconds were immediately 
removed from consideration. 
 The number of random time bins involved in Figure 2G,I was equal to the number of 
predictive time bins involved.  To include the entire aggregated predictive population as only ~1% 
of the mixed population in Figure 2K, we considered a pool of random time bins that was at least 
100X larger than the aggregated pool of predictive time bins.  This is a consequence of all random 
sampling from any time bin or neuron population was performed without replacement. 
Furthermore, uniform random sampling was conducted for all pools of time bins in analyses.  
During the training of the population-level neural decoders, the condition of uniform random 
sampling of time bins was relaxed. 
 
Training the population-level neural decoders. 
Population-level decoders were trained on the training trials before computing predictions for the 
separate testing trials.  Decoders were trained and tested on a Quadro RTX 5000 GPU typically 
in less than five seconds of runtime.   
 The population-level decoders trained using firing rates directly as inputs.  Neither 
translating nor scaling of the firing rates was performed, as the decoders were both location and 
scale invariant 23.  The prediction was estimated by the weighted average of values returned by 
an ensemble of decision trees (Figure S2G) relative to a default value of one half (controlled by 
base_score in Table 1).  For each training epoch, at least 25 decision trees were trained 
(controlled by num_parallel_tree).  While a unique solution exists for a given decision tree, a 
heuristic algorithm was used to approximate the unique solution using the quantile method 50. 

Decision trees were trained to minimize the binary cross-entropy loss function 
(equivalently, to maximize likelihood) at the ensemble-level by considering only a fraction of the 
training trials (controlled by subsample).  Decision node rules considered only a fraction of the 
input firing rates (controlled by colsample_bynode) to determine placement of its weight.  The 
weight of a node was limited to a certain amount (controlled by max_delta_step).  The complexity 
of the decision node rules was further limited using linear and quadratic regularization (controlled 
by reg_alpha and reg_lambda in Table 1, respectively). 

Each decision tree was gradient boosted in the sense that nodes were recursively added 
in accordance to an estimate of the gradient of a training loss computed at the ensemble-level.  If 
inserting a decision node failed to improve the loss by a sufficiently large amount (controlled by 
gamma), then that decision node was removed from the tree.  To further limit structural 
complexity, the maximum tree depth was set to no more than five decisions (controlled by 
max_depth).  The weight for a new decision tree was scaled down by a factor (controlled by 
learning_rate).  Training terminated for a given decision tree when the total weight for the next 
decision node was smaller than a certain amount (controlled by min_child_weight).  After all 
decision trees terminated training, the training epoch was complete.  After a fixed, predetermined 
number of training epochs, the ensemble terminated training.  Then, predictions were computed 
for the testing trials.  Predictions were used to evaluate the predictive ability of a given set of one 
or more predictive time bins in terms of AUC (Figure S2H). 
 
Determining hyperparameter settings for the population-level neural decoders. 
The parameter settings for our population-level decoders resulted from a series of coarse grid 
searches each conducted over a wide range of settings for one pair of hyperparameters at a 
time.  Each parameter setting considered five-fold stratified cross-validation involving the training 
trials only with the goal of maximizing mean testing AUC.  Early stopping was used during this 
tuning procedure, which supported a minimum 60 training epochs for the match vs mismatch 
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(MvMM) predictive population and a minimum 67 training epochs for the identity-specific 
predictive population as sufficient according to early stopping.  By increasing the number of 
epochs, stability of performance became immediately apparent for up to 500 epochs for both 
MvMM and identity-specific decoders.  We made no use of early stopping anywhere else apart 
from the hyperparameter tuning procedure described here. 

This hyperparameter tuning procedure was conducted only on the training trials for Archie 
observing Waylon in recording session #8.  Archie (male) and Waylon (female) were never 
cagemates – though they may have known eachother in the colony.  These training trials (from 
session #8) were complementary to testing trials from no more than one of the multiple recording 
sessions summarized in Figure 3.  The hyperparameter settings that resulted are reported in 
Table 1. 
 

Hyperparameter MvMM identity-specific 
base_score 0.5 0.5 

num_parallel_tree 25 50 
subsample 0.2 0.2 

colsample_bynode 0.1 0.1 
max_delta_step 0.5 1 

reg_alpha 0.4 0.3 
reg_lambda 0.4 0.3 

gamma 0.1 5 
max_depth 5 2 

learning_rate 0.9 0.6 
min_child_weight 0.5 1 

Table 1 Table of hyperparameters for our population-level 
decoders.  Numerical values were passed as arguments to the 
constructor of xgboost.XGBClassifier instances 20.  Columns 
correspond to the two types of predictive populations reported in 
the main text. 

 
Aggregating predictive populations from multiple recording sessions. 
For the aggregated MvMM decoder reported in Figure 2, the training procedure was performed 
on 120 training trials randomly selected from 150 MvMM trials aggregated from N=14 recording 
sessions.  Trials chosen to be aggregated together shared the same label for each recording 
session involved.  Training consisted of 200 training epochs using the hyperparameter settings 
listed in Table 1.  The results of all except for the first ten training epochs were considered when 
computing predictions with the remaining 30 testing trials.  We controlled for moderate 
unbalanced sampling of training trials by scaling the positive weights by a factor of 5.  Moderate 
unbalanced sampling was a necessary consequence of the trial stimulus selection being 
randomized.  The train and test procedure was repeated for each fold involved in five-fold 
stratified cross-validation of the aggregated trials.  Predictive time bins were identified separately 
for each fold. 

If a recording session did not possess at least 150 cross-modal trials, then it was removed 
from consideration in the aggregated predictive population reported in Figure 2.  A number of 
recording sessions (N=10/24) were removed from the aggregation procedure for exhibiting fewer 
than 15 predictive time bins in any of the folds.  Predictions for the testing trials of all folds were 
summarized in Figure 2H,I by concatenating predictions and ground truth labels across folds 
before computing the ROC curve and the associated testing AUC.  The appearance of almost 
perfect predictions of MvMM can be attributed to predictive populations being aggregated from 
multiple recording sessions (N=14).  Testing performance was lower for recording sessions 
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considered individually, as is reported in Figure 3.  This supports a larger number of predictive 
time bins corresponding to more predictive population-level decoders. Interaction between firing 
rates from multiple recording sessions was not permitted anywhere except for quantifying the 
effect of restricting the abundance of predictive time bins.  
 
Quantifying of the effect of restricting the abundance of predictive time bins. 
To systematically vary the relative abundance of predictive time bins, we randomly sampled time 
bins from the non-predictive population.  Their firing rates were concatenated with those of all 
available predictive time bins.  We took a random sample of predictive time bins in addition to a 
statistically independent random sample of time bins from the non-predictive population.  The 
relative sizes of the samples were chosen to reflect a given relative abundance of predictive time 
bins.  Testing accuracy was computed at the same relative abundance over many statistically 
independent samples (N=100) in order to estimate the mean testing accuracy conditioned on the 
relative abundance of predictive time bins considered by the decoder.   Uncertainty in mean 
testing accuracy was estimated by bootstrapping that same sample of testing accuracies, 
resulting in 95% confidence intervals less than 1% for both traces reported in Figure 2K.  Many 
random time bins (N>105) were independently generated for this analysis in order to estimate the 
mean testing accuracy at the 1% minimum relative abundance reported in the main text while 
simultaneously involving the entire aggregated predictive population. 

The fold with the median testing performance (AUC=0.9911) provided the predictive time 
bins (N=347) and the aggregated trials (N=150) that were used to quantify the effect of restricting 
the number of predictive time bins in Figure 2J.  The fold with the lowest testing performance 
(AUC=0.9111) provided the predictive time bins (N=335) and the aggregated trials (N=150) that 
were used to quantify the effect of restricting the relative abundance of the predictive time bin in 
Figure 2K. 
 
Summarizing testing performance from multiple predictors. 
Population-level decoders were trained as MvMM or identity-specific predictors for each individual 
identity in each recording session involved in Figure 3.  To account for variations in prediction 
magnitude between decoders, predictions were scaled linearly to a maximum value of unity before 
combining ROC traces the multiple recording sessions summarized in Figure 3B-D,F-G.  No such 
scaling was involved with the multiclass predictions reported in Figure 3E. 
 
Sampling trials for multiple predictive populations from the same recording session. 
For a given recording session, the following criteria were respected while partitioning testing trials 
from training trials involving the identity network model (INM) discussed in the main text.  Testing 
trials for the INM were also testing trials for both the MvMM decoder and the identity-specific 
decoders.  Because stimuli involving individuals were sampled uniformly, the frequency of a given 
individual could be small for a given recording session.  To account for this, individuals were 
considered only if they exhibited at least forty appearances in a given recording session. 

Because of the uniform nature of our uniform sampling over the larger space of cross-
modal stimuli, each recording session had relatively few trials involving both the face and the 
voice of a particular individual.  This resulted in far more negative trials being presented to the 
observer relative to the number of true trials for the INM.  This was also the case for both the 
MvMM decoders and the identity-specific decoders reported in Figure 3.  All three binary 
classification tasks had balanced samples randomly selected, which were then randomly shuffled 
before 30% were randomly selected to be the testing trials.  The remaining 70% of trials were 
considered for training.  Unbalanced sampling in the training set was accounted for by scaling the 
positive weights by a factor of 5 for the MvMM decoders and 100 for the identity-specific 
decoders.  Decoders involved in Figure 3 used 200 training epochs, all of which were used in 
testing decoder performance except the first training epoch.  The only exception was the identity-
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specific decoders involved in evaluating the INM for the winner-take-all model in Figure 3E, which 
considered all 500 training epochs. 
 
Decoding multiple identities using a winner-take-all model. 

We used the winner-take-all model to predict the identities of multiple individuals shown 
during identity match and face-only trials.  The ten individuals summarized (Figure 3E) have their 
detailed testing performance reported supplementarily (Figure S3).  The winner-take-all model 
predicted the correct identity with an overall testing accuracy of 89% (Ntrials=198).  For a given 
recording session, the following procedure was performed to generate the predictions for the 
winner-take-all model.  First, we identified all identities involved in a sufficient number of identity 
match trials (Ntrials≥12).  All identity match trials involving the identities identified were shuffled and 
30% were randomly selected as testing trials to be withheld from training with the remaining 70% 
of trials. 

We considered predictions of our INM to approximate a predicted probability that a given 
trial from the testing set involved the given identity.  The presence of the individual was modeled 
using the decoder outputs in the winner-take-all model if the INM had the sufficient number of 
predictive time bins available.  After repeating this procedure for all individuals in the recording 
session, the predicted identity of the winner-take-all model corresponded to that of the maximum 
predicted value. 
 
Quantifying relative contribution of concept cells in decoders of their preferred identities. 
To investigate the possibility of concept cells exhibiting any clearly observable significance in the 
INM at the population-level, we removed all concept cells from consideration and recomputed the 
testing predictions of Figure 3D for each individual that was statistically preferred by a concept 
cell (Nneurons=29).  After recording the testing AUC, we repeated a comparable procedure as a 
control that randomly removed an equivalent number of predictive time bins from any neuron that 
was not found to be a concept cell.  This control procedure was repeated many times (N=200) 
and then averaged to estimate the mean control testing AUC, which was not significantly different 
from a normal distribution according to the omnibus test for normality (p>0.05, N=200).  The 
aforementioned control and test procedures were conducted using independent randomized 
samples.  

ROC curves were computed with above-threshold values indicating a positive trial for the 
three observers with at least three cagemates amongst the identities presented.  The INM 
appeared successful despite the removal of concepts cells independently for multiple observers: 
Archie (Figure S4A), Baloo (Figure S4B), and Hades (Figure S4C).  Removing concept cells from 
the INM for all recording sessions involving one observer resulted in a mean testing AUC that was 
not significantly smaller than that of the control according to a one-tailed paired student’s t-
test.  We independently replicated this same statistical insignificance of concept cells at the 
population-level for multiple observer subjects (p>0.05, N=3).  This insignificance was consistent 
with a comparable analysis that made no assumption of normality, which suggested the median 
testing AUC was also not significantly smaller when all concept cells were removed relative to the 
control (p>0.05, N=3).  It is uncertain whether this insignificance can be attributed to these concept 
cells being observed in nonhuman primates, as no comparable predictive time bin analysis has 
ever been performed in humans to the knowledge of the authors. 
 
Computing signed connection rate. 
Our event coded representation relied on our signed connection rate measure, which we 
computed using our two primitive event measures.  The first we referred to as the hindsight delay, 
𝜏! > 0, which is the amount of time since a given neuron has spiked.  The second we refer to as 
the foresight delay, 𝜏" > 0, which is the amount of time until a given neuron will spike.  A schematic 
illustrating the computation of the hindsight delay is shown (Figure 4B, left).  A similar computation 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507611doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507611


 

 14 

is found for the foresight delay by time inversion.  If the given neuron has not yet spiked, then we 
take the hindsight delay to approach infinity.  Similarly, if the given neuron was not observed to 
spike again, then we take the foresight delay to approach infinity.  Note that our primitive event 
measures do not evaluate to non-positive real numbers. 

The magnitude of our signed connection rate is the multiplicative inverse of the minimum 
of the hindsight delay and the foresight delay.  Finally, we set the sign of our signed connection 
rate to be negative if the hindsight delay was used.  Using the standard conventions of real 
analysis, our signed connection rate is now well-defined at all times for all neurons that exhibited 
at least two spikes.  Equivalently, our signed connection rate was computed according to a real 
function of two variables 
 

𝑐(𝜏", 𝜏!) =
#(%!!	%")

%"
− #(%"!	%!)

%!
, 

 
where 𝛩(x)=1 if x is nonnegative, otherwise, 𝛩(x)=0.   

We evaluated our signed connection rate for every neuron at the spike times of each 
neuron.  This was our attempt to measure how a single neuron “connects” with any other 
neuron.  In doing this, we observed statistical distributions that appeared specific to a given 
neuron pair (Figure 4B, right).  We considered a given neuron to have an approximately 
symmetric signed connection rate if it exhibited no more than twice as many negative values as 
positive values in these statistical distributions. 
 
Estimating manifold projections. 
We used uniform manifold approximation and projection (UMAP) to compute our manifold 
projections in Figure 4 of the main text, which presents descriptive manifold projections computed 
from predictive firing rate features and separately from our signed connection rate measure of 
spiking events.  The same parameter settings on the same optimization algorithm was used for 
both rate and event coded manifold projections.  We used predictive firing rates from the MvMM 
population in Figure S5C,E.  We used firing rates concatenated from the identity-specific 
predictive populations otherwise with the exception of our analysis of the apparent Euclidean 
distance in the rate coded representation (Figure S5A,B).  The rate coded manifold projections 
considered neuron spikes from t=0 to 2 seconds after the stimulus onset.  Similarly, the event 
coded manifold projections considered neuron spikes from t=0 to 2 seconds after the stimulus 
onset.  The average predictive time bin from the MvMM predictive population reported in Figure 
2 was centered from t=0 to 2 seconds after the stimulus onset, with 45.5% of predictive time bins 
ending earlier (N=440/968), which supports 2 seconds as a reasonable choice for the max time 
considered by the rate and event coded manifold projections. 

The UMAP algorithm was composed of two steps that can fruitfully be described as graph 
construction and graph projection 24.  The graph was constructed from a given set of comparable 
observations.  The graph was projected to a low-dimensional space of real numbers. In the 
optimization procedure, five negative samples were selected for each positive sample.  The 
minimum distance between two observations was set to 0.1 Hz.  The number of nearest neighbors 
was initialized to 50 for rate-coded representations and 100 for our event-coded 
representations.  Repulsion strength was initialized to unity.  Local connectivity was set to 1 Hz in 
estimating probability distances. We trained for 500 epochs at a learning rate initialized to unity 
for all observations.  The resulting function was equipped with a learned graph of the observations, 
which projected to the manifolds visualized in Figure 4,S5. An example of connections from such 
a learned graph were visualized (Figure 4E).   

For our rate-coded manifold projections, the inclusion of predictive time bins (p<0.05) 
appeared sufficient for the separation of individuals (Figure S5A), which was supported by 
computing the minimum distance between the centroid of any individual and then comparing 
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across multiple recording sessions.  Minimum distances that were computed from predictive time 
bins exhibited a significantly smaller median value when compared to candidate time bins that 
were not predictive (p>0.85) according to a Wilcoxon-Mann-Whitney test (p<0.001, N=29), 
suggesting predictive activity leads to better separation of individuals in comparable rate coded 
representations (Figure S5B).  Shown are examples of rate-coded manifold projections that used 
predictive firing rates as trial-by-trial observations.  Event-coded manifold projections used signed 
connection rates as spike-by-spike observations for Hades (Figure S5C,D) and for Baloo (Figure 
S5E,F). 

 
Estimating latent firing rate. 
Our latent firing rate was computed using unsupervised nonlinear dimensionality reduction of the 
absolute value of the signed connection rate for all neurons that had no less than one third of its 
computed signed connection rate values as positive (i.e. approximately symmetric).  In computing 
the latent firing rate, we used a method of nonlinear dimensionality reduction that made no 
assumption of uniformity 51.  The output metric and the input metric were both Euclidean (flat), 
which supports the output having the same units as the input.  The output was embedded in six-
dimensional real space, and the first three dimensions were plotted for an exemplar recording 
session (Figure S5G).  After this output was computed at the spike times of all neurons involved, 
it was analyzed as a time series by time ordering according to the evaluation time. 
 By considering latent firing rates evaluated at the times t=0 to 4 seconds after a stimulus 
onset, we observed relatively stable trajectories for multiple recording sessions conducted over 
multiple observers.  We performed a median filter with a sliding window of 50 neuron spikes before 
plotting our estimates of the latent firing rates.  Shown are three exemplar identity match trials, 
where Baloo observed the face and voice of her mother, her father, and her sister (Figure 
S5H).  Our rationale for choosing 6 dimensions to embed the latent firing rate considered an 
experimentally observed latent space of neuronal networks having between four and six real 
valued dimensions 22.  This interval includes 5.25695…≈5.2, which approximates the dimension 
that maximizes the volume of the unit hypersphere.  Since 6 is the smallest integer that is greater 
than 5.2, we considered 6 dimensions in estimating the manifold projection time series we referred 
to as latent firing rate. 
 
Determining anatomical positions of implants. 
All implants were followed by at least one postoperative MRI (Figure S6).  The scans were aligned 
to anatomical features with RadiAnt Dicom viewer 52 and the position along the anterior-posterior 
axis was determined by measurement from the center of the array to the ear canal. Because 
implants were stereotactically performed coronally, all recordings for a given array were assigned 
the same anterior-posterior (AP) position. 

Because of the 1mm spread of the microwire brush arrays, it was difficult to precisely 
estimate the position of any given electrode, or indeed the entire bundle on a particular day. We 
used the position of the tip of the electrode from each MRI and extrapolated the trajectory by 
estimating position along the drive axis by cross-referencing with contemporaneous notes made 
of the date and distance of every movement of the drive. Based on a centroid at each estimated 
position, we chose particular sessions for we had the greatest confidence that the majority of the 
array was located predominantly in one or two hippocampal fields. Because the relative 
positioning of individual electrodes was not clearly observable, all reported analyses were 
developed to be agnostic to neuron location. 
 
Confirming implant location by MRI. 
MRI was performed at the UCSD Center for Functional Magnetic Resonance Imaging in a 7.0T 
Bruker 20cm small animal imaging system using Advance II software 35.  Preoperative images 
were analyzed in Osirix DICOM Viewer 53 and stereotactic coordinates were established using a 
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pair of saline-filled barrels affixed above the putative posterior end of temporal sulcus (marked 
on the skull during headcap surgery).  Array positioning and tract trajectory was verified by post-
operative MRI.  Follow-up scans were performed occasionally to update array position. 

Determination of anatomical positioning was performed using RadiAnt DICOM Viewer 
(Medixant, n.d.).  Stereotactic alignment was performed using a number of clearly defined and 
readily identifiable anatomical landmarks.  2D coronal slices were made vertical by rotating to 
align the medial longitudinal fissure with a vertical line.  Yaw was corrected by re-slicing the 
coronal plane to align both interaural canals.  Pitch correction was performed by re-slicing MRI 
so that the 4th ventricle was aligned vertically with the isthmus of the corpus callosum.   

Position on the anterior-posterior axis was calculated relative to the interaural canal. 
Measurement was taken from the coronal slice at which the array first entered the hippocampal 
complex (Figure 1F, left).  Arrays were implanted with as little pitch as possible, so AP position 
variability is negligible along the electrode trajectory. 

Electrode positions are not precisely determinable with our brush arrays, as microwires 
are not visible at the resolution of the scans and individual tips are not individually distinguishable 
by any practical means available.  Electrode splay of the 64-ch MBA in tissue has been measured 
at approximately 1mm 46,54, so we approximated electrode position by use of a 1mm spherical 
voxel centered at the tip of the array. 

We used a Microdrive with a 500µm thread pitch that could reliably make controlled 
movements with a precision of 30-40µm. An array tip was identified for every MRI in each subject 
and position was extrapolated based on contemporaneous notes regarding electrode movement. 
Once putative array centroids have been hand-tagged they were assigned to one of the 
hippocampal subfields. Centroids were deemed to be in a hippocampal subfield if more than 70% 
of their volume fell within that area, as assessed by hand-traced MRI.  Recording sessions where 
the centroid fell significantly between two subregions were not counted in anatomical analyses. 
CA2 and CA3 were combined due to insufficient granularity in this methodology and resolution in 
our scans to effectively differentiate them. Figure S6 shows the estimated position of each 
electrode array in the hippocampus for all subjects.  
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Figure 1. Putative concept cells in marmoset hippocampus. [a] Unimodal Face-Only 
and Voice-Only stimuli from a single marmoset included multiple pictures of (left) faces 
from different orientations and (right) multiple two pulsed phee calls. [b] Exemplar neuron 
responding selectively to face and voice of Mowgli (left) but not for (middle) Ares or (right) 
Aladdin during (black) face-only and (red) voice-only trials.  Shown are (top) rasters of 
spike times and (bottom) mean change in firing rate relative to the 500ms prestimulus 
baseline firing rates.  Indicated is (shaded) 95% confidence intervals of the mean estimated 
by bootstrap. [c] Receiver-Operator-Characteristic (ROC) curve of time-averaged firing 
rate of the same concept cell in response to multiple individuals.  The preferred identity is 
(black) Mowgli, who is the sister of the observer, Baloo (AUC=0.643). [d] Pie chart of the 
proportion of putative concept cells that preferred (blue) one individual versus (orange) 
more than one individual. [e] Histogram of areas under the ROC curve (AUC) for 
individuals preferred by all putative concept cells in marmoset hippocampus.  The (black 
dotted) mean value (AUC=0.680+/-0.009) was significantly larger than (red dotted) random 
chance according to a student’s t-test (p<0.001, Nneurons=67).  Unless otherwise stated, 
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uncertainty indicates 95% confidence intervals. [f] The anatomical distribution of (orange) 
putative concept cells in hippocampal subfields relative to (blue) all other neurons 
recorded. 
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Figure 2. Single neurons and population activity in hippocampus represent multiple 
individuals. [a] Cross-modal stimuli for identity match (top) - face and voice stimuli are 
from a single monkey - and mismatch (bottom) - face and voice stimuli are from different 
monkeys- trials. Red waveform indicates voice stimulus from a different animal than one 
depicted in the face stimulus and black waveform voice stimulus above  [b] Exemplar 
neuron showing increased firing rate during (red) identity mismatch trials than during 
(black) identity match trials.  Shown is (left) the raster of spike times and (right) the mean 
change in firing rate relative to 500ms prestimulus baseline firing rates. [c] Pie chart 
showing the proportion of neurons with a significantly larger median firing rate for (black) 
identity match trials or for (red) mismatch trials during the 3 seconds immediately following 
onset of cross-modal stimulus (p<0.05, Ntrials≥81).  Indicated are total counts out of all 
neurons recorded. [d] Histograms showing an exemplar neuron responding more for 
(black) identity match trials than for (red) identity mismatch trials during (left) a predictive 
time bin but not during (right) not a predictive time bin. [e] Pie chart showing the proportion 
of neurons with a significantly larger median firing rate for (black) match trials or for (red) 
mismatch trials during the 3 seconds immediately following onset of cross-modal stimulus 
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(p<0.05, Ntrials≥81).  Indicated are total counts out of all neurons recorded.  Neurons 
exhibiting multiple predictive time bins were permitted in both categories. [f] Pie chart 
showing the proportion of neurons exhibiting one or more predictive time bins (31.0%, 
N=732/2358).  The majority of these predictive neurons exhibited (green) only one 
predictive time bin (76.8%, N=562/732). [g] Histograms of time bin durations are shown for 
(green) the predictive time bins and for (gray) uniformly distributed random time bins.  
Predictive time bins favored shorter durations according to a Wilcoxon-Mann-Whitney test 
(p<0.001, N=968).  [h] Bar plot of testing AUC resulting from (green) our population-level 
decoder (AUC=0.977) and from (gray) an equal number of time bins randomly sampled 
from the non-predictive population (AUC=0.600).  Time bins were aggregated over 14 
recording sessions recorded from four different observers. [i] ROC curve resulting from the 
same (green) population-level decoder and from (gray) an equal number of time bins 
randomly sampled from the same non-predictive population.  Indicated is (red dotted) 
random chance. [j] Histograms showing testing AUC for (gray) individual predictive time 
bins (median AUC=0.519, IQR: 0.445-0.584) was significantly smaller than (green) 50 
predictive time bins (median AUC=0.864, IQR: 0.835-0.893) according to a Wilcoxon–
Mann–Whitney test (p<0.001, Nsamples=100).  Independent random samples were drawn 
uniformly from the same predictive population without replacement. [k] Mean testing AUC 
versus relative abundance of predictive time bins averaged over independent random 
samples of time bins drawn from the same predictive and non-predictive populations 
without replacement (Nsamples=100).  Traces are shown for random samples with (green) all 
available predictive time bins (N=335) and for random samples with (blue) fixed total 
number of time bins (N=335).  Uncertainty in the mean was less than 1% for both traces. 
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Figure 3 Cross-modal decoding of individual identity. [a] Schematic showing our 
identity network model (INM) predicting the presence of the face and voice of Jasmine as 
the minimum prediction returned by either the MvMM predictive population or the identity-
specific predictive population.  Identity-specific predictive populations were identified for 
each individual observed (N=12).  Legend indicates colors corresponding to individuals. 
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[b] ROC curves for the detection of identity match trials.  Firing rates were considered from 
(green) MvMM predictive time bins selected for their ability to detect any face and voice 
matching (AUC=0.782) and from (black) identity-specific predictive time bins selected for 
the detection of the face or voice of an individual (AUC=0.516). [c] ROC curves for the 
detection of face or voice of individuals.  Firing rates were considered from (green) MvMM 
predictive time bins (AUC=0.536) and from (black) identity-specific predictive time 
(AUC=0.779), both averaged over individuals.  Colored lines indicate results for individual 
identity-specific predictive populations. [d] ROC curves for the detection of both face and 
voice of individuals.  Firing rates were considered from (green) MvMM predictive time bins 
(AUC=0.615), from (black) identity-specific predictive time bins (AUC=0.622), and from 
(blue) INM (AUC=0.818), similarly averaged over individuals. Colored lines indicate results 
of the INM for individuals. [e] Bar plot showing true positive rates predicted by the winner-
take-all model, which considered predictions from the INM specific to ten individuals.  
Indicated is (red dotted) the true positive rate resulting from random chance.  True positive 
rates were computed over testing identity match trials from 23 recording sessions 
conducted over three observers (Ntrials=198). [f] ROC curves for the INM predicting the face 
and voice of individuals that were preferred by at least one concept cell.  Shown is (orange) 
the INM with concept cells removed from consideration (AUC=0.810) and (blue) the INM 
with an equal number of predictive time bins randomly removed from both MvMM and 
identity-specific populations (AUC=0.800). [g] Bar plot showing mean testing AUC 
predicted by the INM for the same three observers.  The mean AUC for (light gray) the INM 
with concept cells removed was not significantly different from that of (dark gray) the INM 
with an equal number of predictive time bins removed from decoding according to a paired 
student's t-test conducted over multiple successful sessions recorded from the same three 
observers: Archie (p=0.97, N=13), Baloo (p=0.18, N=3), and Hades (p=0.19, N=13).  The 
median AUC similarly exhibited no significant difference according to comparable 
Wilcoxon-Mann-Whitney tests conducted on the same three observers: Archie (p=0.44, 
N=13), Baloo (p=0.49, N=3), and Hades (p=0.32, N=13).  Predictions were generated 
independently for each recording session.  Unless otherwise specified, ROC curves 
summarize the same 19 recording sessions conducted over the same three observers.  
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Figure 4 Cross-modal representation of identity using rate and event coded 
measures. [a] Two-dimensional manifold projection of our rate coded representation of 
individual identity computed from the firing rates of identity-specific predictive time bins.  
Time bins were aggregated from all individuals in one exemplar recording session.  
Manifold projections were estimated using nonlinear dimensionality reduction by UMAP.  
One dot represents one identity match trial. Indicated is (black) the mean.  Colors 
correspond to individuals in the legend.  Triangles indicate the individual was a cagemate 
with the observer, Hades. [b] Schematic illustrating how spike times were used to compute 
(left) the hindsight delay for a given neuron. The foresight delay was computed similarly by 
time inversion.  The signed connection rate considered only the minimum of the foresight 
delay and the hindsight delay and took a negative value only if the hindsight delay was 
smaller than the foresight delay.  While well-defined for all neurons at all times, the signed 
connection rate evaluated for a given neuron at the spike times of another neuron resulted 
in statistical distributions that appear to describe a relationship between the two neurons. 
Different morphologies of these statistical distributions were observed for different pairs of 
neurons, as is shown by (right) signed connection rate histograms of four example neurons 
in connection with the same reference neuron. [c] Two-dimensional manifold projection of 
our event coded representation of individual identity computed as the manifold projection 
of signed connection rates of all neurons identified in the same exemplar recording session.  
One dot represents one spike from one neuron. Indicated is (black) the mean.  Colors 
correspond to individuals in the legend.  Triangles indicate the individual was a cagemate 
with the observer, Hades. [d] Boxplot of MSR from the mean of our event coded 
representations. Median MSR was significantly larger when (left) Hades was observing the 
face and voice of cagemates versus non-cagemates (p=0.0025, N=60). Similarly, a 
significantly larger median MSR was observed when (right) Baloo was observing the face 
and voice of cagemates versus non-cagemates according to a Wilcoxon–Mann–Whitney 
test (p=0.0063, N=93). [e] Connectivity graph of the same event coded representation of 
individual identity for one recording session exemplar.  Colors correspond to individuals in 
the legend.  Indicated are family members of the observer who were also (triangles) 
cagemates of the observer, Baloo.  Connections were bundled by dividing them into 
smaller edges and allowing those smaller edges to attract. [f] Latent firing rate trajectory is 
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shown each for Baloo’s (yellow) sister Mowgli, (blue) father Aladdin, and (purple) mother 
Jasmine for the same recording session exemplar.  For a given color, each line 
corresponds to one of the six dimensions of the latent firing rate trajectory. [g] Root mean 
square change in our latent firing rate was averaged over (blue) all cagemates and (gray) 
all non-cagemates presented to Baloo.  Uncertainty indicates 95% confidence intervals of 
the mean as estimated by bootstrap.  Results were averaged over the identity match trials 
from 12 recording sessions conducted on the observer, Baloo. 
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Supplementary Materials. 
 

 
Figure S1. Visual behavior during unimodal and cross-modal stimulus presentations. [a] Barplots 
showing (left) the mean fixation duration per trial and (right) the mean number of saccades per trial. 
Indicated are (blue) voice-only trials and (orange) face-only trials.  For voice-only trials, the mean fixation 
duration was 0.279+/-0.005 seconds, which was not significantly different from a normal distribution 
according to the omnibus test for normality (p=0.98, N=21,673).  For face-only trials, the mean fixation 
duration was 0.256+/-0.002 seconds, which was not significantly different from a normal distribution 
according to an omnibus test (p=0.39, N=70,182).  The voice-only trials exhibited a statistically significantly 
larger mean fixation duration compared to the face-only trials according to a one-sided student's t-test 
(p<0.001, N≥21,673).  For the voice-only trials, the mean number of saccades per trial was 8.76+/-0.17, 
which was not significantly different from a normal distribution according to an omnibus test (p=0.22, 
N=2,333).  For the face-only trials, the mean number of saccades per trial was 10.70+/-0.10, which was not 
significantly different from a normal distribution according to an omnibus test (p=0.24, N=6,226).  The voice-
only trials exhibited a statistically significantly larger mean number of saccades per trial compared to the 
face-only trials according to a one-sided student's t-test (p<0.001, N≥21,673). [b] Bar plots showing (left) 
the mean fixation duration per trial and (right) the mean number of saccades per trial.  Indicated are (black) 
identity match trials and (red) identity mismatch trials.  For identity match trials, the mean fixation duration 
was 0.256+/-0.003 seconds, which was not significantly different from a normal distribution according to an 
omnibus test (p=0.05, N=33,955).  For identity mismatch trials, the mean fixation duration was 0.256+/-
0.003 seconds, which was not significantly different from a normal distribution according to an omnibus test 
(p=0.70, N=35,475).  The identity match trials exhibited no statistically significant different mean fixation 
duration compared to the identity mismatch trials according to a student's t-test (p=0.85, N≥33,955).  For 
identity match trials, the mean number of saccades per trial was 9.51+/-0.15, which was not significantly 
different from a normal distribution according to an omnibus test (p=0.92, N=3,369).  For identity mismatch 
trials, the mean number of saccades per trial was 9.59+/-0.14, which was not significantly different from a 
normal distribution according to an omnibus test (p=0.09, N=3,496).  The identity match trials exhibited no 
statistically significant different mean number of saccades per trial compared to the identity mismatch trials 
according to a student's t-test (p=0.44, N≥3,369).  Unless otherwise stated, uncertainty indicates 95% 
confidence intervals of the average approximated via bootstrap  
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Figure S2. Identification of predictive time bins. [a] Schematic showing the spike times 
of an example neuron firing versus time after the stimulus onset at t=0.  Indicated are 
(black) start and end times. [b] Pseudocode showing the method of generating time bins 
of variable duration. [c] Flow chart showing training trials being split by stratified cross-
validation to result in multiple receiver operator characteristic (ROC) traces.  Each training 
fold resulted in an area under the curve (AUC), which were then averaged to produce the 
mean training AUC as an estimator of the general ability of a time bin to distinguish true 
trials from false trials.  Time bins satisfying a list of properties were considered as candidate 
time bins (described in Methods).  [d] Schematic showing our definition of disjoint time 
bins.  Time bins are disjoint if and only if they share no time interval in common.  [e] Flow 
chart showing the procedure that resulted in all predictive time bins (described in Methods).  
[f] Spike raster for an exemplar neuron showing a response to (red) identity mismatch and 
(black) identity mismatch trials.  Indicated is (shaded) an exemplar predictive time bin. [g] 
Schematic showing decision trees voting on the likelihood of an identity match trial, 
resulting in the predictions of our population-level decoders. [h] Histograms of testing AUC 
values are shown for (gray) random individual predictive time bins and (green) 50 randomly 
selected predictive time bins, exhibiting a statistically significant difference of median value 
according to a Wilcoxon-Mann-Whitney test (p<0.001, N=100).  Predictive time bins for the 
MvMM binary classification task were randomly considered from multiple recording 
sessions (N=14).  
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Figure S3. Multiple individuals classified by winner-take-all model. Confusion matrix 
reporting the winner-take-all predictions of the INM on ten individuals shown to three 
observers over 23 recording sessions (testing accuracy=0.89, sensitivity=0.91, 
specificity=0.87, precision=0.91, negative predictive value=0.87, N=198 identity match 
trials).  The winner-take-all model is described in Methods. 
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Figure S4. Identity network model for each individual subject. ROC curves were 
computed by averaging over all recording sessions for each of three observers [a] Archie, 
[b] Baloo, and [c] Hades.  These ROC curves demonstrate the predictive power of our 
INM both with (blue) all cells considered and with (orange) all concept cells removed.  
Individual identities were averaged over if they were preferred by at least one concept cell.  
We controlled for network size by removing the same number of cells from both ROC 
curves.  We did this for both the MvMM predictive population and the identity-specific 
predictive population in evaluating the INM. 
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Figure S5. Low-dimensional projections of our rate code and event code. 
[a] Scatter plot showing an exemplar recording session as two-dimensional rate-coded 
representations of individual identity, where the firing rates were computed from all 
candidate time bins exhibiting (left) p<0.05, (middle) p<1.00, and (right) p>0.85. [b] Box-
and-whisker plots showing the minimum distance between any individual in our rate-coded 
representation of individual identity.  The median minimum distance of (left) p<0.05 was 
significantly smaller than the median minimum distance of (right) p>0.85 according to a 
Wilcoxon-Mann-Whitney test (p<0.001, Nsessions=29). [c-f] Shown are the (top) first two 
axes and (bottom) first three axes of our representations of individual identity for two 
distinct observers: [c,d] Hades and [e,f] Baloo.  [c,e] Shown are manifold projections of 
our predictive time bins and [d,f] our signed connection rate.  Colors indicate individuals, 
and triangles indicate family members.  The signed connection rate was evaluated no more 
than two seconds after stimulus onset, which was evaluated whenever the neuron with the 
largest overall spike count fired. [g] Shown are the first three axes of our six dimensional 
latent firing rate, which was an unsupervised manifold projection of the absolute value of 
the signed connection rate from the same neuron with the largest overall spike count – the 
reference neuron – to all neurons that appeared approximately symmetric (defined in 
Methods). [h] Shown are time traces of our latent firing rate for an exemplary trial from 
each of three family members of Baloo.  Each color represents one dimension.  The order 
of dimensions is consistent between panels. 
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Figure S6. Anatomical locations of microwire bundles across animals. Arrows on MRI 
indicate trajectory of each MBA in marmoset hippocampus. Each color indicates a different 
animal’s array.   Circles correspond to AP position. 
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