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Abstract. Parametric assumptions in population genetics analysis – including linearity,
sources of population stratification and the gaussianity and additivity of errors – are often
made, yet a principled argument for their (approximate) validity is not given. We present
a unified statistical workflow, called TarGene, for targeted estimation of effect sizes, as
well as two-point and higher-order epistatic interactions of genomic variants on polygenic
traits, that dispenses with these unnecessary assumptions. Our approach is founded on
Targeted Learning, a framework for estimation that integrates mathematical statistics,
machine learning and causal inference to provide mathematical guarantees and realistic p-
values. TarGene defines effect sizes of variants, as well as two-point and higher-order inter-
actions amongst genomic variants on traits in a model-independent manner, thus avoiding
all-too-common model-misspecification whilst taking advantage of a library of parametric
and state-of-the-art non-parametric algorithms. TarGene data-adaptively incorporates
confounders and sources of population stratification, accounts for population dependence
structures and controls for multiple hypothesis testing by bounding any desired type I
error rate. Extensive simulations demonstrate the necessity of this model-independent
approach. We validate the effectiveness of our method by reproducing previously verified
effect sizes on UK Biobank data, whilst simultaneously discovering non-linear effect sizes
of additional allelic copies on trait or disease. To exemplify this, we demonstrate that
for the FTO variant rs1421085 effect size on body mass index (BMI), the addition of one
copy of the C allele is associated with 0.77 kg/m2 (95% CI: 0.68 − 0.85) increase, while
the addition of the second C copy non-linearly adds 1.31 kg/m2 (95% CI: 1.19 − 1.43)
to BMI. TarGene thus extends the reach of current genome-wide association studies by
simultaneously (i) allowing for the classification of the types of SNPs and phenotypes for
which such non-linearities occur, whilst (ii) data-adaptively incorporating complex non-
linear relations between phenotype, genotype, and confounders, as well as (iii) accounting
for strong population dependence such as island cohorts. The method provides a platform
for comparative analyses across biobanks, or integration of multiple biobanks and het-
erogeneous populations to increase power, whilst controlling for population stratification
and multiple hypothesis testing.
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1. Introduction

The principal challenge in population genetics is to pinpoint trait-causal genetic vari-
ants and the biological mechanisms through which they act [22]. Approaches to estimate
phenotype-genotype relationships are well-established yet rely on strong parametric as-
sumptions whose validity is often unsubstantiated. These assumptions include linearity of
the DNA variant-trait relationship, linearity of the functional dependence of trait on co-
variates and confounders such as sources of population stratification and other fixed effects
including batch, age and sex, as well as the gaussianity and additivity of errors, encoded as
random effects, in the commonly employed linear mixed models (LMMs) [35, 23]. As these
assumptions rarely hold they introduce biases that can yield false conclusions [16]. When
such assumptions are invalid, both effect size and confidence interval estimates will tend
to be biased, resulting in overly optimistic p-values and statistically missing the ground
truth. More specifically, the desired level of statistical coverage1 (e.g., 95%) suffers both
from bias due to model-misspecification as well as bias in the confidence interval estimates.
This effect is becoming more relevant as cohort sizes grow to 105 − 106 or more (Fig. 1).
This Curse of Big Data is especially likely because modern biobank-scale data sets, with
their ever-growing size, result in very small variance, which exposes bias (Fig. 1A).

Rather than addressing the root cause of each bias, current methods often seek to amelio-
rate their effects post hoc [16]. An exception to this generalisation is KnockoffGWAS which
makes no parametric assumptions regarding the distribution of the phenotype conditional
on the genotypes [33]. This method also controls the false discovery rate (FDR) whilst ac-
counting for population structure. Nevertheless, KnockoffGWAS does not compute effect
sizes or epistatic interactions, and only reports statistical significance, and thus is unable
to (i) detect genetic non-linearity, (ii) infer the strength and sign of variant effect sizes
and interactions, and (iii) determine whether or not a variant of interest is stratified across
the population. Estimation of these quantities is essential for explaining how variants, via
biological mechanisms and regulatory functions, modify a trait or disease risk.

New Machine Learning (ML) approaches have begun to be applied to many aspects of
genetics and genomics but not, until recently, to population genetics analysis. A recent
ML method [25] partially addresses the issue of non-linear and interacting covariates in the
phenotype-genotype relations by modeling these using deep neural networks. However, this
approach relies on the independence of participants, an unrealistic assumption common to
many ML methods, despite it being well understood that there may be considerable cryptic
relatedness in population cohorts; see, e.g., Fig. 3b in [7]. A priori, it is unknown whether
and how such structure affects effect size and interaction estimates. This casts doubt on
the appropriateness of ML methods ignoring dependence, and on the reliance of para-
metric methods such as LMMs on restrictive assumptions in order to model dependence.

1The statistical coverage (or coverage probability) is the probability that the confidence interval, as
constructed in the statistical inference procedure, contains the true value. In practice, 95% coverage is
often desired.
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Furthermore, deep learning methods, such as [25], (i) require extensive hyper-parameter
tuning that may be phenotype-genotype dependent, (ii) cannot take into account depen-
dence structure amongst individuals, i.e., require independent and identically distributed
(i.i.d.) training data, and (iii) have no mathematical guarantees to adequately control for
type I errors or provide coverage at the desired levels.

Others have modelled non-linearities of allelic copies on trait based on a direct association
test, see e.g., [18]. However, this approach still suffers from the aforementioned issues in
the functional dependence of trait on population stratification and other covariates and
confounders, as well as the potentially non-trivial dependence structure amongst the data
of individuals as collected in various databases.

Here, we introduce Targeted Genomic Estimation (TarGene), a method that accurately
estimates effect sizes, pairwise and higher-order interactions amongst variants, as well
as gene-environment interactions by using flexible statistical and ML algorithms whilst
equipping them with mathematical guarantees. TarGene does not suffer from any of the
aforementioned shortcomings. Specifically, TarGene identifies genetic non-linearities whilst
simultaneously accounting for (i) any relationship (e.g., non-linear) amongst phenotype,
genotype, confounders and covariates, (ii) stratification of variants across the population
of interest, and (iii) population structure and dependence amongst individuals in the data-
base [12]. It does so without the need for any parametric assumptions, whilst also control-
ling the desired type I error rate. Fig. 2 summarises TarGene vs LMM-based approaches
currently considered as gold standard in the population genetics literature in addressing
the aforementioned complexities.

In brief, TarGene employs Super Learning, an ensemble machine learning method that
estimates DNA variants’ effect sizes and strengths of interactions. It does so by data-
adaptively (via k-fold cross-validation) combining a library of parametric and non-parametric
methods [38], with the latter making no assumptions regarding the form of the phenotype-
genotype relationship [6]. The Super Learner (SL) combines methods to obtain a guaran-
teed optimal fit of the genotype-phenotype relationship. Any current or future, perhaps
more powerful, estimation methods can be appended to its library of algorithms to im-
prove performance. TarGene thus subsumes and supersedes any current model or ML
based methods by incorporating them within the SL library. Estimates are further en-
hanced by Targeted Maximum Likelihood Estimation (TMLE) [37]. This step is crucial
because it has the important qualities of being mathematically guaranteed to (a) reduce
any residual bias due to model-misspecification, whilst (b) optimising the bias-variance
trade-off, and (c) guaranteeing

√
n-convergence as the sample size n increases (Fig. 1B).

Finally, TarGene updates variance estimates via a network approach [12] to accurately
account for population dependence structure, thus resulting in realistic p-values.

As a proof of concept, we apply TarGene to (i) estimate the effect size of FTO intronic
variant rs1421085, a candidate causal variant for obesity [11] on all 660 binary and 118
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continuous traits in the UK Biobank. We demonstrate a non-linear effect size, i.e., signif-
icantly differing effect sizes between the addition of the first and the second C allele, in
42 traits. This shows that TarGene can reveal non-linearity in genomic effect sizes whilst
accounting for potentially complex heterogeneous population structures, as supported by
its mathematical underpinnings.

To demonstrate further applications of TarGene, we investigate variants potentially in-
teracting via the vitamin D receptor (VDR). VDR is a nuclear hormone receptor that binds
to calcitriol, the active form of vitamin D, and then forms a complex with the retinoid-X
receptor (RXRA). We consider three genetic variants associated with differential expres-
sion of each of these three molecules. Thus, we estimate pair-wise and 3-point espistatic
interactions amongst rs7971418, rs1045570, and rs3755967, affecting 660 binary and 118
continuous traits in the UKBB. In the case of these variants, after multiple hypothesis test-
ing, nevertheless we do not find evidence of significant interactions. This is not unexpected
because, evidently, detection of epistasis is extremely challenging [43].
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Fig. 3: The Curse of Big Data. Left: As sample size increases the bias of an estimator 
may not shrink sufficiently fast relative to the reduction in the variance, leading to 
incorrect predictions for large sample sizes. Right: Targeted Learning estimator that 
has been optimised for bias-variance trade-off provides correct predictions. 
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Figure 1. A and B: The Curse of Big Data. A: As sample size increases the bias of an estimator may not
shrink sufficiently fast relative to the reduction in variance, leading to incorrect predictions for large sample
sizes. Extensive simulations demonstrating this phenomenon are presented in Fig. 4 using different ground
truth models fitted with a misspecified model, under various variant-covariate dependence structures (see
Methods). B: Targeted Learning estimator provides correct statistical inference once it has been optimised
for bias-variance trade-off in the TMLE step. C: Model-independent definition of effect size (Average
Treatment Effect, ATE) of variant V on trait Y . We condition on sources of population stratification and
other confounders, W , when estimating the ATE. We do this to get closer to a causal estimate of the
variant on trait, up to linkage disequilibrium (LD). With additional molecular information to reduce LD
and/or fine-mapping these estimates can approach being causal over associative. For a binary variable V
the interpretation is: “Having correctly adjusted for confounders (sources of population stratification), what
is the difference in the expected value of trait when a particular variant V is present (V = 1) as compared
to when it is not (V = 0)?”. Generalisation to a categorical variable V = 0, 1, 2 is trivial, as all combinations
can be written similarly. D: Model-independent definition of 2-point interaction, an extension of ATE with
more than one variant, has been further generalised to higher-order interactions among n variants [4].
Interpretation: “Having adjusted for confounders, is the effect of variant V1 on trait Y modulated by the
status of variant V2 and, if so, by how much and with which sign?” This defines an epistatic interaction
between variants V1 and V2 with respect to a trait.
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Figure 2. Comparison of TarGene vs current LMM-based methods considered as gold-standard
in population genetics analysis. LMM-based methods use approximations that could result in
reduced accuracy. In contrast, TarGene provides extensive flexibility and mathematical
guarantees of ground truth coverage.

2. Results

We introduce TarGene in five steps, first highlighting shortcomings in current methods
as we proceed using simple, easily interpretable simulations before explaining how TarGene
addresses these problems. The mathematical guarantees behind TarGene are presented in
the Methods section. As a proof of concept, we apply TarGene to (i) estimate the effect
size of FTO intronic variant rs1421085, a candidate causal variant for obesity [11], as
well as (ii) pairwise interactions amongst three further variants, rs7971418, rs1045570, and
rs3755967, and (iii) their 3-point interaction, on 660 binary and 118 continuous traits in
the UK Biobank. These three variants are chosen due to their relevance to vitamin D
receptor (VDR) function.

Shortcomings in current methods. We illustrate two shortcomings of current ap-
proaches to GWAS, as well as their deleterious ramifications, via simulations and examples:
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Figure 3. Workflow of TarGene. A: Model-independent definition of variant V effect size and
two-point variant V1, V2 interaction effect on trait Y , taking into account sources of population
stratification W . B: The Super Learner fit with a library of algorithms including linear, logistic,
XGBoost and Highly Adaptive Lasso (HAL) algorithms. The SL is used to obtain an initial fit of
the trait as a function of variant(s) and sources of population stratification. The user is free to
add any other algorithm to this library. k-fold cross-validation is performed to determine the
algorithm or the combinations of algorithms with the lowest loss. C: Targeted Maximum
Likelihood Estimation (TMLE) removes any residual model-misspecification bias for the target
quantity of interest, resulting in optimal bias-variance trade-off with mathematical guarantees. D:
Uncertainties in step C are updated to take into account dependences among individuals in the
population. E: Multiple hypothesis testing is performed.

(i) model-misspecification, and (ii) non-principled choice of confounders and covariate re-
lations.

Model-misspecification in GWAS. In genome-wide association studies (GWAS), the effect
size of a variant V on trait Y in the presence of confounders (such as sources of population
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Figure 4. Model misspecification can yield biased estimates. In simulations, estimated effect
sizes are either within (green) or outside (red) the 95% confidence interval. The striking
conclusion of these simulations is that, when the model is misspecified, almost all estimates are
invalid even at moderately large sample sizes. Top and bottom panels represent two distinct sets
of simulations involving variables V , W and Y representing variant, sources of population
stratification and trait, respectively. Top panels: Trait Y is generated from V and W via an
exponential model and yet is fitted with a linear model (see Methods 4 for details). Simulation
1A (left): When V and W are completely independent (no population stratification present), the
estimated effect size is correct (indicated in green) even when a misspecified linear model is fit to
the exponential distribution. This result is irrespective of sample size. Simulation 1B (middle):
When, in a more realistic case where population stratification is present, V and W are dependent,
then effect size estimates are incorrect (shown in red) when a misspecified linear fit is employed.
This issue is exacerbated as the sample size grows, and manifests even with the slightest degree of
Pearson or Spearman correlation (see Methods). Simulation 1C (right): High levels of noise σV

hide dependence between V and W so inference at small sample sizes may be within 1σ. As
sample size grows, model-misspecification is increasingly exposed. Bottom panels: The trait Y
is generated from V and W via a polynomial model yet fitted with a misspecified polynomial
model (see Methods). In misspecified models, effect size estimates become more incorrect as
sample size increases. In all subfigures the true data distribution is generated according to the
polynomial model in Eq. 17. The plots indicate β estimated using three different models, taking
values in different parts of the parameter space. Simulation 2A (left) indicates the estimated
effect size where the true model is used. When there is no model misspecification, estimates are
valid irrespective of sample size. In Simulations 2B (middle) and 2C (right) two misspecified
models are used to estimate β.
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stratification), is often referred to as the ‘beta’ coefficient. The following parametric form2

(or its linear mixed model (LMM) equivalent) is assumed to govern the data:

Y = α0 + α ·W + βV. (1)

The effect size is then assumed to be equal to the coefficient β. However, in general this is
not true because the data may be governed by a completely different probability distribu-
tion in which the effect size of the variant on trait is not equivalent to β above.

To illustrate this important point, suppose a researcher assumes that the data follows
Eq. 1 with Y = α0+α·W+βV . By this assumption, they thus declare the effect size of vari-
ant V on trait Y to be equal to β exactly. Nevertheless, they are only correct if the ground
truth follows Eq. 1. If, instead, the ground truth differs, for example by addition of an inter-
action term between variant V and a confounder W1 (i.e., Y = α0 +α ·W + βV + γW1V )
then the effect size of V on Y is made ambiguous: is the effect size β alone, or γ, or
β + γE[W1]? In a second example, if the ground truth has an exponential functional form
Y = exp (V + (V + ε)W ) (where ε = 0.2 and W ∼ N (0, 1) is assumed standard normally
distributed) then, again, the true effect size is unclear. The answer is far from β = 1: it
equals exp

[
1
2
(
(1 + ε)2 + 2

)]
− exp

[
1
2ε

2
]
≈ 4.56.

We next used simulations to exemplify two ways in which model-misspecification, i.e.,
fitting data with a model different from the one from which it was generated, results in
biased and statistically incorrect estimates. In Fig. 4, we present results from these simula-
tions describing two distinct phenotype-genotype relations in the presence of confounders
such as population stratification. To demonstrate the ubiquity of incorrect conclusions
produced by incorrectly specified models, we independently varied over parameter space
(1) the true effect size, (2) the noise on the data, and (3) the sample size, where the latter
ranges from 1000 participants to a biobank-scale of 500, 000. These simulations show four
features of model-misspecification (see Methods): (i) if the fitted model is far from the true
data-generating distribution, then the slightest degree of measured correlation between V
and W results in invalid inference of the effect sizes, even at smaller sample sizes; (ii) at any
fixed level of noise, there always exists a sample size above which model-misspecification
leads to invalid inference; (iii) replication is a necessary but not sufficient condition for
declaring valid inference because fitting separate data samples drawn from the same distri-
bution with the same (or a similar) misspecified model twice, results in equivalent invalid
inference twice; and (iv) multiple hypothesis correction methods account for the testing
of multiple hypotheses only, not for false discovery in a single hypothesis, such as those
due to misspecified parametric models. We conclude that it is crucial to avoid subjective

2The equation g(Y ) = α0 + α · W + βV with link function g(Y ) = Y and effect size β is used for
a continuous trait Y . However, the same arguments and simulations apply to the logit link function
g(Y ) = logit(Y ) for a binary trait Y in a case/control setting with β the log odds ratio of case to control.
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TARGENE 10

modelling choices: model-misspecification is likely to give rise to invalid inference, espe-
cially when working with data sets as large as population biobanks which include complex
population structures as well as gene-environment interactions [3].

Non-principled choice of confounders and covariate relations. Variables which confound the
relationship between a variant V and a trait or disease Y , such as population stratification,
deserve careful consideration. Usually, population genetics studies choose these variables
subjectively. The extent by which such choices affect effect size estimation and hinder
replication remains unclear. The UK Biobank (UKBB) project reports that inclusion
of 16-20 principal components (PCs), labelled by self-reported ethnicity, is sufficient to
capture sources of population stratification [1] (see also [8, 21]). However, others [7] report
use of up to 40 PCs and demonstrate significant population stratification across the entire
UKBB cohort. Consequently, for any particular analysis it is unclear what PCs to include,
and whether by conditioning on PCAs (e.g., by including them as variables in GWAS fits)
the true genetic signal is faithfully revealed. Additionally, there is no consensus on what
covariate combinations (e.g., array batch or UKBB assessment centre or sex × age2; for
example in [8] and Neale-UKBB-GWAS) should be used.

TarGene provides mathematical guarantees and realistic p-values. We next in-
troduce TarGene and show that it does not suffer from any of the above shortcomings. We
also illustrate the mathematical guarantees of coverage, asymptotically normal distribu-
tion, and realistic p-values our method provides.

TarGene is based on Targeted Learning (TL), a model-independent framework of es-
timation integrating causal inference, machine learning, and mathematical statistics and
produces powerful estimators that are provably unbiased and efficient [39, 40]. TL consists
of three stages: (1) Defining the quantity of interest model-independently; (2) Employing
a diverse library of learning algorithms to learn the relevant portion of the true probability
distribution, which results in an initial estimate of the quantity of interest; and, (3) Ap-
plying Targeted Maximum Likelihood Estimation (TMLE) to update and target the initial
fit towards the quantity of interest, thereby removing any remaining bias. Here, we briefly
explain each of these steps (for more, see Methods) and show results of TarGene applied
to UK Biobank data. In later sections we explain how TarGene accounts for (4) cohort
population dependence, and (5) multiple hypothesis testing.

Step 1: TarGene defines the quantity of interest model-independently. In GWAS, whether
the ground truth probability distribution P0(y, v, w) is linear, logistic, or has a more com-
plicated form, the effect size of V on Y can be evaluated under any distribution P . By
taking advantage of such model-independent definitions of both effect size and epistasis,
TarGene resolves any ambiguity in estimation due to model-misspecification. Thus Tar-
Gene does not have to resort to any particular parametric assumptions. More specifically,
effect size is otherwise known as the Average Treatment Effect (ATE) [39, 40], and defined
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as
Ψ1(P ) = EW

[
E[Y |W,V = 1]− E[Y |W,V = 0]

]
. (2)

This is interpreted as the expected phenotypic change in Y for variant V = 1 relative to
V = 0, whilst correcting for confounders W ; see also Fig. 1C.

It is common for genetic studies to examine additive models only. Nevertheless, because
epistasis is crucial to understanding complex disease [24], we similarly provide the model-
independent definition of epistatic interaction between two variants V1 and V2 leading to
variation in a trait or disease risk Y ,

IV1,V2(P ) = EW
[
E[Y |W,V1 = 1, V2 = 1]− E[Y |W,V1 = 0, V2 = 1]

−
(
E[Y |W,V1 = 1, V2 = 0]− E[Y |W,V1 = 0, V2 = 0]

)] (3)

This definition was first introduced in [4]; see also Fig. 1D. It is interpreted as the change
in effect size of variant V1 on trait Y as variant V2 changes from 0 to 1.

Step 2A: TarGene data-adaptively incorporates confounders. Any population genetics anal-
ysis requires accounting for sources of population stratification in the specific cohort of
interest. In the current literature, this is typically done by incorporating a number of
Principal Components (PC) in a trait-independent analysis. Although standard, it is im-
portant that this analysis be performed for each database and repeated if a subset of the
population in the cohort is used in order to obtain a lower bound on the number of PCs
required. As a first example, in [7] the first 20 PCs are selected to account for population
stratification based on labelling PC plots by self-reported ethnicity and visually inspecting
their symmetry. This number may well be different for other more diverse cohorts, such as
the All of Us [2] cohort or the Million Veterans Program [17]. As a second example, the
analysis of the population structure in the whole UK Biobank cohort [34] may require far
more PCs to account for population heterogeneity than the subset of individuals of White
European ancestry as used in the current work; see Fig. 5, panels A-D.

To adopt a more principled approach to choosing confounding variables, TarGene incor-
porates data-driven methodologies that capture sources of population stratification con-
founding the relationship between V and Y (Fig. 1B). Specifically we select, in a data-
adaptive manner, the optimal number of PCs for a given trait and set of variants (Meth-
ods). In Fig. 5, panels A-D, we present a trait-independent PC analysis to construct a
lower bound on the number of PCs required. Refining this to a trait-dependent analysis
demonstrates that each trait has its own dependency on PCs, Fig. 5, panels E and F, and
we recommend performing a sensitivity analysis by including higher-order PCs as part of
the Super Learner library (see below). Notably, if however supernumerary PCs do not
strongly confound the variant-trait relationship, then the SL sets their coefficient to zero,
thereby retaining only relevant PCs even if these are not consecutive in number. In Fig. 5C,
we observe that the variant rs1421085 is randomised in the cohort and so population strati-
fication captured by PCs is not a confounder of the phenotype-genotype relationship. This
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exercise is repeated for higher-order PCs and the other three variants considered in this
manuscript (see Figs. 8–11). In this scenario, the only potential source of non-linearity
in the functional dependence of phenotype on genotype and confounders is in the allelic
copy (for a proof, see Step 2A’ in Methods). Thus, a linear fit from V = 0 to V = 1
followed by a linear fit from V = 1 to V = 2 may yield equivalent effect sizes to TMLE
up to the inference of confidence intervals. However, it is impractical to visually inspect
the randomisation of each and every SNP on each and every trait in a typical statistical
genetics analysis. For example, Fig. 5A and B show evidence of population stratification
in the genotyped SNPs used to generate the PC plots. TarGene obviates the need for
such manual inspections, irrespective of whether the variant is randomised or stratified in
a cohort.

Figure 5. Population Structure within the UK Biobank (UKBB) cohort. (A) Principal
component analysis labelled by ethnicity. Left: PC1 vs PC2 shows high level of population
structure dependent on self-reported ethnicity. Right: PC13 vs PC14 shows a more symmetric
shape indicating that there is no ethnicity structure for PCs > 13. This is more clearly visible in
(B) via the cumulative distribution analysis of ethnicity for PC1 and PC13. Left: In PC1
self-reported ethnicity populations have different distributions indicating that ethnicity drives
the first PC. Right: In PC13 this separation has disappeared. For further cumulative
distributions see Supplementary Figures, Section 7. (C) PC Analysis of genotypes within the
cohort. Left: PC1 vs PC2 labelled with the three genotypes of the FTO intron variant,
rs1421085. There is no evidence of population structure based on this genotype. Right: A
cumulative distribution shows no separation between the distributions of the genotypes
indicating that the variant is randomised in the cohort. When this is the case, population
stratification (and hence the PCs) is not a confounder of the phenotype-genotype relationship
and the only potential source of non-linearity in the functional dependence of phenotype on
genotype and confounders is in the allelic copy (Step 2A’ in Methods). (D) Scree plot indicates
that the proportion of variance explained by each additional PC plateaus after 8 PCs, when
subset on ‘self-reported White’ UKBB population, indicating that 8 PCs is sufficient to explain
the population structure of this cohort. (E) and (F) Lasso regression results on 50 PCs, in which
a statistically non-zero coefficient indicates that the corresponding PC component is relevant for
the trait. These results show that the choice of PCs varies according to SNP-trait pair. The error
bars represent two standard deviations from the mean derived from a bootstrap (B = 1000
bootstrap resamples) of the lasso coefficient. Any PCs whose error bars overlap with zero can be
interpreted as adding no information to the population structure. (E) Lasso regression of trait
“K76 other diseases of liver” (clinical c K76). This trait needs fewer than 5 PCs to explain the
population structure within the cohort. (F) Lasso regression of trait “K20-K31 Diseases of
esophagus, stomach and duodenum” (clinical c Block K20-K31). This trait demonstrates
dependence on PCs that fluctuates more extensively than the trait in panel E. In a bespoke
analysis of a trait that shows fluctuation in the Lasso regression of trait on PCs in
supernumerary components, we recommend including those higher PCs in the SL in addition to
the result of the trait-independent analysis as part of a sensitivity analysis.
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Step 2B: TarGene leverages a diverse combination of algorithms via Super Learning.
It is unnecessary to expend computational resources on estimating the full probability
distribution P (y, v, w) in order to evaluate the target parameters of Eqs. 2 and 3. Rather,
only the parts Q(v, w) = E[Y |V = v,W = w] and g(v, w) = p(V = v|W = w) are required.
TarGene leverages this by using a Super Learner [38], a stacking technique whereby various
non-linear and/or non-parametric methods, neural networks, and tree-based algorithms in
addition to parametric linear and logistic models more usually employed in GWAS, can
be combined in a k-fold cross-validation scheme to find the optimal (in terms of variance
explained) combination of models to fit the data. Using k-fold cross-validation, SL is
mathematically guaranteed to yield the combination of models with the best predictive
power as proven in [38]. This procedure is depicted in Fig. 3, second panel.

In general, the output of SL is an initial estimate Q̂0
n(v, w) of the function Q(v, w), as well

as an initial estimate of the target parameter obtained by plugging Q̂0
n into Eq. 2:

Ψ1(Q̂0
n) = 1

n

n∑
i=1

[
Q̂0
n(1, wi)− Q̂0

n(0, wi)
]
. (4)

The average is taken over the cohort of size n, and wi are the covariates of participant i.

Step 3: TarGene performs a targeted update via TMLE to remove bias. SL is optimised to
produce the best estimate, Q̂0

n(v, w), of the function Q(v, w) = E[Y |V = v,W = w]. How-
ever, it is not optimised for estimating the DNA variant’s true effect size on phenotype, i.e.,
the target parameter Ψ1(P0). As a result, there may be residual bias in the initial estimate
Eq. 4, i.e., a discrepancy between the initial effect size estimate, Ψ1(Q̂n0 ), and its true
value, Ψ1(P0). Under mild assumptions, mathematical theory [37] allows us to separate
this discrepancy into three components (see Eq. 23 in Methods and Materials). The first
component represents residual bias due to model-misspecification. The TMLE update is
mathematically guaranteed to remove this bias and make the final estimate asymptotically
normally distributed. The second component represents the variance on the estimate which
is used to provide final 95% confidence intervals. The third, and final, component arises
from finite sample size and is guaranteed to shrink at rate

√
n as the sample size n increases.

To perform the targeted update step of the TL framework, the TMLE step, requires an
estimate of the propensity score or treatment mechanism g(v, w) = p(V = v|W = w). In
the context of GWAS, this is the probability that an individual carries variant v given that
they belong to population stratum w. In particular, if g(v, w) is essentially independent
of population stratum, then variant V is not stratified in the population. To verify this,
the test for the null hypothesis H0 : g(v, w) = p(V = v) is easily incorporated into the
TL framework. In practice, the propensity score is also estimated via Super Learning as
discussed in the previous section.
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Figure 6. (A) Inference results. Comparison of various methods to estimate the effect size of
rs1421085 on body mass index (BMI; X-axis; UK Biobank Data-Field 23104). The grey area
indicates a 95% confidence interval on the effect size predicted by a linear-model. The orange
histogram is the bootstrap distribution of the initial estimator when using a SL, without removing
residual model-misspecification bias on the target quantity via TMLE. The blue histogram is also
obtained from bootstrap but additionally using the TMLE. Finally, the red and green curves are
the Gaussian distributions obtained via SL + TMLE and Linear Model + TMLE respectively. As
can be seen, the effect sizes and corresponding p-values reported by the linear model alone, or SL
alone, are overly optimistic or pessimistic, respectively. In both cases, the TMLE step brings the
inference back to the same confidence region. (B) Sieve variance correction. P-values obtained
from two variance estimation methods for rs1421085. In red, the individuals in the UK-Biobank
are assumed to be i.i.d, while in blue, a sieve correction method is applied to account for the
population dependence structure. Each p-value corresponds to a specific parameter of interest for
which the initial i.i.d estimate was under the 0.05 threshold. (C) Non-Linear effects. A
selection of traits for which rs1421085 TT → TC and TC → CC effect estimates are significantly
different. Five continuous traits related to BMI (top), two binary traits for which effect sizes have
opposite sign (middle), and three further binary traits associated with BMI (bottom). Effect sizes
are reported with associated 95% confidence intervals together with estimates from GeneATLAS’
LMM fits (black data points) [8]. The latter fall in-between our TT → TC and TC → CC
estimates, indicative of an averaging effect.
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Since the UK-Biobank contains over 450 000 samples, it is likely that the asymptotic regime
is reached in this dataset. To demonstrate the behaviour of the TMLE as compared
to biased estimations’ methods, we performed a bootstrap analysis on the UK-Biobank
(Figure 6). In this precise example, we estimated the effect of substituting TT with TC for
rs1421085 on BMI. From the plot, it is notable that the effect size distributions provided by
the bootstrap SL (orange) and the linear-model (grey) do not overlap. This is a real data
example of the model-misspecification phenomenon illustrated in the schematic in Fig. 1
A and B. Adding an extra targeting step in addition to any of these methods, removes the
residual bias and always brings estimates back to the same confidence region (see Figure
legend for details).

Step 4: TarGene accounts for population dependence structure. Above we describe how to
estimate the effect size of one DNA variant on a single phenotype measured on independent
and identically distributed data. However, if the data is dependent, for example because
of genetic relatedness [26, 28], care must be taken when estimating the variance on the
estimates. In current practice, the genetic dependence between individuals is accounted
for by incorporating the genetic relationship matrix G (GRM) as random effects in a linear
mixed model (LMM):

y = Xβ + e where e = N (0, σ2
gG + σ2

eI). (5)

Here X ∈ RN×d is the matrix of fixed effects, d the number of fixed effects, and β the
fixed effect sizes. There are two random components: (i) σ2

g denoting the magnitude of
the genetic variance, and (ii) σ2

e denoting the magnitude of the residual variance. There
is little justification for this model’s strong restrictions. Besides model-misspecification,
adopting an LMM may be invalid for three reasons: (i) The error term e need not
be normally distributed [16]; (ii) The variance of e, Var(e) = σ2

gG + σ2
eI, need not

decompose additively into one part due to population stratification and another due to
residual environmental, technical, and other noise; and, (iii) The complexity of population
stratification need not be captured by a single parameter σ2

g multiplying the GRM.

In TarGene, we neither assume individuals are independent nor impose the above strong
restrictive assumptions of an LMM. Instead, we adopt a network approach, drawn
from [12], to incorporate the genetic dependence of individuals model-independently by
taking into account ancestral diversity and familial relatedness amongst individuals as
reported, e.g., in Fig. 3b of [7]. The method calculates the variance of the effect size
target parameter by constructing Sieve Plateau (SP) variance estimators (Methods and
Materials) that incorporate genetic dependence among individuals.

In brief, the SP estimator computes a variance estimate for a range of thresholds τ , by
considering individuals to be genetically independent if their genetic distance exceeds τ .
The genetic distance between a pair of individuals (i, j) equals 1−GRMi,j , i.e., one minus
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their genetic relatedness value. As the distance threshold τ increases, fewer individuals
are assumed to be genetically independent. For instance, the estimate corresponding to a
distance of τ = 0 corresponds to the i.i.d. hypothesis, while a distance of τ = 1 incorporates
pairs of individuals who are not genetically correlated. TarGene varies the threshold τ from
0 to 1 and fits a curve to the corresponding variance estimates. The maximum of this curve
is the most conservative estimate of the variance of the target parameter estimator and
constitutes our corrected variance estimator. In Figure 6, we investigate the effect of this
correction for the effect sizes obtained for rs1421085 on all parameters under investigation
(see section 5). Since, the correction can only increase the variance estimate, we only
correct those for which the associated p-value is under our decision threshold (0.05). The
p-values resulting from both the i.i.d. (red) and the sieve variance plateau estimators (blue)
are reported. For 19 parameters (≈ 5%), the corrected estimate changes the hypothesis
test decision at the 0.05 threshold.

Step 5: TarGene controls for multiple hypothesis testing. When testing multiple hypothe-
ses simultaneously in order to answer a question of interest, it is essential to state explicitly
which error rate of false positives one seeks to bound, and then choose the multiple hy-
pothesis correction procedure that affords maximal power (i.e., fewest Type II errors)
whilst bounding the desired Type I error rate. Since TarGene produces asymptotically
normal estimators described as empirical means of efficient influence functions, the theory
is sufficiently rich to be combined with any desired definition of false positives, e.g., the
family-wise error rate (FWER) or the false discovery rate (FDR) (see Methods). In this
work, we use the marginal step-down Benjamini–Hochberg procedure of [5] to control the
FDR at ≤ 0.05. However, researchers can combine TarGene with any multiple testing
procedures to control FWER, FDR, or other error rates, for marginal or joint multiple
hypothesis testing, as described for example in [13].

Application to the UK Biobank. To investigate the benefits of TarGene, we performed
two distinct analyses that are detailed below. The first aims at contrasting our approach
with the gold standard LMM’s method on a well studied variant. The second, more ex-
ploratory, investigates whether epistatic relationships exist between multiple loci related to
vitamin D receptor (VDR) biology. We present here our major findings after the targeting
step, sieve variance correction and multiple hypothesis adjustment. In all analyses, we
consider 776 UK Biobank traits defined by GeneATLAS [8].

Application of TarGene to an FTO variant. In order to demonstrate our method we
performed a phenome-wide association study (PheWAS) using UK Biobank. We chose a
well studied variant, rs1421085, located in the first intron of the FTO gene. The T to C
nucleotide substitution has been predicted to disrupt the repression of IRX3 and/or IRX5,
thereby leading to a developmental shift from browning to whitening programs and loss
of mitochondrial thermogenesis [11]. This variant has also been associated with several
related traits such as body mass index and obesity [15]. To allow TarGene to discover
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non-linear effect sizes as previously reported in [44], the analysis was not restricted to
the substitution of one T allele to C. Instead, we investigated all three changes, namely
TT → TC, TC → CC and TT → CC. We adjusted p-values to control for the false
discovery rate using the Benjamini-Hochberg method. A summary of all estimation
results is provided in Supplementary Table 1. Each change requires a dedicated targeted
estimate as each corresponds to one of three different target quantities of interest. This is
in contrast with a linear model assuming that these quantities are equal to β, β, and 2β
respectively.

Of 776 traits under investigation, 20.7% are reported as significantly associated to
rs1421085 by GeneATLAS. Using TarGene, we find the following for the three quantities
of interest (FDR ≤ 0.05, Benjamini–Hochberg):

• TT → TC only: 9.1% of traits are significant.
• TT → TC or TC → CC: 12.5% traits are significant.
• TT → TC, TC →CC or TT →CC: 15.4% traits are significant.

In general, the distribution of p-values obtained via TarGene is shifted towards less
significant values as compared to the GeneATLAS analysis (see Supplement to Fig. 6
in Section 7). TarGene finds fewer significant results than GeneATLAS but provides
mathematical guarantees of statistical coverage of ground truth on the results it finds,
leading to fewer false positive whilst maximising power.

On the other hand, because we investigate each allelic change as a separate quantity,
TarGene can also find associations that are undetectable by linear models such as LMMs.
In Eq. 2 we define the effect size of a SNP V on a phenotype Y model-independently via the
target parameter Ψ1(P ). This is the effect on phenotype when a single allelic copy is present
(V = 1) versus when there is none (V = 0), e.g., TC vs TT. However, there is another
equally valid, and potentially distinct, way of describing the effect of an additional allelic
copy on Y , namely the effect on phenotype when two allelic copies are present (V = 2)
versus one (V = 1), e.g., CC vs TC. The corresponding model-independent definition is

Ψ2(P ) = EW
[
E[Y |V = 2,W ]− E[Y |V = 1,W ]

]
. (6)

Conventional GWAS, such as LMMs [23], assume linearity of genetic effect on phenotype
(i.e., assume Ψ1(P ) = Ψ2(P )). More recent methods, such as KnockoffGWAS [33],
do not estimate effect size altogether. However, there are no compelling biological or
mathematical reasons why the two effect sizes should be equal [42].

TarGene avoids this unnecessary assumption by estimating both effect sizes separately.
This does not necessarily increase the burden of multiple hypothesis testing because one
can choose to query the effect size Ψ1(P ) at the TMLE step for each trait-variant pair.
Alternatively, if one specifically wishes to identify non-linear effect sizes of trait-variant
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pairs, or classify the type of DNA variants and/or phenotypes for which such non-linearities
occur, one can directly estimate the difference Ψ2(P )−Ψ1(P ) (Methods and Materials).

The two scenarios we are thus comparing are (i) the change TT → TC, and (ii) the
change TC → CC. We find 54 traits for which rs1421085 displays significant non-linear
effect sizes, 40 of which are highly correlated with BMI. For instance, we find that the
departure from homozygous T to heterozygous TC is associated with an increase of
0.77 kg (95% CI: 0.68 − 0.85). In comparison, the departure from heterozygous TC to
homozygous C is associated with a larger increase of 1.31 kg (95% CI: 1.19 − 1.43). For
illustration, a subset of significant non-linear traits is presented in Figure 6; Tables 1
and 2 contain the complete list. As might be expected, estimates reported by GeneAT-
LAS fall in-between estimates from our two scenarios, representative of an averaging effect.

Notably, for urticaria and erythema, replacing a single T with C (i.e., TT → TC) is
associated with significantly (p = 2.9 × 10−4) lowered risk whereas replacing the second
T with C (i.e., TC → CC) is associated with significantly (p = 9.5 × 10−3) elevated risk
(Fig. 6, middle). Thus TarGene can capture variant-trait pairs displaying the Heterozygote
Advantage [19]. Such patterns cannot be detected by a linear model assuming equal allelic
effect sizes.

Those two results have shown that model misspecification and the curse of dimensionality
(see Fig. 1) can be problematic in two ways: (i) Significant results may be reported that are
false positives and may thus result in wasted follow-up studies, and (ii) significant hits may
not be reported that might have otherwise informed future research (i.e., they are in fact
false negatives). Note that linear models are a standard part of the SL library of TarGene
so if statistical inference using a linear model is correct, TarGene will choose the model in
a data-driven manner. TarGene provides mathematical guarantees of coverage of ground
truth thus, in combination with multiple hypothesis testing, bounding false positives whilst
minimising false negatives.

Exploration of new epistatic loci. Epistatic interactions can be defined in a model-
independent way, see Eq. 3 and adjacent discussion. Here we propose to investigate poten-
tially interacting variants involved in VDR biology. VDR is a nuclear hormone receptor
that binds to calcitriol, the active form of vitamin D, and forms a complex with the retinoid-
X receptor (RXRA). This complex can then enter the nucleus and bind to specific genetic
domains to regulate transcription of many genes. Because this mechanism depends on
three main molecules (calcitriol, VDR and RXRA), it is a natural field of investigation for
epistasis. We thus identified three genetic variants that have been associated with differ-
ential expression of each molecule in turn. From eQTLGen, A to C change of rs7971418
is associated with increased levels of VDR; G to T change of rs1045570 is associated with
increased levels of RXRA; and, C to T change of rs3755967 has been associated with a
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decreased level of calcitriol [20]. For each SNP, we restricted our attention to the departure
from homozygosity of the major allele to heterozygosity and investigated all three pairwise
interactions as well as the 3-point interaction. We provide estimation results and p-values
for pairwise interactions in Supplementary Table 2, and for 3-point interactions in Supple-
mentary Table 3. In each case, we also provide adjusted p-values to control the FDR (via
Benjamini-Hochberg) across all traits being tested for each SNP combination. Although
43, 39 and 36 pairwise interactions (for rs1045570 and rs3755967, rs1045570 and rs7971418,
rs3755967 and rs7971418 respectively), as well as 29 3-point interactions were found sig-
nificant prior to multiple testing correction, no interaction was significant following FDR
correction at the 0.05 threshold. This is not unexpected because detection of epistasis is
extremely challenging [43]. However, this analysis demonstrates the opportunities that our
method provides for the general investigation of higher order interactions.

3. Discussion

We have introduced TarGene, a workflow for targeted estimation of variant effect sizes
and epistatic interaction effects on polygenic traits, which dispenses with unnecessary
assumptions currently widespread in the statistical genetics literature. TarGene consists
of five steps: (1) Defining the quantity of interest model-independently; (2) Employing
a diverse library of learning algorithms, such as data-adaptive algorithms with proven
convergence properties [37], to learn the relevant portion of the true probability distri-
bution, which results in an initial estimate of the quantity of interest; and, (3) Applying
Targeted Maximum Likelihood Estimation (TMLE) to update and target the initial fit
towards the quantity of interest, thereby removing any remaining bias. This is followed
by (4) correction for cohort population dependence, and (5) multiple hypothesis testing.
The estimators TarGene produces are context-independent, i.e., are applicable beyond
variant-variant interaction, to any discrete set of variables affecting an outcome of interest,
e.g., interactions of variant × sex, or any other binary or discrete environmental factors [3].

TarGene offers a number of distinct advantages over current commonly employed
LMM approaches, as summarised in Fig. 2. In particular, since it is firmly rooted in
the mathematical estimation framework of Targeted Learning, TarGene avoids model-
misspecification bias, produces asymptotically normal and efficient estimates, and is
doubly-robust. Furthermore, due to the flexibility of its SL library and the TMLE step,
it can be readily applied to more heterogeneous biobanks such as All of US [2] or the
Million Veterans Program [17], as well as more strongly inter-related cohorts such as
island communities. TarGene also allows for integration of data from multiple biobanks.

The strength of TarGene lies in bespoke analyses of effect sizes and interactions amongst
targeted variants of interest, providing mathematically guaranteed coverage of the ground
truth, scaling to hundreds or thousands of variants, as well as PheWAS analyses. The
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run time of this workflow depends on how precise and unbiased a researcher wishes to be
regarding the answer to their question of interest. For researchers interested in applying
TarGene for genome-wide studies across multiple traits, we note that there is a trade-off
between computational speed and guaranteeing ground truth coverage of estimates. In
such a scenario we therefore recommend equipping the SL with computationally light
algorithms only, such as a linear model, GLMnet or LMM, reducing the cross-validation
burden significantly, before running the TMLE step. In terms of run time, with a single
linear/LMM algorithm in the library, this is simply equivalent to the run-time of three
linear fits for each variant-trait pair. We remark that in comparison to LMMs, TarGene
does not require the memory-intensive inversion of the GRM, which for UKBB-scale
population sizes may be prohibitive, depending on institutional resources.

In future work, we plan to explore non-linearities in variant allelic copies on trait, which
as of yet have not been systematically explored in the literature for either homogeneous or
diverse populations. We will also investigate the contribution of epistatic interactions of
specific variants on various polygenic traits for a variety of biological mechanisms.

4. Methods

To enable reproducible results, all UK Biobank related analyses were made using a Nextflow
pipeline that can be accessed at TarGene pipeline. All runs were performed on the Eddie
cluster. The configuration used for the analysis of rs1421085 and pairwise interactions is
provided in Supplementary Table 2 and the configuration used for 3-points interactions in
Supplementary Table 3.

TarGene provides mathematical guarantees and realistic p-values. Here we
present the three main steps in the model-independent estimation framework of Targeted
Learning (TL) [39, 40] in detail: (1) Defining the quantity of interest model-independently;
(2) Super Learning; and, (3) Targeted Maximum Likelihood Estimation (TMLE). In later
sections we detail how TarGene (4) incorporates population dependence in the cohort, and
(5) accounts for multiple hypothesis testing.

Step 1: TarGene defines the quantity of interest model-independently. The effect size of a
DNA variant V on trait Y , correcting for population stratification via confounders W , is
defined as

Ψ1(P ) = EW
[
E[Y |W,V = 1]− E[Y |W,V = 0]

]
. (7)

This is interpreted as the difference between the expected phenotype if the variant V = 1
versus V = 0, whilst correcting for confounders. The ground truth probability distribution
is called P0. The true (but unknown) effect size is denoted by ψ1,0 = Ψ1(P0).
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The epistatic interaction between two variants in their effect on a given trait or disease Y
has been defined in [4]. This model-independent definition is

IV1,V2(P ) = EW
[
E[Y |W,V1 = 1, V2 = 1]− E[Y |W,V1 = 0, V2 = 1]

−
(
E[Y |W,V1 = 1, V2 = 0]− E[Y |W,V1 = 0, V2 = 0]

)]
.

(8)

The genomic interpretation of this definition is: “Having correctly adjusted for confounders,
is the effect of variant V1 on trait modulated by the status of variant V2 and, if so, by how
much and with which sign?” The ground truth interaction is denoted I0 = IV1,V2(P0). This
definition of 2-point interaction, which is an extension of ATE with more than one variant,
has been further generalised to higher-order interactions amongst n variants [4].
As an example, suppose the ground truth trait Y has the following expectation value:

E[Y |W,V ] = exp
(
ζV + (ηV + ε)W

)
, (9)

where V represents the variant of interest, and W represents other covariates, e.g., PC
components. ζ and η represent different parts of the parameter space. Suppose also that
W is distributed according to the normal distribution N (0, 1). Since we are interested
in measuring the effect size of V on trait Y , let us consider the terms appearing in the
computation of the log-odds ratio or ATE effect size:

Ew
[
E[Y |W,V = v]

]
=
∫
w
eζv+(ηv+ε)wp(w) dw = 1√

2π

∫
eζv+(ηv+ε)w−w2/2dw · (10)

Completing the square and calculating the integral gives:

Ew
[
E[Y |W,V = v]

]
= exp

[1
2(ηv + ε)2 + ζv

]
. (11)

Therefore, the ground truth effect size is:

ATEV = Ew
[
E[Y |W,V = 1]

]
− Ew

[
E[Y |W,V = 0]

]
= exp

[1
2(η + ε)2 + ζ

]
− exp

[1
2ε

2
]
·

Now, suppose that we fit the ATE using the following misspecified model for expectation
value, assuming linearity:

E[Y |W,V = v] = β0 + β1V + β2W. (12)

Then the ATE has the following expression in terms of the model parameters:

ATEV = Ew
[
E[Y |W,V = 1]

]
− Ew

[
E[Y |W,V = 0]

]
= β1· (13)
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Simulation examples of model-misspecification. We generated data from the ground truth,
in this case Eq. 9 with W standard normally distributed as stated, at a given value of
ε = 0.3 without loss of generality. Here ε controls the levels of heteroskedasticity in the
data as V varies from 0 to 1. We perform simulations in the following two scenarios:

(1) The variant V and the source of population stratification W are independent
(2) The variant V depends on W (e.g., PC components, location, batch, ...). For

simplicity, we consider the following dependence structure:

{
w > 0 ⇒ v = 0,
w < 0 ⇒ v = 1.

(14)

When W ∼ N (0, 1), this leads to ≈ 80% correlation between V and W .
We illustrate the issue of model-misspecification using simulations based on parametric
models that are then fitted (i) with the correct parametric form, and (ii) with a misspecified
parametric model. We perform these simulations probing different parts of the parameter
space and at various sample sizes.

Simulation 1 (top panels of Fig. 4): We generate data from the ground truth distri-
bution given by the exponential model explored in the previous section Eq. 9,

Y = exp (ζV + (ηV + ε)W ) , and W ∼ N (0, 1) . (15)
under three different scenarios: (a) the variant V is generated using a binomial distribution,
and completely independent of W , (b) the variant V is generated by dichotomising W using
an arbitrary cut-off, (c) similar to (b) but also adding various degree of Gaussian noise
when generating V from W . In scenarios (b) and (c) the variant V has various degrees
of dependency on W , which is to be expected as W here represents sources of population
stratification. Without loss of generality we set ζ = −1, and vary η and ε over a range
of values to explore different part of the parameter space. More specifically, we probe the
parameter space by setting η = [−2, 2] in steps of 0.5 and ε = [0, 1] in steps of 0.125. In
each case, the ground truth exponential model is fitted with the misspecified linear model:

Y = α0 + αW + βV , (16)
to obtain the assumed effect size β.

Simulation (1A): In the unrealistic scenario where V and W are truly independent, a
misspecified linear model happens to coincide with the true effect size for all values ε and
η (Fig. 4, top panel, 1A). This is the case even though the goodness-of-fit measurements
clearly indicate the non-linearity of the data, e.g., R2 ≈ 0.3 and extremely high-values
of the Jarque-Bera index, indicating non-normality of the data. The previous statement
holds irrespective of sample size. This behaviour has been observed in randomised control
trials (RCTs) where the treatment mechanism is truly randomised with respect to known
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confounders and is therefore independent of these confounders [32]. This cannot be said
for GWAS where sources of population stratification, e.g., genetic ancestry, are clearly
visible from PCA projections in variant space.

Simulation (1B): The variant V is generated by dichotomising W using an arbitrary
cut-off to induce dependence between W and V . Without loss of generality, the cut-off is
chosen such that V = 0 if W > −3.0 and V = 1 if W < −3.0. The conclusions below are
similar irrespective of the choice of cut-off, which was tested to range from −3.5 to 3.0
in steps of 0.5, or larger values of ε. The traits are again generated using Eq. 15. As an
example, for sample size 10, 000 (Fig. 4, top panel, 1B), the effect sizes estimated by the
misspecified linear model are mostly incorrect. Furthermore, in about 50% of the cases,
even the sign is inferred incorrectly: a positive effect size of a variant on trait is estimated
to be negative, instead of positive, when fitted with a misspecified model. We also note
that the dependence structure in this example is not captured by either Pearson (≈ 0.1)
or Spearman (≈ 0.1) correlations, both indicating a weak degree of correlation.

Simulation (1C): This scenario is similar to (1B), following Eq. 15, but also adding
various degrees of Gaussian noise when generating V from W . The noise takes on
values [0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10, 50, 1000]. As observed in Fig. 4 (top panel, 1C),
at fixed sample size, large levels of noise may hide the dependency between V and W ,
resulting in effect sizes that match the ground truth value. However, as the sample sizes in-
crease, the level of noise has to be extreme (50 or 1000) to cover for the misspecified model.

The simulations show that (i) at any fixed level of noise, there always exists a large
sample size N for which model-misspecification leads to invalid inference due to shrinking
variance and, therefore, (ii) when working with large data sets, such as the UKBB, it is
crucial to avoid subjective modelling choices as model-misspecification is likely to give rise
to invalid inference.

Simulation 2 (bottom panels of Fig. 4): There is nothing special about the choice
of the exponential data generating distribution in Simulation 1. To examplify this, we
perform another set of simulations with data generated from a simple polynomial model:

Y = βV +W 2 +N (1, σY ),
V = Z/2 +N (0, 1),
W = log(Z2) +N (0, 1),
Z ∼ N (0.25, 1),

(17)

where Z is an auxiliary variable which is used to generate dependency between V and
W . The independent noise in Y , i.e., σY is varied by setting it to 0.01, 0.1, 1, 10 and 100.
Without loss of generality, the true effect size β is probed from [−2, 2] in steps of 0.5.
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Fig. 4 (bottom panel, 2A), indicates the correct estimated effect sizes when the true model
is used. As expected, most results are within two standard deviations, there are only a
few values (≈ 4%) more than two standard deviations away from the ground truth.

Simulation (2B): Here, the data is fitted with the following misspecified model:
Y = α0 + αW + βV. (18)

The results in Fig. 4 (bottom panel, 2B), clearly indicate that model-misspecification be-
comes more manifest as the sample size grows. At 10, 000 samples most estimated values
are incorrect. At the UKBB size, almost all estimated effect size values are incorrect.
Simulation (2C): Here, the data is fitted with the following misspecified model:

Y = α0 + βV. (19)
The results are presented in Fig. 4 (bottom panel, 2C), with the same conclusions as above.

We furthermore note that replication of results, even on two different databases does not
guarantee the estimated quantities and their confidence intervals span the ground truth,
when a misspecified model is used. Therefore, under the assumptions that two data sets
have a similar distribution, replication should be treated as a necessary but not sufficient
condition for accuracy of the results: Fitting separate data samples drawn for the same
distribution with the same (or similar) misspecified model twice, results in an equivalent
invalid inference twice. Finally, we recall that multiple hypothesis correction methods
correct for the testing of multiple hypotheses, not for false discovery in a single hypothesis,
such as those predicted via misspecified parametric models.

Step 2A: Variant preprocessing and PC analysis. For the analysis in Fig. 5, we started with
all directly genotyped variants in UKBB and applied LD block removal, ± 10 Mb around
rs1421085 position, using PLINK2 [9, 30], with R2 = 0.1. We filtered variants based on
Minor Allele Frequency (MAF) threshold > 0.05 and performed LD pruning using PLINK
[31, 29] (1000kb window, 50 variants step size, and R2 = 0.05). We used the 33,483
biallelic remaining genotyped variants for 452,149 self-reported white individuals as input
to FlashPCA2 to perform a partial PCA. Labelling the PCA plots by sex, age and batch,
and plotting the corresponding cumulative distributions did not indicate any structure for
these variables. A slight degree of separation by assessment centre was observed in PC1-2
cumulative distribution plots. Self-reported ethnicity is the dominant driver for the PCs
as observed in Fig. 5.

Step 2A’: Non-confounding covariates need not be conditioned on for correct estimation.
In the estimation of the phenotype-genotype relation, covariates that do not confound this
relation, i.e., that do not both affect phenotype and genotype, need not be taken into
account. In the causal graph of Fig. 7, the left hand side represents a confounder W of the
causal effect V → Y of genotype V on phenotype Y , whereas the right hand side W is not
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Figure 7. Two causal graphs from which we wish to identify the direct causal effect of V → Y .
Left: W is a confounding variable which has to be correct for, for accurate causal identification.
Right: W is not a confounder.

a confounder as it merely effects phenotype, not genotype. In other words, for the graph
on the right hand side, the covariate W may be ignored when estimating the causal effect
of V on Y even though it affects outcome Y ; however, the crux is that W does not affect
the source V . Mathematically, this means that, for any v, we have

EW
[
EY [Y |W,V = v]

]
= EY [Y |V = v] . (20)

This can be deduced from the fact that the directed acyclic graph on the right hand side
of Fig. 7 encodes the property p(W |V ) = p(W ) since V and W are independent. We have:

EW
[
EY [Y |W,V = v]

]
=
∫
dw p(w)

∫
dy y p(y|w, v)

=
∫
dw p(w)

∫
dy y

p(y, w|v)
p(w|v)

=
∫
dw p(w)

∫
dy y

p(y, w|v)
p(w)

=
∫
dy y p(y|v) = EY [Y |V = v] ,

(21)

where in the second equality we have used the product rule of probabilities, in the third
equality we have used the independence condition of V and W , and in the fourth equality
we have exchanged the integrals and used

∫
p(y, w|v)dw = p(y|v).

Step 2B: TarGene leverages a diverse combination of algorithms via Super Learning. It is
unnecessary to expend computational resources on estimating the full probability distri-
bution P (y, v, w) in order to evaluate the target parameter Eq. 2. Indeed, only the part
Q(v, w) = E[Y |V = v,W = w] is required for estimating effect sizes Eq. 7 (similarly, the
part Q̃(v1, v2, w) = E[Y |V1 = v1, V2 = v2,W = w] is required for estimating the inter-
action Eq. 8.) Super Learner [38] applies k-fold cross-validation to a diverse library of
learning algorithms to obtain an estimate of the relevant part Q(v, w) of P0, i.e., the ex-
pected phenotype given variant v and confounders w; see Results and Fig. 3, Step 2. In
k-fold cross validation, the data is split into k equally sized and disjoint folds. All algo-
rithms are trained k times on the data, each time holding out a different ‘validation’ fold
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from the training procedure. The algorithms’ performance is subsequently validated on
the held out fold. Finally, the best performing linear combination of algorithms is selected.
The output of SL is an initial estimate Q̂0

n(v, w) of the function Q(v, w), as well as an
initial estimate of the target parameter by plugging in:

Ψ(Q̂0
n) = 1

n

n∑
i=1

[
Q̂0
n(1, wi)− Q̂0

n(0, wi)
]
. (22)

The average is taken over the population of size n, and wi is the covariate of participant i.

In this paper, TarGene used the following SL specifications: (i) k-fold cross-validation
or stratified k-fold cross-validation based on the outcome type (continuous or binary,
respectively), here 3 ≤ k ≤ 20, selected adaptively based on the rarest class of each
outcome [27], and, (ii) included the constant fit, a regularized logistic/linear regression
(GLM), a gradient-boosted tree, and the Highly Adaptive Lasso (with hyper-parameters
max_degree = 1, smoothness_orders = 1, lambda = 30) [37], as algorithms in the library.
However, we note that for the optimal performance of HAL in more bespoke analyses, the
parameter λ, tuning the total variation norm of the fit, should be left unspecified so that
it is chosen by the algorithm’s internal cross-validation.

Step 3A: TarGene performs a targeted update via TMLE to remove bias. Although SL is
optimised for estimating the function Q(v, w), it is not optimised for estimating the DNA
variant’s true effect size on phenotype, i.e., the target parameter Ψ(P0). As a result, there
may be residual bias in the initial estimate Eq. 22, i.e., a discrepancy between the effect
size estimate, Ψ(Q̂0

n), and its true value, Ψ(P0). Under mild assumptions, mathematical
theory (see [37]) allows us to describe and analyse this discrepancy explicitly:

Ψ(Q̂0
n)−Ψ(P0) = − 1

n

n∑
i=1

D∗
Q̂0
n
(oi)︸ ︷︷ ︸

remaining bias

+ 1
n

n∑
i=1

D∗P0(oi)︸ ︷︷ ︸
variance

+ oP (1/
√
n)︸ ︷︷ ︸

finite sample
remainder

. (23)

Here D∗P (oi) denotes the efficient influence curve of Ψ at P evaluated at the data point
oi = (yi, vi, wi) of individual i. It quantifies the effect individual i has on the average
effect size Ψ(P ) across the population, e.g., a large effect if i is an outlier with a rare
phenotype/genotype combination (the value of D∗P (oi) is large), and a small effect if i
is a ‘typical’ participant (see Computing influence curves). The third term oP (1/

√
n)

is due to the finite sample size of the data, and shrinks at rate
√
n as sample size n increases.

Importantly, although the two averages on the right-hand side of Eq. 23 look similar, they
play very different roles and have different interpretations. The first average is constructed
from the initial estimate Q̂0

n(v, w) of Q(v, w), and it quantifies the remaining bias due to the
fit. We remove this bias by applying Targeted Maximum Likelihood Estimation (TMLE,
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see [39]) to update the initial fit Q̂0
n repeatedly until, at the final iteration3 denoted Q̂∗n,

the remaining bias in Eq. 23 is approximately zero, namely 1
n

∑n
i=1D

∗
Q̂∗
n
(oi) = 0. The final

TL estimate of the DNA variant’s effect size on phenotype is then

Ψ(Q̂∗n) = 1
n

n∑
i=1

[
Q̂∗n(1, wi)− Q̂∗n(0, wi)

]
. (24)

In contrast, the second average in Eq. 23, containing terms D∗P0
, depends on the ground

truth probability distribution, P0, and cannot be changed by an improved analysis (apart
from increasing the data size). It is responsible for the variance on the estimate Ψ(Q̂0

n).
Indeed, after removing the bias via TMLE, Eq. 23 implies

σ2
n ≡ Var

[√
n
(
Ψ(Q̂∗n)−Ψ(P0)

)]
= 1
n

n∑
i=1

[
D∗P0(oi)

]2
. (25)

The right-hand side of this equation can be directly estimated from data and quantifies
the variance on the final effect size estimate Ψ(Q̂∗n). Furthermore, it allows for the direct
construction of an approximate Wald-type 95% confidence interval:[

Ψ(Q̂∗n)− 1.96 σn√
n
,Ψ(Q̂∗n) + 1.96 σn√

n

]
. (26)

This approach is valid since the TMLE step and Eq. 23 (with vanishing first term on the
right-hand side) imply that Ψ(Q̂∗n) is normally distributed as n becomes large, provided the
third term in Eq. 23 is indeed of order oP (1/

√
n). The latter condition holds as long as the

product of Q0 and g0 is estimated at a rate of n−1/2 because the effect size and interaction
target quantities have the double robust property; see Step 3D for details. Finally, we can
directly construct a p-value on the estimate of effect size from this confidence interval.

Step 3B: Computing influence curves. An asymptotically linear estimator behaves, for
large sample sizes, like an average of independent identically distributed random variables.
These random variables, called influence curves, are functions of the data. The Central
Limit Theorem can be used to analyse the variance of asymptotically linear estimators.
More precisely, an estimator Ψ(P ∗n) of a quantity of interest is asymptotically linear if

Ψ(P ∗n)−Ψ(P0) = 1
n

n∑
i=1

DP0(oi) + op(1/
√
n). (27)

Here Ψ(P0) = ψ0 is the true value of the parameter, op(1/
√
n) is a finite-sample term that

shrinks to zero at rate
√
n as sample size n increases, and DP0(oi) is the influence curve of

Ψ at the probability distribution P0 evaluated at the ith data point oi. The expectation

3For the effect size and interaction target quantities, it is a mathematical fact that convergence takes
place in a single step so that no iteration is necessary.
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of DP0 with respect to the ground truth P0 is zero, i.e., EP0 [DP0(O)] = 0.

The influence curve of the average treatment effect Ψ1(P ) of Eq. 7 is well known; its
derivation can be found in [39, App. A.3]. It is the following function of data O = (Y, V,W ):

D∗P (O) = 2V − 1
p(V |W )

[
Y −Q(V,W )

]
+Q(1,W )−Q(0,W )−Ψ(P ), (28)

where Q(V,W ) = EP [Y |V,W ]. Here H(V,W ) = (2V − 1)/p(V |W ) is the ‘clever covariate’.
Since the target parameter for interaction IV1,V2 of Eq. 8 has recently been introduced
in [4], we derive its influence curve here for the first time. We record our result as a

Proposition 4.1. Let M be a non-parametric statistical model containing probability dis-
tributions of O = (Y, V1, V2,W ) where Y is any outcome, V1 and V2 are binary or categor-
ical variables, and W is any covariate. Let (a, b) be categories of (V1, V2), and consider the
target parameter

Ψa,b(P ) = EW
[
EP [Y |W,V1 = a, V2 = b]

]
. (29)

The efficient influence curve of Ψa,b is given by

D∗a,b(P )(O) = 1{V1 = a, V2 = b}
p(V1, V2|W )

[
Y −Q(V1, V2,W )

]
+Q(a, b,W )−Ψa,b(P ). (30)

Here we have defined the function Q(a, b,W ) = EP [Y |W,V1 = a, V2 = b].

Since the influence curve of a sum of target parameters is equal to the sum of their influence
curves, we immediately deduce the influence of interaction IV1,V2 :

Corollary 4.2. The influence curve of 2-point interaction IV1,V2 of Eq. 8 equals

D∗(P ) =
[
D∗1,1(P )−D∗0,1(P )

]
−
[
D∗1,0(P ) +D∗0,0(P )

]
. (31)

We prove Proposition 4.1 in Appendix A.

Step 3C: TMLE updates the initial fit to obtain mathematical guarantees. The targeted
update step in TMLE removes any residual bias in Eq. 23, thus making the effect size esti-
mator asymptotically normal and alowing for the construction of Wald-type 95% confidence
intervals. This step proceeds by fluctuating the initial SL fit Q̂0

n(v, w) of the conditional
phenotype Q(v, w) = E[Y |V = v,W = w] in the direction of the efficient influence curve
D∗P0

of the quantity of interest, e.g., the effect size Eq. 28 or genotype-genotype interaction
Eq. 30. This fluctuation consists of a simple one-dimensional maximum likelihood estima-
tion (MLE) of a real-valued parameter ε in an auxiliary statistical model. Specifically, for
binary phenotypes, the fluctuation is a logistic regression,

logit Q̂1
n,ε(V,W ) = logit Q̂0

n(V,W ) + εH(V,W ), (32)
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so that the property Q̂1
n,ε(V,W ) ∈ (0, 1) is preserved. For continuous phenotypes, the

fluctuation is a linear regression (hence with a normally distributed noise term),

Q̂1
n,ε(V,W ) = Q̂0

n(V,W ) + εH(V,W ). (33)

In both cases, the initial SL fit Q̂0
n(v, w) is taken as off-set and the coefficient ε in front of

H(V,W ) is estimated; the fitted value of ε in the first update is denoted by ε1n. The clever
covariate depends on the quantity of interest, satisfying H(V,W ) = (2V − 1)/p(V |W )
for effect sizes and H(V1, V2,W ) = (2V1 − 1)(2V2 − 1)/p(V1, V2|W ) for variant-variant
interactions. Performing weighted, instead of standard, logistic (or linear) regression with
weight the reciprocal of the propensity score and clever covariate H ′(V,W ) = 2V − 1 for
effect sizes and H ′(V1, V2,W ) = (2V1 − 1)(2V2 − 1) for interactions, results in more robust
estimates when near positivity violations are present. We fit the treatment mechanism
g(v, w) = p(V = v|W = w) (for effect sizes) and g(v1, v2, w) = p(V1 = v1, V2 = v2|W = w)
(for interactions) using SL, and denote the corresponding fit by ĝ(v, w). Performing MLE
means solving the score equation,

n∑
i=1

d

dε
log pε(yi|vi, wi)

∣∣∣
ε=ε1n

= 0, (34)

where pε(y|v, w) is the probability density of phenotype y given genotype and covariates
v, w. By construction of both fluctuations, Eq. 34 evaluated at ε = 0 equals the empirical
mean of the efficient influence curve. Thus, we iterate the TMLE step, each time taking
the updated fit Q̂kn(v, w) as off-set, until the fitted parameter εkn ≈ 0.4 Then Eq. 34 reads

n∑
i=1

DQ̂kn
(oj) =

n∑
i=1

d

dε
log pε(yi|vi, wi)

∣∣∣
ε=0

= 0, (35)

and we have successfully updated Q̂0
n to Q̂∗n := Q̂kn so as to eliminate the residual bias term

in Eq. 23, thus making the estimate Ψ(Q̂∗n) asymptotically normal and unbiased.

Step 3D: TL estimates are double-robust. In order to obtain the final estimate, Ψ(Q̂∗n),
of a target parameter such as effect size or variant-variant interactions, the TL workflow
requires the estimation of two quantities: the true conditional phenotype, Q0, and the
true treatment mechanism, g0. This is an advantageous feature since TL estimates are
double-robust in the sense that Ψ(Q̂∗n) is a consistent estimate of the ground truth Ψ(P0)
provided either (or both) Q0 and g0 are estimated consistently at a rate of convergence
faster than n−1/4. Put differently, if only one of Q0 and g0 is estimated incorrectly, e.g.,
by a misspecified model, then the TL estimate is nevertheless consistent. If both Q0 and
g0 are estimated consistently at a product of rates faster of at least n−1/2, then Ψ(Q̂∗n) is

4Since the clever covariate is independent of Q, it is a mathematical fact that this algorithm converges
in a single step, that is, ε1

n ≈ 0 and Q̂∗
n = Q̂1

n.
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an efficient estimator of Ψ(P0), i.e., the estimator with the smallest variance in its class.

The double-robustness property of a TL estimator is established separately for each target
parameter. Here, we first recall the double-robustness of effect size to then establish that
the interaction target parameter of Eq. 8, introduced in [4], is double-robust as well. The
general approach is to recall the first-order approximation of the target parameter at a
probability distribution P in terms of the influence curve as in Eq. 27,

Ψ(P )−Ψ(P0) = −EP0

[
DP (O)

]
+ Rem(P, P0). (36)

in terms of its influence curve, and analyse the second-order remainder term,

Rem(P, P0) = Ψ(P )−Ψ(P0) + EP0

[
DP (O)

]
. (37)

For the parameter Ψ1 of Eq. 2, measuring the effect size of a DNA variant V on a phenotype
Y correcting for confounders W , we have Q(v, w) = E[Y |V = v,W = w] and g(v, w) =
p(V = v|W = w). It is well known that the remainder term of Ψ1 satisfies

Rem(P, P0) ≤
∣∣∣∣Q−Q0

∣∣∣∣
P0
·
∣∣∣∣(ḡ − ḡ0)/g

∣∣∣∣
P0
, (38)

where ||f ||2P0
= EP0(f2) for a function f of the data O = (Y, V,W ), we write ḡ(W ) = g(1,W )

and ḡ0(W ) = g0(1,W ). This inequality is a special case of the Cauchy–Schwartz inequality.
We show in Appendix A that the same inequality holds for the second-order exact remainder
of the interaction target parameter of Eq. 8.

In practice. The above description of the estimation framework of Targeted Learning is
predicated on the estimation of the effect size of a single SNP on a single phenotype mea-
sured on independent and identically distributed data. However, if the data are dependent,
care must be taken in estimating the variance on the estimates; in particular, Eq. 25 needs
to be generalised, see Eq. 48. Furthermore, if multiple effect sizes are estimated, multiple
hypothesis correction must be incorporated in order to bound type I errors, such as FDR
control, and obtain joint p-values. Both of these further steps are required when dealing
with large-scale population genetics data, such as the UKBB.

TarGene identifies non-linear effects of allelic copies on phenotype. TarGene
estimates both effect sizes Ψ1(P ) and Ψ2(P ) in Eq. 2 and Eq. 6 separately and can, thus,
be leveraged to (i) determine significant non-linear effects of allelic copies on phenotypes
as well as (ii) classify the type of SNPs and/or phenotypes for which such non-linearities
occur. In practice, TarGene does this by combining the asymptotic description of both TL
estimates as averages of independent random variables with the Central Limit Theorem
(CLT). More precisely, let Ψi(P ∗i,n) be the ith effect size with efficient influence curve Di,P0

for i = 1, 2. By TL theory, Ψi(P ∗i,n) is the empirical average over influence curves and thus,
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by the CLT, asymptotically normally distributed:
√
n
[
Ψi(P ∗i,n)−Ψi(P0)

]
= 1√

n

n∑
j=1

Di,P0(oj) + oP (1) ∼ N (0,E[D2
i,P ]). (39)

Here, we are interested in the difference target parameter Ψ∆(P ) = Ψ2(P )−Ψ1(P ). Taking
the difference of the quantities in Eq. 39 for i = 1, 2 yields a description of the difference
target parameter minus the difference ground truth as an average over influence curves:

√
n
[
Ψ∆(P ∗n)−Ψ∆(P0)

]
=
√
n
[
[Ψ2(P ∗2,n)−Ψ1(P ∗1,n)]− [Ψ2(P0)−Ψ1(P0)]

]
=
√
n[Ψ2(P ∗2,n)−Ψ2(P0)]−

√
n[Ψ1(P ∗1,n)−Ψ1(P0)]

= 1√
n

n∑
j=1

[
D2,P0(oj)−D1,P0(oj)

]
+ oP (1).

(40)

The asymptotic normal distribution of Ψ∆(P ∗n) and its variance again follow from the CLT,
the application of which is a special case of the functional delta method:

√
n
[
Ψ∆(P ∗n)−Ψ∆(P0)

]
∼ N

(
0,E[D2

1,P0 ]− 2E[D1,P0D2,P0 ] + E[D2
2,P0 ]

)
(41)

In practice, the variance on the right-hand side is estimated by replacing the influence
curves by their sample averages, followed by an update to accurately account for the
population dependence structure in the cohort (see next Section and Eq. 49).

Step 4: TarGene accounts for population dependence structure. Biobank cohorts
consist of participants that are, to some extent, related due to ancestry or kinship. TarGene
accounts for this population dependence structure by appropriately adjusting variance
estimates of effect sizes and interactions via Sieve Plateau (SP) variance estimators [12]
which, in turn, are based on the genetic distance between participants as encoded in the
genetic relationship matrix.

Genetic Relationship Matrix. Many statistical analyses rely on the assumption that the
data are independently sampled5 from the population. However, this assumption no
longer holds for the participants in the UK Biobank since many of whom are, to some
extent, genetically related. Such genetic similarity can occur on a sub-population level
due to ancestry (e.g., being white Irish), or on an individual level due to kinship (e.g.,
parents, children, cousins). Moreover, genetically similar individuals may share diet and
environment inducing further dependence [3].

The genetic similarity of two individuals i and j is quantified by the sample correlation
coefficient Gij between their (centred and scaled) SNPs. Together, these coefficients form

5It is also often required that the data be identically distributed but this assumption is typically not
essential and can be circumvented.
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the Genetic Relationship Matrix (GRM), denoted G, of size N ×N where N is the number
of individuals in the population. More precisely, given a set of R SNPs, we have

Gij = 1
R− 1

R∑
k=1

(sik − 2pk)(sjk − 2pk)
2pk(1− pk)

. (42)

Here sik ∈ {0, 1, 2} denotes the number of copies of the reference allele for individual i at
SNP k, and pk ∈ (0, 1) denotes the frequency of the reference allele at SNP k over the
population of N individuals. In particular, the population average of sik equals twice the
reference allele frequency at SNP k, i.e., 2pk (one for each strand copy), so

1
N

N∑
i=1

sik = 2pk. (43)

Thus s̃ik = sik − 2pk is the zero-centred count of the number of copies of the reference
allele of individual i at SNP k. Considered as a random variable, s̃ik takes on three values.
Assuming reference alleles are sampled binomially with mean frequency pk, the standard
deviation of s̃ik equals

√
2pk(1− pk). This explains the additional factor in Eq. 42 that

scales the variables s̃ik and s̃jk so as to have unit variance. Finally, note that the GRM
depends on the set of R selected SNPs. These SNPs should be chosen amongst genotyped
(not imputed) SNPs that, in addition, are not in linkage disequilibrium with one another.

Sieve Plateau Variance Estimators. In TarGene, we neither assume individuals are
independent nor do we impose the strong restrictive assumptions of an LMM. Instead, we
incorporate the genetic dependence of individuals model-independently in our Targeted
Learning framework described in the section TarGene provides mathematical guarantees
and realistic p-values in Methods. This approach, drawn from [12], is based on mathe-
matical theory and addresses all the above issues. It generalises Eq. 25 for the variance
of the effect size target parameter, Φ(Q̂∗n), by constructing Sieve Plateau (SP) variance
estimators that incorporate genetic dependence of individuals. These estimators result
in valid confidence intervals and, ultimately, realistic and valid p-values having correctly
accounted for population stratification.

We now illustrate how data dependence impacts the variance estimate of Eq. 25. Since
individuals i and j are in general dependent, their data Oi = (Yi, Vi,Wi) and Oj are also
in general dependent. As a result, the same holds for their corresponding influence curves
D∗P0

(Oi) and D∗P0
(Oj). The problem arises since for two random variables X1 and X2 the

variance of their sum is not in general equal to the sum of their variances. The difference
is exactly twice the covariance6 of X1 and X2, namely

Var(X1 +X2) = Var(X1) + Var(X2) + 2 Cov(X1, X2). (44)

6The covariance of two random variables vanishes when they are independent.
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The impact of this difference may be large depending on the size of the covariance
Cov(X1, X2). Thus, rather than Eq. 25, the true variance on Ψ(Q̂∗n) is given by

σ̂2
n = Var

[√
n
(
Ψ(Q̂∗n)−Ψ(P0)

)]
= 1
n

Var
[
n∑
i=1

D∗P0(Oi)
]
. (45)

Now, the distinction between Eq. 25 and Eq. 45 is only relevant for significantly genetically
similar individuals. SP variance estimators define a cut-off τ for the allowed genetic
distance between individuals, and set the covariance to zero between individuals that are
sufficiently genetically dissimilar. We obtain a variance estimate, σ̂2

n(τ), for each value of
τ . The true variance of the estimate is obtained where the function τ 7→ σ̂2

n(τ) plateaus.

To construct SP variance estimators, we proceed as follows:
(1) Using the GRM, we define a genetic distance between individuals i and j as

d(i, j) = 1−Gij , (46)
where Gij is the sample correlation coefficient of Eq. 42 quantifying the genetic
dependence between individuals i and j. Since correlation is bounded, |Gij | ≤ 1,
the genetic distance is non-negative and never larger than two, i.e., 0 ≤ d(i, j) ≤ 2.
Biologically, if two individuals i and j have identical SNPs they are fully correlated,
Gij = 1, and thus have zero genetic distance, d(i, j) = 0, as expected.

(2) Given a value for the cut-off τ ∈ [0, 1], we define a SP variance estimators as

σ̂2
n(τ) = 1

n

n∑
i=1

n∑
j=1

1{d(i, j) ≤ τ} ·D∗
Q̂∗
n
(oi)D∗Q̂∗

n
(oj). (47)

Here, the term 1{d(i, j) ≤ τ} equals 1 if the genetic distance between individuals
i and j is at most τ , i.e., d(i, j) ≤ τ , and it equals 0 otherwise.

The biological interpretation of these estimators is as follows. The correlation between
the influence curves of individuals i and j, estimated by the term D∗

Q̂∗
n
(oi)D∗Q̂∗

n
(oj), is

taken into account only if the genetic distance between individuals i and j is at most
τ . Thus, the SP variance estimator σ̂2

n(0), i.e., when τ = 0, assumes all individuals are
independent. By increasing τ , we first take the covariance between strongly genetically
dependent individuals into account for low τ , and then incorporate the covariance of more
weakly dependent individuals as τ increases up to τ = 1.

(3) We construct the variance estimator σ̂2
n(τ) for a number of values of the cut-off

τ , e.g., τ = 0, 1
k ,

2
k , . . . ,

k−1
k , 1. Then we fit the function τ 7→ σ̂2

n(τ) and select the
value of τ where the function plateaus, call it τ0.

(4) The correct variance estimate is then σ̂2
n(τ0).

Under mild assumptions [12, Theorem 1], the distribution of the effect size estimate Ψ(Q̂∗n)
of SNP V on phenotype Y is asymptotically normal, and the SP variance estimator allows
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for the construction of an approximate 95% Wald-type confidence interval for it in the
usual way, namely Ψ(Q̂∗n)− 1.96

√
σ̂2
n(τ0)
n

,Ψ(Q̂∗n) + 1.96

√
σ̂2
n(τ0)
n

 . (48)

From here, we obtain realistic p-values correctly accounting for population dependence.
Similarly, we need to take into account population dependence in order to obtain a realistic
estimate of the variance on Ψ∆(P ∗n) = Ψ2(P ∗2,n)−Ψ1(P ∗1,n) in Eq. 41. If this difference of
effect sizes of a DNA variant V on a trait Y is significant, the effect of an additional allelic
copy is non-linear. We construct an SP estimator for the variance on this difference by
following steps (1)–(4) above, with the exception of appropriately generalising Eq. 47 in
step (2) as follows. Given a value for the cut-off τ ∈ [0, 1], the estimator is

δ̂2
n(τ) = 1

n

n∑
i=1

n∑
j=1

1{d(i, j) ≤ τ}
[
D̂∗1,n(oi)D̂∗1,n(oj)− D̂∗1,n(oi)D̂∗2,n(oj)

−D̂∗2,n(oi)D̂∗1,n(oj) + D̂∗2,n(oi)D̂∗2,n(oj)
]
.

(49)

Here we have used the short-hand D̂∗i,n = D∗
i,Q̂∗

n
for the influence curve of effect size i

evaluated at the final TMLE estimate Q̂∗n of the conditional expectation E[Y |V,W ].

Step 5: TarGene controls for multiple hypothesis testing. In answering a typical
question in population genetics, multiple hypotheses are tested simultaneously. Depending
on the nature of the question, a specific multiple hypothesis correction is necessary to
bound the error rate of interest. Error rates commonly employed are (i) the probability
of at least one false discovery, or family-wise error rate, FWER = P (Vn > 0), and
(ii) the expected ratio of false discoveries to true discoveries, or false discovery rate,
FDR = E[Vn/Rn]. Here n denotes the sample size, Rn denotes the (known) number of
discoveries, and Vn denotes the (unknown) false discoveries or Type I errors; see Fig. 3E.
Once an error rate and bound has been chosen, e.g., one seeks to bound the FDR at
≤ 0.05, then a multiple hypothesis correction procedure is to be chosen. The better
procedure is the one that minimises false negatives (Type II errors, denoted by Tn in
Fig. 3E), i.e., maximises power, at the given Type I error control.

The literature on multiple testing procedures is extensive, see for example [13]. Procedures
differ mainly in that (i) they depend on the marginal distribution of the test statistics only
(marginal procedure) or on their joint distribution (joint procedure), (ii) the rejection
criteria of the next test is independent of the outcome of the previous tests (single-step
procedure, such as Bonferroni correction) or the rejection criteria depend on the outcome
of previous tests (step-down procedure, e.g., Benjamini–Hochberg). Further considerations
can be taken into account, all of which are aimed at maximising power at a given error
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rate whilst respecting the dependence structure of the tests’ null hypotheses. For example,
a computationally more intensive joint procedure is unwarranted when test statistics are
largely independent.

Since TarGene produces asymptotically normal estimators which are empirical means of
their efficient influence curve, a vector of these estimates similarly equals an empirical
mean of the vector of efficient influence curves. By the multi-variate Central Limit
Theorem, their joint distribution is then again multi-variate normal. Thus, when simulta-
neously testing for significance of multiple (i) effect sizes, (ii) non-linearity of effect size,
and/or (iii) epistatic or gene-environment interactions, the asymptotic joint distribution
of the corresponding null distribution is known. As a consequence, researchers can take
advantage of both marginal and joint procedures to maximise power whilst bounding their
desired Type I error rate.

In this work, we use the marginal step-down Benjamini–Hochberg procedure of [5] to control
the FDR at ≤ 0.05.
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7. Supplementary figures

Supplement to Figure 5: Population stratification PCA analysis. The figures 8 -
11 are empirical cumulative frequency (ECDF) diagrams.

Figure 8. Cumulative frequency diagrams of variant rs1045570 for PCs 1-20.
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Figure 9. Cumulative frequency diagrams of variant rs1421085for PCs 1-20.

The aim of these figures is to establish which of the covariates listed by UK BioBank are
confounders and which PC number these should take into account. The figures can also
be used to establish evidence of population structure based on variants of interest. Large
differences between the separate distributions lines indicate a differences between different
populations and therefore evidence that population structure is driven by this covariate.
The list of variants investigated in this paper is: rs1045570, rs1421085, rs3755967, and
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Figure 10. Cumulative frequency diagrams of variant rs3755967 for PCs 1-20

rs7971418. Figures 8 - 11 clearly show there is no evidence that population structure is
driven by differences in alleles at these variants and therefore, the variants should not
have a confounding effect in the analysis. Figure 12 shows the ECDF for self-reported
ethnicity. This figure is evidence of population structure in the UK BioBank cohort among
participants who self-reported as White ethnicities (including White British, White Irish,
White and Any Other White Background). Here we can see that PCs 1-6 have evidence of
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Figure 11. Cumulative frequency diagrams of variant rs7971418 for PCs 1-20

population structure driven by ethnicity and that this should be included as a confounder
in the Super Learner.

Supplement to Figure 6: Targeted update of our estimate. We provide additional
information regarding the effect of the targeting step on effect sizes and associated p-values.
Surprisingly, in most cases, the initial estimate is shifted upward by the TMLE update (see
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Figure 12. Cumulative frequency diagrams of self-reported ethnicity for PCs 1-20

figure 13). However, because the variance associated with those estimates is large, they
will for the most part not be reported as significant. This behavior is confirmed by the
associated p-value comparison, where the distribution of TMLE p-values is slightly shifted
towards upper values as compared to GeneATLAS p-values.
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Figure 13. (A) Illustration of the difference between the initial estimate, reported by Super
Learning, and the TMLE after the targeting step. (B) Comparative distribution of the p-values
reported by TMLE vs GeneATLAS.
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We present in figure 14 additional information regarding population dependence structure.

Figure 14. (A) A sample curve obtained via the SP estimation method (on two scales). The
curve is increasing as we incorporate more dependent individuals in the estimation. (B)
Histogram of the genetic relationship matrix using both a regular and log10 scale for the full UK
Biobank population (488 376 individuals). As can be seen from the histogram the distribution is
highly concentrated around 0. This is indicating that individuals in the UK Biobank, are to a
large extent, genetically independent from one another. This potentially explains why the sieve
variance correction has so little effect on the variance correction.
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8. Supplementary Tables

Non-linear allelic effects. Tables 1 and 2 present the full list of all 54 traits for which
we found a non-linear allelic effect for rs1421085. That is, the effect of departing from the
TT to TC genotype is significantly different from the effect of departing from the TC to
CC genotype.

Description P-value Adjusted P-value
E66 Obesity 0.00833 0.00958

G40-G47 Episodic and paroxysmal disorders 0.0404 0.0412
I72 Other aneurysm 0.00277 0.00348
Non-oily fish intake 0.0103 0.0115

Comparative body size at age 10 2.5e-14 1.35e-12
Whole body fat mass 1.09e-9 6.55e-9
Trunk predicted mass 3.28e-5 5.54e-5
Trunk fat-free mass 4.35e-5 6.91e-5

Trunk fat mass 7.07e-9 2.39e-8
Trunk fat percentage 1.8e-6 3.6e-6
Body fat percentage 8.45e-7 1.82e-6

Arm predicted mass (left) 1.7e-7 4.18e-7
Arm fat-free mass (left) 2.42e-7 5.67e-7

Arm fat mass (left) 1.15e-10 2.15e-9
Arm fat percentage (left) 2.75e-8 7.97e-8

Arm predicted mass (right) 2.23e-6 4.29e-6
Arm fat-free mass (right) 1.25e-6 2.6e-6

Arm fat mass (right) 1.19e-10 2.15e-9
Arm fat percentage (right) 2.64e-8 7.97e-8
Leg predicted mass (left) 5.49e-9 1.98e-8
Leg fat-free mass (left) 5.36e-9 1.98e-8

Leg fat mass (left) 4.05e-9 1.82e-8
Leg fat percentage (left) 3.58e-5 5.87e-5
Impedance of arm (right) 0.00157 0.00212
Leg predicted mass (right) 6.1e-10 4.12e-9
Leg fat-free mass (right) 5.87e-10 4.12e-9
Impedance of whole body 1.19e-5 2.08e-5

Table 1. Table of detected non-linear allelic effects.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.12.507656doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507656
http://creativecommons.org/licenses/by-nc-nd/4.0/


TARGENE 45

Description P-value Adjusted P-value
Whole body fat-free mass 3.22e-7 7.25e-7

Leg fat mass (right) 5.49e-9 1.98e-8
Impedance of arm (left) 0.00182 0.00234

Leg fat percentage (right) 0.00035 0.00054
Impedance of leg (left) 4.83e-8 1.3e-7

Impedance of leg (right) 2.59e-10 2.79e-9
Basal metabolic rate 2.8e-8 7.97e-8

Body mass index (BMI) 1.86e-10 2.51e-9
Whole body water mass 7.42e-8 1.91e-7

Weight 4.42e-10 3.97e-9
Waist circumference / Hip circumference 0.000367 0.00055

Hip circumference 3.18e-9 1.56e-8
Waist circumference 1.23e-9 6.65e-9

L03 Cellulitis 0.000915 0.00127
eye/eyelid problem 0.00181 0.00234

peripheral vascular disease 0.000447 0.000652
Fresh fruit intake 0.000504 0.000717

Number of treatments/medications taken 0.0394 0.0409
L53 Other erythematous conditions 9.81e-6 1.77e-5

O04 Medical abortion 0.00426 0.00523
L85 Other epidermal thickening 0.00562 0.0066

E65-E68 Obesity and other hyperalimentation 0.0105 0.0115
H36 Retinal disorders in diseases classified elsewhere 0.00473 0.00567

L50-L54 Urticaria and erythema 3.1e-6 5.77e-6
N00-N08 Glomerular diseases 0.0197 0.0208

C56 Malignant neoplasm of ovary 0.0181 0.0196
Table 2. Table of detected non-linear allelic effects (Continuation).
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Appendix A. Proof of proposition

In this section, we prove Proposition 4.1. Below, we recall the content of this statement
for the reader’s convenience. As a direct corollary, this results in the computation of the
influence curve of the interaction target parameter of Eq. 8, required for TMLE.

Proposition A.1. Let M be a non-parametric statistical model containing probability
distributions of O = (Y, V1, V2,W ) where Y is any outcome, V1 and V2 are binary or
categorical variables, and W is any covariate. Let (a, b) be categories of (V1, V2), and
consider the target parameter

Ψa,b(P ) = EW
[
EP [Y |W,V1 = a, V2 = b]

]
. (50)

The efficient influence curve of Ψa,b is given by

D∗a,b(P )(O) = 1{V1 = a, V2 = b}
p(V1, V2|W )

[
Y −Q(V1, V2,W )

]
+Q(a, b,W )−Ψa,b(P ). (51)

Here we have defined the function Q(a, b,W ) = EP [Y |W,V1 = a, V2 = b].

Since the influence curve of a sum of target parameters is equal to the sum of their influence
curves, we immediately deduce the influence of interaction IV1,V2 :

Corollary A.2. The influence curve of 2-point interaction IV1,V2 of Eq. 8 equals

D∗(P ) =
[
D∗1,1(P )−D∗0,1(P )

]
−
[
D∗1,0(P ) +D∗0,0(P )

]
. (52)

A proof of a similar result, from which this Proposition can be derived via the delta method,
can be found in, e.g., [39, App. A3]. For the sake of completeness, we include a proof here.

Proof. The probability density function of P factors as

p(o) = pY (y|v1, v2, w)pV (v1, v2|w)pW (w). (53)

Let Pε be any path in M through P at ε = 0 with score S(o) = (d/dε)|ε=0 log pε(o), where
pε is the probability density function of Pε with respect to λ. By [36, Thm. 3.2], a gradient
Da,b(P ) of Ψa,b(P ) can be obtained by expressing the path-wise derivative of Ψa,b(Pε) as

d

dε

∣∣∣∣
ε=0

Ψa,b(Pε) = 〈S,Da,b(P )〉, (54)

where the inner product 〈−,−〉 on the right-hand side is taken in the Hilbert space L2
0(P )

of mean-zero functions that are square-integrable with respect to P .
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We now compute the path-wise derivative of the target parameter. First, we find

d

dε

∣∣∣∣
ε=0

Ψa,b(Pε) = d

dε

∣∣∣∣
ε=0

EW,ε
[
EPε [Y |V1 = a, V2 = b,W ]

]
(55)

=
∫
y
d

dε

∣∣∣∣
ε=0

(
pY,ε(y|v1 = a, v2 = b, w)dλ(y)pW,ε(w)

)
dλ(w), (56)

where derivative and integral can be exchanged by Lebesgue’s dominated convergence
theorem. Next, since V1, V2 can be considered as binary random variables, we have

pY,ε(y|a, b, w) =
∫
pY,ε(y|v1, v2, w)1{v1 = a, v2 = b}

p(v1, v2|W ) p(v1, v2|w)dλ(v1, v2). (57)

Here 1{v1 = a, v2 = b} equals 1 when both v1 = a and v2 = b and vanishes otherwise. By
another application of the dominated convergence theorem, we obtain

=
∫
y
d

dε

∣∣∣∣
ε=0

pY,ε(y|v1, v2, w) · dλ(y)1{v1 = a, v2 = b}p(v1, v2|w)
p(v1, v2|w) dλ(v1, v2)pW (w)dλ(w)

(58)

+
∫
ypY (y|v1 = 1, v2 = 0, w)dλ(y) d

dε

∣∣∣∣
ε=0

pW,ε(w)dλ(w) (59)

We consider these two integrals separately, utilising the Hoeffding decomposition [41,
§ 11.4]. For the second integral, by the ordering O = (Y, V1, V2,W ), this results in

d

dε

∣∣∣∣
ε=0

pW,ε(w) =
(
E[S(O)|w]− E[S(O)]

)
pW (w). (60)

We now compute the second integral I2 to be

I2 =
∫
ypY (y|v1 = a, v2 = b, w)dλ(y)

(
E[S(O)|w]− E[S(O)]

)
pW (w)dλ(w) (61)

=
∫
Q(a, b, w)

(
E[S(O)|w]− E[S(O)]

)
pW (w)dλ(w) (62)

=
∫
Q(a, b, w)S(o)pY,V (y, v1, v2|w)dλ(y, v1, v2)pW (w)dλ(w) (63)

−
∫
S(o)p(o)dλ(o)

∫
Q(a, b, w)pW (w)dλ(w) (64)

=
∫
S(o)

[
Q(a, b, w)−Ψa,b(P )

]
p(o)dλ(o) (65)

= 〈S,Q(a, b,W )−Ψa,b(P )〉. (66)
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For the first integral, again applying the Hoeffding decomposition [41, § 11.4] yields
d

dε

∣∣∣∣
ε=0

pY,ε(y|v1, v2, w) =
[
E[S(O)|O = o]− E[S(O)|v1, v2, w]

]
pY (y|v1, v2, w)

=
[
S(o)− E[S(O)|v1, v2, w]

]
pY (y|v1, v2, w).

Next, we compute the first integral I1, which immediately splits into two pieces:

I1 =
∫
S(o)y1{v1 = a, v2 = b}

p(v1, v2|w) pY (y|v1, v2, w)p(v1, v2|w)pW (w)dλ(y)dλ(v1, v2)dλ(w)

−
∫
yE[S(O)|v1, v2, w]pY (y|v1, v2, w)dλ(y) · 1{v1 = a, v2 = b}p(v1, v2|w)

p(v1, v2|w) dλ(v1, v2)pW (w)dλ(w)

=
∫
S(o)y1{v1 = a, v2 = b}

p(v1, v2|w) p(o)dλ(o)

−
∫
Q(v1, v2, w)E[S(O)|v1, v2, w] · 1{v1 = a, v2 = b}p(v1, v2|w)

p(v1, v2|w) dλ(v1, v2)pW (w)dλ(w).

The first piece is of the required form. In the second piece I
(2)
1 of integral I1 we have

integrated out the y-dependence, which results in the factor Q(v1, v2, w) ≡ EP [Y |v1, v2, w].
Next, we write E[S(O)|v1, v2, w] as an integral to have p(o) under the integral:

I
(2)
1 =

∫
Q(v1, v2, w)S(o)pY (y|v1, v2, w)dλ(y) · 1{v1 = a, v2 = b}p(v1, v2|w)

p(v1, v2|w) dλ(v1, v2)pW (w)dλ(w)

=
∫
S(o) ·Q(v1, v2, w)1{v1 = a, v2 = b}

p(v1, v2|w) · p(o)dλ(o).

We infer that

I1 =
∫
S(o)

[
1{v1 = a, v2 = b}

p(v1, v2|w)
(
y −Q(v1, v2, w)

)]
p(o)dλ(o), (67)

and conclude that the influence curve of Ψa,b(P ) is given by

D∗a,b(P ) = 1{V1 = a, V2 = b}
p(V1, V2|W )

[
Y −Q(V1, V2,W )

]
+Q(a, b,W )−Ψa,b(P ) (68)

as claimed. �

Given the influence curve of EW [E[Y |V,W ]], we can show the double-robustness of any
target parameter that is a linear combination of such terms. This holds because both the
exact remainder,

Rem(P, P0) = Ψ(P )−Ψ(P0) + EP0

[
DP (O)

]
, (69)

and the influence curve of a linear combination of target parameters equals the linear
combination of exact remainders and influence curves respectively.
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Proposition A.3. LetM be a non-parametric statistical model containing probability dis-
tributions of O = (Y, V,W ) where Y is any outcome (e.g., trait), V a binary or categorical
variable (e.g., a DNA variant), and W is any covariate. Consider the target parameter

Ψv(P ) = EW
[
EP [Y |W,V = v]

]
. (70)

The exact remainder of Ψv is given by

Rem(P, P0) = EP0

[
g0(v,W )− g(v,W )

g(v,W )
(
Q0(v,W )−Q(v,W )

)]
(71)

We explain in what sense the TMLE of ATE or interaction is double robust. Given a
function f of the data O = (Y, T,W ), we write ||f ||2P0

= EP0(f2) for its L2-norm. This norm
is induced by the inner product 〈f, g〉P0 = EP0(fg) where f, g are two square-integrable
functions of the data O = (Y, T,W ). The Cauchy–Schwarz inequality states

|〈f, g〉P0 | ≤ ||f ||P0 · ||g||P0 .

Applying this inequality to Eq. 71 yields the inequality

Rem(P, P0) ≤ ||(g0 − g)/g||P0 · ||Q0 −Q||P0 . (72)

The consistency of TMLE is double-robust in the following sense. Given estimators (gn, Qn)
of (g0, Q0), e.g., constructed using a Super Learner, and assume gn is a consistent estimator
of g0; the same argument holds if we estimate Q0 consistently. Consistency implies

||(g0 − gn)/gn||P0 −→ 0, as n→∞,

and so Rem(P̂n, P0) vanishes as n→∞. Then by the definition of Rem(P, P0),

Ψ(P0) = Ψ(P̂n) + P0D(P̂n). (73)

The TMLE step now achieves the following: It updates P̂n to a final estimate P̂ ∗n , so that
(1) P̂ ∗n asymptotically has the same g-feature and Q-feature as P0, so that it still solves

the second-order remainder, Rem(P̂ ∗n , P0) = 0, as n→∞; and
(2) P̂ ∗n solves the P0-specific influence curve, i.e., P0D(P̂ ∗n) = 0, so that Ψ(P̂ ∗n) = Ψ(P0).

We include the proof of the proposition for the convenience of the reader.

Proof. First, we recall that the influence curve of Ψv(P ),

Dv(P ) = 1{V = v}
g(v,W )

[
Y −Q(V,W )

]
+Q(v,W )−Ψv(P ), (74)
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satisfies the property PDv(P ) ≡ EP
[
Dv(P )

]
= 0, i.e., it is mean-centered. Second, using

this property, we simplify the second-order remainder Rem(P, P0) as follows:

Rem(P, P0) = Ψv(P )−Ψv(P0) +
(
P0 − P

)
Dv(P )

= Ψv(P )−Ψv(P0) + EP0

[
1{V = v}
g(v,W )

(
Y −Q(V,W )

)
+Q(v,W )

]
−Ψv(P )

= EP0

[
1{V = v}
g(v,W )

(
Y −Q(V,W )

)
+Q(v,W )−Q0(v,W )

]
.

Here, the first equality follows by definition of Rem(P, P0), the second follows by PDv(P ) =
0 and EP0

[
Ψv(P )

]
= Ψv(P ), and the third follows by definition of the parameter Ψv(P0).

Third, we examine the second half of the second-order remainder:

EP0

[
Q(v,W )−Q0(v,W )

]
= EP0

[
g(v,W ) · Q(v,W )−Q0(v,W )

g(v,W )

]
Fourth, we split the remaining term up into two parts,

EP0

[
1{V = v}
g(v,W )

(
Y −Q(V,W )

)]
= EP0

[
1{V = v}
g(v,W )

(
Y −Q(v,W )

)]
=EP0

[
1{V = v}
g(v,W )

(
Y −Q0(v,W )

)]
+ EP0

[
1{V = v}
g(v,W )

(
Q0(v,W )−Q(v,W )

)]
and treat these separately, using the tower rule for both. The first term vanishes:

EP0

[
1{V = v}
g(v,W )

(
Y −Q0(v,W )

)]
= EP0

[
1{V = v}
g(v,W ) EP0

(
Y −Q0(v,W )|V = v,W

)]
= EP0

[
1{V = v}
g(v,W )

(
Q0(v,W )−Q0(v,W )

)]
= 0,

since EP0 [Y |V = v,W ] = Q0(v,W ). The second term is equal to the following expression:

EP0

[
1{V = v}
g(v,W )

{
Q0(v,W )−Q(v,W )

}]
= EP0

[
EP0

{
1{V = v}
g(v,W )

[
Q0(v,W )−Q(v,W )

]∣∣∣W}]
= EP0

[
EP0

[
1{V = v}|W

]Q0(v,W )−Q(v,W )
g(v,W )

]
= EP0

[
g0(v,W )Q0(v,W )−Q(v,W )

g(v,W )

]
.

Finally, putting all terms together yields the expression for the second-order remainder:

Rem(P, P0) = EP0

[
g0(v,W )− g(v,W )

g(v,W )
(
Q0(v,W )−Q(v,W )

)]
(75)

This completes the proof. �
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Appendix B. Residuals of one fit as dependent variable in another fit

In order to provide a fast method for estimating effect sizes of large numbers of variants on
traits, the 2-step residual fitting, originally proposed in GRAMMAR [14], has been used in
the literature to perform GWAS fits. In this procedure, the trait Y is first fitted linearly,
either using linear regression or an LMM model, as a function of the covariates and random
genetic effects. The residual of the fit, i.e., Y − Ypredict, is then used a dependent variable
in a second linear regression model, to estimate the effect size of the variants of interest.
However, this procedure results in biased effect estimates and ‘conservative’ tests [35]. Here
we demonstrate that the term ‘conservative’ is misleading for two reasons:

(1) In the case where a linear model is assumed to be the true model, the estimates of
the effect sizes turn out to be less significant than the ground truth value. However,
this is only true when all relevant covariates have been regressed out in the first
step, and only the single variant of interest is regressed in the residual fitting step
(second step). In contrast, if the residuals from the step 1 are used to obtain the
effect size of a variant in the presence of another variable in the fit, the quantities
of interest can be under- or over-estimated, and even change sign. This happens,
for example, when environmental factors and other variants of interest (e.g., for
epistasis quantification) are not taken into account in step 1. The extent of under-
or -overestimation depends on the degree of dependence (e.g., correlation) between
the first set and the second set of variables. The issue of 2-step residual fitting has
been demonstrated using simulations in other literature, e.g., economics [10].

(2) When the ground truth is non-linear, it is unknown in general what the effect of
residual fitting is on the validity of the estimates. These estimates may be under-
or over-inflated, or change size.

GRAMMAR-Gamma [35] introduced a correction factor for the test-statistic and effect size
estimates. However, this correction factor only applies when the (unknowable) ground truth
is in fact linear and the mistake described in (1) above are not made. If the (unknowable)
ground truth follows a different model, an (unknowable) different analysis is required with
(unknowable) new correction factor being applied to fit of the data. For more sophisticated
and powerful models, it may be far more complicated to obtain the required correction.
Therefore, this is a time-consuming procedure that attempts to treat the symptom instead
of the cause of the issue, namely, the 2-step residual fitting procedure. This process should
thus be entirely avoided.
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Cecilia Salvoro, Irene Miguel-Escalada, Caitlin E. Carey, Joanne B. Cole, Sina Rüeger,
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