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Abstract 
Metabolic labeling of RNA is a powerful technique for studying the temporal dynamics of gene 

expression. Nucleotide conversion approaches greatly facilitate the generation of data but introduce 

challenges for their analysis. We here present grandR, a comprehensive package for quality control, 

differential gene expression analysis, kinetic modeling, and visualization of such data. We compare 

several existing methods for inference of RNA synthesis rates and half-lives using progressive labeling 

time courses. We demonstrate the need for recalibration of effective labeling times and introduce a 

Bayesian approach to study the temporal dynamics of RNA using snapshot experiments.  

Keywords: RNA kinetics, RNA half-life, differential gene expression, SLAM-seq, TimeLapse-seq, TUC-

seq 

Background 
The RNA expression level of a gene is governed by the interplay of RNA synthesis and degradation. 

While RNA-seq can easily obtain transcriptome-wide snapshots of gene expression profiles in a single 

experiment, it remained difficult to directly measure the temporal dynamics of gene regulation as 

consequences of changes in the rates of RNA synthesis and degradation, e.g. due to external stimuli. 

To overcome this limitation, techniques involving metabolic labeling of RNA have been developed. 

Metabolic RNA labeling uses 4-thiouridine (4sU) or other nucleoside analogs, which are introduced 

into living cells and incorporated into nascent RNA. First approaches physically separated labeled and 

unlabeled RNA by thiol-specific biotinylation and affinity purification and sequenced separate 

libraries of these fractions. This approach has been used to study RNA processing [1], transient RNA 

expression [2], kinetics of RNA polymerases [3] or the dynamics of RNA expression [4]. Existing 

protocols for purification of labeled RNA are highly laborious and require substantial amounts of 

RNA. In addition, contamination with background total RNA in the labeled RNA fraction must be 

controlled for [4], and normalization is challenging [5]. 

Recently, several approaches have been proposed that circumvent the purification [6–8]: Before 

sequencing, RNA is treated with chemical agents to specifically convert 4sU into cytosines or cytosine 

analogs. Thus, labeled and unlabeled RNAs can in principle be differentiated based on T-to-C 

mismatches in sequencing reads without the need to physically purify labeled RNA. A major 

advantage of the nucleotide conversion approach, aside from lower requirements of starting 

material and a simplified experimental workflow, is that it can be combined with more specialized 

protocols, e.g. to profile transcription start sides [9] or ribosome occupancy [10]. Furthermore, we 

and others have combined 4sU conversion with single cell RNA-seq to study the heterogeneity of 

gene regulation [11–13]. 

A limitation of 4sU conversion approaches is that concentrations of 4sU that are tolerated by cells 

commonly only replace 1 in 40 uridines by 4sU. Thus, a considerable number of reads originating 

from labeled RNA does not cover any 4sU incorporation site. The percentage of such reads is in the 

order of 20-80% and depends on the ratio of 4sU and normal uridine available for incorporation into 

nascent RNA, the read length, and the uridine content of RNA. The pioneering studies employing 4sU 

conversion exclusively focused on T-to-C reads. Despite underestimating labeled RNA, T-to-C reads 

alone can be used to estimate unbiased RNA half-lives in pulse-chase experiments [6] and to detect 

rapid changes of transcription upon drug treatment or acute depletion of transcription factors [14].  

We previously proposed a statistical solution to quantify labeled and unlabeled RNA without bias due 

to limited 4sU incorporation: By using a Binomial mixture model, our GRAND-SLAM approach 

provides unbiased estimates of the percentage of labeled RNA per gene and its posterior distribution 
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[15]. The posterior represents uncertainties in the quantification, mainly due to the scarcity of 4sU 

incorporation events, and has so far been used to filter out genes with inaccurate quantification [11]. 

Importantly, however, our Bayesian framework in principle allows to take these uncertainties further 

to downstream analyses such as estimation of RNA kinetics or gene expression changes. 

Here, we present grandR, an R package to facilitate analyses of nucleotide conversion sequencing 

experiments. It includes new methods for quality control and recalibrating labeling times. grandR 

implements several methods to estimate RNA synthesis and degradation rates from progressive 

labeling experiments that have been applied previously by us and others [3,15–18]. Here, we 

compare these methods and show that the most accurate results are obtained by directly utilizing 

the posteriors from GRAND-SLAM to estimate the kinetic model. Furthermore, we propose a 

Bayesian hierarchical model to dissect the mode of gene regulation from snapshot experiments. To 

facilitate collaborative work and exploratory data analysis, grandR provides a comprehensive web-

based data visualization and exploration tool. 

Results 

grandR overview 
grandR is designed as a comprehensive and easy-to-use toolkit for all types of nucleotide conversion 

sequencing data such as SLAM-seq [6], Timelapse-seq [7] or TUC-seq [8]. Raw data is pre-processed, 

e.g. by our GRAND-SLAM tool [15]. Analysis workflows in grandR consist of high-level commands to 

(i) load data, (ii) filter genes according to user defined criteria, (iii) quality control, (iv) normalization 

and (v) kinetic modeling or differential gene expression analysis (Fig. 1A). Our GRAND-SLAM – grandR 

workflow advocates using systematic sample names to encode all metadata (Fig. 1B). Various 

experimental conditions that impact on the analysis strategy are accommodated by using specific 

parameters to grandR functions (Fig. 1C). grandR provides tools for visualizations of individual genes 

and summaries of a data set, which can be used programmatically or via a shiny-based web interface 

(Fig. 1D). All figures here were generated using grandR, and R notebooks to reproduce all analyses 

are provided as Supplementary data file 1. 

Quality control reveals impact of long-term labeling >4 h on transcription 
For nucleotide conversion approaches, sufficient 4sU incorporation into newly synthesized RNA must 

be achieved to enable accurate quantification. However, labeling with high 4sU concentrations or 

labeling over extended periods of time affects cell viability [6] or RNA metabolism [19] in a cell type 

specific manner. Thus, as opposed to standard RNA-seq, nucleotide conversion sequencing requires 

additional quality control steps in their analysis workflow.  

In grandR, testing for toxicity of 4sU can be performed by comparing 4sU treated samples against 

equivalent 4sU naïve control samples. To estimate RNA half-lives, Herzog et al. [6] pre-treated mouse 

embryonic stem cells with low concentrations of 4sU (100µM) for a 24h pulse phase, followed by 

washing out 4sU and sequencing at several time points during this chase phase. Notably, cell viability 

was assessed to be ~80% after 24h. Quality control using grandR revealed that 4sU treated samples 

and untreated controls segregate in a principal component analysis (Fig. 2A) and that 1,340 out of 

8,286 genes were significantly (FDR<5%, DESeq2 Wald test [20]; absolute log2 fold change > 0.5 [21]) 

dysregulated in the 4sU treated sample (Fig. S1A). The p53 pathway was significantly up-regulated, 

and several stress-related pathways were significantly down-regulated (FDR <0.05, gene set 

enrichment analysis, Fig. 2B), indicating that central cellular pathways were affected by long-term 

4sU treatment. Moreover, RNA half-lives were significantly correlated with the expression changes 

between 4sU treated and untreated samples (Spearman’s ρ=-0.3, p<2.2x10-16, approximate t test; 

Fig. S1B), indicating that long-term treatment with 4sU affected the RNA metabolism in general. In 
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conclusion, these analyses advocate against long-term 4sU treatment beyond 4h even with low doses 

of 4sU and, therefore, argue against pulse-chase designs for estimating RNA half-lives in general. 

The kinetics of RNA degradation can also be analyzed without chase by monitoring the drop of 

unlabeled RNA over time.  Such a “progressive labeling” design has been used by several studies 

[1,3,17,18] and provides accurate estimates when timepoints are chosen roughly in the range of the 

actual RNA half-lives [15,22]. Zuckerman et al [18] performed siRNA knock-down of the nuclear 

export factor NXF1 and used progressive 4sU labeling for 0h, 2h, 4h and 8h to show that RNA half-

lives were not altered. Quality control by grandR revealed that after 8h, but not before, the NTR was 

significantly correlated with the log2 fold change with respect to the (4sU naïve) 0h time point 

(Spearman’s ρ=-0.42, p<2.2x10-16, Fig. 2C). This downregulation of short-lived RNAs in the total RNA 

pool upon 4sU treatment suggests a general defect in transcription. Importantly for this study the 

estimated half-lives were not systematically different after excluding the 8h time point from analysis 

(Fig. S1C). In summary, these analyses indicate that 4sU can substantially impact on transcription 

before affecting cell viability, and, thus, these effects should be assessed post-hoc in the sequencing 

data by comparing 4sU treated samples with equivalent 4sU naïve controls. 

Kinetic modeling 
The commonly used kinetic model of RNA expression goes back to 1952 [23] and assumes zero-order 

kinetics for RNA synthesis and first-order kinetics for degradation: 

𝑑𝑎

𝑑𝑡
= 𝜎 − 𝛿𝑎(𝑡) (1) 

 

Here, 𝑎(𝑡) is the abundance of RNA at time 𝑡, and 𝜎 and 𝛿 are the rate constants for synthesis and 

degradation, respectively. A gene is expressed at steady state if  
𝑑𝑎

𝑑𝑡
= 0, i.e. if 𝑎(𝑡) =

𝜎

𝛿
. The 

differential equation (1) can be solved for 𝑎(0) = 𝑎0: 

𝑎(𝑡) = (𝑎0 −
𝜎

𝛿
) 𝑒−𝛿𝑡 +

𝜎

𝛿
 (2) 

Different variants of this model have been used to estimate RNA stability represented by the 

degradation rate 𝛿 or, equivalently, the RNA half-life 𝑡1/2 = log(2) /𝛿: (i) Finkel et al. [17] focused on 

unlabeled RNA and performed simple linear regression on equation 2 after log transformation and 

setting 𝜎 = 0. (ii) In Narain et al. [3], we used non-linear least squares regression (NLLS) to fit the full 

model in equation 2, which has been done in a similar manner in Zuckermann et al. [18]. (iii) Boileau 

et al. [24] proposed to fit the full model using their pulseR package [16] based on the raw counts of 

reads showing T>C mismatches, and to remove bias of this approach using an additional nuisance 

parameter. (iv) Finally, we have presented a Bayesian method to estimate the degradation rate 𝛿 

under steady state [15]. 

The main difference among methods (i)-(iv) is the error model employed. While (i) and (ii) assume 

homoscedastic gaussian errors of estimated pre-existing and newly synthesized RNA levels, either in 

log space (i) or of the levels directly (ii), pulseR models read counts using a Negative Binomial 

distribution assuming a gene specific overdispersion parameter that is jointly estimated from all 

samples. The Bayesian approach (iv) assumes that all data points are generated from a single 

degradation rate constant 𝛿 with the only source of error being the random sampling of T>C 

conversions.  

To compare methods (i)-(iv), we implemented in-silico simulation of nucleotide conversion 

sequencing experiments in grandR. Following a previous method to simulate RNA-seq data [25], our 

simulation procedure first samples read counts from a Negative Binomial distribution with a gene 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.12.507665doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507665
http://creativecommons.org/licenses/by-nc-nd/4.0/


specific overdispersion parameter and expected value both estimated from a real data set. Our 

simulation then samples T>C mismatches for each individual read based on a user defined NTR value 

and on sequencing error rates and 4sU incorporation rates estimated from a real data set. Then the 

simulation estimates NTRs and their posteriors for each gene using the GRAND-SLAM model [15]. 

We used our read simulator to generate progressive labeling time courses using parameters 

estimated from a recent SLAM-seq data set of SARS-CoV-2 infection [17] as reference. While the 

estimated RNA half-lives correlated well with the ground-truth for all methods (R>0.84, p<2.2x10-16 

for all methods, Pearson correlation; Fig. S2), the non-linear least squared method (ii) and the 

Bayesian method (iv) were significantly more accurate than the linear regression (i) and pulseR (iii) 

approaches for data simulated under steady state conditions (Fig 3A). By contrast, non-steady state 

conditions resulted in generally more substantial deviations from the ground truth (Fig 3B). This 

analysis also shows that the accuracy of the Bayesian approach (iv) suffers most significantly without 

steady state. The regression and Bayesian approaches report interval estimates. The regression 

methods had relatively large confidence intervals, indicating that the gaussian noise approximation 

does not properly model our simulated sequencing data, especially in logarithmic space as done by 

method (i) (Fig 3C). The Bayesian method can, very quickly, compute credible intervals by 

approximating the posterior by a χ2 distribution but can also numerically integrate the posterior. For 

steady state conditions these exact credible intervals were indeed smaller than the approximate 

intervals (inter-quartile ranges: approximate, [0.37-1.23]; exact, [0.30-0.99]; Fig 3C). Under non-

steady state conditions, all deviations were underestimated, most notably for the Bayesian credible 

intervals, where 88% of the simulated half-lives were outside of the credible interval (Fig S3A). In 

summary, the non-linear least squares regression (ii) and the Bayesian approach (iv) provided the 

most accurate estimates under steady state conditions. The Bayesian approach slightly outperformed 

NLLS, but inherently assumes steady state. We therefore recommend the non-linear least squares 

regression as the default method for estimating RNA kinetics using progressive metabolic labeling 

data. 

Choosing number of replicates, time points and sequencing depth 
Our simulation also enabled us to assess how many reads, replicates and time points are required to 

obtain accurate estimates of kinetic parameters. We reasoned that a moderate number between 6 

and 12 samples per condition should be used. However, it is a priori unclear whether these should be 

distributed over many time points, or whether more replication of the same time points is more 

beneficial. We therefore simulated a broad range of potential experimental settings (Fig 3D). As 

expected from our previous analyses [15], if early (1h) or late (8h) time points are missing, the 

estimates for short-lived or long-lived RNAs, respectively, suffer significantly. This became most 

obvious when we only simulated a single time point (Fig S3B). Thus, to analyze the complete 

landscape of RNA half-lives multiple time-points spanning the whole range of RNA half-lives are 

required. We next simulated data for a full progressive time course (1h, 2h, 4h and 8h) with different 

sequencing depths and numbers of replicates (Fig S3C). Interestingly, increasing the number of 

replicates per time point boosted the accuracy stronger than increasing the number of reads. In 

conclusion, our data show that time-points must be carefully chosen and the costs for sample and 

library preparation must be weighed against the sequencing costs to obtain accurate RNA half-lives. 

Temporal recalibration improves the model fit 
4sU is not available for transcription immediately once the cells are cultured on 4sU media, but it is 

actively transported across cell membranes via nucleoside transporters and is processed by the 

pyrimidine salvage pathway before it is available as substrate for transcription. Thus, the 

concentration of active 4sU increases until saturation, and RNA that was transcribed significantly 

before reaching saturation contains fewer 4sU than RNA transcribed later. Therefore, especially for 
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earlier timepoints, the effective labeling time is expected to be much shorter than the nominal 

labeling time.  

To test this effect, we used grandR to estimate RNA half-lives for published data of Calu-3 cells 

infected with SARS-CoV-2 and mock infected control cells [17]. Indeed, the residuals of the model fit 

were mostly negative for the 1h time points, and more balanced at later time points (Fig. 4A-B). Since 

the effective labeling time for a sample is a global parameter that is common to all genes, and new 

and old RNA follow the model defined in equation (2) for all genes, we reasoned that it should be 

possible to estimate effective labeling times by maximizing the joint likelihood of all gene specific 

synthesis and degradation rates and the effective labeling times.  

We first tested this temporal recalibration by simulated time courses where we artificially changed 

the nominal labeling times. The recalibrated labeling times were on average within 1.03-fold of the 

true effective labeling time (Fig. S4A), and estimation of kinetic parameters was completely rescued 

after recalibration (Fig. S4B). We then recalibrated the labeling times for the SARS-CoV-2 data. 

Indeed, the residuals became smaller for all samples and were now symmetric (Fig. 4A-B). Globally, 

temporal recalibration affected short half-lives stronger than long half-lives (Fig. 4C), presumably 

because early time points are the most informative to estimate short half-lives. Moreover, for the 

virus infected samples there were substantially more gene-specific differences at the 1h time point, 

indicating that without steady state assumption, the first time point is important to estimate the 

initial abundance 𝑎0. Indeed, the estimates of 𝑎0 exhibited the same gene specific differences like 

half-life estimates upon calibration (Fig. 4D). In conclusion, due to the kinetics of 4sU uptake and 

activation, the effective labeling time might differ from the nominal labeling time, especially for short 

labeling. For progressive labeling experiments, this can be corrected by temporal recalibration. 

Estimating changes in synthesis or degradation from snapshot experiments 
Nucleotide conversion sequencing has also applications beyond progressive labeling time courses. 

We and others showed that new RNA from a single “snapshot” timepoint is more sensitive to detect 

short-term changes of gene expression than standard RNA-seq without metabolic RNA labeling, e.g. 

upon virus infection [11], drug treatment, or acute depletion of transcription factors via degron 

systems [3,26]. So far, analyses of snapshot samples have been performed in an ad-hoc manner by 

the application of standard differential gene expression tools on estimated new or old RNA.  

We have previously shown that steady-state half-lives can, in principle, be estimated from a single 

snapshot sample [15]. Here, we extend this and show that both synthesis and degradation rates (𝜎 

and 𝛿) can be estimated also without assuming steady state: 

𝛿 = −
1

𝑡
log𝐹                (3) 

𝜎 = −
1

𝑡
 𝑎(𝑛𝑒𝑤)(𝑡) 

log 𝐹

1 − 𝐹
  (4) 

Here, 𝑎(𝑛𝑒𝑤)(𝑡) is the abundance of new RNA at time 𝑡, and 𝐹 =
𝑎(𝑜𝑙𝑑)(𝑡)

𝑎0
 is the ratio between pre-

existing (old) RNA 𝑎(𝑜𝑙𝑑)(𝑡) at time 𝑡 and the total level 𝑎0 at time 0. Thus, to compute 𝜎 and 𝛿,  in 

addition to old and new RNA, 𝑎0 must be known, either due to the assumption of steady state (where 

𝑎0 =
𝜎

𝛿
), or by a separate sample measured at time 𝑡 = 0. Importantly, equations 3 and 4 can be 

extended to enable computing 𝜎 and 𝛿 when a separate sample is available for any time 𝑡 < 0 (see 

Methods).  

Estimates of 𝜎 and 𝛿 based on applying equations 3 and 4 to measured data might be highly 

inaccurate due to the NTR quantification uncertainty, due to a labeling time not matching the gene 

specific RNA half-life, or sampling noise due to low numbers of reads. In addition to these technical 
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factors, 𝜎 and 𝛿 are also subject to biological variability among replicate samples. To control these 

factors, we developed a Bayesian hierarchical model to estimate the joint posterior distribution of 𝜎 

and 𝛿 as well as the joint posterior of log2
𝜎𝐴

𝜎𝐵
  and log2

𝛿𝐴

𝛿𝐵
 for differential analysis of two samples A 

and B. 

To test our approach, we simulated data for two conditions with 2h labeling. We left one condition at 

steady state, for the other we either perturbed synthesis or degradation rates, or left them 

unperturbed as control. The maximum-a-posteriori log fold change estimates of both 𝜎 and 𝛿 were 

unbiased, and much more accurate for 𝜎 (root mean square deviation (RMSD) = 0.048; Fig. 5A) than 

for 𝛿 (RMSD = 0.510; Fig. 5B). Estimated changes in 𝜎 reflected the true change in synthesis rates more 

accurately than new RNA (RMSD = 0.064; Fig. 5C). Counterintuitively, the old RNA fold change did not 

correspond to the true fold change of RNA half-lives (Fig. 5D). Indeed, equation 3 shows that an 

observed fold change of old RNA 𝑓 between two conditions A and B means that the degradation rates 

differ by the additive constant −
log(𝑓)

𝑡
 rather than a multiplicative factor. Previously, an observed new 

RNA fold change has been equated with a change in synthesis rate [14]. However, equation 4 shows 

that new RNA fold changes are also affected by changes in degradation rates, predominantly for genes 

with short-lived RNAs. Indeed, we observed significant changes in new RNA when only the degradation 

but not the synthesis rates were changed, which was restricted to genes with short-lived RNAs (Fig 5E). 

Of note the estimated synthesis rate changes by our Bayesian model were not affected by changes of 

RNA stability. For unperturbed controls, estimated changes of 𝛿 exhibited more variance than 

estimated changes of 𝜎. This effect was much less pronounced for genes with short RNA half-lives, or 

when the labeling duration was 4h instead of 2h (Fig. 5F).  

We then applied our Bayesian model for changes of RNA stability to the 2h time point of the SARS-

CoV-2 data [17], revealing that the degradation rate changes recapitulated the changes identified by 

modeling the full progressive labeling time course (R=0.7, p<2.2x10-16, Pearson correlation; Fig. 5G).  

In summary, in contrast to previously used fold changes of old and new RNA, the maximum-a-

posteriori estimates of our hierarchical model provide directly interpretable log fold changes of 

synthesis and RNA half-lives from snapshot data.  

ROPE analysis of significant changes of 𝜎 and 𝛿 
We analyzed “regions of practical equivalence” (ROPE) [27] to quantify significant changes of 

synthesis or degradation using our Bayesian approach. As a measure of significance, we used the 

posterior probabilities 𝑃𝜎  or 𝑃𝛿  of the log2 fold change (synthesis or degradation, respectively) being 

either less than −0.25 or greater than 0.25. As a comparison, we analyzed Benjamini-Hochberg 

adjusted P values 𝑞𝑛𝑒𝑤 and 𝑞𝑜𝑙𝑑 computed by DESeq2 [20] for new and old RNA, respectively. 

We first analyzed our simulated data (2h labeling) where RNA synthesis rates were perturbed. As 

expected from overall n=10,835 genes, virtually none had 𝑃𝛿 > 0.9 (n=127, 1.2%) or 𝑞𝑜𝑙𝑑 < 0.01 

(n=0) independent of the true change of RNA synthesis (Fig 6A). Notably, of the n=3,388 genes 

simulated to be more than 2-fold up- or down-regulated, n=3,249 (95.9%) and n=3,174 (93.7%) genes 

had 𝑃𝜎 > 0.9 and 𝑞𝑛 < 0.01, respectively (Fig. 6A). Thus, ROPE analysis of our Bayesian model and 

DESeq2 analysis of new and old RNA showed similar sensitivity and specificity when only RNA 

synthesis rates are changed.  

Next, we focused on simulated data where RNA half-lives were perturbed. From overall n=10,835 

genes, n=40 (0.4%) had 𝑃𝜎 > 0.9 and n=407 (4.0%) had 𝑞𝑛𝑒𝑤 < 0.01 (Fig 6B). These hundreds of 

genes with significant changes in new RNA predominantly had downregulated RNA half-lives (n=302 

out of overall 1641 genes with >2-fold downregulated RNA half-lives, 18.4%). Thus, as shown above, 
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new RNA for some genes exhibited significant changes when only RNA half-lives are changed. By 

contrast, our Bayesian approach can accurately differentiate between changes in synthesis and 

degradation. Moreover, out of n=3,390 genes with >2-fold regulated half-lives, n=1,692 (49.9%) had 

𝑃𝛿 > 0.9 and n=1,351 (39.8%) had 𝑞𝑜𝑙𝑑 < 0.01 (Fig 6B), indicating that our Bayesian approach is also 

more sensitive than analyzing old RNA for detecting changes in RNA stability. 

Interestingly, the sensitivities of our Bayesian approach for detecting changes in RNA stability were 

asymmetric (65.7% for downregulated RNA half-lives and 33.0% for upregulated RNA half-lives; Fig 

6B). To investigate this further, we stratified genes according to their unperturbed RNA half-lives. For 

genes with RNA half-lives of less than 2h, sensitivities indeed were symmetric, but exhibited 

increasing asymmetry for longer half-lives (Fig 6C). This asymmetry can be explained by the fact that 

half-lives not matching to the duration of 4sU labeling cannot be estimated accurately. To 

corroborate this, we repeated these analyses with 4h of simulated 4sU labeling, which resulted in 

symmetric sensitivities for average half-lives of 2-4h. In summary, our Bayesian approach can 

accurately differentiate between effects on RNA synthesis and degradation. 

Bayesian analysis indicates target gene specific differences of regulation by acute 

BANP depletion 
We utilized our Bayesian modeling approach for the analysis of published data from cells after 

degron-mediated depletion of BANP, which has recently been revealed to bind to unmethylated 

CGCG motifs in CpG islands to promote transcription of a set of essential genes [26]. For this study, 

samples from multiple timepoints (1h, 2h, 4h, 6h and 20h) after depletion of BANP were labeled with 

4sU prior to sequencing. Importantly, the samples from the 4h timepoint and later were labeled for 

2h, but shorter labeling of 30 and 90 minutes was applied for the 1h and 2h timepoints, respectively. 

Due to these different labeling times, new RNA is not directly comparable among the samples and 

inference of 𝜎 is required to interpret the data.  We first calibrated labeling times, which can here be 

accomplished by matching the transcriptome-wide distribution of degradation rates. Indeed, after 

recalibration, the distribution for RNA half-lives estimated for each timepoint were largely 

indistinguishable (Fig S5A), and the same was also true for RNA synthesis rates (Fig S5B). 

For each timepoint, the RNA synthesis log fold changes for BANP targets determined by ChIP-seq [26] 

were significantly and consistently shifted towards negative values compared to non-targets (Fig. 

7A). This is remarkable especially for the 1h timepoint, where 4sU labeling only was 30 minutes, and 

suggests that synthesis rates were reduced immediately once BANP was depleted from cells, and 

then stayed constant for at least 20h. To further investigate this, we analyzed the synthesis log fold 

change posterior distributions for individual genes. This revealed that there were substantial gene 

specific differences, with some BANP targets like Taf1d showing gradually decreasing synthesis rates 

with efficient downregulation only later than the 1h timepoint (Fig 7B) and for others like Herc1 (Fig 

7C) or Tupgcp5 (Fig 7D) synthesis rates dropped early and rose again later suggesting negative 

feedback loops. In conclusion, the Bayesian hierarchical model implemented in grandR can be used 

to uncover detailed information about gene regulation from snapshot experiments reflecting 

genome-wide trends and to generate testable hypotheses of individual genes. 

Discussion 
Nucleotide conversion sequencing is now widely used to infer kinetic parameters of RNA expression 

but there is still a lack of computational tools for data analysis. Our goal for developing grandR was to 

provide a comprehensive and easy-to-use toolkit to facilitate a broad range of different analysis steps 

for such data. 
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It is well described in the literature that nucleoside concentrations must be optimized for specific cell 

types and desired labeling times [5,6,19]. Toxicity of too highly concentrated 4sU has previously been 

assessed by testing for cell viability. However, here we show that transcription can be affected 

before cell viability suffers. We therefore advocate that all studies employing metabolic RNA labeling 

must report the extent of any effect of 4sU on transcription. Since levels of short-lived RNAs quickly 

decline when transcription is globally inhibited, a correlation of the fold changes for 4sU treated 

samples vs. corresponding 4sU naïve controls with the NTRs can be used as surrogate marker for 

transcriptional defects due to 4sU treatment, as implemented in grandR.  

RNA degradation rates have previously been estimated using progressive labeling time courses using 

different computational methods. All these approaches employed the kinetic model described by 

equations 1 and 2 but they differ in their choice of the error model. Due to noise introduced by the 

inference of the NTR, the actual errors of normalized new and old RNA likely are differently 

distributed than standard RNA-seq data. Our simulations indicate that the errors are well 

approximated by a gaussian distribution. We recommend using the non-linear least squares fitting 

procedure as the general tool for fitting the kinetics of RNA expression. The Bayesian approach 

provides slightly more accurate results and better error bounds but can only be used under steady 

state conditions. 

We have also shown that much simpler snapshot experiments can be used to infer the kinetics of 

RNA expression. A major advantage of such snapshots is that, instead of using multiple time points to 

observe and characterize the drop of pre-existing RNA for obtaining the degradation kinetics, with 

the same number of samples the kinetics can be probed at multiple time points, e.g. after virus 

infection. This is of particular importance when synthesis or degradation rates are not constant. 

Indeed, the reduced RNA half-lives observed for SARS-CoV-2 likely result from the general host 

shutoff protein nsp1 encoded by SARS-CoV-2 [28]. It is therefore very likely that degradation of 

cellular mRNAs depends on the abundance of nsp1, which increases substantially over the first few 

hours of infection. Thus, the degradation rate at 4h post infection (corresponding to the 1h labeling 

time point in the SLAM-seq data from Ref. [17]) likely is different at 7h post infection (the final 4h 

labeling time point). 

A major caveat of metabolic RNA labeling experiments is that the effective labeling time might not 

correspond to the nominal labeling time. grandR provides tools to test for this critical issue and 

recalibrate labeling times: For progressive labeling time courses, asymmetric residuals of early time 

points indicate shorter effective labeling times. Using the labeling times as additional independent 

variables when jointly fitting the kinetics for all genes, as implemented in grandR, can be used to 

estimate the effective labeling times. For snapshot experiments, labeling times can be recalibrated 

based on additional assumptions, e.g. based on reference RNA half-lives. Testing for effective 

labeling is critical when samples with distinct labeling times are compared, and for estimating RNA 

degradation and, to a lesser extent, synthesis rates in absolute terms.  

 

Conclusions 
Nucleotide conversion approaches greatly reduced the burden on the wet-lab side for conducting 

metabolic RNA labeling experiments but introduced the need for more sophisticated tools for their 

computational analysis. Complementing our GRAND-SLAM software for primary processing of such 

data, we developed the grandR package as a general toolkit to aid researchers to further analyze and 

interpret such data. Here, we demonstrated that additional quality control measures are necessary 

for such data to exclude effects of 4sU on transcription, and that short labeling times often require 
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recalibration. For both methods, grandR provides high-level functions. Furthermore, grandR enables 

researchers to estimate synthesis and degradation rates for both progressive labeling as well as 

snapshot experiments without requiring steady state assumptions. Finally, grandR provides a web-

based interface for exploratory data analysis. 

 

Methods 

SLAM-seq preprocessing 
All SLAM-seq data used here were processed using the GRAND-SLAM pipeline [15]. Fastq files were 

downloaded from the SRA database. The accession number were: GSE99970 for the 24h 4sU labeling 

data set from Ref. [6] (samples: GSM2666816, GSM2666817, GSM2666818, GSM2731767, 

GSM2731768, GSM2731769), GSE139151 for the NXF1 knockdown data set from Ref. [18], 

GSE162323 for the SARS-CoV-2 data set from Ref. [17], and GSE155604 for the BANP depletion data 

set from Ref. [26]. Adapter sequences were trimmed using cutadapt (version 3.4) for the SARS-CoV-2 

data, where reads were not pre-trimmed on SRA. Then, bowtie2 (version 2.3.0) was used to map 

read against an rRNA (NR_046233.2 for 24h and BANP, and U13369.1 for NXF1 and SARS-CoV-2) and 

Mycoplasma database. Remaining reads were mapped against target databases using STAR (version 

2.5.3a). We used the murine genome for 24h and BANP, the human genome for NXF1, and the 

combined human and SARS-CoV-2 (NC_045512) genome for SARS-CoV-2. All genome sequences 

were taken from the Ensembl database (version 90). Bam files for each data set were merged and 

converted into a CIT file using the GEDI toolkit [29] and then processed using GRAND-SLAM (version 

2.0.7; for the NXF1 data set, GRAND-SLAM 2.0.5g was used). 

Read simulation 
To simulate a nucleotide conversion sequencing experiment for 𝑛 genes with relative abundances 

𝑎1, … , 𝑎𝑛, ∑ 𝑎𝑖𝑖 = 1, overdispersion parameters 𝑑𝑖  and total read count 𝑁, first 𝑛 random numbers 

𝐶𝑖 are drawn from negative binomial distributions 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝑎𝑖𝑁, 𝑑𝑖). We use the parametrization 

𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇, 𝑑) such that the mean is 𝜇 and the variance is 𝜇 + 𝑑𝜇2. 

To simulate the “measured” NTR for gene 𝑖 given the true NTR 𝑛𝑡𝑟𝑖, we sampled the number of 

uridines 𝑢𝑟  covered by each of the 𝑐𝑖  reads from a binomial distribution 𝐵𝑖𝑛𝑜𝑚(𝑟𝑙, 𝑝𝑢), where 𝑟𝑙 is 

the user-defined read length (used here: 75), and the probability for an uridine at any position 𝑝𝑢is 

sampled from a beta distribution with user-defined average uridine content (used here: 0.25) and 

standard deviation thereof (used here: 0.05). For each read 𝑟, then the number of conversions 𝑡𝑐𝑟 is 

sampled from a Binomial mixture distribution 𝐵𝑖𝑛𝑜𝑚𝑀𝑖𝑥(𝑢𝑟, 𝑝𝑒 , 𝑝𝑐, 𝑛𝑡𝑟𝑖) defined by the probability 

function 

𝑃(𝑘; 𝑢𝑟, 𝑝𝑒 , 𝑝𝑐 , 𝑛𝑡𝑟𝑖) = (1 − 𝑛𝑡𝑟𝑖)𝐵(𝑘; 𝑢𝑟, 𝑝𝑒) + 𝑛𝑡𝑟𝑖𝐵(𝑘; 𝑢𝑟 , 𝑝𝑐). 

Here, 𝐵(𝑘; 𝑛, 𝑝) = (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 is the probability function of the Binomial distribution. We 

used a sequencing error rate of 𝑝𝑒 = 10
−4 and a T-to-C conversion rate of 𝑝𝑐 = 0.04. Of note, 𝐷 =

(𝑢𝑟, 𝑡𝑐𝑟), 𝑟 ∈ {1, … , 𝑐𝑖} for a gene 𝑖 represent the sufficient statistics for the GRAND-SLAM model. 

Then, GRAND-SLAM is used to obtain the maximum-a-posteriori (MAP) estimate for the NTR by 

numerically maximizing the Binomial mixture log likelihood function [15], i.e. we used a uniform 

prior. In addition, it also computes the Beta approximation of the posterior distribution of 𝑛𝑡𝑟𝑖 as 

described [15]. 

This procedure is implemented in the function SimulateReadsForSample of grandR and simulates the 

read count 𝐶𝑖 and the NTR Ξ𝑖  for 𝑛 genes based in several user-defined parameters as described 
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above. grandR also provides the higher-level function SimulateTimeCourse. Based on a time point 𝑡 

RNA synthesis rates 𝜎𝑖, degradation rates 𝛿𝑖, initial abundances 𝑎0𝑖 and global synthesis and 

degradation variance parameters 𝑣𝜎 and 𝑣𝛿  (here both were set to 1.05), this function computes 

both the relative abundances 𝑎𝑖 and the new-to-total RNA ratio 𝑛𝑡𝑟𝑖, i.e. the parameters to  

SimulateReadsForSample as follows: To model biological variability, we define 𝜎�̃� = 𝜎𝑖 ⋅ 2
𝜖  where 𝜖 is 

gaussian noise. Here, the noise level was chosen such that the 95% quantile of the gaussian is equal 

to log2 𝑣𝜎. This way, 90% of all 𝜎�̃� are expected to be at most 𝑣𝜎-fold less or greater than 𝜎𝑖. 

Equivalently, we defined 𝛿�̃�. Then, the abundance of new and old RNA at time 𝑡 is computed as 

𝑎𝑖
(𝑛𝑒𝑤)

(𝑡) =
𝜎�̃�

𝛿�̃�
(1 − 𝑒−𝑡𝛿�̃�) and 𝑎𝑖

(𝑜𝑙𝑑)
(𝑡) = 𝑎0𝑖𝑒

−𝑡𝛿�̃�, respectively. Thus, 𝑎𝑖 = 𝑎𝑖
(𝑛𝑒𝑤)

(𝑡) + 𝑎𝑖
(𝑜𝑙𝑑)

(𝑡) 

and 𝑛𝑡𝑟𝑖 = 𝑎𝑖
(𝑛𝑒𝑤)(𝑡)/𝑎𝑖 . 

For all simulations here, we used the “mock” samples from the SARS-CoV-2 data set to compute the 

relative abundances 𝑎𝑖 and estimated the overdispersion parameters 𝑑𝑖  using the function 

estimateDispersions from the DESeq2 package. The reference synthesis rates 𝜎𝑖  and degradation 

rates 𝛿𝑖  were estimated using the NLLS approach from the same data set. To simulate perturbed 

synthesis rates 𝜎𝑖
′, degradation rates 𝛿𝑖

′ or initial abundances 𝑎0𝑖
′  (to start from non-steady state 

conditions), we sampled gaussian noise such that ~5% of all genes are expected to be perturbed at 

most 2-fold. 

Kinetic model 
To model the abundance of RNA at time 𝑡, 𝑎(𝑡), we use equation 2: 

𝑎(𝑡) = (𝑎0 −
𝜎

𝛿
) 𝑒−𝛿𝑡 +

𝜎

𝛿
  

Here, 𝜎 and 𝛿 are the rate constants for synthesis and degradation, respectively, and 𝑎0 ≔ 𝑎(0) is 

the initial abundance at time 𝑡 = 0. We define the following two functions for the abundances of old 

and new RNA, respectively, after labeling for time 𝑡: 

 𝑎(𝑜𝑙𝑑)(𝑡; 𝑎0, 𝛿) = 𝑎0𝑒
−𝑡𝛿 (5) 

 𝑎(𝑛𝑒𝑤)(𝑡; 𝜎, 𝛿) =
𝜎

𝛿
(1 − 𝑒−𝑡𝛿) 

(6) 

Under steady state assumptions, we have 𝑎0 =
𝜎

𝛿
, and can use the steady state function instead of 

equation 5: 

 𝑎(𝑜𝑙𝑑)(𝑡;  𝜎, 𝛿) =
𝜎

𝛿
𝑒−𝑡𝛿 

(7) 

We have data given in the form of total expression values 𝐶𝑘 and “measured” NTRs Ξ𝑘  for samples 

taken at time points 𝑡𝑘. Note that even if we use the same notation 𝐶 as for read counts above in 

“Read simulation”, here we assume that 𝐶𝑘 is a normalized expression measure. We further index by 

𝑘 to indicate the biological samples where data were obtained and drop the gene index 𝑖 for clarity. 

The NTRs Ξ𝑘  actually are not measured but are estimates of the parameter 𝑛𝑡𝑟𝑘 =
𝑎(𝑛𝑒𝑤)(𝑡𝑘)

𝑎(𝑛𝑒𝑤)(𝑡𝑘)+𝑎
(𝑜𝑙𝑑)(𝑡𝑘)

. We also have the beta approximation of the posterior distribution of 𝑛𝑡𝑟𝑘 given 

by 𝛼𝑘  and 𝛽𝑘, i.e. 𝑛𝑡𝑟𝑘|𝐷~𝐵𝑒𝑡𝑎(𝛼𝑘 , 𝛽𝑘) for data 𝐷. We use bold face 𝒕 = (𝑡1, … , 𝑡𝑚), 𝜶 =

(𝛼1, … , 𝛼𝑚), 𝜷 = (𝛽1, … , 𝛽𝑚), etc. to denote the vectors valued parameters. 

Modeling progressive labeling time courses 
We define the random variables for old and new RNA as 𝑂𝑘 = 𝐶𝑘 ⋅ (1 − Ξ𝑘) and 𝑁𝑘 = 𝐶𝑘 ⋅ Ξ𝑘. The 

distributions of 𝑁𝑘  and 𝑂𝑘 dependent on measurement noise from the sequencing experiment, 

uncertainty in the estimate Ξ𝑘  and biological variability. In a “progressive” labeling experiment each 
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sample is labeled for a duration of 𝑡𝑘  starting from a common time point 𝑡 = 0, and 𝜎 and 𝛿 from 

equations 1 and 2 remain constant after time 𝑡 = 0. Then the expected values of 𝑂𝑘 and 𝑁𝑘  are 

𝔼(𝑂𝑘) = 𝑎
(𝑜𝑙𝑑)(𝑡𝑘; 𝑎0, 𝛿) 

𝔼(𝑁𝑘) = 𝑎
(𝑛𝑒𝑤)(𝑡𝑘; 𝜎, 𝛿) 

All methods described below, except for pulseR, can conveniently be used in grandR using the 

function FitKinetics, which will fit either the LM, the NLLS or NTR model for each gene by calling the 

respective functions mentioned below.  

LM method 
For the linear model approach (method (i) in the text), we note that we have a linear function 

𝑙𝑜𝑔 (𝑎(𝑜𝑙𝑑)(𝑡; 𝑎0, 𝛿)) = 𝑙𝑜𝑔(𝑎0) − 𝛿𝑡 after log transforming equation 5. Thus, 𝛿 and 𝑎0 can be 

estimated using simple linear regression. Under the assumption of steady state, we can also obtain 

an estimate of 𝜎 = 𝑎0 ⋅ 𝛿. Note, however, that this assumes all 𝑂𝑘 to follow homoscedastic 

LogNormal distributions. We deem this model quite unrealistic, as at late time points 𝑡𝑙 ≫ 𝑡1/2 

(where 𝑡1/2 = log(2) /𝛿 is the half-life), 𝑎(𝑜𝑙𝑑)(𝑡𝑙; 𝑎0, 𝛿) quickly approaches 0, and we therefore 

expect the residual log (𝑎(𝑜𝑙𝑑)(𝑡𝑙; 𝑎0, 𝛿)) − log(𝑂𝑙) to be far greater than log (𝑎(𝑜𝑙𝑑)(𝑡𝑒; 𝑎0, 𝛿)) −

log(𝑂𝑒) at an earlier time point 𝑡𝑒 < 𝑡1/2. This approach is implemented by the 

FitKineticsGeneLogSpaceLinear function in grandR using the lm function of R. Confidence intervals 

are estimated using the confint function.  

NLLS method 
For the non-linear least squares approach (method (ii) in the text), we assume 𝑂𝑘 and 𝑁𝑘  to be 

homoscedastic gaussian. Thus, 𝜎, 𝛿 and 𝑎0 (or 𝜎 and 𝛿 under steady state assumptions) can be 

estimated using non-linear least squares regression. This is implemented in grandR by the function 

FitKineticsGeneLeastSquares using the nls.lm function from the minpack.lm package. Confidence 

intervals are estimated using confint.nls.lm. 

pulseR method 
pulseR (method (iii) in the text) originally was developed for 4sU labeling experiments where labeled 

and unlabeled RNA was physically purified and sequenced separately [16]. It was later adapted to 

also handle nucleotide conversion sequencing data [24]. pulseR operates on labeled and unlabeled 

read counts (i.e. reads with and without observed T-to-C conversions), and includes additional 

nuisance parameters to model reads from unlabeled RNA with T-to-C conversions (e.g., sequencing 

errors) and reads from labeled RNA without T-to-C conversions (reads not covering 4sU incorporation 

sites). In our notation, the pulseR model is 

𝑎(𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑)(𝑡; 𝑎0, 𝛿) = 𝜇1 + 𝑎0𝑒
−𝑡𝛿  

𝑎(𝑙𝑎𝑏𝑒𝑙𝑒𝑑)(𝑡; 𝜎, 𝛿) = 𝜇2 +
𝜎

𝛿
(1 − 𝑒−𝑡𝛿) 

Here, 𝜇1 is the fraction of reads without T-to-C conversion, that indeed is not derived from old RNA, 

and 𝜇2 is the fraction of reads with T-to-C conversions, that indeed is not derived from new RNA. 

Parameters are estimated using the counts of reads with and without T-to-C conversions instead of 

estimated old and new RNA levels 𝑂𝑘 and 𝑁𝑘  assuming reads to follow a negative Binomial 

distribution with common dispersion parameter for a gene. This is implemented in grandR in the 

function FitKineticsPulseR using the code from Ref. [24] provided on github 

(https://github.com/dieterich-lab/ComparisonOfMetabolicLabeling). 
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NTR method 
For the Bayesian NTR method (method (iv) in the text), we note that under the assumption of steady 

state 𝛿 =  −
1

𝑡
log(1 − 𝑛𝑡𝑟). Thus, the posterior distribution of the NTR given data, 𝑛𝑡𝑟𝑘|𝐷, can be 

transformed into a distribution on 𝛿 [15]. We assume 𝑛𝑡𝑟𝑘|𝐷~𝐵𝑒𝑡𝑎(𝛼𝑘, 𝛽𝑘), and therefore the 

posterior density of the degradation rate is: 

𝑑(𝛿; 𝑡𝑘, 𝛼𝑘, 𝛽𝑘) =
𝑡

𝐵(𝛼𝑘 , 𝛽𝑘)
(1 − 𝑒−𝑡𝛿)

𝛼𝑘−1
𝑒−𝑡𝛽𝑘𝛿  

By logarithmizing and setting the derivative to 0, we see that the MAP estimator is 

�̂� = −
1

𝑡
log

𝛽𝑘
𝛼𝑘 + 𝛽𝑘 − 1

 

We can also transform the MAP of ntr𝑘|𝐷, yielding 

𝛿 = −
1

𝑡
log

𝛽𝑘 − 1

𝛼𝑘 + 𝛽𝑘 − 2
 

Thus, transforming from the 𝑛𝑡𝑟 parameter to the degradation rate 𝛿 results in non-invariance of the 

MAP estimator. Both estimators are implemented in grandR, and we chose to use the transformed 

NTR MAP estimator 𝛿 by default. With several samples, the degradation rate is estimated by 

numerically maximizing the log posterior 

𝑔(𝛿) =∑(𝛼𝑘 − 1)

𝑘

log(1 − 𝑒−𝑡𝑘𝛿) − 𝑡(𝛽𝑘 − 1)𝛿 

We use the optimize function built into R. For approximate 𝑥% credible intervals (CIs), we compute 

the critical drop in the log posterior distribution as 𝑐 =
1

2
𝜒1,𝑥
2  from a 𝜒2 distribution with 1 degree of 

freedom similar to Ref. [24]. The rationale here is, that as we use a uniform prior, the posterior 

distribution is equal to the likelihood function. The CI is found by finding the values of 𝛿 left and right 

of the MAP estimate 𝛿, where 𝑔(𝛿) − 𝑔(𝛿) = 𝑐. For exact CIs, we numerically integrate 𝑔 using R’s 

integrate function and report the 𝑥% CI interval with the MAP as the central point. This is 

implemented in grandR’s function FitKineticsGeneNtr. It also provides an estimate of 𝜎 = 𝐶𝑘𝛿. 

Temporal recalibration 
grandR implements two ways to recalibrate labeling times. The first can only be used with 

progressive labeling data and makes use of the fact that our kinetic model poses some constraints on 

how the temporal dynamics can behave. For that, we fit the NLLS model simultaneously for all genes, 

and consider the labeling time as additional variables that are jointly optimized. To make this 

procedure more efficient and less prone to noise, we first make a rough estimate of the half-lives 

using the uncalibrated labeling times and use the top 200 expressed genes from the following half-

life classes: 0-2h,2-4h,6-8h,>8h. Stratifying by half-life classes is important as many of the most 

strongly expressed genes have very long RNA half-lives. Importantly, however, the 𝑛 labeling time 

parameters can only be estimated up to a constant factor which corresponds to the time unit of the 

model. We make this model identifiable by assuming that the effective labeling time is equal to the 

nominal labeling time for the last time point. This procedure is implemented in the function 

CalibrateEffectiveLabelingTimeKineticFit in grandR. 

The second method for temporal recalibration requires reference half-lives. For each biological 

sample the observed data can be transformed into half-lives for any labeling time (see below, 

“Transforming snapshot data”). We choose the labeling time such that the median log fold change 
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between the reference and transformed half-lives across all genes is 0 by using the uniroot function 

of R. This procedure is implemented in the function CalibrateEffectiveLabelingTimeMatchHalflives in 

grandR. 

Transforming snapshot data 
By solving equations 5 and 6, we obtain 

𝛿 = −
1

𝑡
log
𝑎(𝑜𝑙𝑑)(𝑡)

𝑎0
 

= −
1

𝑡
log𝐹 

𝜎 = 𝑎(𝑛𝑒𝑤)(𝑡) ⋅ 𝛿 ⋅
1

1 − 𝑒−𝑡𝛿
 

= −
1

𝑡
𝑎(𝑛𝑒𝑤)(𝑡) 

log F

1 − 𝐹
 

with 𝐹 ≔ 
𝑎(𝑜𝑙𝑑)(𝑡)

𝑎0
. To compute 𝜎 and 𝛿 from this, the initial abundance 𝑎0 at time 𝑡 = 0, i.e., at the 

start of labeling, must be known in addition to old and new RNA levels. This might not be the case, 

and only an abundance 𝑎′ at time 𝑡′ < 0 might be known, either by design of the experiments or 

because the effective labeling time is shorter than the nominal labeling time. In this case, the initial 

abundance can be computed as  

𝑎0 = 𝑎
′𝑒𝑡

′𝛿 +
𝜎

𝛿
(1 − 𝑒𝑡

′𝛿) 

We use equation 6 to get rid of 𝜎: 

𝑎0 = 𝑎
′𝑒𝑡

′𝛿 + 𝑎(𝑛𝑒𝑤)(𝑡) ⋅
1 − 𝑒𝑡

′𝛿

1 − 𝑒−𝑡𝛿
 

Substituting this into equation 5: 

𝑎(𝑜𝑙𝑑)(𝑡) = 𝑎′𝑒(𝑡
′−𝑡)𝛿 + 𝑎(𝑛𝑒𝑤)(𝑡) ⋅

𝑒−𝑡𝛿 − 𝑒(𝑡
′−𝑡)𝛿

1 − 𝑒−𝑡𝛿
 

We solve this numerically for 𝛿 by using the R’s uniroot function. Of note, this assumes 𝜎 and 𝛿 to be 

constant throughout the time [𝑡′, 𝑡]. Transforming snapshot data is implemented in grandR’s 

TransformSnapshot function. 

Hierarchical Bayesian modeling of snapshot data 
We define snapshot data for a single biological sample 𝑘 and a single gene from a nucleotide 

conversion sequencing experiment to be a tuple 𝐷𝑘 = (𝑐𝑘
′ , 𝑐𝑘 , 𝑢𝑘,1, … , 𝑢𝑘,𝑐 , 𝑡𝑐𝑘,1, … , 𝑡𝑐𝑘,𝑐). Here, 𝑐𝑘

′  

is the read count at the start of labeling at time 𝑡 = 0, and 𝑐𝑘  the read count at time 𝑡. For now, we 

ignore the need for normalization and assume that 𝑐𝑘  and 𝑐𝑘
′  are directly comparable measures of 

gene expression, i.e. are already normalized. For ease of notation, we here assume a measurement 

𝑐′ at 𝑡 = 0, but we can adapt our model in principle also to situations, where the measurement is 

taken at any time 𝑡′ (see above, Transforming snapshot data). 𝑢𝑘,𝑟  and 𝑡𝑐𝑘,𝑟 for 𝑟 ∈ {1, … , 𝑐} 

represent the number of uridines and the number of T-to-C conversions, respectively, for a read 𝑟, 

i.e. the sufficient statistics for estimation of the 𝑛𝑡𝑟 parameter. We will omit the index 𝑘 if it is not 

necessary. 

We assume that snapshot data 𝐷 are generated by the following process: 
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1. Sample the unobserved parameters 𝑎0, 𝜎 and 𝛿 from unknown distributions representing 

the biological variability of the true initial abundance, the synthesis rate and degradation 

rate, respectively; this uniquely determines the full temporal kinetics of the true RNA 

abundance 𝑎(𝑡) as well as 𝑎(𝑛𝑒𝑤)(𝑡) and 𝑎(𝑜𝑙𝑑)(𝑡) and 𝑛𝑡𝑟(𝑡) =
𝑎(𝑛𝑒𝑤)(𝑡)

𝑎(𝑡)
. 

2. Sample 𝑐 and 𝑐0 from unknown distributions with mean 𝑎(𝑡) and 𝑎(0). These distributions 

represent the technical noise of the measurement. 

3. Sample 𝑢1, … , 𝑢𝑐 from the sequence of the gene. Which sequence is used depends on the 

protocol used for library preparation.  

4. Sample 𝑡𝑐𝑟  for 𝑟 ∈ {1, … , 𝑐} from a Binomial mixture distribution 

𝐵𝑖𝑛𝑜𝑚𝑀𝑖𝑥(𝑢𝑟, 𝑝𝑒, 𝑝𝑐 , 𝑛𝑡𝑟(𝑡)) 

Here, we are mainly concerned with snapshot data 𝑫𝑨,𝑩 = 𝐷1
𝐴, … , 𝐷𝑛

𝐴, 𝐷1
𝐵, … , 𝐷𝑚

𝐵  involving several 

biological replicates from two conditions 𝐴 and 𝐵, and would like to infer the joint posterior 

distributions (𝑙𝑜𝑔2
𝜎𝐴

𝜎𝐵
, 𝑙𝑜𝑔2

𝛿𝐵

𝛿𝐴
) |𝑫𝑨,𝑩 =(𝑙𝑜𝑔2

𝜎𝐴

𝜎𝐵
, 𝑙𝑜𝑔2

𝐻𝐿𝐴

𝐻𝐿𝐵
) |𝑫𝑨,𝑩 . Note that for the synthesis rates 

we consider the log fold change 𝐴 vs 𝐵, i.e. 𝐵 is the control condition. We prefer to invert the log fold 

change of the degradation rates, which then corresponds to the more intuitive log fold change of the 

RNA half-lives 𝐻𝐿𝐴 vs 𝐻𝐿𝐵. Unfortunately, this is analytically intractable, and we found Markov chain 

Monte Carlo methods to be too inefficient considering the sheer size of 𝐷.  

However, we show here that we can efficiently draw 𝑁 samples (𝜎1, 𝛿1), … , (𝜎𝑁, 𝛿𝑁) from the joint 

posterior 𝜎, 𝛿|𝑫 for a single condition, with 𝑛 replicate samples, i.e. 𝑫 = 𝐷1, … , 𝐷𝑛. Hence, 

(𝑙𝑜𝑔2
𝜎𝐴,1

𝜎𝐵,1
, 𝑙𝑜𝑔2

𝛿𝐵,1

𝛿𝐴,1
) , … , (𝑙𝑜𝑔2

𝜎𝐴,𝑁

𝜎𝐵,𝑁
, 𝑙𝑜𝑔2

𝛿𝐵,𝑁

𝛿𝐴,𝑁
) is a sample form the joint log fold change posterior 

distribution (𝑙𝑜𝑔2
𝜎𝐴

𝜎𝐵
, 𝑙𝑜𝑔2

𝛿𝐵

𝛿𝐴
) |𝑫𝑨,𝑩. To draw a single sample (𝜎𝑗 , 𝛿𝑗) from the posterior 𝜎, 𝛿|𝑫, we 

consider the following processes separately: 

1. Draw a sample 𝑎𝑗
′ from the posterior distribution 𝑎0|𝑫 = 𝑎(0)|𝑫. 

2. Draw a sample 𝑎𝑗 from the posterior distribution 𝑎(𝑡)|𝑫. 

3. Draw a sample 𝑛𝑡𝑟𝑗 from the posterior distribution 𝑛𝑡𝑟(𝑡)|𝑫. 

We then transform these samples into 𝜎 and 𝛿 as described above under “Transforming snapshot 

data”. Note that the prior distribution for 𝜎, 𝛿 as well as (𝑙𝑜𝑔2
𝜎𝐴

𝜎𝐵
, 𝑙𝑜𝑔2

𝛿𝐵

𝛿𝐴
) is thereby implicitly 

defined by the priors for 𝑎0, 𝑎(𝑡), 𝑛𝑡𝑟(𝑡).  

Sampling from 𝑎(. )|𝑫 
We assume that read counts 𝑐~𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇, 𝑑) are distributed according to a negative Binomial 

distribution with mean 𝜇 and dispersion 𝑑. The dispersion parameter is defined above such that the 

variance is 𝜇 + 𝑑𝜇2. To enable efficient sampling, we assume 𝑑 to be fixed (for a single gene) and use 

estimateDispersions from the DESeq2 package for estimation. There is no obvious conjugate prior for 

𝜇, however, we can reparametrize the negative Binomial 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚′(𝑠, 𝑝) by 𝑠 =
1

𝑑
 and 𝑝 =

𝑠

𝑠+𝜇
. 

Then, 𝜇 =
1−𝑝

𝑝⋅𝑑
. 

It is easy to see that the Beta distribution is a conjugate prior for 𝑝: Given 𝑛 samples 𝒄 = 𝑐1, … , 𝑐𝑛, 

the density of the posterior for  𝑝 for a 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚′(𝑠, 𝑝) likelihood and 𝐵𝑒𝑡𝑎(𝛼, 𝛽) prior is 

𝜋(𝑝|𝒄) ∝∏(
Γ(𝑠 + 𝑐𝑘)

Γ(𝑠)Γ(𝑐𝑘 + 1)
𝑝𝑐𝑘(1 − 𝑝)𝑠)

𝑘

⋅
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑝𝛼−1(1 − 𝑝)𝛽−1 

∝ 𝑝(𝛼+∑𝑐𝑘)−1(1 − 𝑝)(𝛽+𝑛𝑠)−1 
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Thus, for the prior  𝑝~𝐵𝑒𝑡𝑎(𝛼, 𝛽), we have the posterior 𝑝|𝑐1, … , 𝑐𝑛~𝐵𝑒𝑡𝑎(𝛼 + ∑𝑐𝑘 , 𝛽 + 𝑛𝑠). 

We use the full distribution of all genes to inform the prior distribution as follows. We first transform 

the expression value 𝑐𝑖  for each gene 𝑖 to 𝑝𝑖 =
𝑠𝑖

𝑠𝑖+𝑐𝑖
 with 𝑠𝑖 =

1

𝑑𝑖
 and use the method of moments to 

fit the hyperparameters 𝛼 and 𝛽, which we then use for the whole data set of all genes.  

So far, we have ignored normalization. For practical applications, this must be taken into account. We 

do this by the same approach as DESeq2, i.e. by rescaling read counts using a size factor to obtain 

normalized read counts [20]. This can be achieved in grandR by first calling the Normalize function, 

which places the normalized read counts into the default data slot of the grandR object. 

Thus, to sample from 𝑎(𝑡)|𝐷1, … , 𝐷𝑛, we draw random numbers from a 𝐵𝑒𝑡𝑎 (𝛼 + ∑𝑐𝑘, 𝛽 +
𝑛

𝑑
) and 

to sample from 𝑎0|𝐷1, … , 𝐷𝑛, we draw random numbers from a 𝐵𝑒𝑡𝑎 (𝛼 + ∑𝑐𝑘
′ , 𝛽 +

𝑛

𝑑
) distribution. 

Here, 𝑐𝑘  and 𝑐𝑘
′  are the normalized read count from time 𝑡 and 0, respectively, of data set 𝐷𝑘, 𝑑 is 

the dispersion parameter estimated by DESeq2, and 𝛼 and 𝛽 are the prior hyperparameters. Each of 

these Beta distributed values 𝑝 is then transformed via 
1−𝑝

𝑝⋅𝑑
 to obtain a sample from 𝑎(𝑡)|𝐷1, … , 𝐷𝑛 

or 𝑎0|𝐷1, … , 𝐷𝑛. 

Sampling from 𝑛𝑡𝑟(𝑡)|𝑫 
The number of conversions on a read 𝑡𝑐𝑟~𝐵𝑖𝑛𝑜𝑚𝑀𝑖𝑥(𝑢𝑟, 𝑝𝑒, 𝑝𝑐 , 𝑛𝑡𝑟) are distributed according to a 

Binomial mixture distribution as defined above. The number of uridines 𝑢𝑟 is fixed, and to enable 

efficient sampling, we also assume the parameters 𝑝𝑒 and 𝑝𝑐 to be fixed. The posterior distribution 

𝑛𝑡𝑟|𝑡𝑐1, … , 𝑡𝑐𝑟 for a single biological sample, which is computed numerically by GRAND-SLAM, can 

be approximated by a Beta distribution, and we assume this Beta to be conjugate with the Beta prior 

used by GRAND-SLAM to compute the posterior distribution [15]. This posterior only quantifies 

technical variance of measuring the true 𝑛𝑡𝑟 for a single biological sample. To handle biological 

variability in addition, we introduce an additional hierarchical layer in our Bayesian model: 

For each biological sample 𝑘 ∈ {1, … , 𝑛}, we have 𝑛𝑡𝑟𝑘|𝑫𝒌~𝐵𝑒𝑡𝑎(𝛼 + 𝛼𝑘, 𝛽 + 𝛽𝑘). Here, 𝛼 and 𝛽 

are the parameters of the prior Beta distribution reflecting biological variability of 𝑛𝑡𝑟 across 

biological replicate samples and 𝛼𝑘  and 𝛽𝑘 are the parameters estimated by GRAND-SLAM from the 

given 𝑡𝑐𝑘,1, … , 𝑡𝑐𝑘,𝑟, which reflect technical noise. The joint density of all 𝒏𝒕𝒓 = (𝑛𝑡𝑟1, … , 𝑛𝑡𝑟𝑛) is 

𝜋(𝒏𝒕𝒓|𝛼, 𝛽, 𝑫) =∏ℬ(𝛼 + 𝛼𝑘, 𝛽 + 𝛽𝑘)
−1 𝑛𝑡𝑟𝑘

𝛼+𝛼𝑘−1(1 − 𝑛𝑡𝑟𝑘)
𝛽+𝛽𝑘−1

𝑘

 

Here, ℬ is the beta function. When imposing a prior on (𝛼, 𝛽), the joint posterior of all parameters is 

𝜋(𝒏𝒕𝒓, 𝛼, 𝛽|𝑫) ∝ 𝜋(𝛼, 𝛽) ⋅ 𝑓(𝒏𝒕𝒓|𝛼, 𝛽) ⋅ 𝑓(𝑫|𝒏𝒕𝒓) 

∝  𝜋(𝛼, 𝛽) ⋅∏ℬ(𝛼, 𝛽)−1 𝑛𝑡𝑟𝑘
𝛼−1(1 − 𝑛𝑡𝑟𝑘)

𝛽−1

𝑘

⋅∏∏(1 − 𝑛𝑡𝑟𝑘)𝐵(𝑡𝑐𝑘,𝑟; 𝑢𝑘,𝑟, 𝑝𝑒) + 𝑛𝑡𝑟𝑘𝐵(𝑡𝑐𝑘,𝑟; 𝑢𝑘,𝑟, 𝑝𝑐)

𝑟𝑘

 

∝̃  𝜋(𝛼, 𝛽) ⋅∏ℬ(𝛼, 𝛽)−1 𝑛𝑡𝑟𝑘
𝛼−1(1 − 𝑛𝑡𝑟𝑘)

𝛽−1

𝑘

⋅∏(1 − 𝑛𝑡𝑟𝑘)
𝛽𝑘𝑛𝑡𝑟𝑗

𝛼𝑘

𝑘

 

Here, 𝐵(𝑘; 𝑛, 𝑝) = (
𝑛
𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 , and the last line follows from our Beta approximation of the 

mixture model. Thus, the marginal posterior distribution of (𝛼, 𝛽) is 
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𝜋(𝛼, 𝛽|𝑫) =

𝜋(𝒏𝒕𝒓, 𝛼, 𝛽|𝑫)

𝜋(𝒏𝒕𝒓|𝛼, 𝛽,𝑫)
∝ 𝜋(𝛼, 𝛽) ⋅∏

ℬ(𝛼 + 𝛼𝑘 , 𝛽 + 𝛽𝑘)

ℬ(α, β)
𝑘

 
(8) 

 
If the marginal posteriors 𝑛𝑡𝑟𝑘|𝑫𝒌 overlap significantly, a point 𝑛𝑡𝑟 and, therefore, a 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 

prior with infinitesimally small variance or, equivalently, infinite 𝛼 + 𝛽 becomes probable. An 

appropriate constraint can be imposed using the prior distribution 𝜋(𝛼, 𝛽). We decided to use the 

following sigmoid function  

𝑓𝑜,𝑠(𝑥) =
1

1 + 𝑒
𝑥−𝑜
𝑠

 

This can be integrated: 

𝐶𝑜,𝑠 = ∫ 𝑓𝑜,𝑠(𝑥)𝑑𝑥
∞

0

= 𝑠 ⋅ log (1 + 𝑒
𝑜
𝑠) 

and thus,  

 𝜋(𝛼, 𝛽) = 𝑓𝑜,𝑠(𝛼, 𝛽) ⋅ 𝐶𝑜,𝑠
−1 

 

(9) 

is a proper prior. 𝑓𝑜,𝑠 is almost constant before the offset 𝑜 and quickly (depending on 𝑠) goes to zero 

after 𝑜, i.e. 𝑜 represents a maximal 𝛼 + 𝛽, or, equivalently, minimal variance, that has substantial 

prior probability. We set 𝑜 such that the variance of the prior 𝜋(𝛼, 𝛽) is equal to the sample variance 

of 
𝛼1

𝛼1+𝛽1
, … ,

𝛼𝑛

𝛼𝑛+𝛽𝑛
. Importantly, as long as (i) the mean 

𝛼

𝛼+𝛽
 is unconstrained and (ii) the minimal 

variance is constrained, the exact choice of the prior 𝜋(𝛼, 𝛽) only has minor effect on sampling of 

𝑛𝑡𝑟|𝑫. 

To sample 𝑛𝑡𝑟|𝑫, i.e. the mean 𝜇 =
𝑎

𝛼+𝛽
 from the distribution 𝜋(𝛼, 𝛽|𝑫), we compute the marginal 

posterior on a grid of values [30]. Since we want to sample 𝜇, it makes sense not to build an (𝛼, 𝛽)-

grid, but to reparametrize and build the grid with coordinates (log
𝛼

𝛽
, log(𝛼 + 𝛽)) [30]. Note that 

log
𝛼

𝛽
= 𝑙𝑜𝑔𝑖𝑡(𝜇). For each grid point (𝑥, 𝑦), we transform 𝛼 =

𝑒𝑥+𝑦

𝑒𝑥+1
 and 𝛽 =

𝑒𝑦

𝑒𝑥+1
, for which we 

compute the unnormalized posterior density defined in equation 8 with prior from equation 9, and, 

due to our reparametrization, multiply this by the Jacobian determinant  

|𝐽| = |
|

(

 
 

𝑒𝑥+𝑦

(𝑒𝑥 + 1)2
𝑒𝑥+𝑦

𝑒𝑥 + 1

−
𝑒𝑥+𝑦

(𝑒𝑥 + 1)2
𝑒𝑦

𝑒𝑥 + 1)

 
 
|
| 

=
𝑒𝑥+2𝑦

(𝑒𝑥 + 1)3
+

𝑒2𝑥+2𝑦

(𝑒𝑥 + 1)3
 

=
𝑒𝑥+2𝑦

(𝑒𝑥 − 1)2
 

For numerical stability, we compute everything in log space, then subtract the maximal grid value 

and exponentiate [30]. To determine the grid bounds, we first find the maximum using R’s optim 

function, and then go into positive and negative 𝑥 and 𝑦 directions to see where the grid would drop 

below 1000-fold of the maximal value using R’ uniroot function. To sample 𝜇, we first sum over the 

columns of the grid and normalize to obtain a discrete probability distribution 𝑙1, … , 𝑙𝑚. Note that 

each 𝑙𝑗  corresponds to a particular value of log
𝛼

𝛽
 . One of these values is sampled from the 
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distribution 𝑙1, … , 𝑙𝑚 and random uniform jitter is added to fill the spacing of the grid [30]. This value 

𝑥 is then transformed to 𝜇 = 𝑙𝑜𝑔𝑖𝑡−1(𝑥). 

Availability of Data and Materials 
    Project name: grandR 

    Package version: 0.2.0 

    Project home page: https://github.com/erhard-lab/grandR 

    Archived version: https://CRAN.R-project.org/package=grandR 

    Operating system(s): Platform independent 

    Programming language: R 

    License: Apache License 2.0 

Raw data sets used here are available at GEO under accession numbers GSE99970 (24h 4sU labeling 

data), GSE139151 (NXF1 knockdown data), GSE162323 (SARS-CoV-2 data), and GSE155604 (BANP 

depletion data). All processed data (GRAND-SLAM outputs) are available on zenodo under 

https://doi.org/10.5281/zenodo.6513333 (24h 4sU labeling data), 

https://doi.org/10.5281/zenodo.5907183 (NXF1 knockdown data), 

https://doi.org/10.5281/zenodo.5834034 (SARS-CoV-2 data), and 

https://doi.org/10.5281/zenodo.6976391 (BANP depletion data). 

R notebooks and data files for generating all figures are available on https://github.com/erhard-

lab/grandR-manuscript/releases/tag/init.submission. 
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Figure legends 
Figure 1: grandR overview A Coding example of a grandR project. Self-explanatory high-level 

commands (blue) load and preprocess data (lines 3-6), and then fit a kinetic model for each gene 

(line 8). Finally, the interactive web-based tool is started (line 10). Code comments (orange) refer to 

the other panels. B Systematic sample names. When sample names systematically encode metadata 

in separate fields as shown, grandR can extract these automatically by defining the semantics as 

shown in lines 3 and 4 in A. C grandR can fit kinetic models of RNA with or without assuming steady 

state expression. D Web-based data visualization. This interactive graphical user-interface presents a 

table of analysis results that can be filtered, searched and exported, and experiment-specific 

visualizations are displayed for individual genes. 

Figure 2: Testing for 4sU toxicity using grandR. A Principal component analysis of 3 mouse embryonic 

stem cell samples treated with 100µM 4sU for 24h and 3 samples without 4sU treatment (no4sU). 

The percentages of the explained total variance for both principal components shown are indicated. 

B Gene set enrichment analysis of MSigDB hallmark pathways. All pathways with adjusted P values < 

5% (Benjamini-Hochberg adjusted for multiple testing) are shown. C Scatter plots comparing the 

ranks of the new-to-total RNA ratios (NTR) of each gene against the log2 fold change of the 4h (upper 

plot) or 8h (lower plot) sample vs a 4sU naïve sample (untreated mock samples from Ref. [18]).  The 

Spearman correlation coefficients with associated P values (approximate t test) are indicated. 

Figure 3: Estimating half-lives using progressive labeling experiments. A-B Empirical cumulative 

distributions of log2 fold changes of estimated half-lives vs. ground-truth for the linear model (LM), 

the non-linear least squares method (NLLS), the pulseR method and the Bayesian approach (NTR). In 

A, the ground-truth is simulated under steady state conditions, in B the simulation starts from an 

initial value 𝑎0 ≠ 𝜎/𝛿 for each gene (see Methods). C Boxplots showing the sizes of 95% half-life 

confidence intervals (CI; for LM and NLLS) or 95% half-life credible intervals (CI; for NTR). Simulations 

were performed under steady state conditions. Distributions for genes having the ground-truth 

inside or outside of the estimated CI are shown separately and the numbers of these genes are 

indicated. NTR represents the χ2 approximation of CIs, NTR (exact) represents exact CIs computed 

numerically. D Boxplots showing log2 fold changes of half-lives estimated by the NLLS method vs the 

ground truth of simulated data under steady state conditions. The distributions for different half-life 

classes are shown for several experimental settings involving the indicated number of replicates and 

time points. 

Figure 4: Temporal recalibration of SARS-CoV-2 SLAM-seq data. A Progressive labeling plots of the 

SMAD3 gene before (left) and after (right) temporal recalibration. Points represent the total, new or 

old read count of SMAD3 at the indicated time after labeling. Dashed lines show the model fit (NLLS 

method). Estimated half-lives are indicated. B Boxplots showing relative residuals from the model fit 

(NLLS method) before (left) and after (right) temporal recalibration of n=9,162 genes for all samples. 

C-D Boxplots showing log2 fold changes (recalibrated vs. uncalibrated) of half-lives for the mock and 

virus infected (SARS) samples (C) or of the estimated initial abundances 𝑎0 (recalibrated vs. 
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uncalibrated) for the non-steady state infected samples (D) for n=9,163 genes. Separate distributions 

for genes from different half-life classes are shown.  

Figure 5: Estimating changes in synthesis or degradation from snapshot experiments. A-D 

Scatterplots comparing simulated log2 fold changes against maximum-a-posteriori (MAP) estimates 

of RNA synthesis log2 fold changes (A), MAP estimates of RNA half-life log2 fold changes (B), 

observed new RNA log2 fold changes (C) or old RNA log2 fold changes (D). Three replicates at 2h of 

labeling were simulated after perturbing synthesis (A,C) or half-lives (B,D) for 2h and compared 

against unperturbed controls. The root mean square deviations (RMSD) over all n=10,835 simulated 

genes are indicated for each comparison. E Boxplots showing the log2 fold changes of new RNA or of 

estimated synthesis rates either for the simulated samples with perturbed RNA half-lives (perturbed 

HL) or the unperturbed samples vs the controls. Separate distributions for genes from different 

simulated half-live classes are shown as indicated. F Empirical cumulative distributions showing log2 

fold changes of either estimated synthesis rates (yellow) or RNA half-lives (blue). For each 

distribution, either unperturbed samples (solid lines), samples with perturbed synthesis rates 

(dashed lines) or samples with perturbed half-lives (dotted lines) were compared against controls. 

Distributions are shown for all genes, only for genes with short RNA half-lives t1/2<2h, and for 

simulated labeling of 2h or 4h, as indicated. G Scatterplot comparing log2 fold changes of RNA half-

lives estimated from the full progressive labeling time courses using the NLLS method (x axis) or the 

MAP estimator from our Bayesian model using the 2h time point only. The Pearson correlation and 

the associated P value (approximate t test) are indicated. 

Figure 6: Region of practical equivalence analysis of simulated data. Line plots comparing two criteria 

for differential regulation of synthesis rates (A) or half-lives (B-C) are shown. For A, the two criteria 

are the ROPE probability for synthesis 𝑃𝜎 > 0.9 and the DESeq2 P value (Wald test, Benjamini-

Hochberg multiple testing adjusted) for new RNA 𝑞𝑛 < 0.01. For B and C, the two criteria are the 

ROPE probability for degradation 𝑃𝛿 > 0.9 and the DESeq2 P value (Wald test, Benjamini-Hochberg 

multiple testing adjusted) for old RNA 𝑞𝑜 < 0.01. The x axis represents rolling statistics (bin width 

200 genes) over the log2 fold change of synthesis rates (A) or RNA half-lives (B) for the simulations 

with perturbed synthesis and half-lives vs. control, respectively. The different lines show the 

percentage of genes in a bin with detected regulation in synthesis, half-life, both or none. A and B 

show all genes for 2h of 4sU labeling. C shows genes of different half-life classes and for 2h or 4h of 

4sU labeling, as indicated. 

Figure 7: Dynamic regulation of synthesis rates upon acute BANP depletion. A Boxplots showing log2 

fold changes of synthesis rates for several experimental time points vs the 0h time point. 

Distributions of BANP target genes (according to ChIP-seq experiments) are shown separately from 

non-target genes. B-D Estimated posterior densities for Taf1d (B), Herc1 (C) and Tubgcp5 (D) of log2 

fold changes of the synthesis rates of the indicated time points vs. the 0h time point. 

Figure S1: Quality control using grandR. A Vulcano plot of differentially expressed genes on total RNA 

level. The y axis shows the DESeq2 P value (Wald test) adjusted for multiple testing (Benjamini-

Hochberg; FDR, false discovery rate). The numbers of genes above and below 5% FDR and for a 

threshold of 1.4-fold up- or downregulation are indicated. B RNA half-lives (taken from Ref. [6]) are 

scattered against the log2 fold change of the 24h samples vs. control samples. Spearman correlation 

coefficient with associated P value (approximate t test) is indicated. C Scatterplot showing half-lives 

computed using the non-linear least squares method for the untreated mock samples from Ref. [18] 

for each gene. The x axis shows the half-life values considering the full time course (0h,2h,4h,8h), 

whereas the y axis shows the half-life values after excluding the 8h time point. 
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Figure S2: Evaluation of half-life estimates from simulated data (0h,1h,2h,4h,8h, 3 replicates each, 20 

million reads per sample; half-lives and expression values were taken from the Mock samples of Ref. 

[17]). Scatterplots compare the true, simulated half-life value for each gene against the half-life value 

estimated by the linear model (A and E), the non-linear least squares approach (B and F), the pulseR 

method (C and G) and the Bayesian approach (D and H). Results for simulated steady state gene 

expression (A-D) and when gene expression at 0h was perturbed (E-H) are shown. The Pearson 

correlation coefficient and associated P values (approximate t test) are indicated. 

Figure S3: Estimating half-lives using progressive labeling experiments. A Boxplots showing the sizes 

of 95% half-life confidence intervals (CI; for LM and NLLS) or 95% half-life credible intervals (CI; for 

NTR). Simulations were performed under steady state conditions where the initial value was 𝑎0 ≠

𝜎/𝛿 for each gene. Distributions for genes having the ground-truth inside or outside of the estimated 

CI are shown separately and the numbers of these genes are indicated. NTR represents the χ2 

approximation of CIs, NTR (exact) represents exact CIs computed numerically. B Boxplots showing 

log2 fold changes of half-lives estimated by the NLLS method vs the ground truth of simulated data 

under steady state conditions. The distributions for different half-life classes are shown for several 

experimental settings involving the indicated number of replicates and time points. C Boxplots 

showing log2 fold changes of half-lives estimated by the NLLS method vs the ground truth of 

simulated data under steady state conditions for a full progressive labeling time course (1h,2h,4h and 

8h). The distributions involving the indicated number of replicates and sequencing depth in million 

(M) reads are shown. 

Figure S4: Temporal recalibration of simulated data. A Plot comparing labeling times before and after 

recalibration for simulated data. Data was simulated based on SARS-CoV2-data (nominal labeling 

times 0h,1h,2h,4h,8h) either under steady state conditions or non-steady state conditions as 

indicated. For the 1-4h time points, an ineffective time of labeling as indicated was subtracted from 

the nominal times before simulation. Arrows show the log2 fold change of uncalibrated, nominal 

labeling times vs the true effective labeling time (start of the arrow) and of the recalibrated labeling 

time vs the true effective labeling time (tip of the arrow). Three replicates are shown by colors. B 

Boxplots showing log2 fold changes of estimated (NLLS) half-lives vs. ground truth for n=9,162 genes 

before recalibration (uncalibrated), after recalibration (calibrated) and when the true effective 

labeling times were used (truth). 

Figure S5: Temporal recalibration of BANP depletion experiments.  Violin plots showing the 

distribution of estimated RNA half-lives (A) and synthesis rates (B) for n=11,096 genes estimated by 

our Bayesian hierarchical model for each experimental time point after temporal recalibration.  
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library(grandR)

file <- "https://zenodo.org/record/5834034/files/sars.tsv.gz"

desc <- c(Design$Condition,Design$dur.4sU,Design$Replicate)

sars <- ReadGRAND(file,design=desc) # infer metadata from sample names (B)

sars <- FilterGenes(sars)

sars <- Normalize(sars)

stst <- c(Mock=TRUE,SARS=FALSE)     # define steady state conditions (C)

sars <- FitKinetics(sars,steady.state=stst)

# explore data in the web browser (D):

ServeGrandR(sars,plot.gene = 

              Defer(PlotGeneProgressiveTimecourse,steady.state=stst))
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