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Abstract

To date, there remains no satisfactory solution for absent levels in random forest models.
Absent levels are levels of a predictor variable encountered during prediction for which no
explicit rule exists. Imposing an order on nominal predictors allows absent levels to be
integrated and used for prediction. The ordering of predictors has traditionally been via
class probabilities with absent levels designated the lowest order. Using a combination of
simulated data and pathogen source-attribution models using whole-genome sequencing
data, we examine how the method of ordering predictors with absent levels can (i) system-
atically bias a model, and (ii) affect the out-of-bag error rate. We show that the traditional
approach is systematically biased and underestimates out-of-bag error rates, and that this
bias is resolved by ordering absent levels according to the a priori hypothesis of equal class
probability. We present a novel method of ordering predictors via principal coordinates
analysis (PCO) which capitalizes on the similarity between pairs of predictor levels. Absent
levels are designated an order according to their similarity to each of the other levels in the
training data. We show that the PCO method performs at least as well as the traditional
approach of ordering and is not biased.

Keywords: Absent levels, Campylobacter, categorical predictors, classification, decision
trees, out-of-bag error, principal co-ordinates analysis, random forest, source attribution,
whole genome sequencing data
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1. Introduction

A classification tree is a method of supervised machine learning that predicts a categorical
response variable by way of a series of binary decisions. Each decision, or split, is made
based on a single predictor variable to maximise predictive accuracy with respect to the
response variable. Individual classification trees tend to overfit to the training data, that is,
they yield decision rules that are more specific to the training data than they are to new
independent data. Random forest is a tree-based algorithm that addresses this issue by
creating an ensemble of classification trees. The individual trees that make up the ensemble
differ from one another because they are each trained on a different random sample of the
cases (‘bagging’) and predictor variables (‘random subspacing’; Amit and Geman, 1997;
Breiman, 1996; Ho, 1998). The predictions from the individual trees are aggregated and
classifications are made based on the majority vote across the trees.

The method of bagging in random forests means that not every observation is included
in every tree. For each tree, a bootstrapped sample which contains a specified proportion
(say, two thirds) of the observations in the training set is selected to train the model. The
remaining one third of observations, which are not included in the bootstrapped training set,
are referred to as the Out-Of-Bag (OOB) sample (Breiman, 2001). For each observation in
the training set, a selection of trees is trained while the observation is OOB and aggregating
the predictions from this collection of trees can be used to generate an OOB prediction for
the observation. The misclassification rate of OOB predictions for all n training observations
is the OOB error. Breiman (1996, 2001) claims that the OOB error alleviates the need for
cross-validation or setting aside a separate test set. It has been shown, however, that for
two-class classification problems with numerical predictor variables, the choices of random
forests parameters can affect the OOB error, leading to an overestimate of the true prediction
error (Mitchell, 2011; Janitza and Hornung, 2018).

An issue with tree-based methods occurs when a level of a predictor variable is absent
when a tree is grown, but is present in a new observation for prediction (the ‘absent-levels
problem’ sensu Au, 2018). In a random forest algorithm, this situation can arise due to
sampling variability (i.e., the level was absent from the observations that were used to train
the model), bagging (i.e., the level was in the training data but absent from the bootstrapped
sample used by a particular tree), or tree design (i.e., the level was present at the top of
the tree but absent from a lower subset created by binary splits). When the algorithm
encounters an absent level, there is no immutable a priori rule for determining which side of
the binary split an observation should go. When this happens, an observation is effectively
‘lost in the forest’.

For the algorithm to proceed with an absent level, a heuristic rule is required. Available
heuristics include stopping an affected observation from proceeding down the tree (Therneau
et al., 2022), using a surrogate decision rule that mimics the original split’s partitioning
(Hothorn and Zeileis, 2015; Therneau et al., 2022), directing all affected observations down
the branch with more training observations (Hothorn and Zeileis, 2015), directing all
affected observations down the same branch (i.e., “left” or “right heuristic”) (Liaw and
Wiener, 2002; Wright and König, 2019), directing all affected observations down both
branches simultaneously (Saar-Tsechansky and Provost, 2007), randomly directing affected
observations down a left or right branch (Hothorn and Zeileis, 2015), and binary encoding
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predictors. Au (2018) investigated the properties of these heuristics with random forests
and showed that the choice of treatment of absent levels can dramatically alter a model’s
performance and potentially lead to systematic bias. To date, there remains no satisfactory
solution for dealing with absent levels in random forest models.

The levels of a categorical predictor variable may be ordered (ordinal) or unordered
(nominal). Imposing an order on a nominal predictor variable with k levels reduces com-
putational complexity by reducing the number of potential partitions from 2k−1 − 1 to
k − 1. For the case of two-class classification, a nominal predictor variable with k levels
may be ordered by the proportion of observations with the second response class in each
level. Subsequently, treating these variables as ordinal leads to identical splits in the random
forest optimisation as considering all possible 2-partitions of the k predictor levels (Fisher,
1958; Breiman et al., 1984). Two popular software implementations for random forests, the
randomForest and ranger R packages, adopt this optimisation, in addition to the left
or right heuristic. Wright and König (2019) argue that assigning all observations with new
levels to the same branch is sensible because these observations will be kept together and
can be later split by another variable. However, the optimisation that is implemented for
two-class classification problems leads to systematic bias when the left or right heuristic is
employed (Au, 2018). Furthermore, classifications for observations with absent levels can
be influenced by interchanging the order of the two response classes. Au (2018) instead
suggested that observations with absent levels should be assigned randomly to a left or right
branch and showed that this partially, but reliably, mitigated the bias.

An alternative to ordering categorical predictors to deal with absent levels is to decompose
categorical predictor variables into sets of indicator variables, with one binary variable per
level, thus removing any uncertainty over where to send an observation with an absent
level. This approach is computationally unfeasible with high numbers of predictor variables
and/or levels. Furthermore, random subspacing leads to variables with many levels being
selected with greater frequency than variables with fewer levels; and forfeits the ability to
simultaneously consider all levels of a predictor together at a single split (Amit and Geman,
1997; Ho, 1998). Moreover, Au (2018) showed that this approach yields inconsistent results
and does not fully resolve the bias.

In addition to reducing computational complexity, imposing an order on a nominal
predictor variable allows absent levels to be integrated with existing levels and subsequently
used for prediction. For random forests, the ordering of predictors has traditionally been
via class probabilities and absent levels are designated the lowest order. For multiclass
classification, the optimisation of the two-class classification case does not apply, and no
sorting algorithm leading to splits which are equivalent to considering all 2k−1 − 1 possible
partitions is known (Wright and König, 2019). One option employed in ranger is to order
the levels of a predictor variable according to the first principal component of the weighted
covariance matrix of class probabilities (Coppersmith et al., 1999) and then designating
absent levels the lowest order (the right heuristic). There has been no investigation into the
properties of this heuristic in the multiclass response case, when predictor variables have
been ordered; nor into how the treatment of categorical predictor variables as ordered versus
nominal may affect OOB error.

Here, we examine various methods of dealing with nominal predictor variables with many
levels in the context of random forest models and the absent-levels problem. We detail how
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the specification of predictor variables with absent levels as binary versus ordered affects the
bias and accuracy of random forest models, and we present two alternate methods for order-
ing variable levels and dealing with absent levels. We examine the prediction accuracy and
bias for source-attribution models of Campylobacter species using whole genome sequencing
(WGS) data as a case study. We also present simulated data to detail how treatment of
predictor variables as ordered versus unordered affects the OOB error rate.

More specifically, we aim to:

(i) assess the bias in multiclass random forest predictions when levels of nominal predictor
variables are ordered and observations with absent levels are consistently sent to the
right side of a binary split, using a real source-assigned case-control study;

(ii) compare the bias from (i) versus that of predictions using categorical predictors
encoded as indicator variables;

(iii) compare the bias from (i) versus that of predictions when observations with absent
levels are sent to a left or right branch of a split according to the a priori hypothesis
of equal class probability;

(iv) introduce the PCO method for ordering categorical predictors that makes use of
supplementary information on the levels of predictor variables;

(v) evaluate the accuracy of OOB error rate calculations for random forest with categorical
predictor variables using simulated data.

2. Methods

Random Forests For a training set of N independent observations on P variables, where
xn = (xn1, xn2, . . . , xnP ) is the vector of predictor variables for observation n = 1, 2, . . . , N ,
and yn is the corresponding response variable, Classification and Regression Tree (CART) is
a greedy recursive binary partitioning algorithm that successively partitions data (the parent
node) into two smaller subsets (the left and right child nodes). Each binary partition is based
on a decision rule for a single predictor variable chosen to achieve maximal reduction in the
impurity of the response variable in the resulting child nodes (Breiman et al., 1984). The
Gini index is a common measure of impurity and is simply a measure of the likelihood of an
isolate chosen at random being incorrectly classified if it was randomly classified according
to the distribution of group labels from the data set. The tree continues to grow until a
stopping rule is reached or until each observation has been assigned to a terminal node.
A classification can then be predicted for a new observation by sending it down the tree
according to the decision rules until it arrives at a terminal node. A random forest contains
multiple regression or classification trees trained on bootstrap resamples of the training data.
Various control parameters can be set for random forests, including the number of trees, the
number of variables randomly selected as splitting candidates, and tree size (Wright and
Ziegler, 2017).

We used the package ‘ranger’ (“RANdom forest GEneRator” (Wright and Ziegler,
2017)) for R (Team, 2021), a popular implementation of random forest models because it can
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handle high dimensional data, is simple to use, and is computationally efficient. ranger
has been used widely in medical research (Gilard et al., 2021; Siegbahn et al., 2021; Yang
et al., 2021), environmental monitoring (Sothe et al., 2022), genomics (Muller et al., 2021),
epidemiology (Nader et al., 2021; Hamlet et al., 2021; Marotz et al., 2021), and other fields.

Source Attribution The process of assigning cases of human zoonotic infectious diseases
to their most likely origin is known as ‘source attribution’. Because of their role in human
gastroenteritis, Campylobacter jejuni and C. coli have been the subject of a large number of
source attribution studies using a variety of approaches, including epidemiological methods
(Pires et al., 2010; Domingues et al., 2012); comparative risk and exposure assessment
(Pintar et al., 2017); expert knowledge elicitation (Havelaar et al., 2008; Hald et al., 2016);
and microbiological methods (Hald et al., 2004; Müllner et al., 2009; Strachan et al., 2009;
Sheppard et al., 2009; Miller et al., 2017; Liao et al., 2019). Microbiological methods of
source attribution rely on comparing the genomic profiles of human cases of infection with
those of animal sources. Although many earlier studies have used just a small number of
loci within the genome (< 10), the availability of next generation sequencing has greatly
increased the number of loci available for analysis.

Models that use allelic-profile data arising from bacterial whole genome sequencing (WGS)
have a high number of categorical predictors, which are often subject to the absent-levels
problem. Campylobacter species are genomically very diverse and, although the allelic
diversity (i.e., sequence variability within a gene) is inconsistent across the genome, some
loci (chromosomal positions) are highly variable (Parkhill et al., 2000; Sheppard and Maiden,
2015). Campylobacter jejuni and C. coli each have a circular chromosome, roughly 1.7 Mb
long (Taylor et al., 1992; Parkhill et al., 2000; Chen et al., 2013; Pearson et al., 2013) which
encodes for approximately 1,700 genes (Parkhill et al., 2000). A core genome multilocus
sequence type (cgMLST) typing scheme has been defined jointly for these species which
contains a set of 1,343 loci which are present in most (∼ 95%) members of human C. jejuni
and C. coli isolates (Cody et al., 2017). In any given dataset, an isolate will contain nearly
all of these genes in this scheme, however the observed alleles of each gene are commonly
found in only one or a few isolates. This means that there are many alleles across the genome
which would be unique to individual collections of isolates from human and animal datasets.

Dataset The Source Assigned Campylobacteriosis in New Zealand Study (SACNZ) is a
source-assigned case-control study of notified human cases of campylobacteriosis in the
Auckland and MidCentral District Health Board regions, New Zealand, between 2018-2019
(Lake et al., 2021). C. jejuni and C. coli isolates were cultured from these human cases,
as well as from poultry, sheep, and beef processors serving the Auckland and MidCentral
District Health Boards. Whole genome sequencing was carried out on the study isolates,
with the microbiology and WGS procedures being described elsewhere (Lake et al., 2021).
Following sequencing, draft genomes were assembled using the nullarbor2 pipeline1 with
default settings and cgMLST allele sequences were found by BLAST analyses (Altschul et al.,
1990) against known alleles from the PubMLST Campylobacter database (Cody et al., 2017).

1. https://github.com/tseemann/nullarbor
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Previously found and novel alleles were aligned using mafft (Katoh et al., 2002; Katoh and
Standley, 2013) and an allele number assigned.2

The SACNZ dataset consists of 1,211 isolates from four sources: cattle (168), chicken
(205), sheep (187), and human (651). Each isolate has an allelic profile for each of 1,343
core genes, as a vector of 1,343 elements. The allelic designation for each gene identifies the
unique aligned sequence for a previously described allele or a novel allele sequence.

Treatment of Categorical Predictor Variables An ordered categorical predictor with
k levels can be treated the same way as a numerical predictor with k unique ordered values;
there are k− 1 possible split points, and the allocation of each level to one side of the binary
split is constrained by whether it is above or below the split point. In contrast, an unordered
categorical predictor with k levels has an exponentially large number of potential splitting
points because each of the levels can be assigned individually without constraint; there are
2k−1 − 1 possible binary subsets of levels. An alternative option is to use indicator encoding
of the nominal predictor, where the single predictor with k levels is replaced by k indicator
variables. Now, instead of 2k−1 − 1 possible split points at each node, there will only be
a single possible split point but from k − 1 indicator variables. Using this method, some
of the levels will be randomly ignored for each split, and so the original predictor will be
represented by j binary predictors, where j ≤ k − 1. To retain all k levels at a single split,
however, a predictor variable must be treated as either ordinal or nominal (controlled by
the argument respect.unordered.factors in ranger).

When treating a categorical variable as nominal (“partition” in ranger), each binary
node assignment is saved using the bit representation of a double integer, which limits
this treatment to predictors with fewer than 54 levels (Wright and König, 2019). When
treating a categorical variable as ordinal (“ignore” or FALSE in ranger), the alphabetical
ordering of the k variable levels will be used, unless an alternative order is specified. When
alphabetical ordering is not naturally inherent, this treatment may be detrimental to random
forest predictions (Wright and König, 2019). It is also problematic if the alphabetical
ordering of the levels (i.e., the labelling) has some degree of association with the class,
which may occur with temporal labelling of predictor levels. For example, the open-access
PubMLST database (Jolley et al., 2018) defines alleles numerically and in a sequential
manner based on sequence deposition. In this instance, treating alleles as numeric would
not be appropriate because allele “1” is not necessarily more related to allele “2” than it
is to allele “500”. However, it is likely that isolates have been added to the database in
groups according to host source, so that their numeric order may partition into contiguous
chunks by host. The numeric order thus provides information on likely host sources which is
external to the data in a particular study, potentially biasing class assignment. There are
significant potential gains in efficiency from coercing unordered factors into ordered factors
or continuous variables. One method is to order the levels of a variable according to the
first principal component of the weighted covariance matrix of class probabilities, following
Coppersmith, Hong, and Hosking (1999) (“order” or TRUE in ranger).3 Because this is
computationally faster to select an optimal split (evaluating, at most, k − 1 possible splits)

2. https://github.com/jmarshallnz/cgmlst
3. Coppersmith, Hong & Hosking (1999) use the first principal component of the weighted matrix of class

probabilities
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and there is no upper limit to the number of levels, it is the option recommended by ranger
(Wright and König, 2019).

For multiclass classification problems, we consider the following methods for treatment of
categorical predictor variables, which potentially yield the computational benefits of ordering
levels while avoiding the somewhat arbitrary approach of ordering them alphabetically:

1. Correspondence analysis (CA) method

The CA method is similar to the “ordered” method in ranger which is equivalent to
the results from a scaled correspondence analysis on the contingency table of counts of
variable levels by class, using the approximation of Coppersmith, Hong, and Hosking
(1999).4 The levels of each predictor variable are ordered according to the first principal
component of the weighted matrix of class probabilities and absent levels are assigned
a principal component score of infinity. This is equivalent to assigning an absent level
the lowest rank, as per ranger.5 This ensures any observations with an absent level
branch as a group and always (i.e., at each node) in the same direction (“go right”)
(figure 1, a).

2. Binary method

The levels of each categorical predictor variable are treated as individual binary predictor
variables. The original P nominal predictor variables are transformed to

∑P
i=1 ki binary

predictor variables, where ki is the number of levels for variable i. Each binary variable is
then treated according to the correspondence analysis method without the requirement
to assign absent levels (figure 1, b).

3. CA-unbiased method

The difference between the CA and CA-unbiased methods lies in the treatment of
absent levels. Our novel CA-unbiased method assigns any absent level a principal
component score of zero (figure 1, c). This assumes that any level of the predictor
variable that is absent from the training data is a priori equally likely in any class
and has equal class probabilities of 1/Y , where Y is the number of classes. Because
all absent levels will have equal class probability vectors, they can be combined into a
single attribute value (Coppersmith, Hong, and Hosking, 1999). Then because the class
probabilities are not independent of each other, the sum of the principal component
coefficients is zero and it follows that the principal component score of an absent level
with equal class probabilities will be zero. Any individuals with an absent level for a
particular variable will branch together but not necessarily in the same direction across
all nodes.

4. Principal coordinates analysis (PCO) method

The PCO method uses supplementary information, rather than class probabilities, to
order the levels of the predictor variables. More specifically, the eigenanalysis in the
correspondence analysis methods is performed on the weighted level by class contingency
table and the score is the coefficient for the corresponding predictor level of the first
principal component. In comparison, the eigenanalysis in the PCO method is performed

4. The “ordered” method in ranger performs a PCA on the weighted covariance matrix of class probabilities
rather than on the weighted matrix of class probabilities, yet the results are equivalent.

5. https://github.com/imbs-hl/ranger/blob/master/R/predict.R#L167
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on a distance matrix of the set of predictor levels gleaned from supplementary data,
and the score is the principal component score for the corresponding predictor level for
the first principal coordinate (figure 1, d). Here, the categorical predictor variables for
the Campylobacter data are genes with alleles as levels. We use nucleotide sequencing
information to calculate a matrix of Hamming distances between each pair of alleles. We
then apply principal coordinates analysis (PCO) (Gower, 1966) to this distance matrix,
yielding a ρ-dimensional ordination of alleles in Euclidean space. Our PCO method
relies on supplementary information for the predictor variables in order to generate a
matrix of dissimilarities. A single dimension (i.e., only the first principal coordinate)
was chosen to maintain consistency between methods for comparison, however any
number of dimensions could potentially be used. Using the method of Gower (1968),
a new (absent) level can be interpolated into the ρ-dimensional space by virtue of
the interpoint distances between this level and each of the present levels. This then
generates a score for each new level, and allows new levels to branch independently of
each other, being informed by their resemblance to other levels in the training data.

Comparison of Methods The isolates collected from humans were excluded because
their true source was unknown, and the remaining 560 isolates were subject to ten-fold
cross-validation for each of four methods (CA, Binary, CA-unbiased, and PCO) using the
same random number seed. The ranger() function from the ranger package was used to
train the random forest model for each of the methods. Regardless of method, the forest
consisted of 500 trees and the splitting rule was the default “gini” index. For each method,
ten independent random forest models were run (one on each of the ten folds) allowing each
of the 560 isolates to be represented exactly once in testing data. Model performance was
assessed by calculating the proportion of incorrect classifications on the set of test data
for each fold and calculating a weighted average and standard error. Thus 560 isolates of
known source were classified by a random forest model containing 500 trees resulting in
280,000 individual tree predictions for each method. To assess the effect of absent levels on
classification success the number of absent levels selected by each tree for its prediction was
recorded in addition to the individual tree predictions.

The order of analyses was as follows (see also figure 1):

1. create training and testing data

• split the data into ten folds

• select nine of the ten folds for a set of training data and the remaining tenth fold
for a set of testing data

• repeat until ten unique sets of training data and testing data have been created for
each set and continue to 2.

2. prepare training data

• binary transform each variable (i.e., gene) (Binary method)

• create a level by class (i.e., allele by source) contingency table (CA, CA-unbiased
methods)
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• convert each variable to scores via principal component analysis (PCA) on the
(weighted) contingency table (CA, CA-unbiased methods)

• convert each variable to scores via PCO on a complementary set of data matched
to the training data (PCO method)

3. fit the model on the prepared training data

4. prepare testing data

• binary transform each variable (Binary method),

• identify levels that are unique to the testing data (i.e., absent levels)

• for levels that are in the training data use the variable score from 2 (CA, CA-
unbiased, PCO methods)

• for absent levels, assign a score of infinity (CA method)

• for absent levels, assign a score of zero (CA-unbiased method)

• for absent levels, generate new scores via Gower’s method on complementary data
matched to the testing data Gower (1968) (PCO method)

5. predict each test observation

• identify individual tree predictions

• identify trees that branched on an absent level

Out-of-bag (OOB) Error for Simulated Data To investigate the accuracy of internally
calculated misclassification rates, a set of data was simulated and analysed with ranger()
with the misclassification rate calculated both internally (via OOB sample) and externally
(via independent test set). The simulated data consisted of n individuals, each with four
predictor variables allocated uniformly and with replacement from k levels. One of three
classification types were randomly assigned to each individual. The process was repeated
for each combination of sample size n ∈ 10, 50, 100, 150, 200, 400 and number of variable
levels k ∈ 1, 5, 10, 35, 50, 100, 150, 200. The OOB error rate was calculated from a model
trained on the entire data set with oob.error=TRUE. To calculate the external error rate,
a model was trained on 80% of the observations and the remaining 20% of observations
were used as the set of testing data. For each combination of parameters, 99 sets of data
were generated and ranger() was run using the default options for num.trees=500
and splitrule="gini" and the parameter respect.unordered.factors was set to
TRUE so that the levels of the predictor variables were ordered based on class probabilities
as recommended in the ranger documentation Wright and König (2019). The average
misclassification rate was recorded for each method. The process was then repeated with
the respect.unordered.factors parameter set to FALSE so that the levels of the
predictor variables were ordered alphabetically.

Code Availability All analyses were carried out using R version 4.0.5 (Team, 2021) and
the ranger package (Wright and Ziegler, 2017). The R code used in this study is available
at https://github.com/smithhelen/LostInTheForest.
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3. Results

Genome Description Of the 560 isolates, there were 558 distinct allelic profiles (i.e., only
2 isolates shared an identical set of alleles with another isolate and the remaining isolates
differed by at least one allele across the core genome). The number of alleles per gene ranged
from 1 to 222 (median 35) and the total number of alleles was 49,424. Across all 1,343
genes, 25,317 alleles (51.2%) were seen in only a single source, and 17,575 alleles (35.6%)
were seen in only a single isolate. 167/168 (99.4%) of the cattle isolates, 204/205 (99.5%)
of the chicken isolates, and 187/187 (100%) of the sheep isolates contained alleles unique
to their respective source. The unaligned sequence length of the genes ranged from 28 to
4,554 nucleotides (median 816). The number of nucleotides that differed between any pair
of alleles (the Hamming distance) in aligned sequences ranged from 1 to 2,595 (median 42).

Random Forest Results At least 90% of the random forest predictions, from any method,
used at least one absent level for classification, and approximately one fifth (16.7% (PCO);
17.7% (Binary); 22.2% (CA and CA-unbiased)) of individual tree predictions used at least
one absent level. The frequency of absent level use in predictions varied considerably among
individual trees and forests for all methods. The binary method used absent levels more
frequently than the other methods (up to 41 times in a single tree, compared with 21 for
the PCO and CA-unbiased methods and 11 for the CA method). On average, a variable
with absent levels was used for a classification 4.5 times (PCO) to 7.3 times (Binary) but
fewer than 4% of trees, from any method, used a variable with absent levels more than once
for a single prediction.

The ten most important predictor variables (genes for CA, CA-unbiased, and PCO
methods and alleles for Binary method) as measured by the permutation variable importance
approach (Breiman, 2001) varied between methods. CA and CA-unbiased methods identified
the same 10 genes, in identical order. Of these ten only one was identified by any other
method. The ten most important alleles identified by the Binary method were all from
different genes, and three of these were shared with the PCO method. Only one gene was
shared by all four methods.

Classification Accuracy The PCO and Binary methods had the lowest average misclassi-
fication error (25.9%± 1.5% and 26.1%± 1.9% respectively), followed by the CA-unbiased
(26.4% ± 1.4%), and the CA (26.9% ± 1.2%) methods. The accuracy of predictions was
dependent on the class being predicted (table 1, figure 2). Across the methods, isolates
sourced from chicken were the most accurately classified (80.0%± 2.8%− 84.9%± 2.4%);
isolates that were incorrectly classified were evenly distributed between sheep and cattle.
Isolates sourced from sheep were the second most accurately classified for all methods
(72.6%± 2.1%− 76.4%± 2.6%); incorrectly classified isolates were mostly assigned to cattle
(18.3%2.7 ±% − 20.8% ± 3.1%) with fewer than 10% being assigned to chicken. Isolates
sourced from cattle had the lowest classification success rates (60.7%3.3±%−62.5%±3.8%),
with most of the incorrect classifications predicted as sheep (28.0%± 4.4%− 30.4%± 3.9%)
rather than chicken (11.0%± 2.3%− 16.2%± 3.5%).

Effect of Absent Levels The class frequencies of predictions were similar across all
methods when no absent levels were used for the predictions (figure 2). When absent levels
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Source Prediction Method
CA Binary CA-unbiased PCO

Cattle Cattle 0.607 ± 0.027 0.625 ± 0.038 0.613 ± 0.034 0.607 ± 0.033
Cattle Chicken 0.110 ± 0.023 0.125 ± 0.030 0.162 ± 0.035 0.140 ± 0.033
Cattle Sheep 0.304 ± 0.039 0.305 ± 0.045 0.286 ± 0.040 0.280 ± 0.044
Chicken Cattle 0.092 ± 0.015 0.098 ± 0.009 0.093 ± 0.021 0.089 ± 0.015
Chicken Chicken 0.800 ± 0.028 0.834 ± 0.024 0.844 ± 0.028 0.849 ± 0.024
Chicken Sheep 0.118 ± 0.026 0.110 ± 0.019 0.105 ± 0.013 0.105 ± 0.013
Sheep Cattle 0.183 ± 0.027 0.190 ± 0.027 0.204 ± 0.029 0.208 ± 0.031
Sheep Chicken 0.067 ± 0.009 0.091 ± 0.008 0.077 ± 0.013 0.077 ± 0.013
Sheep Sheep 0.764 ± 0.026 0.737 ± 0.028 0.726 ± 0.021 0.743 ± 0.026

Table 1: Weighted average proportion and standard error of all tree predictions assigned to
each of three host sources (cattle, chicken and sheep) for each of four methods

were used for predictions, the predictions were not equally distributed across the three
sources and the pattern of distribution depended on the method. For all methods the class
distribution followed the pattern of distribution for predictions made without absent levels,
whereby incorrect chicken predictions were split between cattle and sheep; incorrect sheep
classifications favoured cattle; and incorrect cattle classifications favoured sheep, but with a
lower proportion of correct predictions in any class (figure 2). The accuracy of predictions
also decreased as the number of absent levels in a tree increased, and this was most notable
for chicken and sheep isolates (figure 3).

Effect of Response Class (Source) Order The order of the response (source) levels also
affected the success rates of predictions for the CA method when absent levels were used in
prediction (figure 4). By default, R treats the levels of categorical variables alphabetically,
unless another ordering is specified explicitly. For our data this equates to cattle < chicken
< sheep. In the presence of absent levels, the CA method will assign any absent level the
lowest rank and thus the observations will always be sent down the right branch of the tree.
When the source levels were re-ordered as chicken < sheep < cattle, more observations with
an absent level were assigned to chicken (the first response) than when the default ordering
was used. This effect of class order did not occur with the Binary, CA-unbiased, or PCO
methods.

Out-of-bag (OOB) Error The misclassification rate with simulated data was expected
to be 2

3 ≈ 0.67 regardless of the sample size, number of predictor levels, or handling of
unordered predictor variables. This was indeed the case when the misclassification rate was
calculated for a fully withheld independent test set - except with a small sample size of
10. However, the internally calculated OOB error rate depended on the method used to
order the levels of the categorical predictor variables. When predictor levels were ordered
alphabetically (i.e., the parameter respect.unordered.factors was set to ‘FALSE’),
the misclassification rate was 0.67, as expected; however, when the predictor levels were
ordered according to the first principal component of the weighted covariance matrix of class
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probabilities (i.e., the parameter respect.unordered.factors was set to ‘TRUE’), the
misclassification rate decreased with increasing numbers of predictor levels and this was
compounded with smaller sample sizes (figure 5).

4. Discussion

Some of the characteristics that lend a set of data to analysis by random forest include large
numbers of predictor variables and large numbers of levels. Categorical predictor variables
with large numbers of levels will often need to be treated as ordinal to avoid searching
an unfeasible number of potential binary splits. Models trained with such variables will
almost certainly encounter absent levels when predicting for new data. We found that, for
random forests, different methods of ordering the levels of nominal variables had important
implications for the accuracy of out-of-bag error rates, and the bias of predictions when
absent levels were encountered during prediction.

When predicting using data with absent levels the CA method (the “order” (or TRUE)
option for respect.unordered.factors) was biased towards the first response class.
For this method, the predictor levels are ranked by their contribution to response class
and an absent level is assigned the lowest rank. Changing the order of the response classes
can alter (reverse) the ranks of the predictor levels, however, the absent level will always
retain the lowest rank. Thus, the absent level will be next in rank to a level of a predictor
associated with one response class in one ordering, but with the reverse ordering it will be
next in rank to a different predictor level, potentially associated with a different response
class. This option for ordering of variable levels has previously been recommended when
variables have a large number of levels and/or do not have an inherent order (Wright and
König, 2019).

Our first alternative method was the CA method on binary transformed predictor
variables, where each level of each variable was treated as an individual variable that was
either present or absent. This approach resolved the systematic bias caused by absent levels
without greatly reducing the prediction accuracy. However, this method used a much larger
number of absent levels for its predictions, and as the number of absent levels increased,
the predictions became highly variable (figure 3). Others have also found this approach
to have inconsistent results with inadequate resolution of bias (Au, 2018) and reduced
prediction performance (Wright and König, 2019). Variables with many levels are selected
more frequently than variables with fewer levels in the classification trees and it follows that
these variables are then more likely to have absent levels because of their variable nature.
This may be problematic for the prediction of a set of data when new levels are expected
due to variables being either highly variable, such as genomic data, or evolving, such as
environmental data. It may also limit the interpretability of results as only a subset of the
levels of a predictor variable will be included in any single split, or even tree.

Our second alternative method, the CA-unbiased method, was identical to the CA
method except for the treatment of absent levels. The CA-unbiased method assigns a score
of zero (rather than infinity) to all absent levels. This approach similarly resolved the
systematic bias caused by absent levels without greatly reducing the prediction accuracy
and it used fewer absent levels in prediction than the Binary method.
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Our third alternative method, the PCO method, used Gower’s method of principal
coordinates analysis on data that was independent of the class probabilities to inform the
ordering of predictor levels, including absent levels (figure 1, d). This method requires
supplementary information with which to quantify the similarity (or dissimilarity) of each
pair of levels of a predictor variable. We demonstrated the method using genomic sequencing
data for each predictor variable, more specifically, the number of nucleotides shared by
any two alleles (Hamming distance) for a given gene. In contrast to the other methods,
the scoring of the levels with PCO was independent of the counts of levels of predictor
variables in the training data, and thus also able to be applied to absent levels. In addition,
rather than assigning the same score to all absent levels, the PCO method assigned a score
individually to each absent level. Using the Hamming distance between the absent allele
and every other allele, the absent allele was given a score that was more similar to an allele
with which it shared more nucleotides and less similar to an allele with which it shared few
nucleotides. This is based on the assumption that isolates from one source would be more
likely to have alleles which are similar in terms of their genome sequence, than isolates from
another source (Pinheiro et al., 2005; Pérez-Reche et al., 2020). This method was not biased,
had similar prediction accuracy to the Binary and CA-unbiased methods, and used fewer
absent levels. Furthermore, as the absent levels were given an informative score, they are
perhaps of less concern than with other methods because they are less arbitrary and more
biologically meaningful.

The issue with absent levels will be less problematic for data where every level of every
predictor variable in the set of observations to be classified is present in the training data,
and more problematic for data containing variables with many levels. Previously, it was
thought that no biologically meaningful splitting decision can be made for observations with
new levels at a splitting node and discussion has ensued regarding the advantages of keeping
the observations with absent levels together versus assigning them randomly at a split
(Wright and König, 2019). We introduced the PCO method to allow for meaningful splitting
decisions to be made for observations with absent levels when supplementary information
on the predictor variables is available. Here, this method produces competitive prediction
results, resolves the systematic bias caused by absent levels, and avoids arbitrary splitting
decisions for observations with absent levels.

The success of a random forest classification model is often measured by the rate of
misclassifications. Breiman (1996, 2001) claimed that the out-of-bag misclassification rate
(i.e., the rate of misclassification of cases that were not selected for training a particular
tree) was as reliable as using an independent set of data for testing. We showed that the
OOB method for measuring misclassification, when using either CA method, underestimates
misclassification rates due to ‘data-leakage’ during the ordering of categorical predictors.
The levels of each predictor variable are ordered according to the first principal component of
the weighted matrix of class probabilities, calculated from the entire (training) dataset before
the analysis. Each observation in the set of training data is used to train approximately two
thirds of the trees in the forest. The remaining third of trees can be used to generate an
OOB prediction for that observation, which will be either correct or not. The leakage occurs
because, even when the observations are in the OOB set, the scores of their corresponding
levels were assigned from the entire dataset (i.e. prior to the observations moving OOB)
based on the correct response classes; therefore, the OOB observations do not behave like
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fully independent test data. Potential solutions to this problem include re-ordering the levels
at each split in the tree, or simply calculating the misclassification rate based on a fully
independent test dataset.

The PCO method does not suffer the information-leakage problem that we found with
the CA methods, because the scores are generated using supplementary data on the predictor
variables only – the response class information is not used to order the levels. The PCO
method will therefore not have this issue with incorrect OOB misclassification rates. It is
plausible that combining the contingency table data and the supplementary information to
inform variable ordering may improve classification success, but this would again lead to
issues with OOB misclassification rates, and an independent test data set should be used
for calculation of misclassification rates. In addition, although here only the first principal
component is used for the CA, CA-unbiased, and PCO methods, it may be beneficial to
increase the dimension to at least two principal components/coordinates in the case of three
or more classes.

5. Conclusion

This paper highlights potential pitfalls in the use of classification trees when an order is
imposed on nominal predictor variables. These findings are applicable to random forests
and other tree-based methods (e.g., boosted trees) when new levels of categorical predictor
variables are encountered during prediction and/or where OOB misclassification rates are
produced. When levels of categorical predictor variables are ordered using class probability
information, and absent levels are integrated at the lowest rank (effecting a consistent
direction for them to branch at a split), predictions were systematically biased to one class
and OOB misclassification rates were underestimated. Converting predictor variables to
indicator variables may mitigate these issues, however this approach may be computationally
unfeasible when there are a large number of predictor variables and/or predictor variables
have many levels. Ordering predictors using class probability information, and integrating
absent levels according to the a priori hypothesis of equal class probability, is another
potential and unbiased solution with good predictive properties. Ordering predictors using
supplementary information which quantifies the similarity between each pair of predictor
levels, and integrating absent levels by virtue of their similarity to each of the other levels
in the training data, is a potential solution which removes the need for arbitrary decisions
on where to direct absent levels. This approach has good predictive properties, is not
biased, and does not affect the OOB misclassification rate. A reduction in bias for source
attribution modelling will lead to a better understanding of potential risk factors in zoonotic
infectious diseases to better inform public health decision making. We recommend using the
PCO method for random forests when supplementary information is available. In all other
instances, we recommend using the CA-unbiased method, and the use of an independent
dataset for calculating misclassification rates.
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Figure 1: A visual description of the four methods described in this paper (a) CA method -
the levels of each predictor variable are ordered according to the first principal
component of the class probabilities and absent levels are assigned a score of
infinity; (b) Binary method - the levels of each predictor variable are transformed
to a binary variable and then treated as per the CA method; there are no absent
levels; (c) CA-unbiased method - the levels of each predictor variable are ordered
according to the first principal component of the class probabilities and absent
levels are assigned a score of zero based on a priori equal class probabilities; blue
text indicates conceptual information for an absent level; (d) PCO method - the
levels of each predictor variable, including absent levels, are ordered according
to their score for the first principal coordinate axis derived from supplementary
pair-wise distance information.
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Figure 2: Proportion of tree predictions assigned to each of three host sources (cattle, chicken
and sheep) when absent levels are used or not used in predictions. Open circles
represent the proportion of cases for which the true class is predicted incorrectly;
closed circles represent the proportion of cases for which the true class is predicted
correctly.
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Figure 3: Proportion of predictions which were correct for trees with different numbers of
absent levels and different methods and/or ordering of response class.
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Figure 4: The effect of response class order on classification accuracy for the CA method.
Open circles represent the proportion of cases for which the true class is predicted
incorrectly; closed circles represent the proportion of cases for which the true class
is predicted correctly.
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Figure 5: Misclassification rates as calculated via internal OOB sample and independent
test set when predictor variables are ordered (alpha)numerically or via principal
component analysis (PCA) of class probabilities.
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