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Abstract 
Background: Osteoarthritis (OA) is a degenerative disease which need more research. The purpose of 
this study was to performed gene expression analysis and immune infiltration between lesioned and 
preserved subchondral bone, and validation with datasets and experiment of multiple tissues.
Methods: The different expressed genes(DEGs) of GSE51588 datasets between lesioned and preserved 
tibial  plateaus of OA patients were conducted. Moreover, functional annotation and protein–protein 
interaction (PPI) network were applied for exploring the potential therapeutic targets in OA subchondral 
bones between lesioned and preserved sides. In addition, multiple tissues were used to screen out co-
expressed genes and the expression levels of identified candidate DEGs was detected by quantitative 
real-time polymerase chain reaction (qRT-PCR) in OA. Finally, immune infiltration analysis was 
conducted.
 Results: A total of 1010 DEGs were identified, including upregulated 423 genes , 587 downregulated 
genes. Upregulated genes showed that BP terms were enriched in “skeletal system development”, “sister 
chromatid cohesion”,“ossification” etc. Pathways were enriched in “Wnt signaling pathway,” 
“Proteoglycans in cancer,” Downregulated genes showed that BP terms were enriched in “inflammatory 
response,” “xenobiotic metabolic process”, “positive regulation of inflammatory response”. Pathways 
were enriched in “Neuroactive ligand−receptor interaction”, “AMPK signaling pathway” etc. JUN, TNF, 
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IL1B,were the hub genes in the PPI network. Col1A1 and LRRC15 were screened out by multiple 
datasets and validated by experiments. Immune infiltration showed adipocytes and endothelial cells 
infiltrated less in lesioned samples.
  Conclusion: Our research might provide valuable information for exploring the pathogenesis 
mechanism of OA and identifying the potential therapy targets for OA diagnosis.

Introduction
Osteoarthritis (OA) is a common degenerative and debilitating joint disease. It has become a leading 

cause of disability and impaired quality of life in the elderly. OA is considered to be an organ disease 
that affect the whole joint, not only including cartilage, but also including subchondral bone, meniscus, 
synovium, and ligament[1]. It’s pathology include cartilage loss, synovial hyperplasia, ligament fibrosis, 
osteophyte formation, subchondral bone remodeling and sclerosis, and increased cytokine production[2]. 
Subchondral bone plays a crucial role in the pathological process of OA and is an important source of 
pain. Xu Cao, et al. has demonstrated that osteoclasts derived from subchondral bone can induce sensory 
innervation and osteoarthritis pain, and alendronate can inhibit osteoclast activity, alleviate aberrant 
subchondral bone remodeling, reduce innervation and improve pain behavior simultaneously at the early 
stage of OA[3]. But its mechanism has not been elucidated distinctly.
   In the era of “bigdata”, large quantities of data have been accumulated, including bioinformatics[4]. 
High-throughput sequencing data has developed rapidly and made great contributions in the fields of 
molecular mechanism, and discovery of drug target. Previous studies have demonstrated gene level 
changes play important roles in OA diagnosis and development[5, 6]. However, pathological changes 
are different between OA sides and preserved sides in accordance with cartilage changes, as well as 
subchondral bone changes[7]. And local therapy and precision medicine of OA need more research.

In this study, we analysis gene expression profiles between lesioned and preserved tibia in OA 
patients, discovering associated genes, pathways and immune cells, validation with multiple tissues 
datasets and experiments.

Results
Analysis of differential gene expression of all datasets 
The DEGs of GSE51588 MT-LT were 1010 genes, including 423 up-regulated genes and 587 down-
regulated genes. The most up-regulated gene was STMN2 and POSTN, and the most down-regulated 
gene was LEP and APOB. The distribution of all DEGs according to the two dimensions of -log10(p 
value) and logFC is represented by a volcano map in Figure 1A. The DEGs were evaluated by a heatmap, 
as shown in Figure 1B. DEGs in details with logFC and P value were shown in supplementary 1.

Functional and pathway analysis of DEGs
Functional enrichment analysis of the upregulated DEGs demonstrated that the top five biological 
processes mainly included skeletal system development, sister chromatid cohesion, ossification, mitotic 
nuclear division, extracellular matrix organization(Figure 2A). The main cellular components and 
molecular functions involved in spindle microtubule, proteinaceous extracellular matrix, platelet-derived 
growth factor binding, metalloendopeptidase activity ect.(Figure 2B and C). KEGG pathways of the 
upregulated DEGs showed that the top five terms were associated with Wnt signaling pathway, 
Proteoglycans in cancer, Protein digestion and absorption, PI3K-Akt signaling pathway, Hippo signaling 
pathway(Figure 2D).
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The functional enrichment analysis of the downregulated DEGs revealed that the top five BP terms 
were associated with xenobiotic metabolic process, triglyceride biosynthetic process, positive regulation 
of inflammatory response, positive regulation of fat cell differentiation, positive regulation of B cell 
activation(Figure 3A). The main cellular components and molecular functions were associated with 
receptor complex, plasma membrane, transporter activity, retinol dehydrogenase activity and so 
on(Figure 3 B and C). KEGG pathways of the down-regulated DEGs showed that the top terms were 
associated with Tyrosine metabolism, Regulation of lipolysis in adipocytes, PPAR signaling pathway, 
Neuroactive ligand−receptor interaction , AMPK signaling pathway (Figure 3D).

PPI network construction and hub genes identification
To observe the relationships between the DEGs, the PPI network was created using the STRING website. 
Finally, a total of 1010 DEGs were mapped to 5766 nodes in the network with a combine score>0.4. 
Network interactions with a score> 0.99, including 116 nodes were visualized with Cytoscape 
software(Figure 4A). And the top 10 hub genes calculated by MCC were JUN, TNF, IL-1β, LEB, CXCL8, 
FN1 and so on.(Figure 4B). 

Identification of the co-expressed genes with datasets of multiple tissues and validation with qRT-
PCR
Six datasets of multiple tissues including subchondral bone samples, cartilage, and synovium samples 
were used for validation. Two co-expressed genes were screened out and they were LRRC15 and 
Col11A1. The results were shown as venn diagram in Figure 5. They were upregulated in all datasets. 
qRT-PCR was conducted to validate the expression of the co-expressed genes with chondrocyte, FLS, 
and subchondral bone samples. LRRC15 and Col11A1 were upregulated in all tissues.(Figure 6)

Analysis of immune infiltrating cells
  We performed immune infiltrating cells using xCell algorithm. Correlation heatmap of the 64 types of 
immune cells revealed that ly Endothelial cells, mv Endothelial cells, and Endothelial cells had a 
significant positive correlation. CD4 T+ cells and CD4 +Tem also had a positive correlation. (Figure 
8A). The heatmap showed abundance score of the immune cells in each sample (Figure 8B).
The violin plot of the immune cell infiltration difference showed that, compared with the preserved 
control sample, adipocytes and endothelial cells infiltrated less, while msc, myocytes , plasma cells, Th2 
cells, ly endothelial cells, mv endothelial cells infiltrated more.(Figure8C-J)

Discussion and conclusion
In the current study, we identified dysregulated genes associated with OA progression from lesioned 

and preserved subchondral bone of osteoarthritis. STMN2 and POSTN was most upregulated, and LEP 
and APOB was most downregulated. The most enriched pathways of upregulated genes was Wnt 
signaling pathway, while The most enriched pathways of downregulated genes was Tyrosine metabolism. 
JUN, TNF, IL-1β, LEB was hub genes. LRRC15 and Col11A1 were upregulated and co-expressed in 
multiple OA tissues. In addition, immune infiltration showed that many immune cells had different 
infiltrated abundance score.

Previous studies emphasized on articular cartilage degeneration and ignored the role of subchondral 
bone and synovium. In recent years, more research demonstrated that knee joint is an organ and OA can 
affect subchondral bone, synovium and other tissues[1, 2, 8]. Subchondral bone links the joint to the 
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diaphyseal bone, provide mechanical support for joint , provide some nutrition and remove metabolic 
waste products[9]. Subchondral bone remodeling already occurs in early stages of cartilage degeneration. 
The earliest signs of OA seen on MRI scanning in the subchondral bone are bone marrow lesions (BML; 
excessive water signals in bone). They are considered to be subchondral bone remodelling due to 
mechanical overload[10]. The pathological changes of subchondral bone during OA including 
angiogenesis, de novo bone formation, sensory innervation invasion, bone cysts ,sclerosis and 
osteophytes formation[3, 11, 12]. More evidence suggests that abnormal bone remodeling may contribute 
to the development of OA, and can be a target for OA therapy [13-15]. 
     The study identified the most up-regulated gene was STMN2 and POSTN , and the most down-
regulated gene was LEP and APODB. STMN2(stathmin2) is associated with sensory neurons growth 
and contribute to regenerating axons after nerve injury[16].Maybe it is implicated in the pain of OA. 
POSTN (periostin) is a 90-kDa member of the fasciclin family. POSTN can induce the expressions of 
proinflammatory factors, such as MMP-9, MMP-10, and MMP-13 production, leading to degradation of 

the extracellular matrix[17]. LEP（Leptin）is a peptide hormone containing 167 amino acids [18]. LEP 

promotes the differentiation of osteoblast under normal conditions[19]. LEP expression was increased in 
OA subchondral osteoblasts and in part elevated the expression levels of alkaline phosphatase, 
osteocalcin release, collagen1 and TGF-β1. But in OA conditions, osteoblast , osteoclast and subchondral 
bone remodeling have disturbed [20]. And further research needs to be performed.

For upregulated DEGs, the most enriched pathway was enriched in Wnt signaling pathway, PI3K-Akt 
signaling pathway and so on. Wnt signaling pathway can directly affect subchondral bone cartilage and 
synovial tissue, which has been proven to play important roles in pathology[21, 22] . Phosphorylation of 
AKT in subchondral bone can promote osteogenic differentiation and osteoblastic proliferation, and 
resulting in aberrant bone formation. And targeting these pathways maybe alleviate the development of 
OA. By contrast, inhibition of PI3K/AKT reduces subchondral bone sclerosis through decreasing 
osteogenesis[23]. Also suppressing PI3K-Akt signaling pathway can enhance cell autophagy, reduce 
chondrocytes inflammation[24]. And Pharmaceutical intervention of the pathway provide a promising 
approach for OA treatment[25].
  For downregulated DEGs, the most enriched pathways include Tyrosine metabolism, AMPK signaling 
pathway and so on. AMP activated protein kinase (AMPK) mainly regulate energy balance and 
metabolism. Dysregulation of AMPK is associated with multiple age-related diseases including 
atherosclerosis, cardiovascular disease diabetes, cancer, neurodegenerative diseases and OA[26, 27]. 
Upregulated of Phosphorylation and total AMPK expression in articular cartilage can limit OA 
development and progression in OA animal models[28, 29].

10 hub genes were identified in the PPI network, and the proteins encoded by these genes are the key 
nodes in the PPI network, including JUN, TNF, IL-1β, LEB, CXCL8, FN1 and so on. They are associated 
with OA progression, especially JUN, IL-1β and TNF[30-32]. JUN is a major component of the 
transcription factor activator protein-1 (AP-1)family[33]. As a transcription factor, JUN can mediate 
catabolic transcription and cell apoptosis/death, also play an important role in the TNF signaling pathway 
and IL-17 signaling pathway [34]. 

With other datasets of multiple tissues and experiments, LRRC15 and COL11A1 were identified as 
co-expressed genes. These two novel genes are proposed to play important roles in the pathogenesis of 
OA. LRRC15, type I membrane protein, has 581 amino acids, with no obvious intracellular signaling 
domains, is upregulated by the pro-inflammatory cytokine TGFβ in cancer-associated fibroblasts [35]. It 
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is highly expressed both on stromal fibroblasts as well as tumor cells, such as melanoma sarcomas, and 
glioblastoma[36]. ABBV-085 is an antibody drug ,which can directedly against LRRC15. At present, it 
has been widely studied for antitumor research. [37]. Maybe, it can be applied in OA treatment. 
Otherwise, LRRC15 was significantly downregulated in OVX mice and upregulated upon osteogenic 
induction in a p65-dependent manner[38]. Collagen XI which encodes the α1 chain of type XI collagen, 
is essential for collagen fibril formation in articular cartilage[39]. Primarily type II collagen with the 
alpha 1collagen XI [α1(XI)] chain structured into collagen fibrils, form a network in the cartilage 
extracellular matrix (ECM) that contributes to retention of proteoglycans and tensile strength in cartilage 
tissue[40].And many studies have shown that COL11A1 may have an increase the genetic susceptibility 
to develop OA[41-43].

The inflammation and angiogenesis can alter the process of subchondral bone modelling[8]. By 
analyzing the immune infiltration, it was found that ly Endothelial cells, mv Endothelial cells, and 
Endothelial cells had a significant positive correlation. CD4 T+ cells and CD4 +Tem also had a positive 
correlation. Adipocytes and endothelial cells infiltrated less in lesioned samples, while msc, myocytes, 
plasma cells, Th2 cells, ly endothelial cells, mv endothelial cells infiltrated more in lesioned samples.
  In conclusion this study suggests that Subchondral bone has important roles in the progression of OA. 
Understanding the mechanisms of subchondral bone involved in OA development and progression will 
greatly contribute to the diagnosis, treatment, and prognosis of OA patients.

Materials and methods
Data processing and identification of DEGs

 The NCBI Gene Expression Omnibus(GEO ) is a public data repository that stores gene expression 

profiles, raw series and platform records （ https://www.ncbi.nlm.nih.gov/geo/ ） .Subchondral bone 

dataset  GSE51588 included 10 normal datasets, and 40 OA samples. The platform was GPL13497. 
The 40 OA samples included medial tibia samples (significant degeneration, lesioned) and lateral tibia 
samples (minimal degeneration, preserved). And the OA samples were used for further training analysis. 
The data matrix series were downloaded and the limma package were used in R software to identify 
DEGs[44]. The p < 0.05 and |logFC2|>1was considered as the cutoff criterion. 

Functional annotation of DEGs 
The Database for Annotation, Visualization, and Integrated Discovery (DAVID; 

https://david.ncifcrf.gov/)  provides a comprehensive set of functional annotation tools and help 
investigators to understand biological meaning behind large list of genes. Gene Ontology (GO)  
annotation consists of cell components (CCs), molecular functions (MFs), and biological processes (BPs) 
of genes. The KEGG pathway enrichment analysis is used to extract pathway information from molecular 
interaction networks. In the present study, the DAVID online tool was used to conduct GO and KEGG 
pathway enrichment analysis of up-regulated and down-regulated genes respectively. R language was 
used for data visualization, and P < 0.05 was considered to indicate a statistically significant GO and 
KEGG terms.

Analysis of PPI network and hub genes 
Protein-protein interaction(PPI) networks construction is critical to understanding cell biology and 
interpreting genomic data. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
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database (http://www.string-db.org/) is an online biological database and website designed to construct 
the PPI networks in molecular biology. For a more in-depth understanding of the DEGs, PPI network 
was conducted using STRING database. The DEGs (species: Homo species ) were mapped to STRING 
database and (PPI score >0.4), and the results of combine score>0.99 were shown using Cytoscape 
software 3.7.1(http://www.cytoscape.org/) to visualize the PPI network, and the top 10 hub genes were 
calculated by MCC method. 

Screen out co-expressed DEGs using multiple datasets
Six GSE datasets related to joint tissues of OA patients were used for validation to screen co-expressed 
genes in multi-tissues. The DEGs of associated datasets including GSE51588 OA-Normal for 

subchondral bone samples，GSE30322 for subchondral bones of SD rats OA models, GSE 110606 and 

GSE114007 for chondrocyte & cartilage samples, GSE55235 and GSE55457 for synovial tissues were 
used in this study to screen out co-expressed genes which were in accordance with the expression profile 

of OA subchondral bone samples. Differentially expressed genes（|logFC2|>1, p < 0.05）were taken 

forward for further validation. And the results were shown in Venn diagram. 
   Quantitative reverse-transcription polymerase chain
Samples from total knee placement were collected. Ethical approval and consent for use of resected tissue 
were obtained. Subchondral bone samples were obtained and stored in liquid nitrogen until detection. 
Cartilage and synovium samples were cut into small pieces about 1 mm3 and put into collagenase 2 and 
1 respectively for about 4 hours. Then α-MEM containing 10% fetal bovine serum and 1% 
penicillinstreptomycin were added. Three days later, we discarded debris, residual contamination 
macrophages was avoided three passages later and monocultures of Synovial fibroblasts(SF) were 
obtained and used for experiments until passage 8[45]. And passage 2 of  chondrocyte was used for 
experiments. SF and chondrocyte were cultured in 6-well plates dishes and 10ng/ml IL-1β were added 
into SF and chondrocyte for 48h for further research. 

Total RNA from SF, chondrocyte and subchondral bone was obtained using reagent(ES science 
technique). RNA was reverse transcribed using ES science cDNA Reverse Transcription Kit and 
quantitative real-time PCR analysis was performed with ES science SYBR Green kit. The primers were 
list in Table 1. For relative quantification, we normalized the target gene expression to the housekeeping 
gene (GAPDH). Results were presented as the relative expression with respect to the untreated condition 
using the formula 2-ΔΔCt method. Data was analyzed with GraphPad Prism7.0. Data and differences 
were assessed using a Student’s two-tailed t-test with P < 0.05 considered significant. 

  Computational analysis of immune infiltrating cells
  xCell is a novel and robust method based on ssGSEA (single sample Gene Set Enrichment
Analysis) that estimates the abundance scores of 64 cell types in the microenvironment.
There are two approaches to run xCell, one is the online website tool (https://xCell.ucsf.edu/), the other 
is xCell package in R software. We estimated the abundance scores of 64 cell types in lesioned and 
preserved subchondral bone samples using the online website tool. P < 0.05 was considered as significant. 
Also, the immune cell scores were also calculated in each sample. Moreover, the relationship between 
immune cell were calculated using Pearson coefficient. “ggplot2” package was used to draw violin 
diagrams to visualize the differences in immune cell infiltration. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507705
http://creativecommons.org/licenses/by/4.0/


Supplementary Information
The online version contains supplementary material available at
Authors’ contributions
Yong Qin and Songcen LV designed the research; Gang Zhang collected patient samples and wrote the 
manuscript; Chengliang Yin and Rilige Wu conducted data mining and analysis. Ren Wang conducted 
performed experiments validation. All authors read and approved the final manuscript.

Funding
This study was supported by National Clinical Research Center for Orthopedics, Sports Medicine & 
Rehabilitation and Jiangsu China-Israel Industrial Technical Research Institute Foundation (grant 
number: 2021-NCRC-CXJJ-PY-20).

Declarations
Ethics approval and consent to participate
This study was approved by the Ethics Committee of the second Affiliated Hospital of Harbin Medical 
University (Approval number: ky2020-078) and informed consent was taken from all the patients.
Consent for publication
All authors consent to publication.
Competing interests
The authors have no competing financial interests to declare.
Author details
1. Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University
2. Department of Orthopedics, Harbin First Hospital,150010
3. Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University
4. Medical Big Data research Center, Medical innovation research Division of Chinese PLA general 
Hospital, Beijing, China
5. National engineering laboratory for Medical Big Data application technology, Chinese PLA general 
Hospital, Beijing, China

References

1. Hügle T, Geurts J (2017) What drives osteoarthritis?-synovial versus subchondral bone pathology. 
Rheumatology (Oxford) 56:1461-1471. doi: 10.1093/rheumatology/kew389

2. Aspden RM, Saunders FR (2019) Osteoarthritis as an organ disease: from the cradle to the grave. 
Eur Cell Mater 37:74-87. doi: 10.22203/eCM.v037a06

3. Zhu S, Zhu J, Zhen G, Hu Y, An S, Li Y, Zheng Q, Chen Z, Yang Y, Wan M, Skolasky RL, Cao 
Y, Wu T, Gao B, Yang M, Gao M, Kuliwaba J, Ni S, Wang L, Wu C, Findlay D, Eltzschig HK, 
Ouyang HW, Crane J, Zhou FQ, Guan Y, Dong X, Cao X (2019) Subchondral bone osteoclasts 
induce sensory innervation and osteoarthritis pain. J Clin Invest 129:1076-1093. doi: 
10.1172/JCI121561

4. Min S, Lee B, Yoon S (2017) Deep learning in bioinformatics. Brief Bioinform 18:851-869. doi: 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507705
http://creativecommons.org/licenses/by/4.0/


10.1093/bib/bbw068
5. Tew SR, McDermott BT, Fentem RB, Peffers MJ, Clegg PD (2014) Transcriptome-wide analysis 

of messenger RNA decay in normal and osteoarthritic human articular chondrocytes. Arthritis 
Rheumatol 66:3052-3061. doi: 10.1002/art.38849

6. Coutinho de Almeida R, Ramos Y, Mahfouz A, den Hollander W, Lakenberg N, Houtman E, van 
Hoolwerff M, Suchiman H, Rodríguez Ruiz A, Slagboom PE, Mei H, Kiełbasa SM, Nelissen R, 
Reinders M, Meulenbelt I (2019) RNA sequencing data integration reveals an miRNA 
interactome of osteoarthritis cartilage. Ann Rheum Dis 78:270-277. doi: 10.1136/annrheumdis-
2018-213882

7. Omoumi P, Michoux N, Roemer FW, Thienpont E, Vande Berg BC (2015) Cartilage thickness 
at the posterior medial femoral condyle is increased in femorotibial knee osteoarthritis: a cross-
sectional CT arthrography study (Part 2). Osteoarthritis Cartilage 23:224-231. doi: 
10.1016/j.joca.2014.08.017

8. Weber A, Chan P, Wen C (2019) Do immune cells lead the way in subchondral bone disturbance 
in osteoarthritis. Prog Biophys Mol Biol 148:21-31. doi: 10.1016/j.pbiomolbio.2017.12.004

9. Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G (2012) Subchondral bone as a key 
target for osteoarthritis treatment. Biochem Pharmacol 83:315-323. doi: 
10.1016/j.bcp.2011.09.018

10. Donell S (2019) Subchondral bone remodelling in osteoarthritis. EFORT Open Rev 4:221-229. 
doi: 10.1302/2058-5241.4.180102

11. Wang Y, Xu J, Zhang X, Wang C, Huang Y, Dai K, Zhang X (2017) TNF-α-induced LRG1 
promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during 
osteoarthritis. Cell Death Dis 8:e2715. doi: 10.1038/cddis.2017.129

12. Zhou X, Cao H, Yuan Y, Wu W (2020) Biochemical Signals Mediate the Crosstalk between 
Cartilage and Bone in Osteoarthritis. Biomed Res Int 2020:5720360. doi: 10.1155/2020/5720360

13. Tanamas SK, Wluka AE, Pelletier JP, Martel-Pelletier J, Abram F, Wang Y, Cicuttini FM (2010) 
The association between subchondral bone cysts and tibial cartilage volume and risk of joint 
replacement in people with knee osteoarthritis: a longitudinal study. Arthritis Res Ther 12:R58. 
doi: 10.1186/ar2971

14. Chen Y, Huang YC, Yan CH, Chiu KY, Wei Q, Zhao J, Guo XE, Leung F, Lu WW (2017) 
Abnormal subchondral bone remodeling and its association with articular cartilage degradation 
in knees of type 2 diabetes patients. Bone Res 5:17034. doi: 10.1038/boneres.2017.34

15. Kon E, Boffa A, Andriolo L, Di Martino A, Di Matteo B, Magarelli N, Marcacci M, Onorato F, 
Trenti N, Zaffagnini S, Filardo G (2021) Subchondral and intra-articular injections of bone 
marrow concentrate are a safe and effective treatment for knee osteoarthritis: a prospective, multi-
center pilot study. Knee Surg Sports Traumatol Arthrosc . doi: 10.1007/s00167-021-06530-x

16. Dubový P, Klusáková I, Hradilová-Svíženská I, Joukal M (2018) Expression of Regeneration-
Associated Proteins in Primary Sensory Neurons and Regenerating Axons After Nerve Injury-
An Overview. Anat Rec (Hoboken) 301:1618-1627. doi: 10.1002/ar.23843

17. Ohta N, Ishida A, Kurakami K, Suzuki Y, Kakehata S, Ono J, Ikeda H, Okubo K, Izuhara K 
(2014) Expressions and roles of periostin in otolaryngological diseases. Allergol Int 63:171-180. 
doi: 10.2332/allergolint.13-RAI-0673

18. Yang TP, Chen HM, Hu CC, Chen LY, Shih FF, Tantoh DM, Lee KJ, Liaw YC, Tsai RT, Liaw 
YP (2019) Interaction of Osteoarthritis and BMI on Leptin Promoter Methylation in Taiwanese 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507705
http://creativecommons.org/licenses/by/4.0/


Adults. Int J Mol Sci 21. doi: 10.3390/ijms21010123
19. Xu JC, Wu GH, Zhou LL, Yang XJ, Liu JT (2016) Leptin improves osteoblast differentiation of 

human bone marrow stroma stem cells. Eur Rev Med Pharmacol Sci 20:3507-3513
20. Mutabaruka MS, Aoulad Aissa M, Delalandre A, Lavigne M, Lajeunesse D (2010) Local leptin 

production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal 
phenotypic expression. Arthritis Res Ther 12:R20. doi: 10.1186/ar2925

21. Zhou Y, Wang T, Hamilton JL, Chen D (2017) Wnt/β-catenin Signaling in Osteoarthritis and in 
Other Forms of Arthritis. Curr Rheumatol Rep 19:53. doi: 10.1007/s11926-017-0679-z

22. Wang Y, Fan X, Xing L, Tian F (2019) Wnt signaling: a promising target for osteoarthritis 
therapy. Cell Commun Signal 17:97. doi: 10.1186/s12964-019-0411-x

23. Lin C, Shao Y, Zeng C, Zhao C, Fang H, Wang L, Pan J, Liu L, Qi W, Feng X, Qiu H, Zhang H, 
Chen Y, Wang H, Cai D, Xian CJ (2018) Blocking PI3K/AKT signaling inhibits bone sclerosis 
in subchondral bone and attenuates post-traumatic osteoarthritis. J Cell Physiol 233:6135-6147. 
doi: 10.1002/jcp.26460

24. Xue JF, Shi ZM, Zou J, Li XL (2017) Inhibition of PI3K/AKT/mTOR signaling pathway 
promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with 
osteoarthritis. Biomed Pharmacother 89:1252-1261. doi: 10.1016/j.biopha.2017.01.130

25. Sun K, Luo J, Guo J, Yao X, Jing X, Guo F (2020) The PI3K/AKT/mTOR signaling pathway in 
osteoarthritis: a narrative review. Osteoarthritis Cartilage 28:400-409. doi: 
10.1016/j.joca.2020.02.027

26. AMPK implications in osteoarthritis and therapeutic targets. 
27. Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 

48:e245. doi: 10.1038/emm.2016.81
28. Zhou S, Lu W, Chen L, Ge Q, Chen D, Xu Z, Shi D, Dai J, Li J, Ju H, Cao Y, Qin J, Chen S, 

Teng H, Jiang Q (2017) AMPK deficiency in chondrocytes accelerated the progression of 
instability-induced and ageing-associated osteoarthritis in adult mice. Sci Rep 7:43245. doi: 
10.1038/srep43245

29. Li J, Zhang B, Liu WX, Lu K, Pan H, Wang T, Oh CD, Yi D, Huang J, Zhao L, Ning G, Xing C, 
Xiao G, Liu-Bryan R, Feng S, Chen D (2020) Metformin limits osteoarthritis development and 
progression through activation of AMPK signalling. Ann Rheum Dis 79:635-645. doi: 
10.1136/annrheumdis-2019-216713

30. Rhee J, Park SH, Kim SK, Kim JH, Ha CW, Chun CH, Chun JS (2017) Inhibition of BATF/JUN 
transcriptional activity protects against osteoarthritic cartilage destruction. Ann Rheum Dis 
76:427-434. doi: 10.1136/annrheumdis-2015-208953

31. Zhao Y, Li Y, Qu R, Chen X, Wang W, Qiu C, Liu B, Pan X, Liu L, Vasilev K, Hayball J, Dong 
S, Li W (2019) Cortistatin binds to TNF-α receptors and protects against osteoarthritis. 
EBioMedicine 41:556-570. doi: 10.1016/j.ebiom.2019.02.035

32. Ahmad N, Ansari MY, Bano S, Haqqi TM (2020) Imperatorin suppresses IL-1β-induced iNOS 
expression via inhibiting ERK-MAPK/AP1 signaling in primary human OA chondrocytes. Int 
Immunopharmacol 85:106612. doi: 10.1016/j.intimp.2020.106612

33. Atsaves V, Leventaki V, Rassidakis GZ, Claret FX (2019) AP-1 Transcription Factors as 
Regulators of Immune Responses in Cancer. Cancers (Basel) 11. doi: 10.3390/cancers11071037

34. Cai W, Li H, Zhang Y, Han G (2020) Identification of key biomarkers and immune infiltration 
in the synovial tissue of osteoarthritis by bioinformatics analysis. PeerJ 8:e8390. doi: 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507705
http://creativecommons.org/licenses/by/4.0/


10.7717/peerj.8390
35. Ben-Ami E, Perret R, Huang Y, Courgeon F, Gokhale PC, Laroche-Clary A, Eschle BK, Velasco 

V, Le Loarer F, Algeo MP, Purcell J, Demetri GD, Italiano A (2020) LRRC15 Targeting in Soft-
Tissue Sarcomas: Biological and Clinical Implications. Cancers (Basel) 12. doi: 
10.3390/cancers12030757

36. Purcell JW, Tanlimco SG, Hickson J, Fox M, Sho M, Durkin L, Uziel T, Powers R, Foster K, 
McGonigal T, Kumar S, Samayoa J, Zhang D, Palma JP, Mishra S, Hollenbaugh D, Gish K, 
Morgan-Lappe SE, Hsi ED, Chao DT (2018) LRRC15 Is a Novel Mesenchymal Protein and 
Stromal Target for Antibody-Drug Conjugates. Cancer Res 78:4059-4072. doi: 10.1158/0008-
5472.CAN-18-0327

37. Hingorani P, Roth ME, Wang Y, Zhang W, Gill JB, Harrison DJ, Teicher B, Erickson S, Gatto 
G, Smith MA, Kolb EA, Gorlick R (2020) ABBV-085, Antibody-Drug Conjugate Targeting 
LRRC15, Is Effective in Osteosarcoma: A Report by the Pediatric Preclinical Testing Consortium. 
Mol Cancer Ther . doi: 10.1158/1535-7163.MCT-20-0406

38. Wang Y, Liu Y, Zhang M, Lv L, Zhang X, Zhang P, Zhou Y (2018) LRRC15 promotes 
osteogenic differentiation of mesenchymal stem cells by modulating p65 cytoplasmic/nuclear 
translocation. Stem Cell Res Ther 9:65. doi: 10.1186/s13287-018-0809-1

39. Blaschke UK, Eikenberry EF, Hulmes DJ, Galla HJ, Bruckner P (2000) Collagen XI nucleates 
self-assembly and limits lateral growth of cartilage fibrils. J Biol Chem 275:10370-10378. doi: 
10.1074/jbc.275.14.10370

40. Holyoak DT, Otero M, Armar NS, Ziemian SN, Otto A, Cullinane D, Wright TM, Goldring SR, 
Goldring MB, van der Meulen M (2018) Collagen XI mutation lowers susceptibility to load-
induced cartilage damage in mice. J Orthop Res 36:711-720. doi: 10.1002/jor.23731

41. Wang J, Zhang C, Wu SG, Shang C, Huang L, Zhang T, Zhang W, Zhang Y, Zhang L (2017) 
Additional Evidence Supports Association of Common Variants in COL11A1 with Increased 
Risk of Hip Osteoarthritis Susceptibility. Genet Test Mol Biomarkers 21:86-91. doi: 
10.1089/gtmb.2016.0308

42. Styrkarsdottir U, Lund SH, Thorleifsson G, Zink F, Stefansson OA, Sigurdsson JK, Juliusson K, 
Bjarnadottir K, Sigurbjornsdottir S, Jonsson S, Norland K, Stefansdottir L, Sigurdsson A, 
Sveinbjornsson G, Oddsson A, Bjornsdottir G, Gudmundsson RL, Halldorsson GH, Rafnar T, 
Jonsdottir I, Steingrimsson E, Norddahl GL, Masson G, Sulem P, Jonsson H, Ingvarsson T, 
Gudbjartsson DF, Thorsteinsdottir U, Stefansson K (2018) Meta-analysis of Icelandic and UK 
data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated 
with osteoarthritis. Nat Genet 50:1681-1687. doi: 10.1038/s41588-018-0247-0

43. Fernández-Torres J, Martínez-Nava GA, Zamudio-Cuevas Y, Martínez-Flores K, Mijares-Díaz 
F (2020) Multifactor dimensionality reduction reveals a strong gene-gene interaction between 
STC1 and COL11A1 genes as a possible risk factor of knee osteoarthritis. Mol Biol Rep 47:2627-
2634. doi: 10.1007/s11033-020-05351-4

44. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 
43:e47. doi: 10.1093/nar/gkv007

45. Pérez-García S, Carrión M, Gutiérrez-Cañas I, González-Álvaro I, Gomariz RP, Juarranz Y (2016) 
VIP and CRF reduce ADAMTS expression and function in osteoarthritis synovial fibroblasts. J 
Cell Mol Med 20:678-687. doi: 10.1111/jcmm.12777

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507705doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507705
http://creativecommons.org/licenses/by/4.0/


Figure1 The flow chart depicting the study process for osteoarthritis(OA) gene expression analysis.

Figure2 Differentially expressed genes in lesioned and preserved subchondral bone tissues. (A) volcano 
map of DEGs. The red represents upregulated genes while blue represents downregulated genes. (B) 
heatmap of DEGs.

Figure 3 Function annotation of upregulated genes. (A) Biological process analysis; (B) Cellular 
component analysis; (C) Molecular function analysis. (D) Kyoto Encyclopedia for Genes and Genomes 
(KEGG) pathway analysis.

Figure 4 Function annotation of downregulated genes. (A) Biological process analysis; (B) Cellular 
component analysis; (C) Molecular function analysis. (D) Kyoto Encyclopedia for Genes and Genomes 
(KEGG) pathway analysis.

Figure 5 PPI network of DEGs in lesioned and preserved subchondral bone tissues. (A) the combined 
score was 0.99.(B) The top 10 hub genes showing by MCC method

Figure 6 Screen out co-expressed genes with multiple tissues and LRRC15 and Col11A1 are co-
expressed genes.

Figure 7 Validation co-expressed genes in multiple tissues with qRT-PCR experiment.

Figure 8 Immune infiltration analysis between lesioned and preserved subchondral bone tissues.(A) The 
correlation of immune cells. (B) The abundance score of immune cells in subchondral bone samples.(C-J) 
The difference of immune infiltration between 
lesioned and preserved subchondral bone tissues.
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