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Highlights 

• We profiled metabolism of 28 international-level elite World Tour professional male athletes 
from a Union Cycliste Internationale UCI World Team during training and World Tour 
multi-stage race; 

• Dried blood spot sampling affords metabolomics analyses to monitor exercise performance;  
• Determination of lactate thresholds during graded exercise test (GXT) to volitional 

exhaustion shows a range of from 3.75 to 6.5 watts per kilogram in this group; 
• Blood profiles of lactate, carboxylic acids, fatty acids and acylcarnitines differed between 

different exercise modes (GXT and 180 km aerobic training session); 
• Metabolic profiles were affected by stage-specific challenges (sprint vs climbing) during a 

World Tour multi-stage race. 

Summary 
To characterize molecular profiles of exertion in elite athletes during cycling, we performed 
metabolomics analyses on blood isolated from twenty-eight international-level elite World Tour 
professional male athletes from a Union Cycliste Internationale (UCI) World Team taken before 
and after a graded exercise test (GXT) to volitional exhaustion and before and after a long 
aerobic training session. Using dried blood spot collection to circumvent logistical hurdles 
associated with field sampling, these studies defined metabolite signatures and fold change 
ranges of anaerobic or aerobic exertion in elite cyclists, respectively. Moreover, established 
signatures were then used to characterize the metabolic physiology of five of these cyclists that 
were selected to represent the same UCI World Team during a 7-stage elite World Tour race. 
Collectively, these studies provide a unique view of alterations in the blood metabolome of elite 
athletes during competition and at the peak of their performance capabilities. 
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INTRODUCTION 

Investigations into the metabolic effects of exercise (Contrepois et al., 2020; Moghetti et al., 

2016) have helped to elucidate physiological adaptations to stress and have been critical for 

understanding pathologies in which metabolism is dysregulated. From aging (Pontzer et al., 

2021) to cardiovascular and other non-communicable diseases (Costantino et al., 2016; Ruiz-

Canela et al., 2017), from cancer (Hanahan, 2022) to hemorrhagic or ischemic hypoxia 

(Chouchani et al., 2014), from immunometabolism (O’Neill et al., 2016) to neurodegenerative 

diseases (Traxler et al., 2022), metabolic derangements are increasingly appreciated as 

etiological contributors to disease onset, severity, and prognosis.  

Energy requirements and substrate utilization during physical exertion are dependent upon 

workload and the perfusion of oxygen. During low and medium intensity exercise when oxygen 

supply is sufficient to meet bioenergetic demands, fatty acid substrates are relied upon for 

generation of adenosine triphosphate (ATP) through the use of fatty acid oxidation to fuel the 

Tricarboxylic Acid (TCA) cycle. As exertional intensity increases to a point where oxidative 

phosphorylation is no longer sufficient, metabolism shifts to favor the rapidity of carbohydrate-

driven glycolysis for ATP generation, a metabolic switch that increases the rate of lactate 

formation. At high glycolytic rates, lactate production exceeds the rate of lactate clearance via 

mitochondrial metabolism (Brooks, 2018). At this point, lactate is exported into circulation, 

resulting in increased blood lactate levels. While lactate is mainly formed in fast-twitch fibers, it 

is oxidized during exercise as a substrate to fuel mitochondria of adjacent slow-twitch muscle 

fibers. A metabolic inflection point, called the “lactate threshold” (LT), is reached when a 

maximal effort or intensity that an athlete can maintain for an extended period of time with little 

or no increase in lactate (Poole et al., 2021). Classic studies have focused on LT as a proxy for 

exercise performance.  

In the last decade, there has been an increased focus on the metabolic responses to exercise 

including measuring substrate utilization, metabolic flexibility and mitochondrial function in 

athletes (San-Millán and Brooks, 2018). Recent advances in metabolomics have fostered a more 

comprehensive understanding of human responses to low, moderate or high intensity exercise 

(Khoramipour et al., 2022; Sakaguchi et al., 2019). Results have evidenced a differential impact 

of different exercise modes (e.g., acute versus resistance and endurance exercise (Morville et al., 

2020)) and across different sports (e.g., endurance athletes, sprinters, bodybuilders (Al-Khelaifi 
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et al., 2018; Schranner et al., 2021)) on the extent and magnitude of metabolic reprogramming in 

recreational athletes. While metabolomics characterization of cycling in recreational (Nemkov et 

al., 2021) and professional (San-Millán et al., 2020) athletes under controlled acute training 

regimens has been reported, literature is scarce on elite professional athletes undergoing testing 

in the field and, more importantly, during World Tour competitions. Performing such 

investigations in elite professional athletes offers a unique opportunity to determine the ceiling of 

human performance, against which we can scale human physiology of healthy occasional, 

recreational, semi-professional and professional athletes. Such scale would also inform a model 

on how human metabolism works at its optimum, which in turn could drive the interpretation of 

metabolic derangements under pathological conditions, even at their early onset. Studies on elite 

athletes also help determining whether and to what extent animal models of exercise (Sato et al., 

2022) are translationally relevant. 
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RESULTS 

Metabolomic changes observed in blood vary as a function of training intensity and duration 

In consideration that lactate threshold and the shift between substrate and pathway utilization 

is dependent upon training status, we sought to identify circulating metabolite profiles of aerobic 

and anaerobic exertion in the whole blood of elite World Tour professional cyclists during a 

team training camp using mass spectrometry-based metabolomics. To determine lactate 

threshold, these cyclists were first subjected to a graded exercise test (GXT) to volitional 

exhaustion, in which progressive increases in power output on an ergometer are accompanied by 

whole blood lactate measurements (Figure 1A). A range of lactate thresholds from 3.75 to 6.5 

watts per kilogram was observed in this group, demonstrating variation in metabolic capacity 

even at the elite level (Figure 1B). Guided by the lactate thresholds determined in the GXT, 

these cyclists subsequently completed a 180 km aerobic training session within a power output 

range beneath LT (Figure 1B). Importantly, guidance on training power output ranges would not 

be supported by heart rate monitoring alone, as circulating lactate only moderately correlated 

with heart rate over all measured power output ranges (R2 = 0.53, p < 0.0001), and this 

correlation depended on functional output (Suppl. Figure 1). As revealed through metabolomics, 

blood samples taken before and after the GXT were distinctly grouped by unsupervised Principal 

Component Analysis (PCA) (Figure 1D). Metabolites with the top 15 weights on clustering, as 

quantified by the variable importance in projection (VIP) score, associated predominantly with 

glycolysis (pyruvate, lactate), the TCA cycle (malate, succinate), nucleotide and nicotinamide 

metabolism (xanthine, kynurenic acid, ADP-ribose, phosphate), oxidative stress (cystine, γ-

glutamyl-alanine) and fatty acid oxidation (β-hydroxybutyrate, acetylcarnitine, AC (12:0), AC 

(16:2)) (Figure 1E). Meanwhile, PCA of samples taken before and after the long aerobic training 

session indicated a clear separation between time points with a few samples clustering in the 

opposite group, possibly indicating varying levels of exertion or recovery (Figure 1F). Time 

points from this training test were predominantly distinguished by acylcarnitines (Figure 1G).  

In addition to the accumulation of lactate during the GXT (intra-individual fold changes of 

2.91±0.94), higher levels of glucose (1.35±0.38), phosphoglycerate (1.48±0.59), 

phospoenolpyruvate (1.27±0.52), and pyruvate (2.34±0.78), in conjunction with lower levels of 

hexose phosphate (0.81±0.50), indicate ongoing glycogenolysis and committal to glycolysis 

during this exercise (Figure 1H). End of test succinate (2.85±1.06) was comparable to lactate 
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accumulation, in addition to higher levels of citrate (1.38±0.61), fumarate (1.36±0.34), and 

malate (1.66± 0.54) (Figure 1H) indicating release into circulation of carboxylic acids. These 

metabolic profiles were distinct from those observed in the 180 km aerobic training session, 

given that only glucose (1.17±0.32) and succinate (1.28±0.37) were significantly higher after the 

test (Figure 1I).  

Blood profiles of fatty acids and acylcarnitines also differed between these two exercise 

modes. While long chain fatty acids (LCFA) accumulated during both exercise modes, the extent 

of accumulation was higher after the 180 km aerobic training session than in the GXT (Figures 

1J and 1K). The abundances of short (SCFA) and medium chain fatty acids (MCFA) after the 

GXT were significantly higher however, suggesting incomplete fatty acid oxidation. In support, 

post-GXT blood had more abundant short chain acylcarnitines (SCAC), while blood post-180km 

aerobic training had higher levels of medium chain acylcarnitines (MCAC) and no significant 

changes to SCAC (Figure 1L and 1M). These findings support more active fatty acid oxidation 

during the long aerobic training, as further exemplified by lower levels of circulating carnitine 

0.86±0.22, in comparison with a ratio of 0.95±0.15 in the MPT (Figure 1L and 1M). 

 

Metabolomic changes vary based on overall progression of multistage World Tour race 

We next sought out to determine blood metabolic signatures of selected cyclists from the five 

members of the UCI elite World Tour Team competing in a World Tour multi-stage race, as a 

function of both exertion during individual stages and progression throughout the entire 

competition. Whole blood samples were collected from 5 competing cyclists prior to and 

immediately upon completion of Stages 1, 4, and 6, which were characterized by 143 km/60 m, 

214.5 km/3,600m, and 127.5 km/4,300m of distance/elevation, respectively, and extracted for 

metabolomics and lipidomics analysis by high-throughput mass spectrometry (Figure 2A). 

Volcano plots indicated a progressively decreasing number of significant features that were 

higher at the Pre time point (30, 26, and 11 significant features before the beginning of Stages 1, 

4, and 6, respectively) while Stage 6 – the most difficult stage – elicited significant increases in 

100 features, followed by 82 significant features after Stage 1, and 58 significant features after 

Stage 4 (Figure 2B). Untargeted metabolite profiles were hierarchically clustered to assess 

relative abundances as a function of stage and time (Figure 2C). From the untargeted 

metabolomics data, spectra were manually curated to identify 290 named compounds. Partial-
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least squares discriminant analysis (PLS-DA) of this sample set separated timepoints 

chronologically across the Component 1 axis (explaining 16.2% of the variance) (Figure 2D, 

left). Samples obtained from all but one of the cyclists after Stages 4 and 6 begin to deviate from 

this pattern of progression and spread along the Component 2 axis (describing 6.1% of variance). 

The top 15 metabolites influencing this pattern according to variable importance in projection 

(VIP) scores contain primarily amino acids, free fatty acids (FA (20:3, 22:4, 18:1, 16:0, 18:2, 

18:3)), and acylcarnitines (AC (16:2)) (Figure 2D, right). In light of the progressive separation 

of Pre and Post time points with respect to Stage, we then analyzed each time point individually. 

PLS-DA of the Pre time point at Stages 1, 4, and 6 separated each group along Component 1 

(12.3% of the variance), with an increased spread of samples taken prior to Stage 6 along the 

Component 2 axis (12.1% of variance) (Figure 2E, left). The top 15 metabolites by VIP score 

were related to amino acids (glycine, threonine, serine, 3-hydroxyisobutyrate), nitrogen 

metabolism (N-acetylspermidine), fatty acid metabolism (FA (22:5, 20:3)), glycolysis/energy 

(glyceraldehyde 3-phosphate, nicotinamide), and oxidative stress/Pentose Phosphate Pathway 

(PPP) (methionine S-oxide, hexose phosphate, sedoheptulose 7-phosphate) (Figure 2E, right). 

Meanwhile, PLS-DA of the Post time point at Stages 1, 4, and 6 separated each group even more 

along Component 1 (24.9% of the variance), with two samples taken after Stage 4 that cluster 

more closely to the post-Stage 6 group of samples (Figure 2F, left). The top 15 metabolites by 

VIP score were enriched in compounds primarily related to fatty acid metabolism, including free 

fatty acids FA (20:3, 22:4, 6:0, 16:0, 18:0)), in addition to a contribution from amino acids 

(glycine, asparagine, serine, glutamine), and energy metabolites (GMP, pyruvate, fumarate) 

(Figure 2F, right). 

To group molecules based on relative changes throughout the race, we performed c-means 

clustering (Figure 2G). Certain molecules that increased during each stage, though to a lower 

extent after each subsequent stage are described by cluster 1 (Figure 2G, upper left). Pathway 

analysis of molecules in this cluster identified enrichment in energy (TCA Cycle), 

anabolism/oxidative stress response (PPP, ascorbate metabolism, methionine and cysteine 

metabolism), amino acid metabolism (tyrosine, methionine, cysteine, alanine, aspartate), and 

protein glycosylation (sialic acid and aminosugar metabolism, N-glycan and keratan sulfate 

degradation). Metabolites identified in cluster 2 opposed this trend, increasing primarily after the 

completion of Stages 4 and 6 (Figure 2G, upper right). This cluster pertained to oxidative stress 
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(ascorbate metabolism, glutathione metabolism) and energy metabolism (pyridoxine and 

pyruvate metabolism, glycolysis and gluconeogenesis). Meanwhile, cluster 3 described 

molecules that are elevated after the completion of Stage 1 and progressively decrease 

throughout Stage 6 and related primarily to fatty acid activation (Figure 2G, lower left). Finally, 

molecules that decreased after the beginning of the race and did not predominantly recover 

through Stage 6 were described by cluster 4 and enriched for the metabolism of amino acids, 

nucleotides, nicotinamide (Figure 2G, lower right).  

 

Longitudinal Effects of Cycling on Energy Metabolism 

Considering the enrichment of glycolysis, the PPP, and the TCA cycle from the systematic 

analysis of untargeted metabolomics, we then manually interrogated each of these pathways 

(Figure 3A). Intermediates of the oxidative phase of the PPP including gluconolactone-6-

phosphate and 6-phosphogluconate tend to increase after each stage (or significantly increase 

after Stage 6 or 4, respectively) (Figure 3B). Meanwhile, non-oxidative intermediate 

sedoheptulose 7-phosphate decreased, while the pool of pentose phosphate isobars tended to 

increase after each stage (Figure 3B). At steady state, these results suggest an activation of the 

PPP in response to cycling, which is supported by a progressive increase in the levels of glucose 

6-phosphate during the course of the race (Figure 3C). This metabolite serves as a commitment 

of glucose towards catabolism through the activity of hexokinase to fuel both the PPP and 

glycolysis. While significant differences in glucose levels were not observed, a trend towards 

elevated glucose after Stage 1 indicates ongoing glycogenolysis. Utilization of glycolysis is 

apparent given the trending increase of late-stage glycolytic intermediates upstream of pyruvate 

and lactate. (Figure 3C). Interestingly, the accumulation of lactate after each successive stage is 

lower, suggesting either a routing of carbon into the mitochondria to fuel oxidative 

phosphorylation, or a progressive loss in glycolytic capacity in these cyclists as fatigue 

accumulates. While citrate increases (significantly after Stage 6), the magnitude of significant 

increases in late TCA cycle intermediates succinate, fumarate, and malate mirror lactate (Figure 

3D). However, respective amino acid products of transamination reactions (alanine/pyruvate, 

aspartate/malate, glutamine/glutamate/α-ketoglutarate) inversely mirror their carboxylate 

counterparts, suggesting ongoing transamination for anaplerosis and to maintain nitrogen 

homeostasis (Figure 3E). 
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Longitudinal Effects of Cycling on Lipid Metabolism 

In addition to the use of glucose and amino acid-derived carbon to fuel the TCA cycle, fatty 

acids are often relied upon as a fuel source for energy generation, especially under aerobic 

conditions of exercise. As such, we performed untargeted and semi-targeted lipidomics to assess 

the relative levels of lipids during the course of the race (Figure 3F). While lipid classes as a 

whole showed variable patterns and significance, we focused on the longitudinal levels of both 

free fatty acids and acylcarnitines, which are involved in beta oxidation to generate acetyl-CoA 

(Figure 3G). The levels of free MCFA (C10-14) and LCFA (C16-22) with varying degrees of 

unsaturation showed a marked increase after Stages 4 and 6. In similar fashion, the accumulation 

of MCAC begins to appear after Stage 4 and is more pronounced following Stage 6. The 

generation of these compounds is dependent in part on the availability of carnitine. This 

molecule showed a significantly progressive decrease throughout the course of the race, while 

the levels of the Coenzyme A precursor, pantothenate, remained unchanged aside from a slight, 

though significant, increase after Stage 4 (Figure 3H). 

 

Individual Cyclist Metabolomics as a Function of Performance 

The penultimate stage of the race consisted of a 127.5 km course through a mountainous 

region finishing with a first category climb (7% average grade) over the final 7.5 km (Figure 

4A). Cyclists 1 and 2 managed to outpace the other 3 throughout this stage, which was driven in 

part by the final vertical ascent (Figure 4B). To identify metabolite signatures that may associate 

with performance during this period of the race, we correlated metabolite levels from blood 

sampled immediately after Stage 6 with average speed. Top correlates pertained predominantly 

to oxidation of fatty acids (AC (18:2), AC (18:1), AC (16:0), AC (18:0), AC (18:3), AC (3:1), 

FA (6:0), and pantothenate), nitrogen homeostasis (spermine, 5-hydoxyisourate, 5-

methylthioadenosine, 4-acetoamidobutanoate, lysine, spermidine), and energy metabolism 

(glyceraldehyde 3-phopshate, succinate) (Figure 4C and 4D). To expand analysis of 

personalized metabolic profiles across the entirety of sampling throughout the race, Sparse 

Partial Least Squares Discriminant Analysis (sPLS-DA) revealed a similar trend as the speed and 

output data, with Cyclists 1 and 2 clustering together along the Component 2 axis (explaining 

7.8% of the data variance) (Figure 4E). The top 10 metabolites that contribute to the clustering 
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pattern along this axis were enriched for intermediates of fatty acid oxidation (Figure 4F). 

Indeed, Cyclists 1 and 2 maintained the highest levels of pantothenate and LCAC, including AC 

(16:0), AC (18:0), AC (18:1), AC (18:2), and AC (18:3) throughout the duration of Stages 1, 4, 

and 6 (Figure 4G). Cyclist 1 in particular demonstrated the highest maintained levels of 

carnitine, lowest levels of MCAC, and LCFA (Figure 4G and 4H), suggesting maintenance of 

mitochondrial capacity throughout the race. In support, this cyclist also finished Stage 6 with the 

lowest levels of glycolytic intermediates, lactate, and succinate (Figure 4I and 4J), along with a 

larger pool of NAD (H) (Figure 4K), indicating a lower fatigue status that could sustain a faster 

pace towards the end of the race. The same cyclist 1 displayed the highest levels of arginine and 

polyamines (spermine – Suppl. Figure 2.A), argininosuccinate, 5-methylthioadenosine (Suppl. 

Figure 1.B), second highest levels of citrulline, but lowest levels of S-Adenosyl-methionine, 

creatinine and phosphocreatine (Suppl. Figure 2.B) across all other team members. Most 

notably, Cyclist 1 showed the highest levels of reduced and oxidized glutathione (total 

glutathione pools), and methionine as well (Suppl. Figure 2.C), suggestive of the highest 

antioxidant capacity across all cyclists monitored in this study throughout the competition.  

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.13.507793doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507793


Metabolomics in Elite Professional Cyclists 
 

12 
 

DISCUSSION 

Here we used mass spectrometry-based metabolomics and lipidomics to define whole blood 

molecular profiles associated with sustained low to medium intensity cycling during a 180 km 

aerobic training ride in comparison with a graded exercise test to volitional exhaustion. To 

facilitate field sampling, we circumvented the need for maintaining frozen samples as is 

traditionally required for metabolomics analyses through the implementation of dried blood 

sampling using volumetric absorptive microsampling (Volani et al., 2017). Because these 

samples were taken from the same elite professional cyclists during a weeklong training camp 

prior to the season, they enable a paired comparison of molecular profiles as a function of 

exertion and define blood profiles of humans performing at optimal capacity. Metabolite profiles 

of the GXT demonstrated characteristic accumulations of circulating lactate, a biomarker of 

performance capacity that has been traditionally used to guide training exercise (San-Millán et 

al., 2009, 2020). In addition, we were able to quantify the extent to which upstream glycolytic 

intermediates are modulated to sustain lactate production. The accumulation of lactate occurs at a 

power output when the rate of lactate production exceeds that of oxidation, mostly termed the 

“lactate threshold,” which is dependent upon the ability to oxidize lactate into pyruvate for 

subsequent metabolism in the mitochondria. (Brooks, 1985, 2018) Exercise intensity dictates 

demand for ATP and drives skeletal muscle metabolic responses to exercise. At high exercise 

intensities, glycolysis is the primary source of ATP, which is produced at a faster rate through 

the activity of glycolytic enzymes phosphoglycerate kinase and pyruvate kinase in comparison to 

mitochondrial electron transport chain-fueled ATP synthase. The latter route for ATP synthesis 

is dependent on mitochondrial and fatty acid oxidation capacity, which becomes limiting at 

higher workloads. Under hypoxic conditions or at high bioenergetic demand, mitochondrial 

respiration becomes uncoupled leading to an accumulation of succinate, which is released into 

the extracellular environment (Chouchani et al., 2014; D’Alessandro et al., 2017) as a function of 

intracellular proton accumulation (Reddy et al., 2020). In line with previous findings (San-Millán 

et al., 2020), we observed ratio increases of succinate that were comparable to that of lactate 

during the GXT. During the 180 km training session however, when cyclists are predominantly 

functioning in aerobic conditions and primarily relying on fatty acid oxidation, succinate shows 

only modest increases while lactate remained unchanged.  
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High exercise intensities predominantly promote carbohydrate oxidation, while low and 

medium intensities rely more upon catabolism of fatty acids for energy generation. Accordingly, 

we observed a substantially higher accumulation of LCFA including the most abundant oleic and 

linoleic acid (Buchanan et al., 2021) after the 180 km training session in comparison with the 

GXT. The relatively higher levels after the long training session indicate a longer period of fatty 

acid mobilization during this training test, which are subsequently converted intracellularly 

between acyl-CoA and acylcarnitine species for fatty acid oxidation within the mitochondria. 

The inability of mitochondria to continue oxidizing fatty acids, either due to lack of oxygen 

availability or cessation of exercise, results in release of incompletely oxidized MCAC back into 

circulation. SCAC and MCAC notably accumulated significantly after the GXT in comparison to 

the lower intensity training session, indicating an abrupt shift in metabolism due to progressively 

increasing exercise intensity. The resulting accumulation of lactate exerts endocrine and 

autocrine actions by decreasing lipolysis (Liu et al., 2009) and mitochondrial fatty acid transport 

through decreased carnitine palmitoyltransferace I and II (CPT I and II) function (San-Millan et 

al., 2022). Of note, MCAC have higher baseline levels in patients with Type 2 diabetes 

(Makrecka-Kuka et al., 2017; Sun et al., 2016), sepsis (Langley et al., 2013; Rogers et al., 2014), 

and post-acute sequelae of SARS-CoV-2 infection (PASC) (de Boer et al., 2022), and indicate 

that acute exercise-induced fatigue mimics certain aspects of chronic diseases in which metabolic 

and mitochondrial dysfunction or impairment play an important pathogenic role.  

When translated into a World Tour cycling competition, the metabolomic signatures 

presented herein enable assessment of workload and performance. For instance, the most 

significantly enriched pathway in Cluster 1, which described compounds that accumulate the 

most after Stage 1, was the TCA Cycle. This stage was characterized by long stretches of flat 

terrain with few hills and finished with a field sprint that demanded higher workloads, in line 

with the profiles seen in the GXT to volitional exhaustion. On the other hand, Stages 4 and 6 

involved more climbing, and Stage 6 in particular finished at the highest elevation of the race. 

Accordingly, we observed profiles indicated a predominant reliance on fat oxidation, as reflected 

by accumulation of fatty acids and MCAC.  

While this study only profiled the longitudinal patterns of 5 professional cyclists, correlation 

of metabolic profiles with speed revealed interesting patterns. The fastest 2 cyclists finished 

Stage 6 with the highest levels of abundant LCAC and the lowest levels of circulating succinate, 
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indicating ongoing aerobic fatty acid oxidation despite generating the highest power output and 

speed on the final ascent. Longitudinal characterization of all three sampled stages during the 

race revealed that these cyclists maintained the highest levels of abundant LCAC in this cohort, 

along with the highest level of CoA precursor pantothenate (Vitamin B5). Furthermore, Cyclist 

1had the lowest level of incompletely oxidized MCAC along with the highest level of carnitine. 

This cyclist was the lone individual who did not deviate from the sample trajectory determined 

by PLS-DA (Figure 2D), and furthermore maintained the highest lactate threshold measured 

during training camp (Figure 1B). These results indicate that high performing elite cyclists have 

an increased capacity to maintain mitochondrial metabolism and oxidative phosphorylation at 

high workloads and substantiate prior findings that cyclists’ performance correlates with higher 

lactate clearance capacity at comparable power output (San-Millán and Brooks, 2018).  

Performance has both genetic and environmental influencing factors. Indeed, elite 

performance does have a basis in intensive training regimens. (Tucker and Collins, 2012) While 

genetic factors are not as capable of distinguishing elite athletes on their own, combination of 

GWAS with metabolomics using metabolic quantitative trait loci (mQTLs) analysis has revealed 

significant features (Al-Khelaifi et al., 2019). One such mQTL is an association between the 

endocannabinoid linoleoyl ethanolamide and vascular non-inflammatory molecule 1 (VNN1), 

which functions as a panetheinase that plays an integral role in recycling of pantothenate to 

promote mitochondrial activity (Giessner et al., 2018). It is therefore interesting to consider the 

role VNN1, or additional effectors of CoA/carnitine biosynthesis and fatty acid oxidation, may 

play in the cyclists profiled herein especially in light of the putative association between this 

pathway and cyclist performance. Ultimately, the complementarity of this approach holds future 

promise for personalization of training regiments for sports performance and exercise 

prescription to treat metabolic syndrome (Grundy et al., 2005) and improve cancer survivorship 

(Hojman et al., 2018; Marker, 2022).  

Although limited by its observational nature, these studies provide a unique view into 

metabolism of elite athletes performing at the best of their abilities both during training and in 

competition. Many of the cyclists profiled here are globally competitive and have stage and race 

wins to their names. As such, these profiles provide a view into bioenergetics and metabolic 

physiology of optimal human performance. The use of dried blood sampling enables these 

studies and allows for applicability to the general population at large.  
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MATERIALS and METHODS 

Ethical statement: All study procedures were conducted in accordance with the Declaration 

of Helsinki and in accordance with a predefined protocol that was approved by the Colorado 

Multiple Institutional Review Board (COMIRB 17-1281). Written informed consent was 

obtained from all subjects. 

 

Training Camp: Maximal Physiology Test: Twenty-eight international-level elite World Tour 

professional male cyclists performed a graded exercise test to exhaustion on an electrically 

controlled resistance leg cycle ergometer (Elite, Suito, Italy). After a 15-minute warm-up, 

participants started leg cycling at a low intensity of 2.0 W·kg-1 of body weight. Exercise intensity 

was increased 0.5 W·kg-1 every 10 minutes as previously described  (San-Millán et al., 2009) 

Power output, heart rate and lactate were measured throughout the entire test and recorded every 

10 minutes including at the end of the test.  

 

Blood Lactate concentration measurement: At the end of every intensity stage throughout the 

graded training period, a sample of capillary blood was collected to analyze both intra- and extra-

cellular levels of L-lactate (Lactate Plus, Nova Biomedical, Waltham, MA, USA). Heart rate was 

monitored during the whole test with a heart monitor (Polar S725x, Polar Electro, Kempele, 

Finland). 

 

Training Camp: Aerobic Training Session On a separate day of training camp, 27 

international-level World Tour professional male cyclists (Tour de France Level) completed a 

180 km training ride over 5:20h. During the ride, each cyclist performed 3 climbs at lactate 

threshold (as determined by the previous maximal physiology test) and then completed the final 

40 km at low aerobic intensity.  

 

Blood Sampling for Metabolomics: Twenty µl of whole blood was sampled before and after 

the Maximal Physiology Test and the aerobic training session using a Mitra® Volumetric 

Absorptive Sampling (VAMS) device and dried under ambient conditions according to 
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manufacturer's instructions (Neoteryx, Torrance, CA, USA). Samples were individually sealed in 

air-tight packaging in the presence of a desiccant and shipped under ambient conditions to the 

University of Colorado Anschutz Medical Campus. Upon arrival, individual samples were added 

to 200 µl of methanol:acetonitrile:water (5:3:2 v/v/v) and sonicated for 1 hour. Metabolite and 

lipid extracts were isolated by centrifugation at 18,000 x g for 10 minutes. Supernatants were 

separated into autosampler vials. 

 

World Tour Stage Race: Five international-level World Tour professional male cyclists were 

selected to represent a Union Cycliste Internationale (UCI) World Team and participated to a 7-

stage elite World Tour race. Performance parameters such as speed and power output were 

monitored using Training Peaks (Louisville, CO, USA). Due to logistical constraints, whole 

blood samples were collected using the TAP device (Seventh Sense Biosystems, Medford, MA) 

as previously described (Catala et al., 2018) prior to and immediately upon completion of Stages 

1, 4, and 6. Samples were frozen in dry ice within 15 minutes of isolation and were maintained 

under this condition until all samples were collected, upon which they were shipped on dry ice 

and stored at -80°C until analysis.  

 

Metabolomics - Sample Preparation: Prior to LC-MS analysis, samples were placed on ice 

and re-suspended with 9 volumes of ice cold methanol:acetonitrile:water (5:3:2, v:v). 

Suspensions were vortexed continuously for 30 min at 4°C. Insoluble material was removed by 

centrifugation at 18,000 g for 10 min at 4°C and supernatants were isolated for metabolomics 

analysis by UHPLC-MS. The extract was then dried down under speed vacuum and re-

suspended in an equal volume of 0.1% formic acid for analysis.  

 

Metabolomics - UHPLC-MS data acquisition and processing: Analyses were performed as 

previously published (Nemkov et al., 2017; Reisz et al., 2019). Briefly, the analytical platform 

employs a Vanquish UHPLC system (Thermo Fisher Scientific, San Jose, CA, USA) coupled 

online to a Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). The 

(semi)polar extracts were resolved over a Kinetex C18 column, 2.1 x 150 mm, 1.7 µm particle 

size (Phenomenex, Torrance, CA, USA) equipped with a guard column (SecurityGuardTM 

Ultracartridge – UHPLC C18 for 2.1 mm ID Columns – AJO-8782 – Phenomenex, Torrance, 
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CA, USA) using an aqueous phase (A) of water and 0.1% formic acid and a mobile phase (B) of 

acetonitrile and 0.1% formic acid for positive ion polarity mode, and an aqueous phase (A) of 

water:acetonitrile (95:5) with 1 mM ammonium acetate and a mobile phase (B) of 

acetonitrile:water (95:5) with 1 mM ammonium acetate for negative ion polarity mode. The Q 

Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) was operated 

independently in positive or negative ion mode, scanning in Full MS mode (2 μscans) from 60 to 

900 m/z at 70,000 resolution, with 4 kV spray voltage, 45 sheath gas, 15 auxiliary gas. 

Calibration was performed prior to analysis using the PierceTM Positive and Negative Ion 

Calibration Solutions (Thermo Fisher Scientific).  

 

Metabolomics – Data analysis: Acquired data was then converted from .raw to .mzXML file 

format using Mass Matrix (Cleveland, OH, USA). Samples were analyzed in randomized order 

with a technical mixture injected after every 15 samples to qualify instrument performance. 

Metabolite assignments, isotopologue distributions, and correction for expected natural 

abundances of deuterium, 13C, and 15N isotopes were performed using MAVEN (Princeton, NJ, 

USA). (Melamud et al., 2010) Discovery mode alignment, feature identification, and data 

filtering was performed using Compound Discoverer 2.0 (Thermo Fisher Scientific). Graphs, 

heat maps and statistical analyses (either T-Test or ANOVA), metabolic pathway analysis, PLS-

DA and hierarchical clustering was performed using the MetaboAnalyst 4.0 package. (Chong et 

al., 2018) XY graphs were plotted through GraphPad Prism 8 (GraphPad Software Inc., La Jolla, 

CA, USA). Pathway graphs were prepared on BioRender.com. 

Fuzzy c-means clustering was performed using the R package ‘Mfuzz’ (v2.20.0) using 4 

centers, and m value of 1.5, and a min.acore of 0.7. 

Metabolite pathway enrichment analysis was performed using the Peaks To Pathways of 

MetaboAnalyst 5.0. Feature regions identified with tje longitudinal patterns selected from C-

Means Clustering were subjected to pathway analysis and enrichments were plotted a pie charts 

demonstrating pathway enrichment as a function of observed vs total pathway hits.  
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Figure 1 Metabolic signatures of short/high-intensity and long/low-intensity training regimens. (A) During 

training camp, whole blood from 28 Elite World-Tour cyclists was sampled before and after a one-hour maximal 

physiology test on an ergometer. (B) Whole blood lactate measurements (mM) as a function of normalized power 

output (watts/kg) during the test. (C) During the same training camp, whole blood was sampled from 27 of the cyclists 

before and after a 180 km field test maintained in the Zone 2 regimen. Multivariate analyses including Principal 
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Component Analysis (PCA) and Variable Importance in Projection (VIP of Partial Least Squares Discriminant 

Analysis (PLS-DA) were performed on metabolomics data generated from the Max Physiology Test (D) and (E), or 

Field Test (F) and (G), respectively. Individual cyclist fold changes (Post/Pre) for metabolites involved in glycolysis 

and the tricarboxylic acid (TCA) cycle are shown as violin plots for the (H) Max Physiology Test and (I) Field Test. 

Individual cyclist fold changes (Post/Pre) for free fatty acids are shown as violin plots for the (J) Max Physiology Test 
and (K) Field Test. Individual cyclist fold changes (Post/Pre) for acylcarnitines are shown as violin plots for the (L) 

Max Physiology Test and (M) Field Test. P-values for Post/Pre comparison are indicated as *<0.05, **<0.01, 

***<0.001, ****<0.0001. 
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Figure 2 Metabolomics of a multi-stage World Tour cycling race. (A) Whole blood samples were isolated from 

cyclists before and after Stage 1, 4, and 6 of a consecutive 7 stage race and analyzed by mass spectrometry. (B) 

Volcano plots for Stage 1, 4, and 6 from top to bottom, respectively, with the number of significantly changed 

metabolites (fold change>2, p < 0.05 indicated in the plot. (C) Hierarchical clustering analysis of each of the features 
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identified by metabolomics and lipidomics. (D) Partial least squares-discriminant analysis (PLS-DA) of identified 

metabolites and lipids before and after each stage (left) along with the top 15 compounds by Variable Importance in 

Projection (VIP) (right). (E) PLS-DA of identified metabolites and lipids before each stage (left) along with the top 

15 compounds by VIP (right). (F) PLS-DA of identified metabolites and lipids after each stage (left) along with the 

top 15 compounds by VIP (right). (G) Four distinct longitudinal signatures were determined by fuzzy c-means 
clustering. Compounds with patterns matching the top 4 clusters were analyzed to determine significantly enriched 

pathways in each cluster. Pathways for each cluster are organized by –log10(γ p-value), with number of pathway hits 

(pink) plotted as a fraction of pathway total (turquoise). 
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Figure 3 Energy metabolism. (A) A pathway overview of energy metabolism is shown, along with stage comparisons 

of individual metabolite levels in (B) the Pentose Phosphate Pathway (oxidative phase in red, non-oxidative phase in 

blue), (C) Glycolysis, and the (D) Tricarboxylic Acid (TCA) Cycle and the (E) amino acid transamination products. 

p-values are depicted as *<0.05, **<0.01, ***<0.001. (F) A heat map for group averages of the summed total for lipid 
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classes is shown (lipid abbreviations are provided in the supplemental information). (G Relative levels at each 

stage/time point of fatty acids (top) and acylcarnitines (bottom) for each cyclist are shown. P-values for Stage 1 

Pre/Post comparison (*<0.05, **<0.01, ***<0.001) and Stage 6 Pre/Post comparison (#<0.05, ##<0.01, ###<0.001) 

are shown. No significant differences for total lipid classes were present in Stage 4 comparisons. (H) The peak areas 

at each stage/time point for Coenzyme A precursor pantothenate and carnitine are shown.  
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Figure 4 Individual Cyclist Analysis. (A) Metabolite, lipid, and Training Peaks functional cycling data for the 

entirety of Stage 6, along with Training Peaks during the final 7.5 km climb are analyzed. (B) Average speed and 

output for Stage 6, as well as the average speed and output of the final 7.5km are plotted by individual cyclist. (C) 

Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) is shown, with samples color coded according to 

cyclist and time point indicated as 1-6, where 1 = Stage 1-Pre consecutively up to 6 = Stage 6-Post. (D) The top 10 

loadings for principal component 2 are plotted. (E) Pearson Correlation coefficients (R2) for the top 20 Post-Stage 6 

metabolite correlates with average speed during Stage 6 are shown, with positive correlates indicated in red 
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background and negative correlates indicated in blue background. (F) Abundances (y-axis values are peak area top, 

given in arbitrary units) for each cyclist of the top 3 positive (top) and negative (bottom) correlates with average speed 

are shown. Longitudinal profiles during the course of the race for (G) acylcarnitines, (H) free fatty acids, (I) glycolysis, 

(J) TCA cycle, and (K) NAD+/NADH in each cyclist are shown as line graphs, with time points indicated on the 

bottom x-axis. 
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