
Viroscope: plant viral diagnosis from NGS data using
biologically-informed genome assembly coverage

Sandro L. Valenzuela1ǂ, Tomás Norambuena1ǂ, Verónica Morgante2, Francisca García2, Juan C.
Jiménez2, Carlos Núñez1, Ignacia Fuentes1, Bernardo Pollak1,2*

1Meristem SpA, Chile, 2Multiplex SpA, Chile

ǂJoint first authors
*To whom correspondence should be addressed. e-mail: bpollak@multiplex.bio

ABSTRACT

Next-generation sequencing (NGS) methods are transforming our capacity to detect pathogens
and perform disease diagnosis. Although sequencing advances have enabled accessible and
point-of-care NGS, data analysis pipelines have yet to provide robust tools for precise and
certain diagnosis, particularly in cases of low sequencing coverage. Lack of standardized
metrics and harmonized detection thresholds confound the problem further, impeding the
adoption and implementation of these solutions in real-world applications. In this work, we tackle
these issues and propose biologically-informed viral genome assembly coverage as a method
to improve diagnostic certainty. We use the identification of viral replicases, an essential function
of viral life cycles, to define genome coverage thresholds in which biological functions can be
described. We validate the analysis pipeline, Viroscope, using field samples, synthetic and
published datasets and demonstrate that it provides sensitive and specific viral detection.
Furthermore, we developed Viroscope.io a web-service to provide on-demand NGS data viral
diagnosis to facilitate adoption and implementation by phytosanitary agencies to enable precise
viral diagnosis.

Keywords: Viroscope, plant viral diagnostics, Next-generation sequencing, genome assembly
coverage, replicase identification, Phytopathology
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INTRODUCTION

Plant viruses are among the most important pathogens for agriculture, causing losses
amounting up to more than $30 billion annually (Rao and Reddy, 2020; Rodríguez-Verástegui et
al., 2022). Facile and accurate detection of plant viruses is essential to avoid propagation of
these pathogens due to increasing global plant trade practices. Although methods such as next
generation sequencing (NGS) can enable unbiased detection, these techniques are still in the
process of being implemented. In addition, the standardization of analysis pipelines to perform
plant virus diagnosis is pending, particularly in cases of low virus abundance (Jones et al., 2017;
Massart et al., 2017; Massart et al., 2019; Mehetre et al., 2021).

Plant viral diseases are of considerable concern for farmers, researchers, and policy-makers
since they are capable of decimating food production and even eradicating whole species (Legg
et al., 2000; Gonsalves et al., 2008; Moreno et al., 2008). Viruses can have variable effects on
the plant’s physiology, from the slight decline in productivity and quality of products to high
levels of lethality. The latter was the case for the Citrus tristeza virus (CTV), which is estimated
to have killed over 100 million plants over several countries worldwide (Jones R., 2021).
Species such as sweet cherry (Prunus avium) have been traditionally multiplied using clonal
propagation leading to accumulation of a large number of viruses. This is of particular concern
since these pathogens may be latent or may cause detectable symptoms in susceptible
rootstocks and/or scions (Umer et al., 2019). In addition, sweet cherry trees can have
heterogeneous virus titrations during different seasons (Umer et al., 2019; Rodríguez-Verástegui
et al., 2022).

Plant import and export practices demand strict phytosanitary controls to avoid propagation of
pathogens between countries. In some cases, quarantines for up to several years are required
before clearing plant material for import, creating a barrier to expedite transfer of newly
developed varieties with improved traits. During quarantine, plants are monitored for evidence of
viral symptoms as well as being repeatedly and directly tested for disease using molecular
diagnostic assays (Jones R., 2009; Massart et al., 2017).

The two most successfully established plant virus detection methods are enzyme-linked
immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR, or quantitative
qPCR). ELISA detects structural protein motifs of the virus and can have a broad capability to
detect variants, but exhibits limited sensitivity of detection for cases of low virus abundance. On
the other hand, PCR-based assays (i.e.: PCR, RT-PCR, qPCR) are considered the gold
standard for detection of a virus presence, however it requires a priori knowledge of virus
target sequences. Thus, PCR-based methods are biased, depending on the availability of the
sequences to design the analysis and can fail to detect virus variants. In spite of the advantages
or disadvantages of these two methods, both techniques show high levels of reproducibility,
capability for automation and are relatively low-cost for industry standards (Boonham et al.,
2014; Chauhan et al. 2019,).
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Methods such as next-generation sequencing (NGS) can help to address food security from
increasing threats of viral disease outbreak (Massart et al., 2017, Mehetre et al., 2021). NGS
enables unbiased and hypothesis-free testing of plant samples, and is becoming increasingly
cost effective, with price per base pair sequenced dropping dramatically over the past decade.
Viruses detection by NGS comprises: (1) nucleic acid extraction from the plant material, (2)
library preparation (enriching virus sequences or depleting host sequences such as ribosomal
RNA), (3) high-throughput sequencing, (4) raw data quality control and removal of poor quality
reads and adaptor sequences, (5) removal of host reads, (6) mapping to a virus database,
and/or de novo assembly of reads, (7) read counting and/or coverage calculation, (8)
identification of present viruses using read and coverage cutoffs (Villamor et al., 2019).
Specifically, the bioinformatic identification pipeline (involving aforementioned steps 4 through 8)
is essential for accurate diagnosis. The potential of NGS has been recognised by several
phytosanitary agencies where scientific committees and workshops have been held to address
how to implement these techniques and the challenges involved. Furthermore, international
organizations towards plant diseases protection are looking to improve the availability of
diagnostic tools and are currently revising their diagnostic standards (Adams et al., 2018; Jones
and Naidú, 2021).

The success of a NGS-based virus diagnosis is highly dependent on proper computing
infrastructure and bioinformatics expertise (Jones et al., 2017; Umer et al., 2019; Kutnjak et al.,
2021). Also, substantial virology knowledge is required to suitably interpret the results (Gaafar
et al., 2021). Although the vast majority of virus diagnostic tools have been focused on human
clinical samples –VirusFinder and VERSE (Wang et at., 2013; 2015), VIP (Li et al., 2016),
VirusSeeker (Zhao et al., 2017)– some efforts have been focused specifically on plants –VirFind
(Ho and Tzanetakis, 2014), VSD toolkit (Barrero et al., 2017), Virtool (Rott et al., 2017) and
PVDP (Gutierrez et al., 2021). However, bioinformatic pipelines have presented challenges
for standardization and incongruences in frequently used metrics such as read counts,
genome coverage or a combination of both criteria are common (Visser et al., 2016, Rott et
al., 2017, Malapi-Wight et al., 2021, Soltani et al., 2021, Hanafi et al. 2022). Also, threshold
harmonization is required to establish virus detection using NGS (Ruiz-García, et al., 2021),
particularly in cases with low sequencing coverage.

Low sequencing coverage presents a complex diagnostic challenge for virus detection. It may
be due to a number of causes, such as low viral titre, insufficient depth of sequencing, sample
cross-contamination, remnants of a past infection or even a latent phase of a virus. Most plant
viruses have an RNA genome that adopts a basic replication mechanism consisting in the
RdRp enzyme (RNA-dependent RNA Polymerase) as the responsible for transcription and
replication (Hull, 2014). In other words, the identification of such an essential biological
functionality in viruses may aid in interpreting cases of low sequencing coverage, as it implies
capacity for propagation and thus, potential infectivity.

Here, we present Viroscope, a diagnostic pipeline that improves virus detection accuracy by
using biologically-informed viral genome assembly coverage (VGAC). We introduce the
identification of replicases to evaluate how different VGAC threshold levels correlate with
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functional aspects of virus biology. In addition, we evaluate the performance of Viroscope with
field samples of sweet cherry, simulated datasets and external datasets, demonstrating that
VGAC is a robust measure for virus detection using total RNA NGS data using Illumina and
Nanopore sequencing. Finally, we have implemented the pipeline in the form of a web
application called Viroscope.io (https://www.viroscope.io) to enable cloud-based NGS data virus
diagnosis.

MATERIALS AND METHODS

Collection of field samples and nucleic acid extraction

Sweet cherries are one of the major stone fruits cultivars in south-central Chile. For this study, a
sweet cherry production farm located in the O'Higgins region was selected. The plant material
was randomly collected from four different >5 years old P. avium specimens. In this field, elite
varieties ‘Lapins’ and ‘Santina’ were the most common cultivars. Hence, each sample was
called L1, L2 and S1 and S2, respectively. In order to evaluate differences in plant virus
diagnosis due to season conditions (factors such as changes in temperature, light, and/or plant
nutrition), the same plants were sampled at two different principal growth stages as previously
described for Prunus sp.: Stage 3 or shoot development (SD) and Stage 9 or senescence (SS,
beginning of dormancy) (Fadón et.al., 2015). Each growth stage corresponds to the Spring and
the end of Summer season, respectively. A total of eight leaves (four apical and fourequal-sized
middle-aged) from the canopy of an individual tree were sampled and placed in RNAlater
solution (Invitrogen). Then, the samples were transported to the laboratory in refrigerated
containers and stored at -80°C until their use.

For total RNA extraction, leaves in RNAlater were pooled and ground in a liquid nitrogen cooled
ceramic mortar, and 100 mg of ground sample was processed using the SpectrumTM plant total
RNA kit (Sigma-Aldrich, St. Louis, MO, USA), according to the manufacturer's instructions.
Total RNA concentration and quality was assessed using an optical microplate reader (BioTek
Synergy H1, Santa Clara, California, USA), through fluorometry (Promega Quantus fluorometer,
Madison, Wisconsin, USA) and integrity was verified through agarose gel electrophoresis (Rio,
2015). Purified extracts were stored at -80°C until further processing.

RNA-sequencing of field samples

For RNA-sequencing, 2 µg of total RNA from each of the field samples was sent to Novogene
Corporation Inc. (USA) (samples SD-L1, SD-L2, SD-S1 and SD-S2) and Macrogen Co., Ltd
(Korea) (samples SS-L1, SS-L2, SS-S1 and SS-S2). Ribosomal RNA depletion was performed
using Ribo-Zero Plant (Illumina, USA), and library construction was executed using NEBNext
Ultra RNA Library Prep kit (New England Biolabs, USA), and sequenced on a NovaSeq6000,
using a 150 bp paired-end cycle.
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NGS datasets from field samples and processing

Raw reads from field samples (SD/SS-L1, SD/SS-L2, SD/SS-S1, SD/SS-S2; Supplementary
Table S1) were filtered using fastp (Chen et al., 2018) keeping reads with an average quality
greater or equal to 20. Single reads, reads shorter than 50 bp and reads containing “N”
nucleotides were discarded, and adapters were automatically trimmed.

In order to assay the dependency of the prediction on the size of data, sequencing data of field
samples were subjected to a jackknife process. Reads were randomly selected from the original
data to obtain sets of different depths of sequencing, namely 100K, 500K, 1M, 5M, 10M and
15M reads. Each selection was repeated 10 times. Subsampling read repetitions as well as
sequence manipulation were performed using the seqtk subsampling routine (using the
repetition number as a seed for paired reads) and seqkit (Shen et al., 2016).

NGS datasets from simulation and subsampling

Artificial NGS datasets of 20M paired-end reads of 150 bp (Supplementary Table S1) were
generated using the software ART (Huang et al., 2012) and seqkit (Shen et al., 2016). Two of
these datasets were intended to simulate actual field samples containing the 11 viruses of the
Pavium panel-I (see section Read assignment and viral panels below). In the first dataset
(Synab dataset), virus abundance was based on experimental data (average distribution as
seen in real sequencing data of samples SD-L1, SD-L2, SD-S1 and SD-S2), whereas the
second dataset (Synhom dataset) assumed an even distribution of virus read abundance
(Supplementary Table S2 and Supplementary Table S3). Both sets were then subjected to
subsampling to get different depths of sequencing (100K, 500K, 1M, 5M, 10M and 15M reads)
in a jackknife process (10 repetitions).

Another dataset of 20M paired-end reads (150 bp) was generated (Mut dataset), where all the
viruses (from Pavium panel-I) were randomly mutated at different rates (5, 10, 15, 20, 25, 30%).
In this case, a jackknife process with subsampling of 10M reads each was done for 10
repetitions (using repetition number as seed for subsampling). Mutation-Simulator (version
2.0.3) (Kühl et al., 2021) was used to simulate the mutations on the viruses.

Two additional datasets were built to further investigate the relationship between virus
abundance and depth of sequencing. In this case, datasets of 20M total paired-end reads (150
bp) containing at most 3% of viral reads (600K reads) from the viruses with the shortest (Cherry
Virus A, CVA) and the longest (Little Cherry Virus 1, LChV-1) genomes from the Pavium panel-I
were surveyed (Cva and Lchv1 datatsets). Subsets containing 0.05, 0.1, 0.5, 1, 5, 10% of such
3% of representation of the viral reads defined above were generated. For example, a 20M total
read set with 10% of 3% viral reads contains 0.1 x 0.03 x 20M = 60K viral reads, while at 0.5%
of 3% viral abundance it contains 3K reads. The remaining reads consisted of background
sequences from plant, human, bacteria, and random sequences in the same proportion as listed
in Supplementary Table S2. To compensate for the decreasing number of reads, the difference
was replaced by bacterial reads. Each of these sets was in turn subsampled in a jackknife
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process to obtain 10 subsets at different depths of sequencing (100K, 500K, 1M, 2M, 3M, 4M,
5M, 6M, 7M, 8M, 9M, and 10M random reads).

NGS datasets from published reports

Several external datasets containing NGS data were surveyed and tested (Supplementary Table
S1). A total of 32 datasets were tested: ten datasets are part of a challenge for identifying
viruses in NGS data under different conditions (Tamisier et al., 2021; single-end (SE) or
paired-end (PE) semi-artificial short reads); one dataset is part of an analysis using a plant
transcriptome to identify viruses (Jo et al., 2016; RNAseq, SE reads); one dataset comes from
the study of the pepper virome (Jo et al., 2017; RNAseq, PE reads); one dataset is part of a
study of small RNAs produced by Dicer-like enzymes as a defense strategy of a plant when
infected by a virus (Barrero et al., 2017; sRNAseq, SE reads); 14 datasets come from a report
describing the use of Oxford Nanopore’s MinION to detect and genotype potato viruses
(Della-Bartola et al., 2020; RNAseq, ONT reads); one dataset intended to report the genome
sequence of a virus based on Oxford Nanopore (Leiva et al., 2020; DNA, ONT reads); three
datasets accounting for the identification of genomes of viruses affecting crops in sub-Saharan
Africa (Boykin et al., 2018; DNA, ONT reads); and one dataset from a study that demonstrates
the use of MinION sequencing to detect and characterize viruses infecting water yam plants
(Filloux et al., 2018; RNAseq, ONT reads). All the datasets contain a sum of 46 different viruses
to be detected and 62 cases (a “case” is defined as a “virus to be detected in a dataset”, for
example, there are two cases when virus A is present in dataset 1 and 2, or when virus A and
virus B are present in dataset 1), which were divided into three groups (some of the viruses are
included in more than one dataset): Viromock datasets V1-V10 (18 viruses; 15 cases),
SmallRNA datasets R1-R3 (21 viruses and one viroid; 22 cases), and Nanopore datasets
N1-N19 (10 viruses; 25 cases). All the viruses that must be detected in each group as well as
additional details of these datasets are listed in Supplementary Table S4.

Read assignment and viral panels

For read assignment (taxonomic classification of reads according to a panel of virus genomes),
two widely used software for metagenome exploration were tested, namely Kraken2 (Wood et
al., 2019) and Centrifuge (Kim et al., 2016), which are the fastest and more sensible algorithms
according to a benchmark previously published (Miossec et al., 2020). Minimap2, a classical
algorithm used to compare local read alignment (Li H., 2018) was also tested in the read
assignment process. All software was run with default parameters, except Kraken2 whose
database was built by lowering the default parameter k (kmer length) from 35 to 31 to increase
its sensitivity.

For all the dataset groups (Supplementary Table S1), ad hoc viral panels were built in order to
set the proper databases required by each software. In the case of both the field samples
(SD/SS-L1, SD/SS-L2, SD/SS-S1, SD/SS-S2) and simulated datasets (Synab, Synhom, Mut,
Cva, Lchv1), the analysis was carried out using 11 viruses which affect Prunus sp., some of
which were previously reported in Chile: Apple chlorotic leaf spot virus (ACLSV), Apple mosaic
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virus (ApMV), Cherry green ring mottle virus (CGRMV), Cherry necrotic rusty mottle virus
(CNRMV), Cherry virus A (CVA), Little cherry virus 1 (LChV-1), Plum bark necrosis stem
pitting-associated virus (PBNSPaV), Prune dwarf virus (PDV), Prunus necrotic ringspot virus
(PNRSV) and Plum pox virus (PPV) (Fiore et al., 2016), and absent such as Little cherry virus 2
(LChV-2). This set of viruses was called “Pavium panel-I” and the respective database included
reference sequences from NCBI (Supplementary Table S3). Additionally, an extended database
of this panel was built by incorporating the different isolates of the 11 viruses. A total of 1,011
sequences were obtained from NCBI (including the original 11 reference sequences) using all
sequences under defined taxID and keeping only complete genomes, which were clustered with
CD-HIT (Fu et al., 2012). Using the requisite of 90% sequence identity, 139 clusters were
obtained, whose representative sequences became the Pavium panel-II (Supplementary Table
S5). Although a lower sequence identity can account for the same virus species, the rationale of
this requirement is just to identify virus species considering the possible sequence differences,
which is not affordable when using only reference sequences. The use of 90% of sequence
identity comes from the mutation simulation analysis (see Results), which is a proper trade-off
between incorporating more virus isolates into the panel and not including all the sequences.

Regarding the external published datasets, viral panels and the respective reference databases
were built for each group according to the viruses that must be detected in each of them
(Supplementary Table S4). Therefore, the panels Viromock (18 viruses: BPEV, BSV, BYDV,
CMV, CTV, CVEV, EMDV, GRBaV, GRLaV2, GRSPaV, GRVFV, LChV-1, PBNSPaV, PepMV,
PFBV, PiVB, PVY, and TSWV), SmallRNA (21 viruses: AGCaV, ALPV, ASGV, ASPV, BPEV,
CLCuV, CYVMV, GalLV, GFkV, GLRaV-3, GRSPaV, GVB, PepLCBV, PepLCVB, PeSV, PrVT,
ToLCBDB, ToLCGV, ToLCJoV, ToLCRnV, and TVCV) and Nanopore (10 viruses: CMV, DBV,
EACMV, PLRV, PVS, PVX, PVY, SLCMV, YCNMV, and YMMV) were created. In the case of the
Viromock datasets, the viruses present in the datasets V11-V18 were included in the panel, but
the datasets were not surveyed since they were generated for identification of viral isolates and
did not contain background sequences.

Viral genome assembly coverage (VGAC)

Reads assigned to a viral reference sequence were de novo assembled. SPAdes (Bankevich et
al., 2012) was used to perform the assembly on Illumina reads (in ‘--sc’ mode and with ‘--careful’
option), whereas Canu (Koren et al., 2017) was used to assemble Oxford Nanopore reads. In
either case, contigs obtained in the assembly process were then remapped to the respective
reference genome. In this case, the mapping was performed using Minimap2 (with ‘-map-ont’
option to map contigs), and the genome coverage (percentage of the reference genome that is
covered by the assembled contigs) was calculated by SAMtools/BCFtools (Danecek et al.,
2021), with the following commands:

$ minimap2 -ax map-ont reference_genome.fasta contigs.fastq -o aligned_contigs.sam
$ samtools view -bh -o aligned_contigs.bam aligned_contigs.sam
$ samtools coverage aligned_contigs.bam
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And the VGAC was calculated as:

𝑉𝐺𝐴𝐶 = 𝑖

𝑛

∑𝐶𝐵
𝑖

𝑖

𝑛

∑𝑆𝐿
𝑖

where, CBi is the number of covered bases with depth ≥ 1 for the segment i of the virus, and SLi
is the length of the segment i of the virus (most of the viruses contain only one genome
segment, so n = 1 in these cases). Thus, the VGAC is a value that ranges between 0 and 1 (and
can also be expressed as percentage).

Replicase identification

Consensus regions were determined from mapped contigs onto the reference genome of the
virus using SAMtools/BCFtools. These consensus regions were calculated as follows:

$ samtools mpileup -uf reference_genome.fasta -o mpile.vcf aligned_contigs.bam
$ bcftools call -c --ploidy 1 -o call_mpile.vcf mpile.vcf
$ vcfutils.pl vcf2fq call_mpile.vcf > consensus.fastq

Each consensus region was compared against a repository of protein sequences related to a
virus replication (e.g. replicase or polymerase). This repository was built from RVDB-prot
(version 23.0, 2021-12; Bigot et al., 2020) and contains 17,708 records. To build this repository,
RVDB-prot was filtered using terms accounting for replicase or polymerase activity. The terms
searched for were: ”replicase”, “RNA dependent RNA polymerase” (RdRp), “RdRp”, “RNA
dependent DNA polymerase” (RdDp), “RdDp”, and “polymerase”, which allowed for recovering
13,576 sequences. In addition, the term “reverse transcriptase” (which is a synonym of “RdDp”)
was searched, producing 59,525 records. In this case, records belonging to “homo”, “human”,
“hepatitis”, and “hiv” were filtered out, remaining 4,114 sequences, which were incorporated into
our repository. In the course of evaluating the different panels, some of the virus sequences did
not account for the presence of a coding sequence related to replicase or polymerase activities.
However, all these cases were manually inspected and found to encode in fact a protein either
with a name containing none of the terms searched above, being absent in RVDB-prot or being
part of a polyprotein. Finally, all of them were incorporated into our viral replicase protein
repository.

The comparison of the consensus regions was performed using Diamond (Buchfink et al., 2021)
with its blastx module. The resulting hits were then filtered by similarity (80 or 90%) and length
of alignment (80 or 90%). At the 80/80 schema, a replicase was said to be identified in the
respective consensus region if it contained 80% similarity and 80% sequence alignment (90/90
represents a more stringent schema).
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Overall performance on external datasets

In order to estimate the performance of the different stages of the pipeline on the external
datasets, several measures were calculated: sensitivity, specificity, precision, accuracy, and
false discovery rate (FDR). These measures were determined as follows:

, , , ,𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝑇𝑁+𝐹𝑃 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

,𝐹𝐷𝑅 = 𝐹𝑃
𝑇𝑃+𝐹𝑃

where TP (true positives) is the number of cases that were detected that must be detected, FP
(false positives) is the number of cases that were detected that should have been not detected.
In this sense, for negatives, FN (false negatives) corresponds to the number of cases that were
not detected that should have been detected, and TN (true negatives) is the number of cases
that were not detected that in fact were not present. Since datasets are reported to have only
the viruses to be detected, FP and TN values were estimated from the rest of viruses of the
respective panel which should account for misassigned reads by at least one software. For
example, in the Viromock datasets there are 15 actual cases to be detected, but the read
assignment together yielded 51 additional cases detected, so a maximum of 51 TN cases were
assumed to exist in these datasets. The measures listed above were determined for read
assignment (the case is assumed to be a TP when existing at least one assigned read), and for
detection of replicases (the case is assumed to be a TP either when matching the 80/80 or the
90/90 schema). In the case of VGAC, the measures were calculated for the thresholds 0.1 (the
case is assumed to be a TP when VGAC ≥ 0.1), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.
Finally, in order to estimate the similarity between measures for VGAC and the detection of
replicases, the euclidean distance d between the measures for VGAC and for the schema 80/80
was determined as:

𝑑 𝑚( ) =
𝑠
∑ 𝑚

𝑉𝐺𝐴𝐶
𝑠

− 𝑚
80/80

𝑠
( )2

where m could be sensitivity, specificity, precision, accuracy, or FDR, and s runs on the three
software (Centrifuge, Kraken2 and Minimap2).

Reverse transcription-polymerase chain reaction (RT-PCR) analysis

The presence of the viral pathogens in each individual sample collected at shoot development
stage (SD-L1, SD-L2 and SD-S1 and SD-S2) and senescence stage (SS-L1, SS-L2 and SS-S1
and SS-S2) were confirmed by RT-PCR. The two-step RT-PCR for SD samples (Shoot
Development) was performed by Laboratorio de Virología, Universidad de Chile (N. Fiore,
personal communication, October 21, 2020), named here as “PCR external”. On the other hand,
in the case of samples obtained during the senescence stage (SS-L1, SS-L2 and SS-S1 and
SS-S2), the presence of the viral pathogens were confirmed by a two-step RT-PCR performed
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in this study. This method was optimized to detect the 11 viruses of the Pavium panel-I, and
results were recorded as “PCR internal”. Primers of this panel were exclusively designed for this
study based on a local viral sequences database and OligoPerfect™ designer software
(ThermoFisher Scientific) (Supplementary Table S6). The phytoene desaturase 1 (PDS1) is a
plant gene that exhibits constitutive expression and was used in our RT-PCR experiments as an
internal control for RNA extraction and reverse transcription. In addition, the 11purified
amplicons were used for positive controls to corroborate amplification of molecular targets of
appropriate size (Supplementary Figure S6 E).

First-strand cDNA synthesis was performed using 70 ng of total RNA. The reverse transcription
(RT) mix contained 200 units of recombinant Moloney Murine Leukemia Virus (MMLV) reverse
transcriptase (Promega), 20 units of RNAsin (Promega), 1 mM dNTPs, and 1 uM of random
hexamers (Promega). The reaction was performed at 20 uL final volume and was incubated at
37 ºC for 60 min followed by enzyme inactivation at 70 ºC for 5 min. The PCR mix (final volume
of 25 uL) contained 1 uL of the cDNA, 1X (2,5 uL) GoTaq G2 Flexi Buffer (Promega), 0.15 uM of
each primer (Supplementary Table S6), 3 mM MgCl2, 0.2 mM dNTPs, and 1.25 units of GoTaq
G2 Flexi DNA polymerase (Promega). Cycling conditions for all primer pairs consisted of initial
denaturation at 95 ºC for 2 min followed by 35 cycles at 95 ºC for 15 sec, 60 ºC for 30 sec, 72
ºC for 1 min and a final extension at 72 ºC for 5 min. PCR products were analyzed by gel
electrophoresis using 3% agarose in a 1X TBE buffer, and staining with 1:10.000 v/v SybrSafe
(Invitrogen Life Technologies).

RESULTS

Overview of  Viroscope

The Viroscope pipeline consists of two distinct steps for plant virus diagnosis based on NGS
data (Figure 1A). First, a rigorous data analysis step encompassing: (1) read assignment, (2) de
novo assembly of assigned reads, (3) reference mapping of assembled contigs, (4) genome
coverage calculation of mapped contigs, (5) consensus calling, and (6) replicase identification
in consensus sequences. In a second step, Viroscope detects pathogens by considering the
VGAC values obtained by three read assignment algorithms and the identification of replicases.
The validation of the pipeline was performed with three types of datasets: field samples from a
sweet cherry farm, simulated datasets, and publicly available datasets (including different library
preparation methods and sequencing technologies). The Viroscope results for field samples
were also validated using RT-PCR methods to compare and study diagnostic sensitivity
according to the different cutoff levels investigated. The Viroscope algorithm and the
experimental design of this study are shown in Figure 1B.

Read assignment in field samples

In order to assess the viral abundance in sweet cherry samples, read assignment was
performed using three different software, namely Centrifuge, Kraken2 and Minimap2. The goal
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of this study was not to evaluate the different software, but to incorporate more than one
perspective in the analysis since different algorithms could yield diverse results. Samples from
four cherry plants specimens (SD-L1, SD-L2, SD-S1 and SD-S2) collected at the shoot
development stage were sequenced using Illumina, yielding 17M-22M paired-end reads each
(Supplementary Table S1), and read-subsampling was performed to evaluate the relationship
between read assignment and depth of sequencing. The read assignment was carried out
using a reference database called “Pavium panel I” comprising 11 viruses, namely ACLSV,
ApMV, CGRMV, CNRMV, CVA, LChV-1, LChV-2, PBNSPaV, PDV, PNRSV and PPV (Fiore et
al., 2016).

According to the read assignment process, the number of mapped reads increased in regard to
the depth of sequencing in a linear fashion (Figure 2A and Supplementary Figure S1).
Differences were observed according to the bioinformatic tool used: Centrifuge and Kraken2
showed higher read assignment in relation to Minimap2. In addition, read assignment by only
one software was observed for the case of CGRMV in sample L1, whose reads were assigned
by Centrifuge but not by Kraken2 nor by Minimap2 (Figure 2A). Similar discrepancies were
obtained in the cases of ACLSV for SD-L1 (reads assigned only by Kraken2), ApMV for SD-L1
(by Centrifuge), LChV-1 for SD-L1 (by Kraken2), LChV-1 for SD-L2 (by Kraken2), ACLSV for
SD-S1 (by Centrifuge), ApMV for SD-S1 (by Centrifuge), and LChV-1 for SD-S1 (by Kraken2),
although with a relatively low number of reads (Supplementary Figure S1).

Viral genome assembly coverage (VGAC) in field samples

Inspection of read assignment by the different software and their relation with assembly
coverages at different depth of sequencing was carried out in order to evaluate and analyze
detection issues. This was performed to study cases of low abundance of reads or possible
misassignment. The detection of viruses was assessed through the VGAC, which accounts for a
full or partial viral genome recovery using NGS data. As shown in Figure 2B, the virus detection
was dependent on the sample and the abundance of viral sequences, for instance the cases
CNRMV for SD-L1 (VGAC = 1.0 at 1M reads), CGRMV for SD-S1 (VGAC ≈ 0.72 at 15M reads),
CNRMV for SD-S1 (VGAC ≈ 0.90 at 15M reads), PDV for SD-S1 (VGAC ≈ 0.60 at 15M reads),
CNRMV for SD-L2 (VGAC = 1.0 at 15M reads), CGRMV for SD-S2 (VGAC ≈ 0.10 at 15M
reads), and CNRMV for SD-S2 (VGAC ≈ 0.85 at 15M reads). In all the cases where only one
software was able to assign reads and VGAC resulted to be ≈ 0 (e.g. CGRMV for SD-L1)
(Supplementary Figure S2), the assigned reads could not assemble contigs, suggesting these
were spurious or misassigned reads.

Read assignment in simulated data

Depth of sequencing and the abundance of viral reads certainly influence the capability to
perform the virus detection. In order to study the relationship between sequencing coverage and
the VGAC, two synthetic NGS datasets with known viral composition were created for further
analysis. The first dataset contained reads from fiveviruses based on the mean viral distribution
of the field samples (Synab dataset) and the second one contained a homogeneous distribution
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of reads from Pavium panel-I, which are composed of 11 viruses (Synhom dataset). In order to
mimic real samples, both datasets were built so that they contained background sequences,
that is, they were contaminated with reads derived from human, plant, bacteria and random
sequences. In both cases, the total quantity of viral reads was limited to 3% of total reads as
shown in the distribution listed in Supplementary Table S2 and Supplementary Table S3, which
in turn is based on the average empirical distribution. When a homogeneous distribution was
used (synhom data in Figure 3), no differences in read assignment and VGAC amongst all
viruses was observed (see Supplementary Figure S3 for more details). As expected, higher
depth of sequencing resulted in higher read assignment consistent with what was seen in the
field samples. These results were independent of both the virus (e.g. length or number of
segments) and the assessed software, and no differences were observed regarding the VGAC
values either. Moreover, complete viruses were assembled even at the lowest depth of
sequencing (100K reads).

In the simulated data with empirical distribution (synab data in Figure 3), read assignment was
proportional to the depth of sequencing and to viral abundance. Viruses used in the simulated
data were CGRMV, CNRMV, CVA, PDV, and PNRSV (those with percentage > 0 in
Supplementary Table S3), so reads assigned to the LChV-1 genome were considered as a
misassignment. In fact, this virus showed no assembly (VGAC = 0) at each depth of
sequencing, confirming such a misassignment (Figure 3). These results are consistent with the
above observation that the VGAC was sensitive to both the depth of sequencing and the relative
abundance of the viral reads in the field samples (e.g. the cases for CGRMV and CNRMV).

Read assignment and VGAC in simulated mutation data

Further simulated datasets were generated so as to assess the tolerance of the different
software to viral mutation rates. Subsets of 10M paired reads sampled from a set of 20M reads
were used. At a 10% mutation rate, all the software were able to assign reads, and even at
20%, there was still a portion of an average ~2,900 out of 27,000 reads assigned to the viral
genomes (Figure 4 and Supplementary Figure S4). Read assignment was not dependent on the
viruses, which were homogeneously distributed in the simulated samples. Amongst the
algorithms assessed, Centrifuge outperformed in the read assignment process in general, which
was more evident at higher mutation rates. In this case, Minimap2 resulted to be the least
tolerant tool towards mutations. Although an increase in the mutation rate appeared to have
more impact on the read assignment, at a 20% mutation rate the number of reads was still
sufficient to assemble contigs at least with Centrifuge and Kraken2 (VGAC ≈ 1).

Assembly coverage, viral abundance and replicase identification

In order to explore beyond the presence of reads and to examine the biological relevance of the
assemblies obtained at different sequencing depths and viral abundance, the VGAC was
analyzed in terms of the presence of replicases in the assembled contigs. This was performed
to understand whether the assembled portion of the virus could encode a relevant biological
function to support the use of specific VGAC cutoffs for virus detection.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 14, 2022. ; https://doi.org/10.1101/2022.09.14.507814doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.507814


A series of simulated samples containing an increasing amount of viral reads with at most 3% of
the total reads were generated (see Materials and Methods). In this case, only the viruses with
the shortest and the longest genomes in the Pavium panel-I were surveyed (i.e. CVA and
LChV-1, respectively). Simulated data (Cva and Lchv1 datasets) showed that all assessed
software reached similar levels of VGAC values. At the lowest depth of sequencing (100K),
virus abundance was critical since VGAC turned out to be relevant only from 5% (CVA and
LChV-1) of the viral read composition (Figure 5). However, the VGAC value increased at lower
viral abundance as the depth of sequencing increased. At the lowest viral abundance (0.05%),
the maximum VGAC values obtained at 10M total reads were 0.97 in the case of CVA and 0.89
for LChV-1. In extreme scenarios (e.g. 0.05% of total viral reads) the depth of sequencing
became critical. Thus, at 10M total reads, the number of viral reads was ~150 (enough to
assemble the longest virus), but at 100K total reads, this number was ~1.5 reads, making the
assembly of a viral genome not possible (thus VGAC ≈ 0).

Further, a set of 17,708 viral proteins related to replication (e.g. replicase or polymerase)
obtained from RVDB-prot (Bigot et al. 2020) was used to identify replicases in the assembled
contigs. A minimum of 90% alignment length and 90% similarity between the assemblies and
the set of replicases yielded a high correlation (R2 > 0.9) between the VGAC and the presence
of replicases, which is expected as long as a full length virus can be assembled (Figure 5).
When lowering the parameters to 80% alignment length and 80% similarity, there was a subtle
increase in the recovery of replicases at lower depth of sequencing and lower viral abundance.
At these parameters, correlation between the VGAC and the presence of replicases still
remained high (R2 > 0.9).

Altogether, according to the simulations and independently of the software used, the
identification of replicases began at a VGAC ≈ 0.3 for the lowest depth of sequencing case
(100K total reads) or at VGAC ≈ 0.4 for the lowest viral abundance case (0.05%), which
represents basically a minimum of 15 viral reads for CVA or 30 reads for LChV-1 required for
being able to identify a replicase in some of the simulations (Figure 5). Coincidentally, the
LChV-1 genome is 16,934 bp length and CVA is 7,383 bp length, which reflects the requirement
of twice the number of reads for the identification.

Additionally, the presence of replicases was evaluated for the simulated mutation datasets,
where the identification was expected to be affected according to the mutation rate since
changes in the nucleotide sequence may alter the encoded protein. The identification of
replicases was severely hampered over a 15% mutation rate (Figure 4 and Supplementary
Figure S4), but a VGAC of 1 was still obtained, and even at 20% using Centrifuge and Kraken2.
These results were the basis for establishing a 90% sequence identity threshold for clustering
and to incorporate different isolates in a reference database used in the read assignment
process (i.e. for building the Pavium panel-II).
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Performance on external published datasets

External datasets were used in order to challenge the methodology proposed in this study. Ten
illumina datasets (V1-V10) comprising a panel of 18 viruses published by Tamisier et al. 2021
were used (Viromock datasets; Supplementary Table S4). In addition, three small RNA
sequencing datasets (R1-R3) published by Barrero et al. 2017 and Jo et al. 2016, 2017
(SmallRNA datasets; Supplementary Table S4) were included in this analysis by generating a
panel of 21 viruses.

According to the performance on Viromock datasets (Table 1 and Supplementary Table S7), the
pipeline is able to achieve the detection of viral reads, to assemble a partial or full viral genome,
and to detect replicases in 14 out of 15 cases under the criterion of detection with at least
twoout of three software (93% in both schemas 80/80 and 90/90). The case V3-GRLaV2 did not
meet the criterion since replicase detection was possible in the assembly from reads assigned
only by one software (Centrifuge, in both schemas) due to lower VGAC values. In the same
dataset the cases V3-GRSPaV and V3-GRVFV failed the detection with the reads assigned by
Minimap2. In those three cases the VGAC values were less than 0.2, but replicases were
detected above this value.

Regarding SmallRNA datasets (Table 1 and Supplementary Table S8), four cases could
complete the pipeline (read-assignment, assembly, pseudo-annotation) with at least two out of
three software (cases R1-PepLCBV, R1-BPEV, R1-GalLV, and R1-TVCV). The case of BPEV
showed a low number of reads but enough to assemble a region to find a replicase (Centrifuge
and Kraken2). The GalLV case can be considered artifactual since the actual replicase is
encoded in the first 6,000 bp of the 5’-region of the reference genome (one segment of 8,659 bp
length), but a shorter replicase was found at the end of the 3’-region (hence it was detected at
very low VGAC values). In the case of TVCV, low VGAC values were obtained, however a
contig could be assembled around position 4,300 bp of the reference genome (which is 7,767
bp length) containing the replicase. In the CLCuV case, there was a high number of reads,
however they could only assemble a contig that maps in the central region of the reference
genome, and the replicase in this virus is at the 3'-region (hence no replicases detected). A
similar issue was observed in the case CYVMV, where no contig could be assembled for the
3'-region of the reference genome where the replicase is located. In the PepLCVB and
ToLCBDB cases, despite the relatively high VGAC values, no replicases were found. This was
expected since betasatellite viruses have been reported to depend entirely on other viruses for
replication, movement, and transmission (Shafiq et al., 2020). In the ToLCJoV case, the pipeline
could be completed only with the 80/80 schema, but it could be considered artifactual since the
actual replicase of the virus is in the 3'-region, which could not be assembled (the assembled
contigs map to the 5'-half of the reference genome, which contains a replicase encoded in the
3'-to-5' direction). In the ToLCRnV case, the pipeline could detect replicases only at the 80/80
schema for Centrifuge and Minimap2. This is because the consensus contig for reads assigned
by Centrifuge or Minimap2 was longer than for reads assigned by Kraken2, thus contained a
replicase.
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No detection could be done in the datasets R2 or R3 despite reads being assigned with all
software in the former dataset, and only with Centrifuge in the latter dataset. All these cases
were manually inspected verifying that either assembly was not possible (e.g. due to length of
reads) or, due to reads being localized in a region of the reference genome that did not contain
at least 80% of a replicase (e.g. the case R2-ASGV for Minimap2 depicted in Supplementary
Figure S5).

Additionally, Nanopore sequencing datasets composed of 19 samples (N1-N19) published by
Boykin et al. 2018, Della-Bartola et al. 2020, Filloux et al. 2018, and Leiva et al. 2020 (Nanopore
datasets; Supplementary Table S4) were also subjected to the pipeline, including 10 target
viruses for detection. According to the performance on these datasets (Table 1 and
Supplementary Table S9), the pipeline was able to assign viral reads, to assemble a partial or
full viral genome, and to identify replicases in 24 out of 25 cases (96%) using the criterion of two
out of three software and both schemas (80/80 and 90/90), and 1 case with no read assignment
(case N19-DBV). All the cases were also manually inspected, finding that some of the
replicases were detected in assemblies with lower VGAC values. For example, in the cases
N3-PVY (VGAC ≈ 0.5-0.7), N11-PVY (VGAC ≈ 0.5), and N12-PLRV (VGAC ≈ 0.3) the 3'-regions
of the viruses could be assembled, which are the regions that encode their respective
replicases; in the case N15-SLCMV (a 2-segments virus), reads assigned by Kraken2 could
assemble one of the segments of the virus (thus VGAC ≈ 0.5), which resulted to be the one
encoding the replicase; in the case N16-CMV (a 2-segments virus), reads assigned by
Minimap2 could assemble both segments of the virus (thus VGAC > 0.9), and reads assigned
by Centrifuge and Kraken2 could assemble one segment (VGAC ≈ 0.5), nonetheless the three
assemblies encoded the replicase (in this case, the number of reads was less than 60, although
with ~3,200 bp length on average; Supplementary Table S4); finally, in the case N17-EACMV (a
2-segments virus), despite the number of reads assigned by Minimap2, one segment could be
assembled (the one lacking the replicase; thus VGAC ≈ 0.5). The Dataset N19 was further
investigated to confirm the lack of reads assigned to DBV. Although the dataset was reported to
have 156 ONT reads (Filloux et al., 2018), it was not possible to assign them with the 3
software, nor additionally when using Diamond and Blast tools.

Overall performance on external datasets is presented in Table 2 (Supplementary Table S8).
Since the datasets are reported to have only the viruses that can be detected (true positives),
true negative and false positive cases were estimated from the rest of viruses of the respective
panel which account for misassigned reads by at least one software (see Material and
Methods). The three software performed with high sensitivity at the read assignment level
(average > 0.9), but specificity was disparate amongst them with Minimap2 reaching the highest
degree (average = 0.82 in comparison with 0.26-0.36 reached by the other two software).
Similar patterns, where Minimap2 outperformed Centrifuge and Kraken2, were obtained for
precision (0.81 vs 0.55-0.56) and accuracy (0.85 vs 0.61-0.60). This was in agreement with the
FDR values, where the pattern was the opposite, wherein Minimap2 showed the lowest rate
(0.19 vs 0.45-0.44). Regarding the metrics for VGAC, sensitivity and accuracy values tended to
be lower as long as cutoffs became more stringent, meanwhile specificity, precision, and FDR
tended to improve reaching the maximal (1) and the minimal values (0), respectively. In relation
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to the detection of replicases, both schemas (80/80 and 90/90) appeared to have identical
measure values in the Viromock and Nanopore datasets, while the use of either schemas
appeared to have more impact in the SmallRNA datasets (for instance, the average sensitivity
at the 80/80 schema was 0.21, while in the 90/90 schema, 0.14). Altogether, these measures
provide additional rationale for the high performance of the Viromock (Illumina datasets) and
Nanopore datasets (Table 2), in which the pipeline could completely identify more than 93% of
the tested cases.

From these observations, the 80/80 schema appeared to be more suitable for the detection of
replicases since it allows obtaining higher performance while still being composed of stringent
thresholds (80% similarity and 80% alignment length). In that sense, a comparison of the
measures obtained under these thresholds with the measures for VGAC at the different cutoffs,
was carried out so as to find the cutoff at which similar performance measures are obtained with
such a schema, accounting for the minimum VGAC in which replicases could be identified. To
identify this VGAC cutoff, the euclidean distance between the measures (sensitivity, specificity,
accuracy, precision, and FDR) was calculated (see Material and Methods). A minimal of the
distances was found at VGAC ≥ 0.2 for Viromock datasets, VGAC ≥ 0.4 for SmallRNA datasets,
VGAC ≥ 0.1 for Nanopore datasets, and VGAC ≥ 0.3 taking into account all the datasets (Figure
6).

Comparison of Viroscope pipeline and RT-PCR analysis

All sweet cherry samples used in this study were tested by external and internal RT-PCR
methods (see Materials and Methods) to confirm the presence or absence of the 11 viruses
previously evaluated by Illlumina sequencing (Table 3 and Supplementary Figure S6).
Additionally, seasonal effects were also assessed. Samples for the same plant specimens were
collected at spring (SD-L1, SD-L2, SD-S1, and SD-S2, from the shoot development stage) and
at the end of summer (SS-L1, SS-L2, SS-S1, and SS-S2, from the senescence stage). A total of
88 analyses by RT-PCR (external and internal) account for the detection of the 11 viruses. The
summary of the results including the internal PCR, the external PCR, and the virus detection
through Viroscope is shown in Table 3. The diagnosis performed by Viroscope used the
following criteria based on the results aforementioned: a VGAC ≥ 0.3 for a positive virus
detection; a VGAC between 0.1 and 0.3 for a positive virus detection only when a replicase can
be identified; a negative detection for samples with VGAC < 0.1; finally a requisite of agreement
between two of the three software used. In this case, the Pavium panel-II was used as a
reference database (see Materials and Methods). The detailed results of the diagnosis
conducted by the pipeline are depicted in Figure 7 (shoot development stage, SD) and Figure 8
(senescence stage, SS).

High consistency between NGS-based detection and RT-PCR analyses was observed, where
82 out of 88 (93.2%) matches were obtained. The inconsistencies observed between the
RT-PCR analyses were detected only for sample S2, which was found positive for the CNRMV
in the SD stage by the external PCR and negative in SS for the internal PCR, which was also
the case for PDV. Regarding the Viroscope pipeline, CNRMV resulted in a positive case for both
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samples, that is, independently of the season conditions. On the other hand, the diagnosis by
the pipeline agreed with each RT-PCR test in the case of PDV, accounting for the seasonality of
the sampling. Contrasting the RT-PCR results obtained in the SD stage and the SS stage, some
discrepancies were found (2 out of 44 cases; 4.5%): CNRMV in sample SS-S2 and PDV in
sample SS-S2. These results suggest that sampling season affects the sensitivity of diagnosis,
particularly having increased sensitivity in the shoot development stage.

Noticeably, the diagnosis by Viroscope appeared to be more sensible than RT-PCR methods
(internal and external), since samples SD-L1, SD-S1 and SD-S2 resulted to be positive for
ApMV (Figure 7), while none of the laboratories were able to detect it (Table 3). This was more
evident considering the number of reads assigned by at least two of the three software, which
ranged from 10K to 20K reads in the SD-L1 and SD-S2 samples, and 1.5K to 2.5K reads in the
SD-S1 sample. Replicases were also identified by two of the three algorithms with VGAC
between 0.1 and 0.3. Furthermore, the diagnosis for CNRMV in sample SS-S2 was positive
according to Viroscope (VGAC = 1 and with identification of replicases), whereas for PDV
(sample SS-S1) and PNRSV (sample SS-L2) were negative (VGAC = 0 in both cases).
Although the number of reads for PNRSV (sample SS-L2) reached over 4K reads assigned by
two out of the three algorithms, they were not able to assemble a contig with a VGAC over 0.1,
nor that contained a replicase (Supplementary Figura S5). The specific cases of CNRMV, PDV
and PNRSV point towards a difference of sensitivity or issues of amplification likely due
mismatches in the primer binding region (false negative), or cross-contamination during sample
as well as reagents manipulation (false positive). In fact, for PDV or PNRSV, the inspection of
sequences showed that the annealing regions contained at least one mismatch to the primers
used.

Comparing only the seasonal differences in diagnosis obtained through Viroscope, 6 cases
were detected in SD and not in SS: ApMV in L1, L2 and S1; PDV in S1 and S2, and PNRSV in
L2. For all these cases VGAC was below the minimum threshold and assigned reads dropped
dramatically between both seasons. Furthermore, in the cases of SD-S1 and SD-S2 for PDV
and SD-L2 for PNRSV were diagnosed as positive due to VGAC > 0.3, but no replicases were
identified. These results again show that the shoot development stage enables increased
sensitivity for virus detection using NGS-based diagnosis.

Lastly, it is important to highlight the use of different viral panels in the diagnosis process.
According to the results described so far, VGAC values were not enough to diagnose LChV-1 as
positive in sample SD-S2 when using the Pavium panel-I (Supplementary Figure S2), whereas
appearing positive when using Pavium panel-II (Figure 7). The analysis of sequences revealed
that the reference genome of LChV-1 in the first panel shares a 76% of sequence identity with
the respective reference genome selected in the second panel, which explains the differences in
the diagnosis.
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Web Application

The pipeline described in this study was implemented as a web application, Viroscope, to
enable diagnosis of viruses on-demand from NGS data (accessible at https://www.viroscope.io).
Users submit NGS data and then create an analysis instance for the pipeline to work and
handle such data. Next, a predefined viral panel is selected to perform virus detection. Once
finished, the pipeline outputs graphical results composed of a positivity report and taxonomical
profile accounting for the abundance of each virus of the panel in the sample (Figure 9). The
identification of the viruses is based on a read assignment by at least two of three algorithms
(Kraken2, Centrifuge and Minimap2) and detection cutoff parameters are provided for the user
to define, although suggestions are made according to the results obtained in this study. Three
possible outcomes can be obtained from the pipeline: i) a categorically positive diagnosis which
is defined when Viroscope was able to detect either the presence of a replicase or a VGAC over
the upper cutoff defined by the user, ii) a categorically negative result which implies that read
assignment was below the lower threshold of VGAC required for virus detection and with
absence of replicase; and iii) a positive* (positive depicting an asterisk) result which establishes
that read assignment resulted in a VGAC sufficient for virus detection but lower than what is
required to attribute biological functionality. We surmise that lack of evidence for viral replication
in these cases requires confirmation by other traditional methods  to ensure diagnostic certainty.

DISCUSSION

In the last two decades, NGS methods have become a reliable tool for plant virus diagnostics
including managing disease risk, emergence, and the adoption of novel phytosanitary rules
(Adams et al., 2018; Gauthier et al., 2022). Due to its untargeted nature, NGS is capable of
detecting multiple viruses (known as well as emergent ones) in infected material also when
viruses are present in very low concentrations (Hanafi et al., 2022). In addition, it has proved to
be a major advance for crops, imported plants and germplasm in which disease symptoms are
absent, unspecific or only triggered by multiple viruses (Massart et al., 2017; Mehetre et al.,
2021). In face of a changing farming paradigm, more efforts on NGS data analysis and its
accurate interpretation must be established.

In this work, we developed Viroscope, a NGS data pipeline for virus diagnosis in plants that
uses the VGAC and replicase identification to improve virus detection. One of the main
challenges of virus diagnosis from NGS data is to define the virus viral presence when faced
with a limiting amount of viral reads. Further, detection of a pathogen does not necessarily imply
ongoing infection (Kiselev et al., 2020). We surmise that detection of viral sequences along with
their capability to encode fundamental biological functions, such as replication, can improve
certainty of detection by evaluating a functional aspect of virus biology.

The tests to evaluate metrics showed that VGAC is a more robust measure than read
assignment for virus detection. Read assignment can be prone to generate false positives in
circumstances where the host has sequences derived from viral origin, such as endogenous
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viral elements (Massart et al., 2019). Furthermore, the number of reads are directly influenced
by sequencing depth and library preparation bias, and direct comparisons between datasets
require normalization. In contrast, the use of VGAC is a better unifying measure despite the
sequencing technology used, as depth of sequencing can differ in several orders of magnitude
between platforms and laboratories, whilst VGAC is the result of an assembly, accounting for
read length as well. VGAC rather than sequencing coverage demonstrated to be a better metric,
as the latter can exhibit artificially high numbers when reads cover only a small portion of the
genome or when contigs correspond to different viral variants, which can also exacerbate
detection.

In turn, replicase identification from the assembled contigs enabled investigating the biological
implication of different VGAC thresholds. Defining cutoffs for virus detection is extremely
challenging and involves selecting a value that maximizes both sensitivity and specificity. We
observed that replicases could be consistently identified only over a VGAC of 0.3, allowing us to
define this threshold empirically as a level that enables a biological interpretation of the metric.
Additionally, using replicase presence (or any other essential viral function) is already an
excellent criteria for virus diagnosis in cases of even lower VGAC values.

Validation against external datasets shows that Viroscope has high diagnostic sensitivity and
specificity for total RNA sequencing data. In contrast, small RNA data showed poor
performance for virus detection with VGAC. Additionally, Nanopore sequencing data was used
to evaluate if our pipeline is applicable to long-reads, where a 96% of agreement was obtained
in comparison with the original publications (Boykin et al., 2018; Della-Bartola et al., 2020;
Filloux et al., 2018; and Leiva et al., 2020). Long-read sequencing platforms have an advantage
over short-read sequencing for VGAC as, regardless of the lower base calling quality, longer
reads enable the complete reconstruction of a viral genome with fewer reads (e.g. CMV in
sample N16). The overall performance is in agreement with the type of dataset analyzed, that is,
the use of small RNA data appears to have a major impact on the sensitivity and the accuracy
when VGAC or the replicase identification are concerned. This also reflects the fact that a
greater VGAC cutoff is needed to obtain replicases, in contrast to Nanopore or the Illumina total
RNA reads for which lower cutoffs were reported. Certainly, VGAC values are affected by the
ability of the pipeline to assemble viruses (with the correct read assignment), hence the higher
cutoffs in that type of data. In any event, the use of the VGAC allows to reach the maximum
specificity and the minimum FDR even with VGAC ≥ 0.1, accounting for the elimination of false
positives and false negatives from the minimum VGAC cutoff tested, being particularly evident in
the performance for the Viromock and Nanopore datasets. Taking into account only total RNA
sequencing data (Viromock and Nanopore datasets), a VGAC cutoff of ≥ 0.1 results in an
average sensitivity of 96%, a specificity 99% and a FDR of 1%, which shows that Viroscope
provides reliable detection.

Analysis of field samples by sequencing and RT-PCR showed that NGS-based virus diagnosis
is more sensitive than RT-PCR and that seasonality of sampling influences viral abundance.
Comparisons between RT-PCR panels showed that for both spring and summer samples, virus
detection by RT-PCR had a 93.2% correspondence to NGS-based detection using Viroscope,
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where differences were due to false negative cases and false positive cases of detection by
RT-PCR. Additionally, problems with PCR design bias were evident in one case in which
primers contained mismatches to a viral variant. Further, the seasonality of sampling affected
the capability to detect 6 viruses in summer through NGS. However, all viruses that could not be
detected (ApMV, PDV, PNRSV) were Illarviruses, a genus named after exhibiting lability and
described to be thermolabile (Hull, 2004). The cases of PDV and PNRSV are particularly
interesting since no replicases were identified in the SD stage. For PNRSV, an approximate of
4K reads were assigned, but this did not produce an assembly with sufficient VGAC to be
diagnosed as positive. Reads were mapped to a specific region in the 5’ end of one of the RNA
segments of the viral genome. Possible explanations for this include endogenous viral element,
an overcome infection, or host sequences being mapped to the virus. Nevertheless, this case
and the ApMV cases emphasize the need to better understand viral physiology and the use of
essential viral functions during detection for a certain diagnosis.

Viroscope uses a predefined panel of viral targets to perform diagnosis. This is due to the
intended use of Viroscope as a viral diagnosis pipeline for phytosanitary detection rather than
for discovery. We found that compiling a database of viral sequences using published reference
sequences was insufficient to provide identification, as databases are generally biased toward
submissions from certain geographical locations or particular pathogens. One such case
occurred in the detection of LChV-1, as it could be identified by both PCR panels but not
through Viroscope (using Pavium panel-I). The inclusion of other viral isolates to generate a
clustered database (Pavium panel-II) enabled the successful identification through the pipeline.
Despite this improvement in the diagnosis (if read assignment is concerned), more misassigned
cases could be obtained as a side effect. The pipeline resulted to be sufficiently robust when
VGAC and/or the identification of replicases are taken into account as misassigned reads were
unable to assemble contigs. This finding is of paramount importance when considering
performing the diagnosis in particular geographic contexts since viral isolates could be endemic
or affect specific plant varieties, thus the panel construction should consider these distinctive
features. Moreover, the viral variants can be dissimilar enough to have an impact on the
diagnosis. Noticeably, the isolate included in the Pavium panel-II that allowed the identification
of LChV-1 shares a 76% of sequence identity with the respective reference genome present in
the Pavium panel-I.

NGS is now considered as the gold standard in molecular diagnostics of viral infections since it
is a universal technique which is more precise at profiling pathogens (Rott et al., 2017; Massart
et al., 2019; Kiselev et al., 2020; Soltani et al., 2021; Ruiz-García et al., 2021; Mehetre et al.,
2021). As we have discussed in this work, plant NGS-based virus diagnostics is still facing many
challenges related to both the analysis (standardization of metrics, harmonization of cutoff
thresholds, biological interpretation), and at the regulatory-level implementation (detection of
unregulated pathogens, ease-of-use and adoption). This work addresses some of the issues
regarding the bioinformatics analysis and interpretation which we believe can aid in the ongoing
discussion about how to implement these methods in real-world scenarios. Substantial research
is still required to evaluate biological aspects of virus biology, particularly in cases of low
abundance and low VGAC. Functional annotation may aid in increasing certainty of diagnosis in
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virus detection in these cases of low abundance, due to its direct implication in viral physiology
and potential infectivity. In agreement with many scientific researchers in the field (Rott et al.,
2017; Adams, 2018; Jones and Naidu, 2019; Gauthier et al., 2019; Mehetre et al., 2021;
Villamor et al. 2021), we endorse that plant pathogen molecular diagnostics by NGS is
becoming a more cost-effective and scalable solution with new accessible sequencing
technologies already available to perform precise diagnosis. The enormous benefit of NGS
applied to plant health is indispensable to ensure reliable diagnosis of known and unknown
pathogens and will contribute to more sustainable agriculture and safer international plant trade
practices.
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Figure 1. Overview of Viroscope, the data analysis pipeline and experimental validation strategy.
A. Overview of Viroscope. Viroscope is a total RNA NGS data analysis pipeline that enables accurate
viral detection by performing read assignment, de novo assembly with reference-based mapping and
pseudo-annotation to obtain VGAC metrics and identification of viral replicases. These metrics inform the
interpretation of viral presence from NGS reads to provide accurate diagnosis, contributing to the
implementation of NGS for plant viral diagnosis in real-world applications. B. The Viroscope pipeline and
experimental validation strategy. Viroscope performs read assignment from total RNA NGS (Illumina or
Nanopore) reads using 3 read assignment software against a curated database of target viruses. Then,
mapped reads are collected and used for de novo assembly either using SPAdes or Canu (for Illumina
and Nanopore reads, respectively). Assembled contigs are used to perform reference-based mapping to
obtain a consensus of mapped contigs to calculate VGAC. Then, the pipeline searches for the presence
of replicases using Diamond using the RVDB-prot database. Finally these metrics are used for
interpretation of viral presence according to specific cutoffs for diagnosis. Four experimental sets were
used to validate the pipeline, sweet cherry field samples, a simulated dataset, a mutation dataset and
external published datasets.
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Figure 2. Read assignment and assembly coverage with NGS data from field samples
Ten subsets of randomly selected reads from sequencing data for field samples of cherry plants at the
shoot development stage (SD-L1, SD-L2, SD-S1, and SD-S2) were built at different depths of
sequencing. Three bioinformatic algorithms were tested, namely Centrifuge, Kraken2, and Minimap2. All
the dots represent the average of 10 measures. VGAC was calculated according to Materials and
Methods and with the reads assigned by the different algorithms at the respective depth of sequencing. A.
Read assignment at different depths of sequencing (note the different scales of the ordinates) using the
Pavium panel-I. B. VGAC obtained from the assembly of assigned reads (ranges from 0 to 1). Only the
cases for CGRMV, CNRMV, and PDV are presented, but full versions containing all of the target viruses
are depicted in Supplementary Figure S1 and Supplementary Figure S2. Average values (dots) as well as
standard deviations are listed in Supplementary Table S11.
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Figure 3. Read assignment and coverage in synthetic data
Synthetic NGS data were generated to simulate actual samples. The Pavium panel-I comprising 11 viral
genomes was used to build samples containing 3% of viral reads from a 20 million paired-end reads.
Samples were built with both a homogeneous distribution of viral reads (synhom) and based on an
average distribution of actual samples (synab) (Supplementary Table S2 and Supplementary Table S3). In
all cases, 10 subsets of randomly selected reads were built at different depths of sequencing. Assigned
reads are shown in the two first column charts and VGAC is shown in the last two column charts. A full
version containing all of the target viruses is depicted in Supplementary Figure S3. Average values (dots)
as well as standard deviations are listed in Supplementary Table S11.
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Figure 4. Simulated mutations in synthetic NGS data
Mutated virus genomes were simulated to generate synthetic NGS dataset to evaluate read assignment
tolerance to viral mutated variants. Each viral genome of the Pavium panel-I was randomly mutated at the
different rates indicated (5, 10, 15, 20 and 25%) at the far right of each chart. Albeit 20 million reads were
generated for each mutation rate, a 10x subsampling of 10 million reads was performed, so dots
represent a mean number of assigned reads. The distribution of viral reads in this case was
homogeneous. The cases of viruses CGRMV, CNRMV, and PDV are shown, but a full version of this
figure is depicted in Supplementary Figure S4. Dotted red line: expected number of assigned (mapped)
reads according to the distribution of reads. Average values (dots) as well as standard deviations are
listed in Supplementary Table S11.
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Figure 5. VGAC dependence on viral abundance, depth of sequencing and identification of
replicases.
In order to analyze the relationship of VGAC on viral abundance, depth of sequencing and the presence
of replicases, synthetic NGS data were generated with different abundance of viral reads. The viruses
with the shortest and the longest genome length of the Pavium panel-I were assayed only (CVA and
LChV-1, respectively). The heatmap represents the VGAC obtained (indicated in each cell in the upper
value) at both the respective sequencing depth and the abundance (%) of the viral reads (represented in
the vertical axis as % viral composition of the corresponding 3% of viral reads of the sequencing depth);
bottom numbers inside a cell indicates the number of replicases found in the respective assembly of the
10 subsampled sets at 80% alignment length / 80% similarity, and 90% alignment length / 90% similarity
(both numbers separated by a pipe symbol).
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Figure 6. Distances between measures from external datasets.
Comparison of the measures (accuracy, FDR, precision, sensitivity and specificity) obtained under
different cutoffs of VGAC with the measures obtained for the identification of replicases under the 80/80
schema. Comparison was carried out in term of the distance between the measures according to
Materials and Methods. For a detailed description refer to Supplementary Table S10.
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Figure 7.  Diagnosis on field samples from the shoot develpoment stage using Pavium panel-II.
NGS data from field samples (SD-L1, SD-L2, SD-S1, and SD-S2) were submitted to the pipeline using the
Pavium panel-II. X-axis: VGAC scale (0 to 1); ordinate: abbreviated name of viruses; dotted lines: VGAC
cutoffs at 0.1 and 0.3; filled bars: replicase identified. Supplementary Figure S7 depicts these data
together with read assignment levels.
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Figure 8. Diagnosis on field samples from the senescence stage using Pavium panel-II
NGS data from field samples (SS-L1, SS-L2, SS-S1, and SS-S2) were submitted to the pipeline using the
Pavium panel-II. X-axis: VGAC scale (0 to 1); ordinate: abbreviated name of viruses; dotted lines: VGAC
cutoffs at 0.1 and 0.3; filled bars: replicase identified. Supplementary Figure S8 depicts these data
together with read assignment levels.
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Figure 9. Viroscope.io
The Viroscope web application enables virus plant diagnostics using NGS data. It provides a
user-interface to perform the Viroscope pipeline, and yields the VGAC metric as well as the presence of
replicases to interpret the data and perform diagnosis. The process involves uploading NGS reads into
the read library, selecting an analysis against a specific viral panel using user-inputted thresholds. This
generates the analysis which is processed in real-time. The analysis then displays the results in plots that
provide the metrics and suggests the diagnosis according to the selected thresholds, which is then
confirmed by the user.
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Table 1. Summary of performance of pipeline on external datasets.
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Table 2. Performance on external datasets.
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Table 3. Pipeline validation by RT-PCR
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