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How communication between neurons gives rise to natural vision remains a matter of intense investigation. The mid-level
visual areas along the ventral stream, as studies in primates have shown, are selective to a common class of natural im-
ages—textures—but a circuit-level understanding of this selectivity and its link to perception remain unclear. We addressed
these questions in mice, first showing that they can perceptually discriminate between texture types and statistically simpler
spectrally matched stimuli. Then, at the neural level, we found that the secondary visual area (LM), more than the primary one
(V1), was selective for the higher-order statistics of textures, both at the mesoscopic and single-cell levels. At the circuit level,
textures were encoded in neural activity subspaces whose relative distances correlated with the statistical complexity of the
images and with the mice’s ability to discriminate between them. These dependencies were more significant in LM, in which
the texture-related subspaces were smaller and closer to each other, enabling better stimulus decoding in this area.
Together, our results demonstrate texture vision in mice, finding a linking framework between stimulus statistics, neural repre-
sentations, and perceptual sensitivity—a distinct hallmark of efficient coding computations.

Introduction
Visual textures are broadly defined as “pictorial representations
of spatial correlations” [1] —images of materials with orderly
structures and characteristic statistical dependencies. They are
pervasive in natural environments, playing a fundamental role
in the perceptual segmentation of the visual scene [1, 2]. For
example, textures can emphasize boundaries, curvatures [3, 4],
3D tilts and slants [5, 6] and distortions, support a rapid “pop-
out” of stimulus features [7], and can form a basis set of visual
features necessary for object vision [8].

Although texture images largely share the spectral com-
plexity of other natural images [9–11], they can be more con-
veniently parametrized and synthetized than other natural im-
ages. This has been explored via diverse computational ap-
proaches: in the field of computer graphics [12], via entropy-
based methods [13–15], using wavelet approaches [16, 17], and,
more recently, in machine learning implementations based on
deep convolutional neural networks [18–21].

In light of their rich statistics and convenient synthesis and
parametrization, texture images have been at the core of studies
on efficient coding principles of neural processing. According to
the efficient coding hypothesis [22], the processing of visual sig-
nals along hierarchically organized cortical visual areas reflects
the statistical characteristics of the visual inputs that these neu-
ral circuits have learned to encode, both developmentally and
evolutionarily [23–29]. Accordingly, texture images have been
extensively used in experimental studies that have examined
the contribution of different visual areas to the processing of
texture statistics.

In particular, studies in primates have revealed that the
“mid-level” ventral areas, V2–V4, are crucial for processing
texture images [30–41], more so than the primary visual cor-
tex, V1 (however, see ref. [42]). Furthermore, as revealed by
psychophysical observations [43] and neural measurements, area
V2, in addition to being differentially modulated by the statisti-
cal dependencies of textures, correlates with the perceptual sen-
sitivity for these stimuli [32, 40, 41]. Notably, biology-inspired
computational studies using artificial neural networks have sim-
ilarly emphasized hierarchical coding principles, with V2-like
layers as the locus for representing texture images in classifi-
cation tasks [44, 45]. Together, these observations suggest a
general hierarchical coding framework, where the extrastriate
visual areas, in particular area V2, define a neural substrate for
representing texture stimuli, reflecting a progressive elabora-
tion of visual information from “lower” to “higher” areas along
the ventral visual stream.

This high-level view raises two fundamental questions: (1)
whether this coding framework applies, in all generality, to hier-
archically organized visual architectures as seen in several mam-
malian species other than primates—as CNN simulations would
suggest—and (2) which functional principles at the circuit level
give rise to texture selectivity, especially in the secondary visual

area V2. Both questions hinge on the need to gain a computa-
tional and mechanistic understanding of how the visual system
has evolved to process naturalistic statistical dependencies to
enable the perception of scenes and objects [1, 2, 46–48].

Addressing these questions in the mouse model organism
would be particularly advantageous [49]. Although the rodent
visual system is much simpler than that of primates [50], mice
and rats have a large secondary visual cortex (area LM) homol-
ogous to primate V2 [51, 52], belonging to a set of lateral visual
areas forming a ventral stream of visual processing [53, 54]. As
recordings from these areas have revealed, there is increased
selectivity for complex stimulus statistics in both rats [55, 56]
and mice [57, 58].

We studied the processing of texture images in mice with
an emphasis on the interrelationship between behavioral, neu-
ral, and stimulus-statistic representations. Using a CNN-based
algorithm for texture synthesis [59], we generated an arbi-
trary number of naturalistic texture exemplars and “scram-
bles”—spectrally matched images lacking the higher-order sta-
tistical complexity of textures [47, 60–63]—by precisely con-
trolling the statistical properties of all the images. We demon-
strated texture vision in mice showing they can perceptually
detect higher order statistical dependencies in these natural
images, distinguishing them from scrambles, and discriminat-
ing among the different types of naturalistic textures (”fam-
ilies” hereafter). At the neural level, using mesoscopic and
two-photon GCaMP imaging, we found that the area LM was
differentially modulated by texture statistics, more so than V1
and other higher visual areas (HVAs). Examining the represen-
tational geometry of the population responses, we found that
when the statistical properties of a texture were most similar to
those of scrambles, the corresponding neural activations were
also more difficult to decode, and the animal’s performance de-
creased. These dependences were particularly prominent in LM
and when considering the higher-order statistical properties of
the images. Notably, LM encoded different texture families
in neural subspaces that were closer to each other. Moreover,
these subspaces were more compact in LM than in V1, thus
enabling better stimulus decoding in this area.

Results
Training mice to detect and discriminate between texture
statistics.To examine the ability of mice to use visual–texture
information during perceptual behaviors, we designed two
go/no go tasks. In the first task, the mice had to detect the
texture images interleaved with scramble stimuli. In the second
task, the mice had to discriminate between two types of texture
images from different texture families

Synthesis of textures and scrambles.We generated synthetic
textures using an iterative model that uses a convolutional neu-
ral network (VGG16) to extract a compact multi-scale repre-
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Fig. 1: Mice can discriminate texture statistics from spectrally matched scrambles and between texture families.
a, Schematic plot of the iterative algorithm to synthetize the texture images based on the VGG16-CNN architecture; ‘x’, target
texture; ‘f(x)’, texture representation by the network; ‘y’ is an initial ‘seeding’ Gaussian-noise image with ‘f(y)’ being its network
representation. The optimization minimizes the difference between f(x) and f(y) by iteratively changing ‘yi’ to obtain ‘yn’.
b, Examples of texture families and the respective spectrally matched stimuli (scrambles). c, Schematic plot of the automatic
training system with self-head fixation. d, The texture/scramble go no-go task: the mouse must rotate the rubber wheel (go trial)
if shown a texture exemplar; it must keep it still if shown a scramble (no go). ITI is the inter-trial interval, RW the response
window, and FB the feedback period. e, The representative examples of wheel rotations from an early training session (top) and
a well-trained mouse (bottom); green for hits, yellow for false alarms, gray for either misses or correct rejects, and orange for the
average across hits. f, Behavioral discriminability (d′) in the texture–scramble task for expert mice for each family. The top labels
are the number of mice trained in each of the families; n = 16 out of 19 mice were trained in all the family-scramble pairs. The
boxplots indicate the median and quartiles of the dataset; the black dots indicate the individual animals. Colors as in the image
frames in (b). g The time needed for mice (proportion of days) to reach d′ ≥ 1 in their first family-scramble training. h Behavioral
discriminability (d′) in the texture–texture task across all six possible pairs of the four families. The top labels are the number of
mice trained in each texture pair. Each animal was trained in a different number of family pairs (Supplementary Table 1, 2).

sentation of texture images [59] (Figure 1a). To disentangle the
contribution of higher-order image statistics from lower-order
ones, for each texture exemplar we synthesized a spectrally
matched image (scramble, Figure 1b) having the same mean
luminance, contrast, average spatial frequency, and orientation
content (Figure S1a-c, Methods) but lacking the higher-order
statistical features characteristic of texture images. This pro-
duced image pairs for which the main axis of variation was
higher-order statistics (textural information). In total, we syn-
thesized images belonging to four texture families and four as-
sociated scramble families, each with 20 exemplars.

Behavioral detection of higher-order texture statistics.To train
the mice in the two go/no go tasks, we employed an automated
training setup [64], wherein the mice were asked to self-head
fix and respond to the visual stimuli displayed on a computer
screen located in front of them (Figure 1c). Mice were trained
to respond to the target stimuli by rotating a toy wheel and,
contingent on a correct response, they were rewarded with wa-
ter. For the texture/scramble go/no go task, the “go” stim-
uli were texture images, while the “no go” stimuli were image
scrambles (Figure 1d). For responses to a no-go stimulus (false
alarms), a checkerboard pattern was displayed on the screen for
10 s before a new trial began. All the mice (n = 18) learned
the task, with a t50 (i.e., the time needed for d-prime > 1 in
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Fig. 2: Texture stimuli differentially modulate V1 and LM at the mesoscale level. a, Schematic plot of the widefield
imaging setup. Top, an example of a texture image and the stimulus presentation times. Right, a representative example of the
right posterior cortex of a mouse with main-area borders (gray lines). V1, primary visual cortex; LM, secondary visual cortex
(lateromedial); RL, rostrolateral; AL, anterolateral; AM, anteromedial; PM, posteromedial; M, medial area; P, posterior area. b,
Average GCaMP response (across all exemplars and repeats) to texture stimuli (left) and scramble stimuli (right) for a repre-
sentative example mouse. The blue contours show the regions of interest (ROIs) retinotopically matching the visual stimuli for
both V1 and LM. c, The difference between the texture–scramble images shown in (b). d, The average GcaMP responses from
the retinotopically matched ROIs in V1 and LM (Methods) for the same representative example shown in (b, c); textures in red,
scrambles in blue. The green-shaded rectangles show the stimulus duration; the vertical broken line indicates the time of stimulus
onset. e, The regions in V1 and LM with a statistically significant response difference shown in (c) – the logarithm of the p-values
from a two-sided t-test; colored regions for p < 0.01. f, The proportion of pixels in each visual area (within the retinotopically
identified ROIs) significantly modulated by the textures relative to the scrambles (n = 11 mice, empty circles). In color, V1, LM,
RL having significantly positive values (p < 0.05, one sample t-test). g, The discriminability measure (d′) between the textures
and scrambles from ∆F/F0(%) responses within the same ROIs used for (f). The gray horizontal band corresponds to a null d′

distribution derived from pre-stimulus activity (Methods). The horizontal broken line indicates the mean of the null distribution;
p-value from paired t-test, V1 vs LM d′ values (n = 10).

at least half of the mice) being approximately 25 days (Figure
1g). Mice could significantly discriminate between all four tex-
ture/scramble pairs (Figure 1f, d′ > 1, p < 0.05 for all families,
one sample t-test using the Holm-Bonferroni method to correct
multiple comparisons; Supplementary Table 1) with an aver-
age discriminability value of d′ = 2.1 ± 0.15 (s.e.). The “rocks”
family had a significantly lower performance than all other fam-
ilies but with a d′ still robustly larger than 1 (d′ = 1.4 ± 0.14,
n = 16, d′ > 1, p = 0.016; p = 3 × 10−5, n = 15, ANOVA,
repeated measures correction p < 0.03, n = 15, Tukey HSD).
Dissecting the animals’ performance, we found that, on average,
mice had a high proportion of hits (Figure S2a), as expected
given that the training procedure encouraged “go” behaviors
[65], with the lowest performance for rocks associated with a
higher proportion of false alarms (Figure S2b). Additionally,
to ensure that the mice were not adopting a strategy based on
“brute force” memorization (e.g., of pixel-level luminance fea-
tures [66]), we synthesized an additional 20 exemplars for each
of the four families, together with corresponding scramble im-
ages. Then, in a subset of the mice (scales n = 4, rocks n = 3,
honeycomb n = 11, plants n = 8), we switched the underlying
set with the novel set and measured their performance over the
last five sessions prior to the switch and the five sessions after
the switch, finding no significant difference (Figure S2c).

Behavioral discrimination between texture families.Having es-
tablished that mice can detect higher-order statistical features
in texture images that were missing in the scrambles, we exam-
ined whether they could discriminate between different texture
statistics. We trained expert mice in texture–scramble discrim-
ination, as well as a new cohort of näıve mice (n = 2), in a
second go no-go task. They were shown exemplars (n = 20)

from two texture families, randomly chosen but fixed across
sessions, with only one of the two families associated with a
water reward for a correct “go” response. In addition, all 40
exemplars were randomly rotated to prevent mice from solv-
ing this task using orientation information that may have been
different across families (Figure S2d). Mice could discriminate
between the texture families, with a significantly positive d′ for
all six texture pairs (Figure 1h, d′ > 0, p < 0.02 for all pairs, one
sample t-test with Holm-Bonferroni correction; Supplementary
Table 2).

Widefield responses to textures and scrambles.To examine the
neural activations underlying the mice’s ability to detect and
discriminate between texture statistics, we imaged multi-area
responses from the posterior cortex of untrained animals whose
neural dynamics were unaffected by procedural or perceptual
learning processes. This choice assumes that texture process-
ing in visual cortical networks is likely not the outcome of our
behavioral training (see also Discussion).

We performed widefield calcium imaging during the passive
viewing of textures and scrambles. Mice (n = 11) were placed
in front of a computer screen that displayed either an exemplar
of a texture or a scramble (Figure 2a). The stimuli, 100 degrees
in size, were presented before the mice, centered on the mouse’s
body midline, as was done for behavioral training. While the
mice passively viewed the stimuli, we recorded both calcium-
dependent and calcium-independent GCaMP responses using
a dual wavelength imaging setup. We then used the calcium-
independent GCaMP response to correct for the hemodynamic
component of the calcium-dependent GCaMP responses [67].
We recorded from the right posterior cortex, which gave us ac-
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Fig. 3: Single-cell responses in LM better discriminate textures from scrambles. a, Multi-area imaging, as in Figure
2a, with inset showing a representative ROI for two-photon recordings; colored dots indicate the segmented cells responsive to
textures and/or scrambles (“stim”, top). b, Top panels: two example cells responding more strongly to a texture family (red)
than scrambles (blue); bottom panels, two example cells for the opposite selectivity. c, The proportion of cells that significantly
responded to oriented gratings and to either textures or scrambles (Txt/Scr) in V1 and LM; p-value, paired t-test across subset of
animals (n = 6). d, e, The distributions of the texture–scramble discriminability values (d′) computed for each cell. Each panel
is for a different texture family: green for V1; blue for LM. Data from a representative experiment. f, The mean d′ values for all
the experiments in V1 and LM (n = 10 mice, black dots); connecting lines for the same-mouse data; V1 d′: scales = 0.02 ± 0.04
s.e., rocks = 0.21 ± 0.03, honeycomb = 0.37 ± 0.08, plants = 0.35 ± 0.05, LM d′: scales = 0.43 ± 0.05, rocks = 0.50 ± 0.05,
honeycomb = 0.67 ± 0.08, plants = 0.56 ± 0.04; p < 0.001, obtained from paired t-tests with Holm-Bonferroni correction. g The
explained variance (EV, %) by the encoding linear model based on PS image statistics, comparing V1 to LM; only cells for which
EV ≥ 1% have been included in the analysis (permutation test, Methods); each empty dot is a mouse; connecting lines for the
same-mouse data; p-value, paired t-test. h, The sum of weight values for each of the PS statistic groups of the fitted regressive
model; each dot is an average across cells for a given mouse. The energy statistics are significantly higher than all others; one-way
ANOVA with post-hoc analysis (Tukey HSD). Colors as in (g). i, The unique EVs for all four PS statistics groups. The cells with
a high explained variance by the full model (EV ≥10%) were included in the analysis. Each dot is the change in explained variance
for a cell when using the “full” model or a model missing a given PS statistic (Methods); the energy statistics are significantly
higher than all others (one-ay ANOVA with post-hoc analysis, Tukey HSD). Colors as in (g).

cess to ∼5–6 HVAs (Figure 2a). All the reliably segmented
HVAs retinotopically represented the stimulus position in vi-
sual space (Figure S1d).

We computed the peak-response maps to the textures and
scrambles showing activations almost exclusively in V1 and LM
(Figure 2b). When averaging within the ROIs retinotopically
matching the visual stimuli, the responses were larger for tex-
tures than scrambles both in V1 and LM (V1 scramble, average

∆F/F0(%): 1.80% ± 0.11% s.e., V1 texture, average ∆F/F0:
2.13%± 0.11%, LM scramble ∆F/F0(%): 1.63%± 0.13%, LM
texture ∆F/F0(%): 2.14% ± 0.15%, n = 11). Similarly, the
difference in the peak-response maps resulted in a differential
modulation localized primarily in V1 and LM (Figure 2c,d, V1
∆F/F0(%) difference 0.27% ± 0.04%, LM ∆F/F0(%) differ-
ence: 0.50% ± 0.03%). To establish statistical significance, we
tested the modulation of each pixel against a null distribution
derived from the pre-stimulus period (Figure 2e); and to de-
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termine the significance of an entire visual area, we computed
the proportion of significantly modulated pixels in each area
within retinotopic ROIs (Figure 2f). This analysis confirmed
that the areas V1 and LM were those most significantly mod-
ulated by textures relative to scrambles (proportion of pixels
in ROI > 0, V1: 0.27 ± 0.08 s.e. p = 0.007, LM: 0.92 ± 0.03
s.e. p = 6.4 × 10−11, RL: 0.17 ± 0.06 s.e. p = 0.021, AM:
n.s., PM: 0.06 ± 0.06 s.e. p = 0.34; n = 11 mice, one sample
t-test). Finally, to compare the V1 and LM modulations, we
computed a texture discriminability measure (d′) in retinotopi-
cally matched ROIs and found that the d′ values in LM were
significantly higher than those in V1 (Figure 2g. V1: 0.41 ±
0.05, s.e.; LM: 0.79 ± 0.05; difference, p = 3 × 10−6, paired
t-test, n = 11). These results indicate that, at the mesoscopic
level, when considering a constellation of HVAs surrounding the
primary visual cortex, LM is the area with the most significant
selectivity to higher-order texture statistics.

Proportion of cells responding to textures and their modula-
tion amplitude is higher in LM.We examined the circuit-level
representations underlying this mesoscale selectivity using two-
photon GCaMP recordings in areas V1 and LM (Figure 3a).
Imaging ROIs (approximately 530 µm x 530 µm) in V1 and LM
were selected based on the retinotopic coordinates of the visual
stimuli, and neural activations were recorded while presenting
three classes of visual stimuli: static gratings of different orien-
tations and spatial frequencies (four orientations spaced every
45 degrees, 100 degrees in size, full contrast, sf = [0.02, 0.04,
0.1, 0.2, 0.5] cpd), scramble and texture images matching the
properties of the stimuli used in behavioral experiments (four
families for scrambles and textures, each with 20 exemplars
rotated either by 0 or 90 degrees, and with eight repetitions
of each image). The single-cell responses to oriented gratings
agreed with what is typically reported in the literature (e.g. refs
[68, 69]), with approximately 25–30% of the segmented cells be-
ing visually responsive (Figure 3c, V1 gratings: 25.37% ± 2.67%
s.e., n = 6 mice; LM gratings: 27.71% ± 2.98%, n = 7; aver-
age no. of segmented cells = 381 ± 44 in V1 and 344 ± 46).
The responses to textures and scrambles were rather heteroge-
nous, with some cells strongly responding to textures, others to
scrambles, and several showing mixed selectivity (Figure 3b).
In both V1 and LM, there was a significantly larger propor-
tion of cells responding to textures relative to gratings (Figure
3c, V1 textures: 61.05% ± 6.41% s.e., n = 6, LM textures:
55.27% ± 5.68% s.e., n = 7; gratings vs textures in V1, p =
0.0018, in LM, p = 0.015, paired t-test). Despite the significant
heterogeneity, the responses, averaged across cells, were signif-
icantly larger in LM than in V1 for all texture families (Figure
S3a,b; average V1 texture response: 9.5% ± 0.16%, s.e.; av-
erage LM texture response: 12.2% ± 0.18%, s.e.; p < 0.003
all families, paired t-test Holm-Bonferroni corrected). We then
quantified the texture–scramble response modulation of the in-
dividual cells using a discriminability measure (d′), similar to
what is done in mesoscale analyses (Figure 3d, e), and found
that (i) the proportion of cells with significantly positive d′ val-
ues (i.e., with larger values in response to textures) were higher
in LM than in V1 for all families (average proportion across
families: V1: 67.5% ± 1.8% s.e., LM: 82.2% ± 1.4% s.e.. p-
values for all families: scales = 7.4× 10−5, rocks = 8.8× 10−4,
honeycomb = 0.024, plants = 0.006, paired t-test, Figure S4c);
(ii) the average d′ value was higher in LM than V1 for all fam-
ilies (Figure 3f, Figure S4a,b, V1: average d′ = 0.24 ± 0.01,
LM: average d′ = 0.54 ± 0.01, p = 2× 10−4, paired t-test, n =
10), which reflected larger response amplitudes to textures than
scrambles (Figure S4d, V1 texture/scramble difference: 1.5% ±
0.25, LM: 3.5% ± 0.39, p = 0.002, paired t-test, n = 10).

Together, these results indicate that underlying the in-
creased widefield texture selectivity in LM is both an increase
in the proportion of texture-selective cells as well a larger tex-
ture–scramble modulation of individual cells.

Encoding linear model of neural responses.To isolate the set
of statistical features that most prominently drove the tex-
ture–scramble selectivity in V1 and LM, we used a previously
described mathematical model to parametrize image statistics:
the Portilla–Simoncelli statistical model (henceforth PS statis-

tics [14]). This model employs a set of analytical equations to
compute the correlations across a set of filters tuned to different
image scales and orientations. These statistics can be divided
into four main groups: marginal (skewness and kurtosis of the
pixel histogram), spectral, linear cross-correlation, and energy
cross-correlation statistics. The latter is best for distinguishing
between texture and scramble images (Figure S6a, b). Using
PS statistics as features, we created an encoding linear model
for single-cell responses in V1 and LM. The model’s task was
to predict the response of a particular neuron to all the tex-
ture and scramble exemplars as a weighted linear sum of PS
coefficients. When considering the cells for which the model
could explain at least 1% of the response variance—that is, a
threshold value for the significance of the model’s fits derived
from a permutation test (Methods)—we found that the propor-
tion of these cells was higher in LM than in V1 (V1: 57.64%
± 3.77% s.e., LM: 78.20% ± 2.73%, n = 10), with a higher
average explained variance in LM (Figure 3g, Figure S4e, V1:
5.27% ± 0.61% s.e., LM: 8.18% ± 0.67%, cross-validated, n =
10, V1/LM difference, p = 2× 10−4, paired t-test). The energy
cross-correlation statistics had the largest contribution to the
explained variance (Figure 3h), which was also confirmed by
an analysis of “unique” variance explained [70] (withholding a
particular group of PS statistics, Methods), and it was found
that the energy cross-correlation statistics was again the main
contributor (Figure 3i).

As these results show, underlying the increased selectivity
for textures in area LM and a larger proportion of cells having
such selectivity is a stronger responsiveness to statistical fea-
tures that are texture-defining—that is, those quantified by the
energy cross-correlation PS statistics.

Population responses to texture images.Next, we examined
whether at the level of population encoding we could iden-
tify signatures of texture selectivity, more significantly so in
LM than in V1. To discriminate the activity of the tex-
ture–scramble pairs separately in V1 and LM, we trained a
binary logistic regression classifier. The decoder was largely
above the chance level (50%) for all pairs (Figure 4a), with sig-
nificantly larger performance in LM than in V1 when grouping
all the texture families (p = 0.01, paired t-test). In both V1
and LM, the rocks family was the one with the lowest classi-
fication accuracy (Figure 4a, p = 4 × 10−7, n = 10, ANOVA;
performance of rocks different from all pairs, repeated mea-
sures correction p < 0.035, n = 10, Tukey HSD). Notably, a
similar drop in performance was also observed in the d′ mea-
sures of behavioral performance (Figure 4b,c, p = 3 × 10−5,
n = 15, ANOVA, repeated measures correction p < 0.03, n =
15, Tukey HSD), where the lowest performance was observed
for this texture–scramble pair consistently in individual mice,
which were trained across all four texture–scramble pairs, and
across animals.

Linking image statistics to neural and behavioral represen-
tations.We next asked whether the correlation in neural and
behavioral discriminability could be related to the statistics of
the images. For instance, if, on average, the statistics of the
rock exemplars were particularly similar to those of the scram-
bles compared to other families, then this reduced statistical
discriminability may explain the drop in both behavioral and
neural discriminability. We thus defined a distance metric in a
statistical stimulus space based on a reduced set of PS statistics.
In this space, a given visual stimulus is represented by a single
point in four multi-dimensional (two dimensions per subspace)
statistical subspaces for spectral, linear, energy, and marginal
PS statistics (Figure S5a-d). In each subspace, we measured the
inter-cluster (normalized) distances between the textures and
the corresponding scrambles, finding that the rocks family had
a significantly smaller texture–scramble distance than the other
families in the energy statistics subspace (Figure 4d,e, x-axis,
CI: 99.15%, multiple comparisons Šidák corrected CIs). For
the other statistical subspaces, although the texture–scramble
distances of rocks were still the shortest compared to the other
families, they overlapped with at least one other family (Figure
S7).
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Fig. 4: Statistical, behavioral, and neural discriminability correlate with the geometry of texture representations
in LM. a, The accuracy of a linear classifier trained to discriminate textures from the scrambles for all four families using the
neural responses from LM-ROI (saturated hue) and V1-ROI (low-saturation hue). The decoder accuracy is above 50% chance
level for all pairs (V1: scales 75.2% ± 2.2% s.e. p = 1× 10−6, V1: rocks 65.4% ± 2.8%, p = 3.5× 10−4, V1: honeycomb 87.6% ±
2.1%. p = 2×10−8, V1: plant s 79.0% ± 2.5%. p = 1.1×10−6, LM: scales 82.2% ± 2.3%. p = 2×10−7, LM: rocks 72.5% ± 2.1%.
p = 1.9× 10−6, LM: honeycomb 89.5% ± 1.7%. p = 3× 10−9, LM: plants 81.1% ± 2.1%. p = 1.5× 10−7; n = 10 mice). b, The
behavioral discriminability (d′), as in Figure 1f, but for a subset of the mice (n = 16) that completed the texture–scramble tasks
for all four families. c, The combined 2D plot from the data in (a) and (b); the error bars are s.e.; color saturation as in (a). d,
The behavioral discriminability as in (a) plotted against the inter-cluster distances for each texture/scramble family pair and for
the energy cross-correlation statistics. The error bars are s.e. for the behavioral data and the 99.7% confidence intervals corrected
for multiple comparisons (Šidák correction). e, The neural classifier accuracy, as in (b), against the inter-cluster distances for the
energy cross-correlation statistics. Color saturation as in (a). f, The 3D plot of inter-cluster distances and the behavioral and
neural discriminability measures; error bars as in (c-e). g, The 2D scatter plot for the first two PCA components of the neural
responses from LM-ROI for one example animal; each dot is an exemplar (averaged across repeats, image rotations, and time
frames around the peak response); filled circles for textures and empty squares for scrambles. h, The accuracy of a multinomial
classifier (n = 10 mice) discriminating between the texture families as a function of the number of components, separately in V1
and LM PCA spaces. The shaded regions correspond to the 95% confidence intervals across all mice. The black bar indicates the
range of PCA components for which the classifier accuracy is statistically different between V1 and LM (paired t-test, p-values
< 0.05). i, The schematic illustrating the metrics measured in the neural PCA space. For every cloud of points in the PCA space,
we measure its radius (e.g., r1, r2) and its distance with respect to another cloud (e.g., d1, d2). The clouds on the left show larger
radii and inter-cluster distance compared to the clouds on the right. j, The scatter plot of the cluster radii in V1 (x-axis) and LM
(y-axis) for all mice (n = 10). Each dot is a cluster radius for a given texture family and mouse. The shades of the blue contour
lines are from a kernel-density estimation of the datapoints; the colors are as in (g). The black dotted line is the diagonal. k,
Same as in (j) but for the inter-cluster distances. l, The decrease in radii and the inter-cluster distances in LM compared to V1
(% values relative to V1) for the data shown in (j,k); the difference is not significant; two-sided t-test.

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.14.507893doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.507893
http://creativecommons.org/licenses/by-nc-nd/4.0/


Together, the correlation between the PS-distance metric in the
energy subspace, which best captures texture-defining statis-
tics, and the drop in neural decoding and behavioral perfor-
mance associated with the rocks family, suggest a tight linking
framework between high-order image statistics, population en-
coding in V1 and LM, and behavioral performance (Figure 4f).

V1 and LM differences in the representational geometry of
texture families.The results from the binary logistic classifier
trained to discriminate between the texture–scramble pairs sug-
gest representational differences between V1 and LM. For in-
stance, significantly fewer principal components (PCs) were
needed in LM to attain maximum performance, two to four
dimensions, whereas V1 required thrice as many, between four
and 12 PCs (Figure S7; V1 accuracy, 12 dimensions: 78.6%
± 1.6% s.e.; LM accuracy, four dimensions: 78.6% ± 1.5%;
p < 0.05 for mean accuracy of V1, 1-12 dimensions, vs LM,
four dimensions, paired t-test, n = 10).

To examine the representational changes to texture stimuli
between V1 and LM, we used a multinomial logistic regression
classifier trained to categorize the four texture families across
each of the 40 exemplar images for each family. Since the num-
ber of cells differed across experiments, we used PCA to fix
the representational dimensionality of the activity space. Even
with only two PCA components, the collective activations of the
visually responsive cells across all texture and scramble stim-
uli already formed separate activity subspaces (clusters, Fig-
ure 4g) with an average explained variance above 15% (V1:
15.5% ± 1.4% s.e. LM: 19.1% ± 1.2%). The cross-validated
classifier performed significantly above chance level in both ar-
eas, plateauing at approximately 60% performance with ∼10
PCA components (Figure 4h V1: 42.4% ± 3.0% s.e., accuracy
> 25%, p = 2.3 × 10−4, LM: 48.0% ± 4.0%, accuracy > 25%,
p = 2.6 × 10−4, one sample t-test). The LM decoder outper-
formed the V1 decoder, with significant differences observed
reliably in the range between two and eight PCA components
(Figure 4h). To highlight the properties of the population en-
coding that could explain the increased classification perfor-
mance in LM, we studied the geometry of texture representa-
tions in a shared eight-dimensional PCA space of V1 and LM
activations, in which the decoder had the largest significant dis-
criminability power. Each point in this space corresponded to
a texture exemplar (averaged across repeats) labeled accord-
ing to the corresponding texture family (2D schematic of the
8D representations in Figure 4i,j). For every family, we com-
puted the spread of the activations associated with the 40 exem-
plars—that is, the radii of the activity subspaces and their pair-
wise Euclidean distances (“inter-cluster” distances). In LM, we
found that both the subspace radii and inter-cluster distances
were significantly smaller than in V1 (Figure 4k,l; radii: p =
0.002, paired t-test, n = 10; inter-cluster distances: p = 0.02,
paired t-test). The relative percentage decrease (V1 vs LM)
was, on average, larger for the radii than for the inter-cluster
distance values, but because of the large animal-to-animal vari-
ability, this difference did not attain statistical significance (Fig-
ure 4l, change in radius: -12.7% ± 4.7%, change in inter-cluster
distance: -3.6% ± 5.7, LM relative to V1).

In conclusion, a population-level signature of the increased
selectivity for energy cross-correlation statistics in individual
cells in LM denotes a change in the representational geometry
of the texture stimuli, with LM having more “compact” and
better decodable representations than V1.

Discussion
We found that mice can perceptually detect higher-order statis-
tical dependences in texture images and discriminate between
textures and scrambles and between different texture families.
Across visual areas, V1 and LM were those most prominently
modulated by texture statistics, with LM more so than V1,
more significantly driven by the energy cross-correlation im-
age statistics. The representational geometry of population
responses demonstrated subspaces for each texture–scramble
pair, with better stimulus decoding in LM than in V1. The
distances between the texture–scramble subspaces changed ac-

cording to the stimulus statistical dependencies, more signif-
icantly in the energy cross-correlation statistical components.
The textures statistically most similar to scrambles (i.e., exem-
plars from the rocks family) had the shortest distances between
the corresponding neural subspaces, with the worst perceptual
discriminability by the animals and by a decoder trained on
the neural representations. This was observed consistently in
the animals trained on various texture–scramble pairs as well
as across animals for this specific pair. Finally, the neural rep-
resentations for different texture families were also easier to
discriminate in LM than in V1, with LM having both shorter
distances between texture subspaces as well as more compact
subspaces (smaller radii) for individual textures, reflecting an
overall more compact representational space for textures.

Efficiency, in reference to the efficient coding hypothesis
[22], highlights a correspondence between input statistics, per-
ceptual sensitivity, and the allocation of computational (and
metabolic) resources. A neural code is efficient if it can re-
flect environmental statistics; such a code will favor basic vi-
sual features that are more common, relying on non-uniform
neural representations and percentual sensitivity [23, 26–28].
This implies a close correspondence between neural, perceptual,
and statistical representations. We studied this correspondence
by examining the geometry of such representations in V1 and
LM and identifying “rocks” as the family most similar to its
scramble exemplars, with neural-distance representations and
behavioral performance also being the smallest for this family.
This was reliably observed in animals (tested across various tex-
ture–scramble pairs) and across animals for this pair. The se-
lected texture families were chosen because of their likely etho-
logical relevance to mice (e.g., rocks and plants) and their exten-
sive use and characterization in the texture literature [40, 59].
They also had sufficiently diverse statistical dependences to
permit a simple statistical similarity ranking between the tex-
ture–scramble pairs. However, future work could adopt a more
principled approach in selecting texture families based on the
statistical distance measure, as adopted in this study. This
would allow us to define a psychometric difficulty axis in the
stimulus-statistics space to be explored parametrically, both for
texture–scramble and texture–texture discrimination. For the
latter in particular, this approach could overcome a current
statistical limitation: the six texture–family pairs span a rela-
tively narrow range of distances in stimulus statistics, requiring
an extremely large number of trials to test for differences in be-
havioral performance and neural representations, both within
and across mice. Texture synthesis guided by a predetermined
sampling of the relevant distances along a psychometric diffi-
culty axis could ease the burden of collecting an exceedingly
large dataset.

To examine the perceptual ability of mice to discriminate
textures, we carefully controlled for the stimulus statistics of
each exemplar. We customized a CNN-based approach for tex-
ture synthesis to achieve the equalization of lower (e.g., lumi-
nance, contrast, and marginal PS statistics) and higher sta-
tistical dependencies (e.g., linear and energy cross-features PS
statistics). Further, we normalized the power spectrum in a
frequency band of high perceptual sensitivity for mice and gen-
erated several metameric exemplars [43] differing in pixel-level
representations but otherwise having identical statistical de-
pendencies. We also introduced image rotations to ensure that
the animals could generalize along this stimulus dimension. Fi-
nally, we tested the trained animals with new sets of metameric
exemplars, confirming that “brute force” memorization of low-
level features was not used in the task [66]. This approach gave
us control over which statistical features the mice could use
in the task and which component is critical when linking the
statistical dependencies of the visual stimuli to neural and per-
ceptual representations. In this respect, our approach may be
preferable to using synthetic textures, in which typically only a
reduced set of statistics of interest is under parametric control,
while others are left free to (co)vary [13, 15, 18, 71, 72].

The prominent texture selectivity found in area LM is con-
sistent with what is known about the area specialization of
the mouse visual cortex, implicating LM in the processing of
content-related (semantic) visual information [58, 69, 73–80],
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and with inactivation studies demonstrating the necessity of
LM for the perception of even simple visual stimuli [74, 77].

At the circuit level, an analysis of the representational ge-
ometry of LM population responses [81, 82] revealed distinct
activity subspaces associated with different texture families.
These texture “manifolds” are reminiscent of the concept of ob-
ject manifolds introduced in relation to the processing of com-
plex objects along the ventral stream in primates [83–86] and
in mice [57, 87]. When comparing LM to V1 representations,
we found both a reduction in the size (diameter) of texture
clusters and a reduction in inter-cluster distances. These two
effects did not “compete” with each other in terms of signal
decoding, leading to an overall improved linear discriminability
of texture families in LM compared to V1. One interpretation
is that the increased discriminability from V1 to LM is related
to an increase in the representational invariances to low-level
image statistics, as suggested by previous studies on rats [56]
and mice [57]. The reduction in cluster sizes and the decrease
in inter-cluster distances reflect an overall more compact rep-
resentation of the four texture families, which may relate to
LM achieving a higher encoding capacity than V1 while, at the
same time, retaining large encoding accuracy for textures. An-
other possibility is that the V1 texture representations reflect
a “partial inheritance” from LM via top-down signal process-
ing [88]; experiments inactivating LM while recording from V1
could elucidate this point.

Neural recordings were done in untrained animals passively
viewing the stimuli, thus enabling comparisons with primate
studies that used similar preparations [32, 36, 37]. Furthermore,
neural recordings in untrained animals eliminate the possibil-
ity that the observed selectivity and representational features
emerge as a consequence of the task-learning process. Rather,
our analyses likely highlight a computational property of the
visual system emerging from an evolutionarily refined genetic
program [29] and from exposure to a rich set of image statis-
tics during development. The observation that in näıve animals
the decoding quality of the neural signals follows the statistical
separability of texture–scramble images, mirrored by congruent
performance modulations in trained animals, supports this in-
terpretation. It is also conceivable that learning and attentional
processes, as animals engage in tasks, might affect the proper-
ties of neural representations [1, 89, 90]. Therefore, in future
studies, it would be of interest to examine the neural dynamics
underlying texture representations during the different phases
of learning.

In conclusion, our results demonstrate the signal process-
ing of naturalistic stimuli in the mouse visual cortex akin to
what has been observed in primates, additionally highlighting
an intimate link between the geometry of neural representa-
tions, stimulus statistical dependencies, and perceptual behav-
ior, which is a distinct hallmark of efficient coding principles
of information processing. Considering that similar processing
features are also found in V2/LM equivalents in artificial neu-
ral networks, our results likely reflect a general efficient coding
principle emerging in hierarchically organized computational
architectures devoted to the extraction of semantic information
from the visual scene.
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Materials and methods
Subjects.All procedures were reviewed and approved by the
Animal Care and Use Committees of the RIKEN Center for
Brain Science. The behavioral data for the texture–scramble
and texture–texture discrimination visual task were collected
from a total of 21 mice: six CamktTA;TREGCaMP6s (four
males and two females), 14 C57BL/6J WT (11 males, three
females), and one male CaMKIIα-Cre. For the passive wide-
field and two-photon imaging experiments, we used a total of
11 mice: six CaMKIIα-Cre transgenic mice (four males and two
females) and five C57BL/6J WT (two males and three females).
The age of the animals typically ranged between eight and 28
weeks old from the beginning to the end of the experiments.
Mice were housed under a 12–12 h light–dark cycle.

Cranial window implantation.As described in Aoki et. al.,
2017 [64], for the implantation of a head-post and optical
chamber, the animals were anesthetized with gas anesthe-
sia (Isoflurane 1.5–2.5%; Pfizer) and injected with an antibi-
otic (Baytrile, 0.5 ml, 2%; Bayer Yakuhin), a steroidal anti-
inflammatory drug (Dexamethasone; Kyoritsu Seiyaku), an
anti-edema agent (Glyceol, 100µl; Chugai Pharmaceutical) to
reduce brain swelling, and a painkiller (Lepetan, Otsuka Phar-
maceutical). The scalp and periosteum were retracted, expos-
ing the skull, and then a 5.5 mm diameter trephination was
made with a micro drill (Meisinger LLC). Two 5 mm cover-
slips (120-170µm thickness) were positioned in the center of
the craniotomy in direct contact with the meninges, topped
by a 6 mm diameter coverslip with the same thickness. When
needed, Gelform (Pfizer) was applied around the 5 mm cover-
slip to stop any bleeding. The 6-mm coverslip was fixed to the
bone with cyanoacrylic glue (Aron Alpha, Toagosei). A round
metal chamber (7.1 mm diameter) combined with a head-post
was centered on the craniotomy and cemented to the bone with
dental adhesive (Super-Bond C&B, Sun Medical), which was
mixed with a black dye for improved light absorbance during
imaging.

Viral injections. For imaging experiments, we injected the viral
vector rAAV1-syn-jGCaMP7f-WPRE (4 × 1012 gc/ml, 1000 nl)
into the mice’s right visual cortex (AP, -3.3 mm: LM 2.4 mm
from the bregma) at a flow rate of 50 nl/min using a Nanoject
II (Drummond Scientific, Broomall, Pennsylvania, USA). The
injection depth was 400µm. After confirmation of fluorescent
protein expression (approximately two weeks after the AAV in-
jection), we made a craniotomy (5.5 mm diameter) centered on
the injection site while keeping the dura membrane intact and
implanted a cover-glass window, as described above.

Behavior

Behavioral training procedure.Mice were habituated to our au-
tomated behavioral training setups with self-head fixation, as
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previously described in ref [64]. The training of mice, from
näıve to expert, progressed according to four stages with in-
creasing difficulty, both procedural and perceptual, and with
the fourth stage involving the final tasks described in the Re-
sults section (both the texture–scramble and texture–texture
tasks). In the first stage, trial timing and stimulus properties
were already set as in the final stage (Figure 1d). However, 1)
the “go” stimuli were shown in 70% of the trials (instead of 50%
in the fourth stage); 2) the minimum wheel rotation required to
trigger a response was 5° instead of 45°; 3) the maximum wheel
rotation that was allowed during the last second of the ITI was
larger (20° instead of 5°); 4) the reward size was 8µl instead
of 4 µl. During this training stage, the mice learned the as-
sociation between wheel rotation and water reward contingent
on the stimulus presentation on the screen. After they learned
to rotate the wheel contingent to stimulus presentation in at
least 80% of the trials for three consecutive sessions, they were
moved to the second training stage, with the following changes:
1) the “go” stimuli were shown in 70% of the trials; 2) the wheel
rotation angle to signal a response was increased to 15°; 3) the
maximum wheel rotation allowed during the ITI was decreased
to 5°; and 4) the water reward was lowered to 4 µl. After the
mice reached at least 70% hits for three consecutive sessions,
they were moved to the third training stage, in which the only
change was an increase in the wheel rotation angle to 30° to sig-
nal a response. After reaching at least 70% hits for three con-
secutive sessions, the mice were moved to the fourth and final
training stages with 50% hit trials. Most of the mice started the
training with the honeycomb or scales texture/scramble fam-
ily. Afterwards, we randomly selected the next family until all
four families were successfully discriminated against the corre-
sponding scrambles. A texture–scramble family discrimination
was considered completed when the mouse had a d′ > 1 con-
sistently over 10 consecutive sessions. The training details for
the texture–texture task are described in the “Texture–texture
task” section.

The texture–scramble task.Mice were trained in a go/no go
texture–scramble discrimination task. Their self-head was fixed
twice a day in a behavioral setup [64] connected to their home-
cage, which comprised a self-latching stage, a rubber wheel with
a quadrature encoder sensor to read the wheel’s position [91],
a spout that dispensed water drops (4 µl), and a computer
monitor positioned in front of the latching stage. Mice were
required to rotate the toy wheel with their front paws con-
tingent on a texture stimulus shown on the screen (the “hit”
trials were rewarded with a water drop; the “false alarm” re-
sponses were discouraged by presenting a full-field flickering
checkerboard pattern for 10 seconds; no feedback was given for
“misses” and “correct rejects”). Regarding the temporal struc-
ture of the trial (shown in Figure 1d), a session began with an
ITI with an isoluminant gray screen (with the same mean lu-
minance level of the texture and scramble images). The ITIs
lasted for four to six seconds chosen from a randomly uniform
distribution. Mice had to refrain from rotating the wheel, with
movements during a one-second period before the onset of the
visual stimulus extending the ITI by one second. The stimuli
had a 50% chance of being either a go stimulus (texture exem-
plar) or a no-go stimulus (scramble exemplar). The parameters
of the stimuli matched those used in the imaging experiments:
100° in visual angle, with a raised cosine mask to reduce sharp
edges (high-frequency components), and the texture family to
be discriminated was kept constant during the entire session,
randomly selecting the image to be displayed in each trial from
a set of 20 exemplars. Following the stimulus presentation, the
mice had two seconds to respond (response window). A wheel
rotation was counted as a response if it exceeded 45°. After
a hit trial, a water reward was given, which was followed by
a one-second period, during which the stimulus remained visi-
ble on the screen, which then disappeared at the beginning of
the ITI period with a randomized four to six second duration.
In false-alarm trials, the stimulus disappeared after the wheel
rotation, and a flickering checkerboard pattern (2 Hz) was dis-
played for 10 seconds followed by an ITI period. For miss trials,
a new ITI began at the end of the two-second response window.

The session ended either when the mice received 400 µl of wa-
ter or when the session’s duration reached 1800 seconds. To
verify that the mice did not rely on “brute force” memorization
to solve the task [66], in a subset of expert animals (n = 17),
trained on all four texture–scramble family pairs, we introduced
new sets of texture and scramble exemplars (20 each) and com-
pared the performance of mice in the five sessions before and
after the change in exemplars.

Texture–texture task.Mice trained in the texture–texture
go/no go task were both a subset of the mice trained in the
texture–scramble (n = 14) and a new cohort of näıve mice (n
= 2). If the mouse had been previously trained in the tex-
ture–scramble task expert, we simply changed the protocol so
that a randomly chosen texture family (20 exemplars) was the
new “go” stimuli and, similarly, another randomly chosen tex-
ture family (20 exemplars) was the new “no go” stimuli. In-
stead, for näıve mice, we trained them following the same train-
ing procedure described for the texture–scramble task but using
exemplars from another randomly chosen texture family instead
of scrambles.

Image synthesis

Texture synthesis.As described in Ding et al., 2020, convolu-
tional neural networks (CNNs) can be used to extract a compact
representation of texture images by measuring the activation
patterns of a CNN for a given texture. These activations are
an over complete multi-scale representation [59, 92] that can be
used to synthesize an arbitrary set of texture exemplars. Specif-
ically, the first step for the synthesis of a novel texture exemplar
relative to a reference texture (”target”, x) is to obtain a CNN
parametrization of x—that is, its feature vector representation,
f (x). This is done by concatenating the spatial means of the
feature-map activations in each of the five VGG16 layers, which
results in a feature vector of size 1,472:

f (x) = {µ(i)

x̃j
; i = 1, . . . ,m; j = 1, . . . , ni}

where m = 5 is the number of convolutional layers, ni is the
number of feature maps in convolutional layer i, x̃j is the spa-

tial mean across filter activations in the feature map j, and µ
(i)

x̃j

is the set of such means for layer i. The second step is to ob-
tain a feature vector representation, f (y), of a Gaussian-noise
image y:

f (y) = {µ(i)

ỹj
; i = 1, . . . ,m; j = 1, . . . , ni}

To obtain f (x) ≈ f (y), we solve an optimization problem (with
an L1 loss):

y⋆ = argminy

∑
|f (x)− f (y)|

Where y⋆ is the fully optimized image relative to the target
image, x. This approach is nearly identical to that of Ding
et. al., 2020, with the only difference being that we did not
add the mean of the three-color channels of x to our feature
transform [59] since—in our framework—it created some de-
gree of “pixelation” in the synthesized images. Rather, as an
additional step after optimization, we normalized the images
to have equal mean luminance and standard deviation (RMS
contrast).

Texture normalization.To ensure that texture exemplars had
the same lower-order statistics (mean luminance and RMS con-
trast), we z-scored the pixel intensity values, multiplied them
by a fixed contrast (standard deviation, σ = 0.15), and, finally,
added a fixed mean luminance value (µ = 0.5). This normal-
ization was applied to all the “target” texture images (relative
to the synthesis procedure with VGG16) and the synthetized
texture exemplars, as there were small differences in the lumi-
nance and contrast relative to the target after each exemplar
was synthetized. Furthermore, to ensure that the spatial fre-
quency content of the textures was within the range of mouse
perceptual sensitivity, we used an iterative algorithm in which
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we progressively rescaled the “target” texture images such that
1) > 95% of the spatial-frequency amplitudes of all the tar-
get textures lied within the 0.0 to 0.5 cpd [93] interval; 2) the
average amplitude spectrum overlapped across families in the
frequency range between 0.01 and 0.5 cpd.

Scramble generation. Scrambles are the noise images spectrally
matched to the textures [32] generated via FFT-transform of a
given texture exemplar (changing for different texture–scramble
pairs) and randomizing the phase components while keeping the
amplitude ones. Phase randomization was done by drawing the
phase values from an FFT-transform of a Gaussian-noise im-
age. The thus-generated scrambles retained the same average
orientation and spatial-frequency power as the texture exem-
plars but lacked the higher-order statistical dependence of the
textures [32]. For each of the synthesized scrambled images, we
verified that the mean luminance and RMS contrast remained
nearly identical to the original textures. The difference was
within the floating point error.

Image analysis

Image statistics.We explored the image statistics at various lev-
els of complexity. Our texture normalization procedure ensured
that the pixel histogram distributions had identical means and
standard deviations between the images (i.e., luminance, and
RMS contrast). Within families and between a matching pair
of textures and scrambles, we also confirmed that the average
orientation and spatial frequency content were the same. To
do so, in each image Fourier transform, we measured the aver-
age power in “slices” of the spatial frequencies and orientations
(spatial frequency bins: [0.01 cpd, step 0.02 cpd : 0.5 cpd];
orientation bins: [0° : step 15° : 180°]). The plots in Figure
S1b,c show the amplitude values as a function of spatial fre-
quencies and orientations, averaged across 20 exemplars for all
families and stimulus types, and normalized to 1. To measure
the higher-order statistics of the images, we decomposed them
using an approach devised by Portilla and Simoncelli [14], which
decomposes an image using a bank of linear and energy filters
tuned to different orientations, spatial frequencies, and spatial
positions. The correlations are then computed across the out-
puts of these filters (i.e., the “PS statistics”). The parameters
and classification of the PS statistics we adopted follow what
has been previously described [32, 36, 37, 40]. Briefly, we used
a filter bank composed of four spatial scales (four downscaling
octaves), four orientations (0º, 45º, 90º, 135º), and a spatial
neighborhood of seven pixels to compute the filter output cor-
relations. In addition, the marginal statistics of the pixel distri-
butions were also computed (min, max, mean, standard devia-
tion, skewness, and kurtosis). However, since part of our image
synthesis pipeline procedure already ensured equal mean and
standard deviation, only the differences in skewness and kurto-
sis were added to the characterization of the image statistics.
In the end, the output of this image decomposition yielded four
main groups of PS statistics: 1) marginal statistics (skewness
and kurtosis); 2) spectral statistics; 3) linear cross-correlation
statistics; and 4) energy cross-correlation statistics.

PCA of PS statistics.The number of parameters associated
with the PS decomposition was relatively higher (740) than the
total number of images (eight image categories—four texture
families and four scrambles—and 20 exemplars per category
with two rotations) leading to redundancies between the PS
statistical components [36]. We thus reduced the number of
parameters by applying PCA to each PS statistical group af-
ter z-scoring the parameter values. We retained at most eight
components in each group, which explained at least 70% of
the variance per group (Figure S5e). The marginal statistics
with only two “dimensions” were excluded from this decompo-
sition. After PCA, we again z-scored the outputs across ex-
emplars to ensure that the range of parameter values between
the groups of statistics was commensurate; this was necessary
to gain interpretability of the distance metric later introduced,
which was based on these reduced PS statistics. We also con-
firmed that the reduced PS statistics retained sufficient infor-

mation to discriminate between textures and scrambles, with
the energy cross-correlation statistics maximally distinguishing
between them (Figure S6a,b).

Imaging experiments

Visual stimuli.The visual stimuli were shown on a gamma-
corrected monitor (widefield: IIYAMA Prolite LE4041UHS
40”, two-photon: IIYAMA Prolite B2776HDS-B1 27”). The
size of the stimuli was always 100 degrees of visual angle with
a raised cosine window to correct for sharp edges; the stimuli
were shown in front of the mouse perpendicular to its midline,
which pointed to the center of the screen. The animal was at a
distance of ∼33 cm from the monitor for widefield experiments
and ∼24 cm for two-photon experiments. For widefield record-
ings, the stimuli were presented for 250 ms, followed by 750 ms
of an isoluminant gray screen (ITI) before a new trial started.
Each mouse was shown 20 exemplars of four texture families
and four scramble families (computed from the textures), a to-
tal of 10 times each exemplar, with 200 blank trials (i.e., trials
with an isoluminant gray screen and no stimuli). This resulted
in a total of 1600 trials with images and 200 trials with no stim-
ulus (blanks). The presentation of each image/blank was fully
randomized across the entire session. The two-photon exper-
iments followed the same temporal structure as the widefield
experiments; however, we reduced the number of repeats and
added image rotations. Specifically, each mouse was shown 20
exemplars of four texture families and four scramble families: a
total of eight times for each exemplar, and two rotations (0° and
90°) of each exemplar, with 160 blank trials. This resulted in a
total of 2560 trials with images and 160 trials with no stimuli
(blanks). We also recorded the responses to oriented gratings:
100 degrees in size, four orientations (0°, 45°, 90°, 135°), five
spatial frequencies (0.02, 0.04, 0.1, 0.2, 0.5 cpd) and 15 repeats
per stimulus.

Widefield imaging.As described in Orlandi et. al., 2021 [94],
the awake mice were head-fixed and placed under a dual
cube THT macroscope (Brainvision Inc.) for widefield imag-
ing in tandem-lens epifluorescence configuration using two AF
NIKKOR 50 mm f/1.4D lenses. We imaged the jGCaMP7f flu-
orescence signals using interleaved shutter-controlled blue and
violet LEDs with a CMOS camera (PCO Edge 5.5) with an ac-
quisition framerate of 60 Hz. This dual color recording method
ensured that we could capture both the calcium-dependent
GCaMP signal (blue light path) as well as the hemodynamic-
dependent signal (violet light path), as previously reported in
other studies[67]. The blue light path consisted of a 465 nm
centered LED (LEX-2, Brainvision Inc.), a 475 nm bandpass
filter (Edmund Optics BP 475 x 25 nm OD4 ø = 50 mm), and
two dichroic mirrors with 506 and 458 nm cutoff frequencies, re-
spectively (Semrock FF506-Di03 50 x 70 mm, FF458-DFi02 50
x 70 mm). The violet path consisted of a 405 nm centered LED
(Thorlabs M405L2 and LEDD1B driver), a 425 nm bandpass
filter (Edmund Options BP 425 x 25 mm OD4 ø = 25 mm), a
collimator (Thorlabs COP5-A), and joined the blue LED path
at the second dichroic mirror. The fluorescence light path trav-
eled through the two dichroic mirrors (458 and 506 nm, respec-
tively) and a 525 nm bandpass filter (Edmund Optics, BP 525
x 25 nm OD4 ø = 50 mm) and was finally captured with the
PCO Edge 5.5 CMOS camera using the cameralink interface.
Camera acquisition was synchronized to the LED illumination
via a custom Arduino-controlled software. The frame exposure
lasted 12 ms, starting 2 ms after opening each LED shutter to
allow the LED illumination to stabilize.

Preprocessing the widefield data.Data preprocessing was done
with custom Python and MATLAB code, with subsequent anal-
yses done in Python. The continuously acquired imaging data
were split into blue and violet channels. Then, as described
in Orlandi et. al., 2021 [94], we corrected for the “hemody-
namic component” by removing a calcium-independent compo-
nent from the recorded signal. For every pixel, the blue and
violet data were independently transformed into a relative fluo-
rescence signal, ∆F/F = (F−aF−b)/b, where F is the original
data, and the a and b coefficients are obtained by linear fitting
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each time series, i.e., F (t) ≈ at− b. Afterwards, for each pixel,
the violet ∆F/F signal was low-pass filtered (6th order IIR fil-
ter with cutoff at 5 Hz) and linearly fitted to the blue ∆F/F
signal: the hemodynamic-corrected ∆F/F signal was obtained
as ∆F/F corr = ∆F/Fblue − (c∆F/Fviolet + d), where c
and d are the coefficients from linearly fitting the low-pass fil-
tered ∆F/Fviolet to the ∆F/Fblue signal, i.e.,∆F/Fblue(t) ≈
c∆F/Fviolet(t)− d. The continuously acquired data was then
split into trial periods comprising sequences of frames in a tem-
poral window of [-500, +1000] ms relative to stimulus onset.
This resulted in a tensor with seven dimensions: [stimulus type
(texture or scramble), family type (4), exemplars (20), repeats
(10), no. pixels X (256), no. pixels Y (230), no. frames]. Next,
we averaged across repeats to obtain an “exemplar response
tensor.”

Retinotopy maps.After the mice recovered from the cranial-
window surgery (typically 3 to 4 days), we performed widefield
imaging recordings during visual stimulation with moving grat-
ings to obtain retinotopic. We used a standard frequency-based
method [95] with slowly moving horizontal and vertical flicker-
ing bars and corrections for spherical projections [69]. Visual
area segmentation was performed based on azimuth and ele-
vation gradient inversions [68]. The retinotopic maps were de-
rived under light anesthesia (Isoflurane) with the animal mid-
line pointing to the right edge of the monitor (IIYAMA Prolite
LE4041UHS 40”), centered relative to the monitor height, and
with the animal’s left eye at ∼25 cm from the center of the
screen.

Two-photon imaging.As described in Aoki et. al., 2017, the
imaging experiments were performed using the two-photon
imaging mode of the multiphoton confocal microscope (Model
A1RMP, Nikon, Japan) with a Ti:sapphire laser (80 MHz, Co-
herent©, Chameleon Vision II). The microscope was controlled
using the A1 software (Nikon). The objective was a 16x water
immersion lens (NA, 0.8; working distance, 3 mm; Nikon). The
field of view (512 × 512 pixels) was 532 µm × 532 µm. jG-
Camp7f was excited at 920 nm, and the laser power was ∼40
mW. The images were acquired continuously at a 30 Hz frame
rate using a resonant scanner. To align the two-photon imaging
field of view with the retinotopy, we captured a vascular image
at the surface of the cortex and used it for reference.

Preprocessing of two-photon data.All the analyses, except for
neuronal segmentation, were conducted using a custom code
written in Python. The cells were segmented using Suite2p [96],
followed by the manual classification of the segmented ROIs.
We then computed the ∆F/F0 response values (%) for each
neuron by first applying a neuropil correction: Fc–Fs − 0.7Fn,
where Fc is the corrected signal, Fs is the soma fluorescence,
and Fn is the neuropil fluorescence. Then, we computed
a baseline-fluorescence value (Fµ) as the mean of Fc during
the first five seconds of the recordings when no stimuli were
shown on the screen. We then detrended Fc (Scipy function
scipy.signal.detrend) to remove the slow decrease in fluorescence
sometimes observed across several tens of minutes and used the
zero-mean detrended signal Fd to compute ∆F/F0 = Fd/Fµ.

Data analysis: widefield

Defining regions of interest. For every visual area, we defined a
visually responsive ROI (or stimulus ROI) based on the maps
of azimuth and elevation obtained from widefield imaging, so
as to include a range of [+30°, -10°] in azimuth (relative to the
contra- and ipsilateral visual fields, respectively) and elevation
(±30°), which, for the azimuth, was a conservative estimate of
the retinotopic representation of the stimuli (of size ±50° in
azimuth and elevation).

Peak-response and p-value maps.The widefield responses to
textures and scrambles (Figure 2b) were computed by averag-
ing across repeats, exemplars, and families; the frames were
then averaged in a time widow [200, 400] ms after the stim-
ulus onset, approximately centered around the time of peak

response. The difference between these two images is shown in
Figure 2c. The temporal response curves in V1 and LM to the
textures and scrambles (Figure 2d) were computed by averag-
ing across repeats, families, and pixels within the response ROIs
in V1 and LM; the variability was across the exemplars. The
response ROIs were defined based on retinotopy as the cortical
region that “mapped” the stimulus location in the visual space.
The error bands indicated a 95% confidence interval across the
exemplars. To evaluate the significance of the differential re-
sponse to the textures and scrambles (Figure 2e), we tested
against a distribution of pre-stimulus responses. Specifically,
we first computed the response–difference distributions by sub-
tracting the responses to texture exemplars (averaged across
repeats) from the randomly paired scramble exemplars. As be-
fore, the frames were also averaged around the time of the peak
response, [200, 400] ms after the stimulus onset. This resulted
in a tensor with four dimensions: [family type (4), exemplars
(20), no. pixels X (256), no. pixels Y (230), no. frames]. By
grouping the responses to all the families and exemplars, we
generated response-difference distributions for each pixel, each
containing 80 data points. We applied the same procedure to
the data in a temporal window [-350, -100] ms prior to stimulus
onset to obtain the “null” distributions for each pixel. Finally,
we tested for statistical differences between the pre-and post-
stimulus onset distributions using a paired t-test and reporting
the associated p-values. This procedure was applied to each
animal, and the p-value maps were then used to compute the
texture modulation of each visual area, as described below.

Texture selectivity of visual areas.To determine how signifi-
cantly a visual area was modulated by textures compared to
scrambles (Figure 2f), we computed the proportion of the sig-
nificantly modulated pixels (p < 0.01, from the p-value maps)
within the stimulus ROI of each area (described in the section
“Defining regions of interest”). This was separately computed
in five visual areas (V1, LM, RL, AM, and PM) that were reli-
ably segmented in all animals.

Texture discriminability.To compute the texture–scramble dis-
criminability values for V1 and LM (Figure 2g), we consid-
ered the responses to exemplars—separately for textures and
scrambles—averaged across (i) repeats, (ii) pixels within stim-
ulus ROIs (see section “Defining regions of interest”), and (iii)
time frames within a window of [200, 400] ms after the stimulus
onset. We then calculated a texture–scramble discriminability
index (d′) in both brain areas as follows:

d′ =
µtex − µsc√
1
2
(σ2

tex + σ2
sc)

Where µtex and µsc are the mean responses to the texture and
scramble exemplars (80), and σ2

tex and, σ2
sc the corresponding

variances. To calculate the “null distribution” of the d′ values
shown in Figure 2g (gray band), we followed the same pro-
cedure as above in a time window [-300, -0] ms prior to the
stimulus onset, reporting the 5% and 95% percentiles of that
distribution.

Data analysis: two-photon

Stimulus-responsive cells.In a typical experiment, we could
segment ∼200–450 cells (as described in the section “Two-
photon imaging”). To establish whether a cell was visually
responsive, in each trial ([-500, +1000] ms relative to stim-
ulus onset) we “frame-zero” corrected ∆F/F0 by subtracting
the average activity within a pre-stimulus period of [-500, 0]
ms. Then, we used a d′ discriminability measure (similar to
[69, 97]) by comparing the responses to visual stimuli and to
“blanks.” Specifically, in each trial and for every segmented
cell, we averaged the responses in a window of [250, 500] ms
post stimulus onset. We then used these average values to gen-
erate two distributions: one from the trials with visual stim-
uli, the other from the “blank” trials. The distributions with
the visual stimuli were computed separately for the individual
texture and scramble exemplars and considering the response
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variability across repeats. For each stimulus exemplar, we then
computed a discriminability measure, d′stim, as follows:

d′stim =
µstim − µblank

σstim + σblank

Where, µstim is the mean response across repeats for the cho-
sen exemplar, µblank is the mean response across the repeats
of blank trials, and σstim, σblank are the corresponding stan-
dard deviations. This procedure generated a distribution of
d′stim values for each cell. A cell was considered visually re-
sponsive if the maximum value of this distribution was ≥ 1,
and if ∆F/F0 ≥ 6% in the stimulus-response window (for con-
sistency with [69, 97]. Subsequent analyses were performed on
this subset of stimulus-responsive cells.

Texture–scramble d-prime. For every stimulus-responding cell,
we considered frame-zero corrected ∆F/F0 data, averaging
across repeats and responses in a time window of [250, 500] ms
after stimulus onset. We then considered the data variability
across exemplars (and their rotations) to compute a discrim-
inability measure d′ as follows:

d′ =
µtex − µsc√
1
2
(σ2

tex + σ2
sc)

Where µtex and µsc are the mean responses to the texture and
scramble exemplars, and σ2

tex and σ2
sc the corresponding vari-

ances.

Regressive model.Using a set of reduced PS statistics as re-
gressors (see section “Image statistics”), we constructed a linear
regressive model (ridge regression) to predict individual cell re-
sponses. For each exemplar, we computed an average response
value as the mean ∆F/F0 (averaged across repeats and frame-
zero corrected) in a time window of [250, 500] ms post stimulus
onset. For each neuron i, the model was trained to capture the
responses to different exemplars using the following loss func-
tion:

min
wi

||yi −Xwi||2
2

+ λ ||wi||22

Where wi are the optimization weights, yi the data, λ a reg-
ularization parameter, and X the reduced PS statistics (two
dimensions per group, i.e., the first two PCs). We confirmed
that the model did not perform significantly better when using
more PCs. The model was trained with five-fold cross validation
to reduce overfitting, and the regularization parameter λ was
optimized using a grid search. The model’s performance was
evaluated in terms of the explained variance (EV) in the cross-
validated data. To establish the significance of the model’s fit
and to derive an EV threshold value for the inclusion of cells in
the analyses of Figure 3h, we used a permutation test. For a
given cell, we refitted the responses using as input statistics
those from randomly chosen images (across exemplars from
all textures and scrambles). Therefore, for each experiment,
we obtained a shuffled distribution of EVs (across cells) and
chose the 95th percentile of the distribution as the threshold
value for significance (α = 0.05). We used this approach in all
n = 20 experiments, resulting in an average threshold value,
EVth = 0.87% ± 0.07% (s.e.). We set a conservative inclusion
threshold at EVth = 1%.

Regressive model: weight analysis.To examine the contribu-
tion of the different reduced PS statistics in the regressive
model, we summed the absolute values of the regressive weights
separately for each of the four statistical groups: for a given cell,
and for the PS group i, we computed Wi =

∑d
j=1 |wi,j |, with

d = 2, that is, the number of PCs for the reduced PS statistics.
We then averaged Wi across all the cells in a given animal (the
individual data points in Figure 3h).

Regressive model: unique EV.To examine the unique contri-
bution to the explained variance by the different reduced PS
statistics, we measured the loss in EV when training models
without a particular statistical group. Specifically, consider-
ing a subset of cells with significant explained variance (EV
> 10%), we first trained a model with all four groups of PS

statistics (full model). Further, we trained four more models,
each missing one of the four PS groups. We then computed a
measure of unique variance explained, ∆EVui , as follows:

∆EVui = 100
EVf − EVi

EVf
∀i ∈ {PS1, . . . ,PS4}

Where EVi is the explained variance of a model trained without
the PS group i, and EVf is the explained variance of the full
model.

PCA embedding of neural responses.For every stimulus-
responding cell, we considered the frame-zero corrected ∆F/F0

data, averaging across repeats and time frames in a time win-
dow of [250, 500] ms post stimulus onset (as previously ex-
plained). After z-scoring the responses of each cell to different
exemplars, we applied PCA (n = 20 PCs, separately for V1 and
LM populations) to “standardize” the population size, thus fa-
cilitating a comparison between experiments, each having a dif-
ferent number of segmented cells. An example of a PCA space
of neural activations is shown in Figure 4g for LM recordings
(n = 2 PCs).

Decoding responses to textures and scrambles. In the PCA
spaces of neural activations for V1 and LM, as described in the
section above, we considered responses to exemplars separately
for each of the four texture–scramble families. For each family,
we trained a binary logistic regression classifier to distinguish
texture exemplars from scramble exemplars. The model was
five-fold cross-validated, and its performance was evaluated us-
ing the average accuracy across the five folds. We repeated the
same analysis by varying the number of PCs and examining the
related changes in classification accuracy separately for the V1
and LM data (Figure S8a-c).

Distance metrics for stimulus statistics.For each of the four
PS statistical groups, we considered a 2D-PCA space of image
statistics (see section “PCA of PS statistics”), with two PCs
already sufficient for near-optimal classification performance
(Figure S6a). The overall distance patterns described in Figure
4 were consistent when using larger numbers of PCs. A single
point in each PCA space corresponds to the statistical represen-
tation of an exemplar image based on the associated PS statisti-
cal decomposition (reduced to four main PS statistical groups).
To compute the radius of a cloud of points (20 exemplar points)
for a given family, we computed the standard deviation of the
x and y coordinates, σx, σy, and defined the radius as their

mean value ri =
σx+σy

2
. For the inter-cluster distance of a

given pair of clouds (i.e., exemplars of textures or scrambles),
we first computed the center of mass of the two clouds as the
mean of the x and y coordinates, µx, µy, and then computed
their Euclidean distance. The reported distance metric for each
pair of the texture–scramble family was obtained by dividing
the texture–scramble inter-cluster distance by the mean of the
two corresponding radii. The inter-cluster distances were cal-
culated for all the matching pairs of texture/scramble families
(for Figure 4a-f). Further, the radius values were computed for
all the families and stimulus types and for all the groups of PS
statistics.

Decoding the responses to texture families. In the PCA spaces
of neural activations for V1 and LM (as described in the section
“PCA embedding of neural responses”), we created another lin-
ear decoding model trained to classify all four texture families.
We used a multinomial logistic regression classifier with an L1
regularization penalty. The training data consisted of the cells’
responses to 160 texture stimuli (four families, 20 exemplars,
two rotations). The model was trained using five-fold cross val-
idation, and the regularization factor was optimized with a grid
search. The model’s performance was evaluated as the cross-
validated accuracy averaged across folds. We also examined the
dependence of the model’s performance on the number of PCs
(Figure 4h).
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Distance metrics for neural representations.To compare the
representational differences between V1 and LM, we created
a common PCA space of neuronal activations. For a given
mouse, we considered responses to exemplars pre-processed as
described in “PCA embedding of neural responses“ (before
PCA). We then applied PCA to a “concatenated” ensemble
of V1 and LM cells to derive a common PCA space with n = 8
components. The number of segmented cells and the z-scored
response values were commensurate between V1 and LM. Us-
ing the PCA projection matrix, and by zeroing responses of the
“other” area, we could then separately project the V1 and LM
responses in this common space. We then measured the radii
of the activation “clouds” in this PCA space for each texture
family, as well as the inter-cluster distances for pairs of texture
families, following the procedures described in “Distance met-
rics for stimulus statistics” (but without the normalization step
for the inter-cluster distances). Finally, we compared the radii
and inter-cluster distances for all six pairs of families between
V1 and LM.
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Supplementary Fig. 1: Characterization of the lower-order statistics of texture and scramble stimuli. a, The mean
luminance across pixels for all texture exemplars (filled circles) and scramble exemplars (open squares) for each family (color code
as in the main figures). The error bars indicate the RMS contrast–that is, the standard deviation of the pixel intensities averaged
across all exemplars. b, The normalized spatial frequency power spectrum for each family—that is, the mean of the spectra
computed for each exemplar, plotted in a frequency interval of maximum perceptual sensitivity for mice –0.02 - 0.5 cpd). c, The
average orientation power for each texture family computed as the mean across exemplars for textures (red) and scrambles (blue).
d, The mean azimuth and elevation of each reliably segmented visual area based on retinotopic mapping (filled dots, arbitrary
colors; replotted from Garrett et al., J. Neurosci. 2014[68], Figure 6E); the semicircle delineates the size (fixed across experiments)
of the visual stimuli.
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Supplementary Fig. 2: Performance of mice in the texture–scramble go/no go task. a, The average hit rates for each
texture family for the mice shown in Figure 1f; each dot is for one animal. b, Same as in (a) but for false-alarm rates. c, The
performance (d′) of mice (n = 3) for each texture–scramble pair over the last five sessions prior to a change in the set of 20
exemplars (green) and over the five sessions after the change (orange). Each dot indicates a training session; all differences are
not significant. d, The texture/texture go no-go task: the mouse must rotate a wheel (go trial) if shown a go-texture exemplar;
it must keep it still if shown an exemplar from the no-go family (no-go). ITI is the inter-trial interval, RW the response window,
and the feedback period.
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Supplementary Fig. 3: Population responses to visual stimuli derived from single-cell activity. a, The mean population
activity of all the visually responsive cells per mouse (solid line, average across all mice; error bands, 95% confidence intervals
across the average response per mouse (n = 10); Methods) as a measure of the collective population response to textures and
scrambles for the V1 and LM experiments. The dotted vertical line indicates the stimulus onset, whereas the green band indicates
the stimulus duration. The mean population activity was computed as the mean response to all the textures and scrambles,
averaging across repeats, rotations, exemplars, and all the responsive cells. b, The population responses were calculated the same
way as in (a), but the responses were separated across the families (4 plots), and only the texture stimuli responses were plotted
for both V1 and LM.
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Supplementary Fig. 4: Single-cell responses to textures and scrambles. a, The cumulative distributions of the neural
discriminability values (d′) of cells (combining across experiments and averaging across texture families) in the discrimination of
textures vs scrambles images; green for V1 and blue for LM. Each line is for one animal. b, The average d′ values for each animal
(black dots, n = 10 mice, mean across cells and texture–scramble pairs) for V1 and LM; the p-value from the paired t-test across
mice (n = 10). c, The proportion of cells for each mouse (black dots) in V1 and LM with a d′ > 0 across all the texture–scramble
pairs. d, The average modulation difference for each animal (black dots, n = 10 mice, mean across all cells, exemplars, and
families) for V1 and LM; p-value = 0.002, paired t-test. e, the proportion of cells for each mouse (black dots) for which the
regressive model based on the PS statistics had an explained variance EV ≥ 1%, separately for V1 and LM. The connecting lines
are for the same animal; p-value, paired t-test.
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Supplementary Fig. 5: Clustering of visual stimuli in a PCA space of PS statistics. a-d,The two-dimensional PCA
embedding of each of the four groups of image statistics (titles). The dots indicate (20) texture exemplars, and the stars (20)
scramble exemplars. Color code for texture families in the legend. The same images were used for both behavioral and imaging
experiments. e, The cumulative explained variance of the reduced PS statistics for the spectral, linear cross-correlation, and
energy cross-correlation statistics.
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Supplementary Fig. 6: Binary texture–scramble classifier across a subset of PS image statistics. a, The cross-validated
performance of a binary linear classifier trained to discriminate between texture and scramble images (across all families and
exemplars) based on different PS statistical groups (x-labels). The horizontal dotted line indicates chance-level accuracy. The
energy cross-correlation statistics is the group of image statistics with the highest discriminability accuracy in a 2D-PCA embedding
space. b, The confusion matrix for the classifiers is shown in (a) for each PS statistical group (titles).

21

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.14.507893doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.507893
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Fig. 7: Neural, behavioral, and statistical distance measures for spectral, linear and marginal PS
statistics. Each panel illustrates the same concept as in Figure 4, that is, the relationship between neural accuracy, behavioral
performance, and image statistics, but for the other three groups of PS image statistics: spectral (a), linear cross-correlation (b),
and marginal statistics (c ). The error bars for behavioral performance and classification accuracy are the standard error of the
mean; the error bars for inter-cluster distances are the 99.7% confidence intervals with Šidák correction for multiple comparisons.
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Supplementary Fig. 8: Binary classifiers of neural data for texture–scramble and texture–texture discrimination. a,
The accuracy (fractional values) of a binary classifier trained on different pairs of texture–scramble families (legend in panel (b))
as a function of the number of components in the neural PCA space for V1. The shaded regions correspond to the 95% confidence
interval for the average classification accuracy of all mice (n = 10). b, Same as in (a) but for LM. c, The accuracy of the same
binary classifier in (a, b) when using eight PCA components.
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Mouse ID Scales Rocks Honeycomb Plants
20070 2189 n/a 1021 2029
20099 2015 1715 1122 2003
20100 2024 1979 1032 1677
20109 1853 1581 1000 1651
20117 1925 1938 1029 2213
21030 1471 1396 748 1682
21031 1816 1787 1056 1936
21032 n/a n/a 1044 n/a
21033 1857 1560 1018 1856
21047 1839 1651 1985 756
21048 1002 1616 1852 1979
21049 n/a n/a 871 n/a
21051 2059 1833 2049 870
21055 1666 1945 2059 864
21056 3712 1937 981 2040
21060 3845 2195 1118 2208
21061 1078 1892 2075 2172
21062 2042 2055 1962 1101
21064 3265 2332 2344 2260

Supplementary Table 1: Summary of the number of trials in the texture/scramble behavioral task.
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Mouse ID Honey/rocks Honey/plants Scales/plants Rocks/plants Honey/scales Rocks/scales
20100 2097 2046 1587 n/a n/a n/a
20117 n/a 1637 n/a 1618 1583 n/a
21030 n/a n/a 1971 2060 2038 2087
21031 n/a 1615 1918 2162 2144 1956
21033 1916 n/a 1775 n/a n/a 2206
21047 n/a n/a n/a n/a n/a 1992
21048 1669 n/a n/a n/a 1786 n/a
21049 1890 n/a 2008 3727 n/a n/a
21051 n/a n/a n/a n/a 2091 n/a
21055 1676 n/a n/a n/a 1705 n/a
21056 1960 2022 n/a n/a n/a n/a
21060 1802 1940 n/a n/a n/a n/a
21062 n/a n/a n/a n/a n/a 1963
21064 n/a n/a n/a n/a n/a 2123
21067 1797 n/a n/a 1619 1813 n/a
21074 2138 n/a n/a n/a n/a n/a

Supplementary Table 2: Summary of the number of trials in the texture/texture behavioral task.
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