Novel lipid biomarkers for algal resistance to viral infection in the ocean

Guy Schleyer ${ }^{1}$, Constanze Kuhlisch ${ }^{1}$, Carmit Ziv ${ }^{1,2}$, Shifra Ben-Dor ${ }^{3}$, Sergey Malitsky ${ }^{1,3}$, Daniella Schatz ${ }^{1}$, Assaf Vardi ${ }^{1 *}$
${ }^{1}$ Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
${ }^{2}$ Current: Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
${ }^{3}$ Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
*Corresponding author: assaf.vardi@weizmann.ac.il

Abstract

Marine viruses play a key role in regulating phytoplankton populations, greatly affecting the biogeochemical cycling of major nutrients in the ocean. Resistance to viral infection has been reported for various phytoplankton species under laboratory conditions. Nevertheless, the occurrence of resistant cells in natural populations is underexplored due to the lack of sensitive tools to detect these rare phenotypes. Consequently, our current understanding of the ecological importance of resistance and its underlying mechanisms is limited. Here, we sought to discover lipid biomarkers for the resistance of the bloom-forming alga Emiliania huxleyi to its specific virus, E. huxleyi virus (EhV). We identified novel glycosphingolipids (GSLs) that characterize resistant E. huxleyi strains by applying an untargeted lipidomics approach. Further, we detected these lipid biomarkers in E. huxleyi isolates that were recently collected from E. huxleyi blooms and used them to detect resistant cells in the demise phase of an open ocean E. huxleyi bloom. Lastly, we show that the GSL composition of E. huxleyi cultures that recover following infection and gain resistance to the virus resembles that of resistant strains. These findings highlight the metabolic plasticity and co-evolution of the GSL biosynthetic pathway and underscore its central part in this host-virus arms race.

Introduction

Viruses are the most abundant biological entities in the marine environment and serve as major evolutionary and biogeochemical drivers in the oceans ${ }^{1-4}$. Algae-infecting viruses are estimated to turn over a substantial portion of the photosynthetically-fixed carbon, thus fueling microbial food webs, short-circuiting carbon transfer to higher trophic levels and promoting its export to the deep sea ${ }^{5-7}$. Recent developments allow to better quantify infected cells in the natural environment ${ }^{8-13}$, yet studying host-virus dynamics in natural populations ${ }^{14}$ remains a major challenge for our understanding of the possible phenotypic outcomes of viral infection.
The ongoing evolutionary arms race between algae and their viruses leads to diverse defense strategies, supported by continuous genetic and phenotypic adaptations of the algal cells ${ }^{15-17}$. Resistance to viral infection has been reported for several algal species, both as isolates from natural populations and as sub-populations that emerge following infection under laboratory conditions ${ }^{16,18-22}$. Nevertheless, the prevalence of resistant phenotypes in nature is currently unknown, as we lack sensitive tools to detect resistant cells in mixed populations, hindering our understanding of their ecological importance.
The cosmopolitan alga E. huxleyi and its specific virus, E. huxleyi virus (EhV), are an attractive model system to study host-virus interactions. E. huxleyi forms vast annual blooms in the ocean that play an important role in regulating the global biogeochemical cycling of carbon and sulfur ${ }^{23-26}$ and are routinely infected and terminated by EhV^{27-30}. Laboratory-based studies revealed that viral infection leads to profound rewiring of the E. huxleyi metabolism, including changes in glycolysis, elevated fatty acid (FA) synthesis and alterations in the cellular lipid content and composition ${ }^{31-34}$. Particularly, EhV is the only virus known to date to encode almost a complete pathway for sphingolipid (SL) biosynthesis, resulting in the production of structurally distinct virus-derived glycosphingolipids (vGSLs) by infected cells ${ }^{35-37}$. vGSLs were found to trigger host programmed cell death and are central components of the EhV membranes ${ }^{37,38}$. In addition, E. huxleyi cells produce host-derived GSLs (hGSLs), which are found in all E. huxleyi strains and serve as a proxy for healthy cells ${ }^{38,39}$, and sialic acid GSLs (sGSLs), which characterize susceptible E. huxleyi strains and were suggested to be involved in viral attachment and entry ${ }^{38}$. Given their structural variability and diverse roles, SLs are key players in the arms race between E. huxleyi and its virus.
Resistance to infection by EhV has been described in several E. huxleyi strains and was previously attributed to ploidy level, genome and transcriptome variations between the strains ${ }^{16,40}$, to expression and activity of specific enzymes, such as DMSP-lyase, and to metacaspase expression ${ }^{22,41}$. Resistant cells were also identified in low numbers ($<1 \%$) in infected E. huxleyi cultures ${ }^{42}$, revealing that resistance can also be triggered by viral infection. These resistant cells were found to be morphologically distinct from their susceptible progenitors, indicating the involvement of a life-phase transition and highlighting the phenotypic plasticity within E. huxleyi populations during infection ${ }^{16,42}$. Nevertheless, the metabolic basis of E. huxleyi's resistance to viral infection is unknown, as is the prevalence of resistant E. huxleyi cells in natural populations. In this study, we aimed at addressing this conundrum by identifying specific lipid biomarkers for resistant E. huxleyi cells and applying them to natural mixed populations.

Results
 Untargeted lipidomics profiling of virus-resistant and susceptible E. huxleyi strains

To identify lipids that are characteristic of resistant strains, we compared the lipidome of four E. huxleyi strains that differ in their susceptibility to viral infection by EhV201 (hereinafter, EhV): the resistant E. huxleyi strains CCMP373 and CCMP379 and the susceptible E. huxleyi strains CCMP2090 and CCMP374 (hereinafter, E. huxleyi strains 373, 379, 2090 and 374, respectively) ${ }^{22,38,40}$. Previous studies reported that following infection of E. huxleyi cultures by EhV in the lab, a small proportion of the population ($<1 \%$) can survive and acquire resistance to the virus ${ }^{16,42}$. We were therefore interested to delineate possible correlations between the lipid profile of resistant strains and the evolving resistant cells within infected susceptible cultures.
The lipidome of the resistant and susceptible strains in the presence and absence of the lytic virus EhV201 was compared over a three-day time course using liquid chromatography-high resolution mass spectrometry (LC-HRMS)-based untargeted lipidomics. All untreated cultures grew throughout the experiment, reaching $1.0-2.4 \times 10^{6}$ cells per mL (Fig. 1a). The resistant E. huxleyi strains 373 and 379 grew throughout the experiment regardless of the presence of EhV and with no accumulation of virions in the media (Fig. 1b). In contrast, upon addition of EhV, the susceptible E. huxleyi strains 2090 and 374 showed growth arrest one day post infection (dpi) and were subsequently lysed (Fig. 1b). Concomitantly, accumulation of virions was detected in the medium of the infected cultures starting from 1 dpi. In all cultures, cells were harvested at four different time points ($0,1,2$ and 3 days) for lipid extraction and untargeted lipidomics analysis.
First, we compared the lipidome of the four strains in the absence of EhV. Unsupervised k means clustering of the extracted data ($n=48 ; 12,190$ mass features, $k=4$, Fig. S1a), visualized by principal component analysis (PCA), separated the strains into four distinct clusters (clusters $1-4$, Fig. 1c). The first PC axis (31.8%) revealed a clear separation between the susceptible and resistant strains (clusters 1 and 2 vs clusters 3 and 4, respectively), and the second PC axis (16.7%) highlighted further differences between the strains. Next, we applied k-means clustering to the combined dataset of cultures with and without addition of EhV ($n=96 ; 12,190$ mass features, $k=4$, Fig. S1b), which showed a clear separation between susceptible and resistant strains (clusters 5 and 6 vs clusters 7 and 8, respectively) along the first PC axis (40.1%, Fig. 1d). The second PC axis (15.5%) further separated the susceptible strains at late infection stages (2 and 3 dpi ; cluster 5) from early infection stages (0 and 1 dpi) and the uninfected cultures (cluster 6).

Figure 1: Untargeted LC-HRMS-based lipidomics analysis reveals differences between virus-resistant and susceptible E. huxleyi strains. (a) Cell abundance during growth of E. huxleyi strains that differ in their susceptibility to viral infection: the resistant (R) E. huxleyi strains 373 and 379 and the susceptible (S) E. huxleyi strains 2090 and 374. (b) Cell abundance (black lines) and production of virions (grey lines) following the addition of EhV. Values for (a) and (b) are presented as the mean $\pm \mathrm{SD}(n=3)$. (c) Clustering of resistant and susceptible E. huxleyi strains based on untargeted lipidomics (using 12,190 mass features) and k-means clustering ($k=4$, Fig. S1a), as visualized by PCA. (d) Clustering of resistant and susceptible E. huxleyi strains in the presence and absence of EhV based on untargeted lipidomics (using 12,190 mass features) and k-means clustering ($k=4$, Fig. S1b), as visualized by PCA. Percentage of explained variance is stated in parentheses. Each cluster (CL) is surrounded by an ellipse, with the mean marked by ' x '.

Next, we focused on mass features that were differential between the resistant and susceptible clusters in the cultures without EhV (resistant clusters 3 and 4 vs susceptible clusters 1 and 2, Fig. 1c) using a comparative analysis (one-way ANOVA with false discovery rate (FDR)correction). By doing so, we could reduce the data to 173 differential mass features ($p<0.01$). Following feature deconvolution and manual curation, these mass features were grouped into 43 putative lipid species (Table S1). We then applied two-dimensional hierarchical clustering to this subset of 43 putative lipid species using the complete dataset (that is, with and without addition of EhV; Fig. 2a and Fig. S2). This subset of lipid species recapitulated the previously observed separation (Fig. 1d) between the resistant and susceptible strains (two main clusters, separating E. huxleyi 379 and 373 from E. huxleyi 374 and 2090), and between each pair of strains. Similarly, while there was no clear separation between resistant strains in the presence and absence of EhV, the susceptible strains infected with EhV were clustered separately from the uninfected cultures as early as 1 dpi .

The 43 putative lipid species were grouped into two main clusters, each further divided into two sub-clusters (Fig. 2a): (i) lipids with higher intensity in the resistant strains (especially E. huxleyi 379), of which most had higher intensity also in infected E. huxleyi 2090 cultures; (ii) lipids with higher intensity in both resistant strains; (iii) lipids with higher intensity in the resistant E. huxleyi strain 373 and the susceptible E. huxleyi strain 374; and (iv) lipids with higher intensity in E. huxleyi strain 374 or in both susceptible strains. Out of the 43 putative lipid species, 21 were higher in one or both resistant strains (sub-clusters i and ii). Some of these species were elevated in the resistant E. huxleyi strain 379 compared to E. huxleyi strain 373, shedding light on possible metabolic differences between these two resistant strains. Seven putative lipid species were higher in the susceptible E. huxleyi strains 374 and 2090 (sub-cluster iv), one of which was identified as the known sGSL d18:2/c22:0 0^{38} and three of which were higher in E. huxleyi 374 compared to E. huxleyi 2090.
We putatively annotated nine lipid species as GSLs using characteristic neutral losses and fragments of long-chain bases (LCBs) and amino fatty acids (FAs, based on MS/MS spectra, $\mathbf{1 - 5 , ~ 9 , ~ 1 2 - 1 4 , ~ s e e ~ T a b l e ~ 1 , ~ F i g . ~ S 3 - S 1 2 ~ a n d ~ T a b l e ~ S 1) . ~ T h e s e ~ G S L ~ s p e c i e s ~ v a r i e d ~ i n ~ t h e i r ~ L C B ~}$ composition, including dihydroxylated LCBs d18:0, d18:3, d19:3 and d19:4, and the trihydroxylated LCB t18:0 (Fig. 2b). We manually identified five additional GSL species with the same LCB composition that had higher intensity in the resistant strains (6-8, 10-11, see Table 1, Fig. S3, Fig. S13-S17 and Table S2; these GSL species were filtered out in the initial data preprocessing). We classified these GSL species into four groups based on their abundance in the different strains (Table 1, Fig. S18 and Fig. S19): (A) GSL species that are highly abundant in the resistant strains compared to susceptible strains (1-4, difference of >1 order of magnitude). These GSL species contain LCB d18:3 and d19:3; (B) GSL species that are found in resistant strains and in infected susceptible strains (5-10). These contain LCB d18:0, d18:1, and t18:0. (C) GSL species that are found only in the two resistant strains, with higher abundance in E. huxleyi 379 compared to E. huxleyi 373 (11-12, Fig. S19). These contain LCB d19:4 and were termed resistance-specific GSLs (resGSLs) due to their detection in resistant strains and their absence in susceptible strains. (D) GSL species that are found only in E. huxleyi 374 (13-14). These contain LCB d19:3 and were termed E. huxleyi 374-specific GSLs (374-GSLs).
GSL species containing LCBs $\mathrm{d} 18: 1, \mathrm{~d} 18: 3$ and $\mathrm{d} 19: 4$ were not detected thus far in the E. huxleyi-EhV system. LCBs d18:0, d19:3 and t18:0 were previously reported in the E. huxleyi-EhV system: LCB d19:3 in hGSL species and LCB d18:0 and t18:0 in infectionderived GSL and ceramide species (Table S3) ${ }^{36,43}$. Intriguingly, GSL species containing LCB t18:0 (8-10), which were detected in resistant strains and in infected cultures (Fig. S18), varied in their FA composition: resistant strains produce GSL species with a clear preference for mono- and di-unsaturated FAs over saturated ones (h22:1 and h22:2 vs h22:0, Fig. S18). Infected cultures, on the other hand, produce GSL species with saturated and mono-unsaturated FAs, as was previously described for t17:0-based vGSL species ${ }^{36,37}$. Importantly, trihydroxylated LCBs were previously found only in vGSL species and were considered a unique attribute of viral infection, derived from the virus-encoded biosynthetic pathway. The tetra-unsaturated LCB d19:4, on the other hand, appears only in resGSLs found resistant strains, and therefore, we suggest that these unique resGSLs can be used as a biomarker for resistant cells in natural populations. Detection of GSL species with tetra-unsaturated LCB and
trihydroxylated LCB in resistant strains suggests the involvement of specific modifying enzymes in these strains.

b

Figure 2: Putative lipid biomarkers for \boldsymbol{E}. huxleyi strains differing in their susceptibility to viral infection. (a) Two-dimensional hierarchical clustering of 43 putative lipid species (Table S1) in four E. huxleyi strains in the presence and absence of EhV throughout a time course of four days $(n=32)$. Clustering was performed on log-transformed and standardized mean peak areas $(n=3)$ of the adduct ion with the highest intensity (see Fig. S2 for the non-averaged data). Samples are grouped into two main clusters that separate the resistant (R) strains from the susceptible (S) ones. Each cluster forms two sub-clusters that further separate the strains. The putative lipid species are divided into four sub-clusters (i-iv). Nine identified GSL species are marked by numbers (Table 1). The peak areas of GSLs $\mathbf{1}$ and $\mathbf{3}$ (structural isomers with a similar retention time, see Table 1), were integrated together. ${ }^{*}$ sGSL d18:2/c22:0. (b) Putative structures of six of the previously undescribed GSL species in the E. huxleyi-EhV model system, which are differential between the resistant and susceptible E. huxleyi strains. See Fig. S3 for putative structures of all GSL species identified in this study. The structures, including LCB and FA composition, were determined based on LC-MS/MS analysis (Fig. S4-S12). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database $(\text { LMSD })^{44}$.

Table 1: Putative annotation and identification of GSL species that differ between resistant and susceptible strains and are previously undescribed in the E. huxleyi-EhV model system

Group	\#	GSL species LCB/FA	$\begin{aligned} & \text { RT } \\ & (\mathrm{min}) \end{aligned}$	$\begin{aligned} & \text { Measured } m / z \\ & \left([\mathrm{M}+\mathrm{H}]^{+}\right) \end{aligned}$	Predicted formula
A Higher in resistant	1	d18:3/h22:1	13.12	794.6107	$\mathrm{C}_{46} \mathrm{H}_{83} \mathrm{NO}_{9}$
	2	d18:3/h22:2	12.47	792.5980	$\mathrm{C}_{46} \mathrm{H}_{81} \mathrm{NO}_{9}$
	3	d19:3/h21:1	13.03	794.6107	$\mathrm{C}_{46} \mathrm{H}_{83} \mathrm{NO}_{9}$
	4	d19:3/h23:2	13.18	820.6278	$\mathrm{C}_{48} \mathrm{H}_{85} \mathrm{NO}_{9}$
B Only in resistant and during infection	5	d18:0/h22:0*	14.44	802.6722	$\mathrm{C}_{46} \mathrm{H}_{91} \mathrm{NO}_{9}$
	6	d18:0/h22:1 ${ }^{\dagger}$	14.22	800.6600	$\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{NO}_{9}$
	7	d18:1/h22:1*	14.01	798.6440	$\mathrm{C}_{46} \mathrm{H}_{87} \mathrm{NO}_{9}$
	8	t18:0/h22:0*	14.00	818.6702	$\mathrm{C}_{46} \mathrm{H}_{91} \mathrm{NO}_{10}$
	9	t18:0/h22:1	13.77	816.6531	$\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{NO}_{10}$
	10	t18:0/h22:2	13.18	814.6346	$\mathrm{C}_{46} \mathrm{H}_{87} \mathrm{NO}_{10}$
C	11	d19:4/h22:1 (resGSL)	12.92	806.6127	$\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{NO}_{9}$
Only in resistant	12	d19:4/h22:2 (resGSL)	12.25	804.5975	$\mathrm{C}_{47} \mathrm{H}_{81} \mathrm{NO}_{9}$
D	13	d19:3/h22:2 (374-GSL)**	12.98	806.6143	$\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{NO}_{9}$
Only in the susceptible E. huxleyi 374	14	d19:3/h22:3 (374-GSL)**	12.34	804.5981	$\mathrm{C}_{47} \mathrm{H}_{81} \mathrm{NO} 9$

Differences in the abundance profiles were tested by a one-way ANOVA, accounting for the strain and addition of EhV, followed by Tukey's post-hoc test, $p<0.01$ (Table S10 and Table S11). ${ }^{*}$ Ceramides d18:0/h22:0 and $\mathrm{t} 18: 0 / \mathrm{h} 22: 0$ were previously found to increase during infection ${ }^{36}$. Ceramide $\mathrm{d} 18: 1 / \mathrm{h} 22: 1$ was previously found to increase during infection and in resistant haploid cells ${ }^{45}$. ${ }^{\dagger}$ GSL d18:0/h22:1 (6) presence in infected cells could not be verified using MS/MS due to low intensity. ${ }^{4}$ GSL t18:0/h22:2 (10) was detected in infected cells based on MS/MS analysis. **374-GSL d19:3/h22:2 (13) has the same fragmentation pattern as hGSL d19:3/h22:2, yet appears at a slightly later retention time (Fig. S34), suggesting that they are isomers. 374-GSL d19:3/h22:3 (14) was previously described as a hGSL species ${ }^{38}$, however it was not detected in E. huxleyi 373,379 and 2090 in this study. GSL species were identified as 'Level 2 - putatively annotated compounds' according to the Metabolomics Standards Initiative ${ }^{46}$. LCB, long-chain base; FA, fatty acid; RT, Retention time.

Potential enzymes involved in modulating GSL composition in resistant strains

The detection of resGSL species with LCB d19:4 (11-12), which contains an additional double bond compared to the LCB d19:3 found in hGSL species (Table S3), indicates the involvement of an additional sphingolipid desaturase (SLD) in resistant strains, which would be responsible for the fourth double bond. A gene encoding a putative SLD was previously identified in E. huxleyi (sld2) ${ }^{31,47}$, and we identified four additional genes based on the E. huxleyi genome and expressed sequences (sld1, sld3-sld5, Table S4). Phylogenetic analysis of the conserved domain of the SLD proteins revealed three distinct clades (I-III, Fig. 3a and Table S5), each consisting of diverse taxonomic groups. Out of the five putative E. huxleyi SLDs, SLD1 clustered together with a viral SLD (EhV201 SLD, AET97947.1, clade I). We further examined the expression of these genes using previous transcriptomics experiments with E. huxleyi strains $373,379,2090$ and $374^{40,48}$. sldl was expressed in the resistant E. huxleyi strains 373 and 379 and not in the susceptible strains (Fig. 3c and Fig. S20a), suggesting that the viral and resistant-host enzymes share a similar role in the GSL biosynthetic pathway. Notably, sld4 was also differentially expressed in the resistant strains, however, the protein falls into a different clade than the viral SLD (clade III). Therefore, sld4 is a possible candidate for the formation
of the fourth double bond in resGSLs (11-12), which were detected only in resistant strains. The other genes (sld2, sld3 and sld5) were expressed in all strains (Fig. S20a and Fig. S21a). We were further intrigued to identify possible similarities between the viral and the host biosynthetic pathways that are responsible for the production of GSL species with trihydroxylated LCBs in infected and resistant cells. Previous studies suggested that the characteristic trihydroxylation of the LCB in infection-derived vGSL species is facilitated by a viral sphingoid base hydroxylase (EhV201 SBH, AET97919.1) ${ }^{36,49}$, which is highly expressed at early stages of infection (Fig. S22). LCB t17:0 is the major LCB in vGSL species, while LCB t16:0 and t18:0 are found in lower abundances ${ }^{36}$. In GSL species of resistant strains (8-10), on the other hand, only LCB t18:0 was detected. A gene encoding a putative SBH was previously identified in E. huxleyi (sbh1) ${ }^{31,40}$, and we identified six additional genes based on the E. huxleyi genome and expressed sequences (sbh2-sbh7, Table S4). Phylogenetic analysis of the conserved domain of the SBH proteins revealed that the E. huxleyi SBHs do not form a clade together but rather show similarities to diverse phyla, indicating different evolutionary origins (Fig. 3b and Table S6). Interestingly, SBH4 and SBH5 clustered together with the viral SBH, indicating a possible host-virus co-evolution. Out of the seven $\mathrm{SBHs}, \operatorname{sbh} 4$ and $s b h 5$ were highly expressed in the resistant E. huxleyi strains 373 and 379 and not in the susceptible E. huxleyi strains 2090 and 374 (Fig. 3d and Fig. S20b). Concomitantly, sbh2 was differentially expressed in the susceptible strains, while $s b h 1$ and $s b h 6$ were expressed in all four strains. sbh7 was detected in all four strains, with higher expression in infected E. huxleyi 2090 cultures. The expression of $\operatorname{sbh} 3$ was not detected in all strains and conditions tested (Fig. S20b and Fig. S21b). Future functional analysis of these SLDs and SBHs will allow to determine their role in the biosynthetic pathway of GSL species in different E. huxleyi strains and during viral infection.

Figure 3: Phylogenetic analysis and gene expression patterns of SLDs and SBHs in resistant and susceptible E. huxleyi strains. Phylogenetic trees of (a) SLD and (b) SBH proteins based on the conserved domains. Protein domain sequences were aligned using Mafft (for SLD) and ClustalW (for SBH). Maximum Likelihood trees (PhyML) are shown. Colors represent different taxonomic groups and shapes indicate the expression in the resistant E. huxleyi strains 373 and 379 (circles) and in the susceptible E. huxleyi strains 2090 and 374 (rectangles; legend at the bottom right side). ${ }^{\dagger}$ Functionally characterized protein. ${ }^{*}$ Expression of $\operatorname{sbh} 3$ was not detected in the E. huxleyi strains and conditions tested. Bootstrap values are represented by the line width. Expression patterns of (c) sld 1 and sld 4 , and (d) sbh4 and sbh5 in the resistant E. huxleyi strain 373 and in the susceptible E. huxleyi strains 2090 (uninfected and infected cultures) and 374. Values for E. huxleyi strain 373 are presented as the mean $\pm \mathrm{SD}(n=2)$. Expression was not detected in E. huxleyi strains 2090 and 374 under the tested conditions.

Detection of resistant algal cells in an open ocean bloom using lipid biomarkers

Since little is known about resistance to viral infection in algal blooms, we sought to utilize our new resistant metabolic biomarker (resGSL) to assess the occurrence of resistant cells in an oceanic E. huxleyi bloom. To that end, biomass samples for lipidomics analysis were collected during the 'Tara Breizh Bloom' cruise in the Celtic Sea, capturing the demise phase of an E. huxleyi bloom (Fig. 4a) ${ }^{50}$. The occurrence of hGSL species (Fig. 4b), which are known lipid biomarkers for E. huxleyi and are present in all strains ${ }^{37,39}$, confirmed the presence of E. huxleyi cells, as was also visible using scanning electron microscopy ${ }^{50}$. sGSL species, which characterize susceptible strains ${ }^{38}$, were also detected (Fig. 4c), indicating the presence of virussusceptible E. huxleyi cells in the water. We could also detect 374-GSL species (group D, 1314) at a similar intensity as the hGSL species (Fig. 4d), indicating that some E. huxleyi cells share similarity to the susceptible E. huxleyi strain 374 . Importantly, we detected resGSL d19:4/h22:2 (12) in four out of the five days of sampling (Fig. 4e). This is the first demonstration of the presence of resistant E. huxleyi cells during bloom succession of E. huxleyi. The occurrence of hGSL, sGSL, 374-GSL and resGSL species during the demise phase of the bloom suggests a complex population composition towards the end of the bloom.

Figure 4: Detection of resGSL in an open ocean E. huxleyi bloom. (a) Satellite ocean true-color image from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) depicting the bloom area on May 21, 2019 (marked by a rectangle, source: https://www.star.nesdis.noaa.gov/sod/mecb/color/ocview/ocview.html). Scale bar, 50 km . Relative intensity of (b) hGSL (all E. huxleyi cells), (c) sGSL (susceptible E. huxleyi cells) and (d) 374-GSL (susceptible, 374-like E. huxleyi cells, 13-14) species during five days of sampling. (e) Relative intensity of resGSL d19:4/h22:2 (resistant E. huxleyi cells, 12) analyzed using high-sensitivity multiple reaction monitoring (MRM) mode during five days of sampling.

Lipidomics profiling during E. huxleyi bloom succession and virus-induced demise

Sampling open ocean bloom provides only a snapshot of the bloom dynamics. Therefore, we sought to gain a detailed temporal resolution for our suite of biomarkers in order to assess the various phenotypes the occur during E. huxleyi bloom succession. Therefore, we conducted an in situ mesocosm experiment in the coastal waters of southern Norway ${ }^{51,52}$, where annual blooms and viral infection of E. huxleyi occur naturally ${ }^{27}$. Briefly, the experiment included seven mesocosm bags that were filled with natural marine microbial communities and
monitored daily over 24 days. Four bags (bags 1-4) were sampled for lipidomics analysis and are discussed hereinafter. All bags were supplemented with nutrients at a nitrogen to phosphorous ratio of 16:1 to favor the growth and induce a bloom of E. huxleyi ${ }^{53}$. E. huxleyi blooms were observed starting from day 10 in all bags, reaching a concentration of up to 8×10^{7} cells per L at day 17, followed by bloom demise starting from day 18 (Fig. 5a). Viral infection varied between the bags, as was visible by measurement of biomass-associated EhV by quantitative PCR (qPCR) using the major capsid protein ($m c p$) gene. Bag 4 showed the strongest increase in EhV starting from day 17, followed by bag 2 and bag 1. No viral proliferation was observed in bag 3 (Fig. 5b). Concomitantly, the extent of bloom demise also varied between the bags, reaching the lowest cell abundance in bag 4 (Fig. 5a).
We followed changes in the lipid composition of the particulate fraction ($1.6-25 \mu \mathrm{~m}$) during the bloom and demise of E. huxleyi (days 10-23) by LC-HRMS. Known lipid biomarkers of E. huxleyi were used to describe changes that occur during the bloom: hGSL species, present in all E. huxleyi strains ${ }^{37,39}$, correlated with E. huxleyi abundance (Fig. 5c , Pearson correlation, $r=0.66-0.73$, Table S7); sGSL species, which characterize susceptible strains ${ }^{38}$, also correlated with E. huxleyi abundance, primarily in the bloom phase (Fig. 5d, $r=0.58-0.72$, Table S7).
To detect active viral infection of E. huxleyi cells, we monitored the production of vGSL species that are produced only by infected cells ${ }^{36,37}$. Six t17:0-based vGSL species and one t16:0-based vGSL species were positively correlated with the varying degree of infection between the bags, as measured by the abundance of biomass-associated EhV (Fig. 5e, $r=0.87$ 0.95 , Table S7). In bag 4, the sum concentration of vGSL species was similar to that of hGSL species ($\sim 15 \mu \mathrm{~g}$ per L and $\sim 20 \mu \mathrm{~g}$ per L on day 18 , respectively), which exemplifies the pronounced metabolic remodeling in infected cells. Moreover, several vGSL species were detected in bag 4 as early as day 16, one day before the first detection of biomass-associated EhV (Fig. 5b) or extracellular EhV ${ }^{52}$. To our surprise, we detected low levels of vGSL species also in bag 3 starting from day 20, although viral abundance (as measured by qPCR, Fig. 5b) was below the detection limit. This indicates that a small number of E. huxleyi cells in bag 3 were infected following bloom demise, however, it is not clear whether production of virions or abortive infection occurred. Altogether, these observations suggest that vGSL species can serve as a more sensitive biomarker for the occurrence of infected cells in the natural environment than the quantification of virions by gene biomarkers.
Interestingly, we could not detect resGSL species (11-12, group C), which are characteristic of resistant cells, suggesting that the abundance of resistant E. huxleyi cells throughout the bloom and demise phases (and within our sampling period) was below the level of detection. GSL species of group A (1-4), which are found in higher intensity in resistant strains compared to susceptible strains in the laboratory (Fig. 2a and Fig. S18), appeared from the beginning of the bloom and were highly correlated to hGSL species and to a lesser extent to E. huxleyi abundance and sGSL species (Fig. 5f, $r=0.76-0.96,0.53-0.75$ and $0.70-0.81$, respectively, Table S7). Accordingly, the detection of these GSL species is most probably derived from susceptible cells that dominated the bloom rather than rare resistant cells. 374-GSL species (group D, 13-14) appeared in a similar pattern to group A (Fig. S23 and Table S7), indicating a high abundance of susceptible cells that share some similarity to E. huxleyi strain 374. GSL species of group B (5-6, 8-10), which are found in resistant strains and infected susceptible strains, appeared mostly from day 17 onwards and were highly correlated to the abundance of

EhV and of the main vGSL species (vGSL t17:0/h22:0, Fig. 5g, $r=0.69-0.99$, Table S7), as was also observed in the laboratory (Fig. S18). The amount of these GSL species was ~ 20 times lower than that of vGSL species, and might be a result of enzyme promiscuity in infected cells ${ }^{36}$. Nevertheless, the infection-related occurrence of these GSL species, which are characteristic of resistant strains and are also induced during infection in the laboratory (Fig. S18), might suggest an infection-derived initiation of cellular processes that eventually lead to resistance.

abundance of calcified E. huxleyi cells and (b) biomass-associated EhV, starting from day 10 of the experiment. Bags are ordered by increasing EhV abundance, with the lowest in bag 3 and the highest in bag 4. Abundance of calcified E. huxleyi cells is based on flow cytometry analysis and abundance of biomass-associated EhV is based on the quantification of the EhV major capsid protein ($m c p$) gene by qPCR. $m c p$ copy values are presented as the mean \pm SD ($n=3$, technical replicates). Concentration of (c) hGSL, (d) sGSL, (e) vGSL, (f) group A GSL, and (g) group B GSL species are presented. GSL d18:1/h22:21 (7) was not detected to due technical reasons. Group B was divided into two rows due to difference in concentrations of the different species.

Remodeling of GSL composition and induction of resistance in infected cultures

To assess whether resistant E. huxleyi cells appear in low numbers during bloom succession, as detected in the open ocean bloom (Fig. 4e), we isolated numerous E. huxleyi clones during the mesocosm experiment and determined their susceptibility to infection by EhV strain M1 (EhVM1), which was isolated during the same mesocosm experiment ${ }^{54}$. Most isolates were found to be susceptible to EhVM1, among them isolates RCC6918, RCC6936 and RCC6912 (Fig. 6a, b and Fig. S24a, b), which were isolated during the bloom phase of E. huxleyi ${ }^{51}$. However, we also isolated a few resistant E. huxleyi strains, among them isolate RCC6961 (Fig. S24c). This isolate, along with additional resistant isolates, was isolated during the virusinduced demise phase of the E. huxleyi bloom ${ }^{51}$. Interestingly, some of the isolated susceptible strains showed rapid recovery 1-2 weeks after viral infection (RCC6918 and RCC6912, Fig. 6 b and Fig. S24b, respectively). The recovered populations were resistant to the virus, as was validated by re-exposing the cultures to viral infection (Fig. S25a). To examine whether the newly identified GSL markers for resistant cells can differentiate between the E. huxleyi isolates with different phenotypes, we compared the GSL composition of the isolates and the recovered cultures (Fig. 6c, d and Fig. S25b). All isolates had similar amounts of hGSL species. The susceptible mesocosm isolates RCC6936, RCC6918 and RCC6912 had a similar GSL composition to E. huxleyi 374, having high intensity of sGSL and 374-GSL species, and a lower intensity of group A GSL species (Fig. 6c, d and Fig. S25b). GSL species from groups B and C were not detected in these susceptible isolates. The resistant isolate RCC6961 had a similar GSL composition to the resistant laboratory strains 373 and 379, with higher intensity of GSL species from group A (compared to the susceptible isolates) and presence of GSL species from groups B and resGSL species from C (Fig. 6c). The distinct occurrence of resGSLs species in a resistant isolate further supports its use as a biomarker for resistant cells. As predicted based on the GSL biomarkers, sGSL species were not detected in this isolate, and, surprisingly, neither were 374-GSL species. Remarkably, the cultures that recovered following infection of isolates RCC6918 and RCC6912 and acquired resistance to the viral infection had a similar GSL composition to the resistant isolate RCC6961 and the resistant laboratory strains 373 and 379, including the presence of resGSLs (Fig. 6d and Fig. S25b). These results indicate a metabolic plasticity in GSL metabolism, which corresponds to the change in phenotype from susceptibility to resistance towards viral infection. Furthermore, the detection of resGSL species (group C) in resistant isolates from the mesocosm and recovered resistant cultures suggests that these GSL species might have been produced during the mesocosm experiment by these rare populations, albeit in concentrations below our detection limit.

Figure 6: Plasticity in the GSL composition of E. huxleyi cultures that recover following viral infection. (a) Cell abundance in cultures of the susceptible E. huxleyi isolate RCC6918, isolated from the mesocosm experiment. (b) Cell abundance (black) and production of virions (grey) following addition of EhVM1 to E. huxleyi isolate RCC6918. A recovered resistant population emerged a week after infection. Values of (a) and (b) are presented as the mean $\pm \mathrm{SD}(n=2)$. The black arrow indicates the addition of EhVM1 to the cultures. (c) GSL composition of the susceptible E. huxleyi isolate RCC6936 and the resistant E. huxleyi isolate RCC6961, both isolated from the mesocosm experiment $(n=3)$. (d) GSL composition of the susceptible E. huxleyi isolate RCC6918, isolated from the mesocosm experiment, and of the culture that recovered following infection and was resistant to the virus ($n=3$). Values for each lipid species (row) in (c) and (d) are shown after normalization. GSL species are grouped and numbered based on Table 1.

Discussion

Resistance to viral infection has been described in various phytoplankton cultures under laboratory conditions ${ }^{15,16,55,56}$. Nevertheless, the extent of resistance in natural algal populations is unknown as we lack the tools to detect resistant cells, hindering our ability to understand the metabolic basis of resistance to viral infection and its ecological significance. In the E. huxleyi-EhV model system, the difference in susceptibility of E. huxleyi strains to viral infection has been previously associated to ploidy level during life cycle changes, as well as to genome and transcriptome variations between the strains ${ }^{16,22,40,42,57}$. Resistant cells were also identified as a small sub-population in infected cultures ${ }^{42}$. Yet, to date there exists no specific metabolic biomarker for algal resistance to viral infection, and the mechanisms underlying resistance are largely unknown.

Proposed functional role of resistance-specific LCBs.

resGSL species found in resistant cells are characterized by an uncommon tetra-unsaturated LCB 19:4, which has been previously identified only in a few dinoflagellates and other haptophytes (e.g. GSL d19:4/h22:1, which was detected in Isochrysis galbana) ${ }^{58}$. This LCB has an additional double bond compared to the LCB d19:3, which is found in GSL species in E. huxleyi (hGSL, group A and 374-GSL species, Table S3), other haptophytes and dinoflagellates, and in SLs of fungi and marine invertebrates ${ }^{39,58-61}$. Interestingly, resistant E. huxleyi strains are also characterized by GSL species containing the trihydroxylated LCB t18:0 (Fig 2 b and Table 1), which is highly abundant in plants and fungi ${ }^{62}$ and was thus far found only in vGSL species produced by infected cells (in addition to t16:0- and t17:0-based vGSL species, Table S3) ${ }^{36,38}$.
Both LCB unsaturation and hydroxylation were found to affect the biophysical properties of membranes: LCB unsaturation hinders the ability of SLs to form ordered domains within lipid bilayers, known as 'lipid rafts' ${ }^{63}$, while additional hydroxyl groups facilitate the formation of more hydrogen bonds, leading to an increased stability and decreased permeability of the membrane and to lateral diffusion of membrane proteins ${ }^{62}$. Such changes in SL composition can also initiate signal transduction within the cells, as was found in plants, yeast, and mammals ${ }^{62,64}$. Subsequently, they allow organisms to cope with environmental stress, such as low temperature ${ }^{65,66}$, and can alter the susceptibility of cells to viral infection ${ }^{67-70}$. Specifically, GSL-rich lipid rafts in host cells were shown to serve as cellular entry or egress points in diverse systems ${ }^{71}$, suggesting that membrane lipids are under strong selection pressure during host-virus co-evolution, possibly driving the plasticity in lipid composition.
In the E. huxleyi-EhV model system, the lipid envelope of EhV and the E. huxleyi plasma membrane seem to play an important role at the onset of the infection process, mediating the entry of the virus to E. huxleyi cells by endocytosis or membrane fusion mechanism ${ }^{72}$. It was previously suggested that sGSLs, which characterize susceptible cells, mediate viral adsorption to host cells ${ }^{38}$. The occurrence of resGSLs and t18:0-based GSLs in resistant cells, in addition to the absence of sGSLs, might therefore hinder viral adsorption to the cells by impeding membrane fusion. Nevertheless, further structural and biochemical analyses are needed to determine the role of resGSLs and t18:0-based GSLs in modulating the resistance of E. huxleyi cells to viral infection.

Plasticity in GSL composition during E. huxleyi-EhV interactions

The lipidome of E. huxleyi has been identified as a sensitive metabolic indicator for environmental stress conditions, such as nutrient limitation and viral infection, reflecting the physiological state of the cells ${ }^{32,45,73,74}$. In particular, GSLs were found to play a distinct role in the E. huxleyi-EhV system due to their involvement in cell signaling during infection as well as in viral assembly and egress ${ }^{36-39}$. The identification of resGSLs and other GSL species characteristic of resistant E. huxleyi cells (Fig 2b and Table 1) broadens our view of the GSL diversity in the E. huxleyi-EhV model system and adds valuable biomarkers that were thus far missing (Fig. 7a and Table S3). While hGSL and group A GSL species are shared among all E. huxleyi cell types (that is, the different strains and phenotypes), most GSL species are produced only by some: sGSL and 374 -GSL species by susceptible cells; vGSL species by infected cells; group B GSL species by both infected and resistant cells; and resGSL species by resistant cells (Table S3). A recent study further found that resistant E. huxleyi strains have a more diverse GSL composition than susceptible ones under nutrient-replete conditions ${ }^{75}$.
GSL species vary in their sugar headgroup, FA and LCB ${ }^{76}$. In E. huxleyi, except for sGSL species that contain a sialic acid headgroup ${ }^{38}$, all other known GSL species contain a hexosebased sugar headgroup (Table S3). Additionally, most species have a highly similar FA composition (with the hydroxylated h22:0, h22:1 and h22:2 FAs being the most common), except for vGSL species that also contain longer FAs of 23-24 carbons, group A GSL species that contain FAs with 21 and 23 carbons (Table 1), and sGSL species that contain nonhydroxylated FAs (c22:0, c22:1, see Table S3) ${ }^{38}$. LCB composition, on the other hand, seems to be the main factor that differentiates between the various GSL groups and, consequently, between the cell types, thus driving the phenotypic plasticity in the E. huxleyi-EhV model system (Fig. 7a and b). Some LCBs are shared among several GSL species and cell types (LCB d18:1, d18:3 and d19:3), while others appear only in specific GSL species and cell types (LCB d18:2 in sGSLs of susceptible cells, LCB d19:4 in resGSLs of resistant cells, LCB d18:0 and t18:0 in group B GSLs of resistant and infected cells, and LCB t16:0 and t17:0 in vGSLs of infected cells), leading to a unique LCB profile for each cell type (Fig. 7b). Biosynthetic genes at various steps of the GSL pathway determine LCB composition, from the formation of the LCB to its hydroxylation and unsaturation ${ }^{77}$. The presence of these genes and their differential expression under various biotic and abiotic conditions determine the GSL composition of the cells ${ }^{66}$. In infected E. huxleyi cells, virus-encoded SL biosynthetic enzymes lead to the production of t17:0-based vGSLs ${ }^{36}$. In resistant E. huxleyi strains, our results suggest that the differential expression of specific sld and sbh genes (Fig 6c, Fig. 3c and d) accounts for the biosynthesis of d19:4-based resGSL and t18:0-based GSL species. Remarkably, resistant E. huxleyi cells that emerge from infected susceptible cultures as early as one week post infection (Fig. 6b) produce resGSL and group B GSL species that are characteristic of resistant strains, consisting of LCBs that are not found in the parent susceptible strains (Fig. 6c). This striking difference between the parent cells and the derived resistant cultures delineates the plasticity of the E. huxleyi lipidome. Such a rapid modulation of GSL composition following viral infection is therefore not restricted only to infected cells but might occur also in cells that evade infection or survive and become resistant to the virus. If so, viral infection might directly induce changes in host LCB biosynthesis and lead to the formation of GSL species that facilitate resistance. Alternatively, resistant cells may already exist as a rare sub-population in
cultures of susceptible strains. Such cultures can recover from infection following the death of susceptible cells due to viral infection, which allows the resistant cells to proliferate. The phylogenetic similarity between the enzymes expressed by resistant strains (SLD1, SBH4 and SBH5) and their viral analogues (EhV201 SLD and EhV201 SBH, Fig. 7c, Fig. 3a and b) may further indicate competing biosynthetic pathways that are co-expressed during infection and affect its outcome, shedding light on the ongoing co-evolution between E. huxleyi and its virus.

Figure 7: The GSL-based arms race between E. huxleyi and EhV. (a) The GSL composition of susceptible, infected, and resistant E. huxleyi cells. Each GSL group is marked with a different color and consists of different LCBs. Infection by EhV leads to the production of vGSL and group B GSL species, while recovered cells and resistant strains present a unique GSL composition, consisting of group B and resGSL species. Scheme created with BioRender.com. (b) LCB composition of GSLs in the E. huxleyi-EhV system. Presented are the structure of the different LCBs (left) and the LCB profile of susceptible (S), infected (I) and resistant (R) cells (right). Infected cells produce trihydroxylated LCBs (found in vGSL and group B GSL species), while resistant cells produce both trihydroxylated and tetra-unsaturated LCBs (found in group B and resGSL species, respectively). Colors mark the GSL group in which the LCB is found, as in (a). The position of the double bonds and functional groups were assigned based on the most common structure in the Lipid Maps Structure Database (LMSD) ${ }^{44}$. (c) Expression pattern of sld and $s b h$ genes which are differentially expressed in susceptible (S), infected (I) and resistant (R) E. huxleyi strains. sld and sbh genes are involved in LCB modification as part of the GSL biosynthetic pathway. EhV sld and EhV sbh are encoded by the EhV genome.

Detecting resistant \boldsymbol{E}. huxleyi cells in natural populations

Resistance to viral infection has been long studied using model systems in laboratory settings, describing a wide array of E. huxleyi strains that vary in their susceptibility to viral infection,
and of EhV strains that vary in their level of infectivity ${ }^{22,42,78}$. E. huxleyi strains can recover from infection and gain resistance to the virus, highlighting their phenotypic plasticity and the rapid change in the dominating phenotypic state in the host cell population ${ }^{42,79}$. Nevertheless, although we are able to detect susceptible and infected E. huxleyi cells in natural samples using GSL biomarkers (Fig. 5d,e) ${ }^{38,39}$, we still lack the tools to detect resistant cells in nature and to monitor their dynamics in natural heterogeneous populations.
In this study, we were able to detect resGSL species during the demise of an open ocean E. huxleyi bloom (Fig. 4e), indicating, for the first time, the occurrence of virus-resistant E. huxleyi cells in natural populations. The absence of resGSLs in samples from the mesocosm experiment stresses the scarcity of resistant E. huxleyi cells during the bloom phase and the early phase of the virus-induced bloom demise. This is further supported by the detection of resGSLs in resistant E. huxleyi isolates that originate from the mesocosm experiment. Additionally, the emergence of resistant cells 1-2 weeks after viral infection of some susceptible isolates in the laboratory (Fig. 6b) suggests that these cells can be detected during late and post-bloom phases in nature, as observed in the open ocean samples (Fig. 4e). Thus, the sampling time of the mesocosm experiment might not have been long enough to see such an emergence of resistant sub-populations.
In the future, combining the GSL biomarkers for the different cell types with advanced methods, such as single-cell lipid profiling and single-cell RNA sequencing ${ }^{13,80,81}$, could allow us to deconstruct the metabolic and phenotypic outcome of viral infection. Studying and identifying the various cell types that constitute algal blooms and the metabolites they use to communicate will provide valuable insights into the host-virus arms race during bloom succession.

Materials and Methods

Strains of E. huxleyi and EhV used in this study

Four E. huxleyi strains were used for the untargeted lipidomics profiling: CCMP2090, CCMP373, CCMP374 and CCMP379 (hereinafter, E. huxleyi 2090, 373, 374 and 379), all are non-calcifying. E. huxleyi 2090 and 374 are susceptible to viral infection, e.g., by EhV201, while E. huxleyi 373 and 379 are resistant. Transcriptomics data of all four strains are publicly available ${ }^{40,48,82}$. The E. huxleyi cultures were supplemented with the lytic virus EhV201 ${ }^{22}$, whose genome data is publicly available ${ }^{83}$. Additionally, four E. huxleyi isolates, which were obtained during a mesocosm experiment (see below), were used for a targeted analysis of GSL composition: RCC6912, RCC6918, RCC6936 and RCC6961. Isolates RCC6912, RCC6918, RCC6936 are susceptible to viral infection by EhVM1, while isolate RCC6961 is resistant (Fig. 6 b and Fig. S24). The lytic virus EhVM1 was isolated during the same mesocosm experiment and its genome data is publicly available ${ }^{54}$.
To isolate E. huxleyi strains from the mesocosm experiment, water samples were collected, and single E. huxleyi cells were sorted within two weeks of collection at the Roscoff Culture Collection (RCC) laboratories (https://roscoff-culture-collection.org). E. huxleyi RCC6912 and RCC6918 were isolated from bag 1 at day 10 of the experiment (June 3, 2018), during the bloom phase of E. huxleyi. E. huxleyi RCC6936 was isolated from bag 4 at day 13 of the experiment (June 6, 2018), also during the bloom phase of E. huxleyi. The resistant isolate RCC6961 was isolated from bag 7 at day 16 of the experiment (June 9, 2018), during the virusinduced demise of E. huxleyi ${ }^{51}$.

Culture maintenance and viral infection experiments

Cells were cultured in modified $\mathrm{K} / 2$ medium (including replacement of organic phosphate with $\left.18 \mu \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}\right)^{84}$ in filtered and autoclaved seawater (FSW) supplemented with ampicillin ($100 \mu \mathrm{~g}$ per mL) and kanamycin ($50 \mu \mathrm{~g}$ per mL), and incubated at $18^{\circ} \mathrm{C}$ with a $16: 8 \mathrm{~h}$ light:dark illumination cycle. A light intensity of $100 \mu \mathrm{~mol}$ photons $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ was provided by cool white light-emitting diode lights. In all infection experiments, EhV was added to the cultures at the exponential phase $\left(5 \times 10^{5}\right.$ to 1×10^{6} cells per mL$) 2 \mathrm{~h}$ after the onset of the light period, at a ratio of 5:1 viral particles to E. huxleyi cells using a viral lysate derived from an infected E. huxleyi 374 culture. Growing cultures in the presence of antibiotics maintained a low basal abundance of bacteria throughout the experiments (Fig. S26). As previously shown, the lipid profile of E. huxleyi cultures does not change significantly in the presence of low levels of bacteria ${ }^{33}$.

Enumeration of algae, virions and bacteria by flow cytometery

Algal cells were quantified using an Eclipse (iCyt) flow cytometer (Sony Biotechnology, Champaign, IL, USA, using ec800 version 1.3 .7 software) equipped with a 488 nm solid stateair cooled laser (25 mW on the flow cell) and a standard filter setup. Algal cells were identified by plotting chlorophyll autofluorescence (em: 663-737 nm, see Fig. S27a). Virions and bacteria were quantified by flow cytometry (Fig. S27b), as described previously ${ }^{36,85}$. Briefly, samples were fixed with a final concentration of 0.5% glutaraldehyde for 30 min at $4^{\circ} \mathrm{C}$, plunged into liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$ until analysis. After thawing, $5 \mu \mathrm{~L}$ of fixed sample were stained with $195 \mu \mathrm{~L}$ SYBR gold (Invitrogen, Paisley, UK) prepared in Tris-EDTA buffer as instructed by the manufacturer ($5 \mu \mathrm{~L}$ SYBR gold in 50 mL Tris-EDTA), then incubated for 20
\min at $80^{\circ} \mathrm{C}$ and cooled down to room temperature. Flow cytometric analysis was performed with excitation at 488 nm and emission at 525 nm . A threshold was applied based on the forward scatter signal to reduce the background noise. The gates 'EhV' and 'Bacteria' were set by comparing to reference samples containing either EhV201 or bacteria.

Chemicals and internal standards

All solvents and metabolite standards were obtained at high purity. Methanol (Ultra Gradient high-performance liquid chromatography (HPLC) Grade) was purchased from J.T. Baker (Norway). Acetic acid (ULC/MS), acetonitrile (ULC/MS), isopropanol (ULC/MS) and methyl tert-butyl ether (MTBE, HPLC) were purchased from Bio-Lab (Jerusalem, Israel). Ammonium acetate ($\geq 98 \%$, Optima LC/MS) was purchased from Fisher Scientific (Fair Lawn, NJ, USA). Water was purified by a Milli-Q system (resistivity $18.2 \mathrm{M} \Omega \mathrm{cm}$ at $25^{\circ} \mathrm{C}, \mathrm{TOC}<5 \mathrm{ppb}$, Merck Millipore, Molsheim, France). For laboratory culture samples, a SL standard mixture containing ten SL species (Cer/Sph Mixture I, Avanti Polar Lipids, Alabaster, AL, USA, LM6002) was used as extraction standard mixture. For mesocosm samples, glycosylceramide (soy) d18:2/C16:0 (>98\%, Avanti Polar Lipids, 131304) was used as extraction standard, and isotopically-labeled d9-PC P-36:1 (P-18:0/18:1, >99\%, Sigma, 852475C) and d4-palmitic acid (d4-C16:0, 98\%, Cambridge Isotope Laboratories, DLM-2893) were used as injection standards for ultra-performance LC-HRMS (UPLC-HRMS) analysis.

Extraction of cellular lipids in E. huxleyi cultures

Cultures of E. huxleyi strains 2090, 373, 374 and 379 with and without addition of EhV were analyzed for cellular lipid composition at days $0,1,2$ and 3 of the experiment in three biological replicates. At day 0 , samples were collected 4 hours after the addition of EhV. The samples (30-150 mL of each culture, equivalent to $\sim 5 \times 10^{7}$ cells per sample) were collected by vacuum filtration onto glass microfiber filters (grade GF/C, 47 mm in diameter, pre-combusted at $460^{\circ} \mathrm{C}$ for $>8 \mathrm{~h}$, GE Healthcare Whatman, Buckinghamshire, UK), immediately plunged into liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$ until extraction ${ }^{32}$. In total, 96 biological samples were collected.
Lipid extraction was performed as previously described ${ }^{86}$ with slight modifications. Briefly, biological triplicates were divided into three batches, with 32 samples in each batch. filters were placed in 15 mL glass tubes and extracted with 3 mL of a pre-cooled $\left(-20^{\circ} \mathrm{C}\right)$ methanol:MTBE (1:3, v:v) solution containing sphingolipid standard mixture ($\sim 150 \mathrm{nM}$ of each species). The samples were shaken for 30 min at $4^{\circ} \mathrm{C}$ and sonicated for 30 min . The samples were then supplemented with 1.5 mL water:methanol ($3: 1, \mathrm{v}: \mathrm{v}$) solution, vortexed for 1 min , and centrifuged for 10 min at $3,200 \times \mathrm{g}$ and $4^{\circ} \mathrm{C}$. The upper organic phase (1.5 mL) was transferred to 2 mL centrifuge tubes and dried under a flow of nitrogen (TurboVap LV, Biotage, Uppsala, Sweden). The polar phase was re-extracted with 1.5 mL of MTBE. The upper organic phase (2.25 mL) was combined with the organic phase from the first extraction and dried under a flow of nitrogen (TurboVap LV). The samples were stored at $-80^{\circ} \mathrm{C}$ until UPLC-HRMS analysis. Two extraction blanks were collected following the same procedure using blank filters.

An additional analysis was performed to quantify several GSL species with higher sensitivity (Fig. S19). The samples (250 mL of each culture at the exponential phase, $1-1.5 \times 10^{6}$ cells per mL , equivalent to $\sim 4 \times 10^{8}$ cells per sample) were extracted as described above.

Untargeted lipid profiling using UPLC-HRMS

Per batch, samples were thawed, re-dissolved in $300 \mu \mathrm{~L}$ mobile phase B (see below), vortexed, sonicated for 10 min and centrifuged at $20,800 \times \mathrm{g}$ for 10 min at $10^{\circ} \mathrm{C}$. The supernatants were transferred to $200 \mu \mathrm{~L}$ glass inserts in autosampler vials and directly used for LC-MS analysis. A pooled quality control (QC) sample was generated by combining aliquots of $10 \mu \mathrm{~L}$ from all biological samples. An aliquot of $1 \mu \mathrm{~L}$ was analyzed using UPLC coupled to a photodiode detector (ACQUITY UPLC I-Class, Waters, Milford, MA, USA) and a quadrupole time-offlight (QToF) mass spectrometer (SYNAPT G2 HDMS, Waters), as described previously ${ }^{86}$ with slight modifications. Briefly, the chromatographic separation was performed on an ACQUITY UPLC BEH C8 column ($2.1 \times 100 \mathrm{~mm}$, i.d., $1.7 \mu \mathrm{~m}$, Waters). Mobile phase A consisted of water with $1 \% 1 \mathrm{M}$ ammonium acetate and 0.1% acetic acid. Mobile phase B consisted of acetonitrile:isopropanol (7:3) with $1 \% 1 \mathrm{M}$ ammonium acetate and 0.1% acetic acid. The column was maintained at $40^{\circ} \mathrm{C}$ and the flow rate of the mobile phase was 0.4 mL per min. The chromatographic gradient was set as follows: $1 \mathrm{~min} 45 \%$ mobile phase A, linear decrease from 45% to 35% mobile phase A over 3 min , from 35% to 11% mobile phase A over 8 min and from 11% to 0% mobile phase A over 3 min , after which the column was first washed with 100% mobile phase B for 4 min and then returned to initial conditions over 0.5 min and equilibrated for 2.5 min (22 min total run time).
The PDA detector was set to $210-800 \mathrm{~nm}$. A divert valve (Rheodyne) excluded 0-1 min and 20-22 min from injection to the mass spectrometer. The ESI source was set to $120^{\circ} \mathrm{C}$ source and $400^{\circ} \mathrm{C}$ desolvation temperature, 1.0 kV capillary voltage, and 40 eV cone voltage, using nitrogen as desolvation gas ($800 \mathrm{~L} / \mathrm{h}$) and cone gas ($20 \mathrm{~L} / \mathrm{h}$). The mass spectrometer was operated in full scan MS^{E} resolution position ionization mode (25,000 at $\mathrm{m} / \mathrm{z} 556$) over a mass range of 50-1200 Da alternating with 0.1 min scan time between low- (1 eV collision energy) and high-energy scan function (collision energy ramp of $15-35 \mathrm{eV}$). Leucine-enkephalin was used as lock-mass reference standard. Pooled QC samples were injected at the beginning, middle and end of each batch.

Comparative analysis of untargeted lipid profiling data

Raw LC-MS files were converted from the vendor's format to the open-format 'netCDF' using a 'DataBridge' (MassLynx version 4.1). Pre-processing of the CDF files was done using the R^{87} packages 'xcms' 88 and 'CAMERA' ${ }^{89}$ obtained from the Bioconductor repository (www.bioconductor.org). This yielded a matrix of 12,190 aligned mass features across samples with corresponding peak intensity values. Parameters for mass feature detection, smoothing, alignment, binning and filtering were set according to the instrument's mass measurement specifications and detailed manual inspection of known mass features in the raw data, as suggested by the software guidelines (Table S8 and Table S9). The feature matrix was normalized to the total ion current (TIC, per sample) and standardized. The elbow method was applied to determine the number of clusters for a subset of samples (without addition of EhV, 48 samples, $k=4$, Fig. S1a) and for the whole dataset (with and without addition of EhV, 96
samples, $k=4$, Fig. S1b), followed by k-Means clustering and PCA analysis using the R package 'factoextra' ${ }^{90}$ for both the subset and the whole dataset. k-Means clustering ($k=5$) and PCA analysis were performed also for the whole dataset with the pooled QC samples, resulting in the same separation to clusters, while the pooled QC samples were grouped together in a fifth cluster (Fig. S28).
Comparative analysis between clusters 3,4 (containing samples of resistant strains) and clusters 1, 2 (containing samples of susceptible strains) in the subset without addition of EhV (Fig. 1c) was performed by one-way ANOVA with FDR-correction ($p<0.01$) using the R package 'qvalue' ${ }^{91}$, reducing the data to approximately 10,922 mass features. The mean intensity of each mass feature was then calculated for all clusters, followed by calculation of the fold change between the cluster with the maximum mean intensity and the other clusters. A fold change of >20 between the first and third highest clusters was selected, yielding a list of 173 differential mass features, which underwent further manual annotation to obtain a smaller number of feature groups. The peak shape of the extracted ion chromatograms (EICs) from co-eluting mass features was compared using MassLynx (Version 4.1, Waters), and isotopes, adducts and apparent neutral losses (e.g. of water) were annotated, grouping the mass features into 43 feature groups (Table S1). Next, the adduct ion with the highest intensity was selected for each feature group and the corresponding peak area was extracted using MassLynx and QuanLynx (Version 4.1, Waters) across samples in the full dataset (that is, with and without addition of EhV). Peak areas above a signal-to-noise threshold of 10 (limit of quantification) were normalized to the TIC. Per feature, zero values were replaced with half of the minimal value. Hierarchical cluster analysis was then applied to the whole data set (Fig. S2) and to the dataset after averaging the peak areas of the biological replicates (Fig. 2a) following log-transformation using Matlab R2021a, with row-wise (per feature) scaling, rowand column-wise clustering using the default 'Eucledian' method and the 'redblue' colour panel. Out of the 43 feature groups, nine were putatively identified as GSLs following manual annotation, based on the accurate mass, adducts and apparent in-source fragments.

Putative annotation and phenotypic grouping of GSL species

The annotation of GSL species that were previously undescribed in the E. huxleyi-EhV model system (listed in Table 1) was based on LC-MS/MS analysis and the Lipid Maps computationally-generated database of lipid classes and the Lipid Maps Structure Database (LMSD) ${ }^{44}$, and carried out according to the Metabolomics Standards Initiative, 'Level 2 putatively annotated compounds'46. The annotation of previously described GSL species was performed according to the accurate mass and LC-MS/MS fragmentation pattern ${ }^{36,38,45,52}$. LCMS/MS analyses were performed in positive ionization mode for the protonated molecules using a collision energy ramp of $10-45 \mathrm{eV}$ and a scan time of 0.5 sec . Analyses were performed on samples with high intensities, with injection volumes of $3-5 \mu \mathrm{~L}$. The data were analysed and processed with MassLynx and QuanLynx (version 4.1, Waters). For MS/MS spectra and a list of fragments of the GSL species that were previously undescribed in the E. huxleyi-EhV model system, see Fig. S4-S17.
Quantification and phenotypic grouping of the GSL species (Table 1) was based on their abundance profiles in the different E. huxleyi strains in the presence and absence of EhV (Fig. S18 and Fig. S19). The abundance profiles were generated by normalizing the peak area of
each GSL species (extracted as described above) to the extraction standard (glucosylceramide $\mathrm{d} 18: 1 / \mathrm{c} 12: 0$) and to the total number of extracted cells. Differences in GSL abundance were tested for day 2 of the experiment by a one-way ANOVA followed by Tukey's post-hoc test, $p<0.01$ (Table S 10 and Table S11). Day 2 was chosen since it was the first time point in which infected samples appeared as a separate cluster in the k-means clustering analysis (Fig. 1d).

Definition of sld and sbh genes

The sld and sbh genes were predicted from E. huxleyi genome sequences ${ }^{82}$, and defined based on expressed sequences when available: expressed sequence tags (ESTs) and Illumina short read sequences ${ }^{40}$, as described in ${ }^{92}$.
Five SLDs and seven SBHs and were defined. All SLDs have the fatty acid desaturase domain (PF00487), while the SBHs have the fatty acid hydroxylase domain (PF04116). sld2 (KJ868223, called Dcd2) and sbh1 (KJ868226, called sphingainine hydroxylase 1) were deposited in GenBank from our earlier definitions ${ }^{31}$. The genes were redefined based on PacBio RNASeq long read sequences, and sld1-sld5 and sbh1, sbh2, sbh4-sbh7 sequences from the susceptible strain E. huxleyi 2090 and the resistant strain E. huxleyi 373 (either one, the other or both strains, depending on expression) were deposited in GenBank, and given accession numbers: MZ152812-MZ152827 (Table S4). sbh3 was not expressed in any condition checked, and therefore was not submitted to GenBank. The sequence is available, with all others used for the phylogenetic analysis, in Figshare: 10.6084/m9.figshare.20448579. Expression patterns of $s l d$ and $s b h$ genes were based on data from previously published studies ${ }^{31,40,48}$.

Phylogenetic analysis of SLD and SBH

Database searches were performed to find similar proteins using BlastP at NCBI^{93} against the nr database, allowing 250 hits (to find more distantly related sequences). As the E. huxleyi SLD and SBH proteins differed greatly from each other within each protein family, sequences to represent each branch of the families were chosen, to give as wide an evolutionary spread as possible, while trying to keep consistency in the choice of species (if a species had hits to multiple family members, it was preferred, though species that only matched individual branches were also chosen, Table S5 and Table S6). All sequences were required to have the domains that define the family. Domain searches were performed using the Pfam (http://pfam.xfam.org) and CDD (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) databases ${ }^{94,95}$ Multiple alignments were performed on both whole protein and domain only, using ClustalW2.1 ${ }^{96}$, Muscle $3.8 .31^{97}$ in local installations, and in the case of SLDs, Mafft V7 online (https://mafft.cbrc.jp/alignment/server/) ${ }^{98}$. Due to the differences in the overall lengths of the proteins, the alignments chosen for the final phylogenetic analyses are those of the domains, as found in CDD. For SLD, as the subfamilies differed strongly even within the domain, Mafft using the L-INS-i algorithm gave the best alignment (Fig. S29). For the SBHs, the alignments were very similar, and the ClustalW alignment was used (Fig. S30). Phylogenetic analysis was performed with ClustalW (Neighbor-joining) and Phylip 3.697 (ProML, maximum likelihood) 99 in local installations and PhyML 3.0 (maximum likelihood) online (http://www.atgcmontpellier.fr/phyml/ $){ }^{100}$. The topologies were similar, and the PhyML trees are shown. Trees were visualized with iTol (https://itol.embl.de/) ${ }^{101}$. Details of the amino acid sequences are
listed in Table S5 (SLD) and Table S 6 (SBH). Full sequences, domain sequences and alignments are available in Figshare: 10.6084/m9.figshare. 20448579.

Extraction and lipid profiling of a E. huxleyi bloom in the Celtic Sea

Water samples of a natural E. huxleyi bloom were collected during the 'Tara Breizh Bloom' cruise in the Celtic Sea from May 29 to June 2, 2019 ${ }^{50}$. Water samples of 50 L were first filtered through a $20 \mu \mathrm{~m}$ nylon net to remove large particles. Cells were then collected by vacuum filtration onto glass microfiber filters (grade GF/C, 125 mm in diameter, pre-combusted at $460^{\circ} \mathrm{C}$ for $>5 \mathrm{~h}$, GE Healthcare Whatman). The filters were transferred to 50 mL centrifuge tubes (Sarstedt, Nümbrecht, Germany) and immediately plunged into liquid nitrogen. The filters were kept at $-80^{\circ} \mathrm{C}$, freeze-dried (Gamma 2-16 LSCplus, Martin Christ, Osterode am Harz, Germany) within 6 months after collection, and stored at $-80^{\circ} \mathrm{C}$ until further processing. Lipid extraction was performed as described above, using different solution volumes: 20 mL of the pre-cooled $\left(-20^{\circ} \mathrm{C}\right)$ methanol:MTBE $(1: 3, v: v)$ solution containing sphingolipid standard mixture ($\sim 150 \mathrm{nM}$ of each species), 15 mL of water:methanol ($3: 1, \mathrm{v}: \mathrm{v}$) solution, and 11 mL of MTBE for re-extraction. The upper organic phase (11 mL for the first extraction, 15 mL for the second extraction) was dried under a flow of nitrogen (TurboVap LV). An extraction blank was collected following the same procedure using a blank filter.
Untargeted profiling of lipids using UPLC-HRMS was performed as described above. An aliquot of $2 \mu \mathrm{~L}$ was analyzed using LC-HRMS as described above. The chromatographic separation was performed on an ACQUITY UPLC BEH C8 column ($2.1 \times 100 \mathrm{~mm}$, i.d., 1.7 $\mu \mathrm{m}$, Waters) attached to a VanGuard pre-column ($5 \times 2.1 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$; Waters). Mobile phase A consisted of water:acetonitrile:isopropanol (4.50:3.85:1.65, v:v) with $1 \% 1 \mathrm{M}$ ammonium acetate and 0.1% acetic acid. Mobile phase B consisted of acetonitrile:isopropanol (7:3, v:v) with $1 \% 1 \mathrm{M}$ ammonium acetate and 0.1% acetic acid. The column was maintained at $40^{\circ} \mathrm{C}$ and the flow rate of the mobile phase was 0.4 mL per min. The chromatographic gradient was set as follows: $1 \mathrm{~min} 100 \%$ mobile phase A, linear from 100% to 25% mobile phase A over 11 min and from 25% to 0% mobile phase A over 3 min , after which the column was first washed with 100% mobile phase B for 6 min and then returned to initial conditions (100% mobile phase A) over 0.5 min and equilibrated for $3.5 \mathrm{~min}(25 \mathrm{~min}$ total run time). The mass spectrometer was operated as described above over a mass range of $50-1500 \mathrm{Da}$.
Identification of GSL species was based on characteristic neutral losses and fragments of LCBs and amino FAs following collision-induced dissociation in MS^{E} mode. Relative intensity of hGSL, sGSL and 374-GSL species was performed by extracting the peak area of the adduct ion with the highest intensity or an indicative fragment ion ($[\mathrm{M}+\mathrm{Na}]^{+}$for hGSL, $[\mathrm{M}+\mathrm{H}-($ Sialic acid-H)- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$for sGSL and [Amino $\left.\mathrm{FA}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$for $374-\mathrm{GSL}$ species) following collisioninduced dissociation in MS^{E} mode using QuanLynx. LC-MS/MS operating in multiple reaction monitoring (MRM) mode was used to quantify resGSL d19:4/h22:2 (12) with increased sensitivity. Data was acquired as described above using the MRM mode, incorporating the observed retention times and accurate masses of precursor and product ions, using a collision energy of 20 eV . The most intense product ion of the d19:4 LCB ($\mathrm{m} / \mathrm{z} 272.2378$) was selected for target enhancement and the product ion of the h22:2 amino FA ($\mathrm{m} / \mathrm{z} 334.3110$) was used for quantification. Peak areas above a signal-to-noise threshold of 10 (limit of quantification) were normalized to the internal standard and the filtered volume.

Mesocosm experimental setup

A mesocosm experiment (AQUACOSM VIMS-Ehux) was carried out over 24 days (May 24 - June 17, 2018) in Raunefjorden at the University of Bergen's Marine Biological Station Espegrend, Norway ($60.38^{\circ} \mathrm{N} ; 5.28^{\circ} \mathrm{E}$), as previously described ${ }^{51,52}$. Briefly, the experiment consisted of seven enclosure bags made of transparent polyethylene ($11 \mathrm{~m}^{3}, 4 \mathrm{~m}$ deep and 2 m wide, 90% photosynthetically active radiation) mounted on floating frames and moored to a raft stationed in the fjord. Each bag was filled with surrounding fjord water and supplemented with nutrients. Samples for flow cytometric counts were taken twice a day, in the morning (7 am) and evening ($8-9 \mathrm{pm}$) using 50 mL centrifugal tubes and following filtration using a 40 $\mu \mathrm{m}$ cell strainer. Calcified E. huxleyi cells were enumerated using an Eclipse iCyt flow cytometer (Sony Biotechnology).

Enumeration of biomass-associated EhV in the environment by qPCR

Water samples (1-2 L) were sequentially filtered by vacuum through hydrophilic polycarbonate filters with a pore size of $20 \mu \mathrm{~m}$ (47 mm ; Sterlitech, Kent, WA, US) and then $2 \mu \mathrm{~m}$ (Isopore, 47 mm ; Merck Millipore, Cork, Ireland). Filters were immediately plunged into liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ until further processing. DNA was extracted from the $2 \mu \mathrm{~m}$ filters using the DNeasy PowerWater kit (QIAGEN, Hilden, Germany) according to the manufacturer's instructions. Each DNA extract was diluted 100 times, and $1 \mu \mathrm{~L}$ was then used for qPCR analysis as described in ${ }^{52}$. Briefly, EhV abundance was determined for the major capsid protein (mcp) gene ${ }^{102}$: 5^{\prime}-acgcaccetcaatgtatggaagg- $3^{\prime}\left(m c p 1 \mathrm{Fw}^{47}\right.$) and 5^{\prime}-rtscrgccaactcagcagtcgt- 3^{\prime} (mcp94Rv ${ }^{52}$). Results were calibrated against serial dilutions of EhV201 DNA at known concentrations, enabling exact enumeration of viruses. Data is available in ${ }^{103}$.

Sampling, extraction, and cellular lipid profiling of mesocosm samples

Water samples for cellular lipidomics analysis were collected daily from bags 1-4, as described previously ${ }^{52}$. Briefly, samples were collected daily at 7-8.30 am using 10 L carboys (precleaned with $1 \% \mathrm{HCl}$ for $>10 \mathrm{~min}$ and rinsed three times with tap water) using a peristaltic pump at a speed of ca. 5 L per min. The samples were pumped through a $200 \mu \mathrm{~m}$ pore-size Nitex nylon mesh screen to remove microzooplankton grazers and large particles. Carboys were kept at $10^{\circ} \mathrm{C}$ and processed $<1 \mathrm{~h}$ after collection.
Water samples of 1-6 L (depending on the biomass) were first gravity filtered through $25 \mu \mathrm{~m}$ pore-size stainless steel filters (47 mm in diameter, Sinun Tech) to remove large particles. Cells were then collected by gentle vacuum filtration of 1-2 L onto glass microfiber filters (grade GF/A, 47 mm in diameter, pre-combusted at $460^{\circ} \mathrm{C}$ for $>5 \mathrm{~h}$, GE Healthcare Whatman). The filters were transferred to 2.0 mL centrifuge tubes (SafeLock, Eppendorf) using stainless steel tweezers (pre-combusted at $460^{\circ} \mathrm{C}$ for $>5 \mathrm{~h}$), supplemented with $5 \mu \mathrm{~L}$ of glycosylceramide d18:2/C16:0 ($3 \mu \mathrm{~g}$ per $\mu \mathrm{L}$ in chloroform:methanol, $1: 1 \mathrm{v}: \mathrm{v}$) and immediately plunged into liquid nitrogen. An extraction blank was taken by soaking a glass microfiber filter in FSW, after which it was transferred to a 2.0 mL centrifuge tube and immediately plunged into liquid nitrogen. The filters were kept at $-80^{\circ} \mathrm{C}$, freeze-dried (Gamma 2-16 LSCplus, Martin Christ) within 1.5 months after collection, and stored at $-80^{\circ} \mathrm{C}$ until further processing. Lipid extraction was performed for bag samples in days 10-23 (56 biological samples in total) and for the
extraction blank as described for the laboratory samples, without the addition of a sphingolipid internal standard mixture and including two solvent blanks.
Untargeted profiling of lipids using UPLC-HRMS was performed as described above, with the following modifications: samples were randomized and divided into two batches with 30 samples in each batch, including extraction and solvent blanks. Randomization was performed automatically using an in-house R^{87} script with the following constraints: every bag was equally represented in each analytical batch and each experimental sampling day was represented at least once. Per batch, samples were thawed, re-dissolved in $220 \mu \mathrm{~L}$ mobile phase B containing d9-PC P-36:1 ($0.5 \mu \mathrm{~g}$ per mL) and d4-palmitic acid ($0.7 \mu \mathrm{~g}$ per mL) as injection standards, vortexed, sonicated for 10 min , and centrifuged at $20,800 \times \mathrm{g}$ for 10 min at $10^{\circ} \mathrm{C}$. The supernatants were transferred to $200 \mu \mathrm{~L}$ glass inserts in autosampler vials and directly used for LC-MS analysis. A pooled QC sample was generated by combining aliquots of $10 \mu \mathrm{~L}$ from all biological samples. An aliquot of $1 \mu \mathrm{~L}$ was analyzed using LC-HRMS as described above. The chromatographic separation was performed as described above for the Celtic Sea samples.
Identification of GSL species was performed as described above using LC-MS/MS analyses (see Fig. S31-S33 for fragmentation patterns of representative hGSL, sGSL and vGSL species). Absolute quantification of most GSL species was performed by extracting the peak area of the adduct ion with the highest intensity or an indicative fragment ion $\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$for most GSL species, $\left[\mathrm{M}+\mathrm{H}-\left(\text { Sialic acid-H)- } \mathrm{H}_{2} \mathrm{O}\right]^{+} \text {for sGSL and [Amino } \mathrm{FA}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$for $374-\mathrm{GSL}$ species) following collision-induced dissociation in MS ${ }^{\mathrm{E}}$ mode using QuanLynx. LC-MS/MS operating in MRM mode was used to quantify group B GSL species with increased sensitivity. Data was acquired as described above using the MRM mode, incorporating the observed retention times and accurate masses of precursor and product ions, using a collision energy of 20 eV . The most intense product ion of the LCB ($\mathrm{m} / \mathrm{z} 284.2953$ for d18:0-based GSL species and $m / z 300.2903$ for t18:0-based GSL species) was selected for target enhancement and used for quantification. Peak areas above a signal-to-noise threshold of 10 (limit of quantification) were normalized to the internal standard and the filtered volume.

GSL profiling of naïve and recovered cultures of the mesocosm-derived E. huxleyi isolates

EhVM1 was added to cultures of E. huxleyi isolates RCC6912, RCC6918, RCC6936 and RCC6961 at a ratio of $1: 1$ viral particles to E. huxleyi cells, as described above. Of the three susceptible isolates, isolates RCC6912 and RCC6918 recovered about a week following infection (Fig. 6b and Fig. S24b). The recovered cultures were continuously refreshed in modified $\mathrm{K} / 2$ medium, until no EhV was detected using flow cytometry.
E. huxleyi cultures of mesocosm isolates were analyzed for cellular lipid content at the exponential phase in three biological replicates (1×10^{6} to 2.5×10^{6} cells per mL, see Fig. S25c). The samples ($100-150 \mathrm{~mL}$ of each culture, equivalent to $\sim 2 \times 10^{8}$ cells per sample) were collected by gentle vacuum filtration onto glass microfiber filters (grade GF/A, 47 mm in diameter, pre-combusted at $460^{\circ} \mathrm{C}$ for $>5 \mathrm{~h}$, GE Healthcare Whatman), immediately plunged into liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$ until extraction. In total, 18 biological samples were collected. Lipid extraction was performed as described for the laboratory strains, including three extractions blanks. Untargeted profiling of lipids using UPLC-HRMS was performed as described for the mesocosm samples, using $200 \mu \mathrm{~L}$ mobile phase B for re-dissolving samples.

The samples were injected in one batch, including an extraction blank and a pooled QC sample. Absolute quantification of GSL species was performed as described for the laboratory strains, by normalizing the peak area of each GSL species to the extraction standard (glucosylceramide $\mathrm{d} 18: 1 / \mathrm{c} 12: 0$) and to the total number of extracted cells. Heatmaps were generated using R^{87} with column-wise (per GSL species) normalization and the ' GnBu ' color panel of the package 'RcolorBrewer' (Fig. 6c,d and Fig. S25b).

Acknowledgements: We thank all team members of the AQUACOSM VIMS-Ehux project for setting up and conducting the mescosom experiment, especially Jorun Egge, Aud Larsen, Tatiana Tsagaraki, Celia Marrasé and Rafel Simó. We thank Ian Probert and Martin Gachenot for isolating and maintaining the E. huxleyi strains during the mesocosm experiment. We are grateful to the Tara Ocean Foundation, led by Romain Troublé and Etienne Bourgois, for the sampling opportunity and facilities onboard Tara, and to all the scientific and logistic team involved in the Tara Breizh Bloom cruise, notably captain Martin Herteau and his crew, the chief scientist Christian Jeanthon, and Colomban de Vargas. We are grateful to Ilana Rogachev for technical support on the LC-MS instrument. We thank Roi Avraham, Noa Ben-Moshe and Ron Rotkopf for their help in data analysis. Funding: A.V. is The Bronfman Professorial Chair of Plant Science. This research was supported by the European Research Council CoG (VIROCELLSPHERE grant no. 681715), the Simons Foundation grant (no. 735079) 'Untangling the infection outcome of host-virus dynamics in algal blooms in the ocean', and a research grant from the Estate of Bernard Berkowitz awarded to A.V. The mesocosm experiment VIMS-Ehux was supported by EU Horizon2020-INFRAIA project AQUACOSM (grant no. 731065).

Author contributions: G.S., C.Z. and A.V. conceptualized the project. G.S., C.K. and A.V. wrote the manuscript. G.S., C.K., C.Z. and S.M. designed and performed the experiments. G.S., C.K. and C.Z. performed the LC-MS data analysis. S.B.-D and G.S. performed the bioinformatics analyses. D.S. collected the open ocean samples. All authors reviewed and edited the manuscript.

Competing interests: The authors declare that they have no competing interests.
Data availability: Data supporting the findings of this study are available in the paper and its Supplementary Materials. Flow cytometry, qPCR, nutrient and temperature data from the mesocosm experiment are available in Dryad (https://doi.org/10.5061/dryad.q573n5tfr). Mass spectral raw data was deposited to the EMBL-EBI MetaboLights repository with the identifier MTBLS3323 (www.ebi.ac.uk/metabolights/ MTBLS3323). Raw data files of biological samples from the laboratory, 'Tara Breizh Bloom' cruise and mesocosm experiments include full MS and MS/MS analyses in positive ionization mode. Nucleotide sequences were deposited in GenBank and given accession numbers: MZ152812-MZ152827. Full sequences, domain sequences and alignments used for the phylogenetic analysis are available on Figshare: 10.6084/m9.figshare. 20448579.

Supplementary Materials:

Figures S1 to S34
Tables S1 to S11

References

1 Bergh, Ø., Børsheim, K. Y., Bratbak, G. \& Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467-468 (1989).
2 Wommack, K. E. \& Colwell, R. R. Virioplankton: Viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69-114 (2000).
3 Weitz, J. S. et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 9, 1352-1364 (2015).
4 Suttle, C. A. Marine viruses - major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801-812 (2007).
5 Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541-548 (1999).
6 Wilhelm, S. W. \& Suttle, C. A. Viruses and nutrient cycles in the sea: Viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781788 (1999).
7 Sullivan, M. B., Weitz, J. S. \& Wilhelm, S. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33-35 (2017).
8 Baran, N., Goldin, S., Maidanik, I. \& Lindell, D. Quantification of diverse virus populations in the environment using the polony method. Nat. Microbiol. 3, 62-72 (2018).

9 Pasulka, A. L. et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ. Microbiol. 20, 671-692 (2018).

10 Vincent, F., Sheyn, U., Porat, Z., Schatz, D. \& Vardi, A. Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proc. Natl. Acad. Sci. USA 118, e2021586118 (2021).
11 Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306-2318 (2013).
12 Castillo, Y. M. et al. Visualization of viral infection dynamics in a unicellular eukaryote and quantification of viral production using virus fluorescence in situ hybridization. Front. Microbiol. 11, 1559 (2020).
$13 \mathrm{Ku}, \mathrm{C}$. et al. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci. Adv. 6, eaba4137 (2020).
14 Piel, D. et al. Phage-host coevolution in natural populations. Nat. Microbiol. 7, 10751086 (2022).
15 Yau, S. et al. A viral immunity chromosome in the marine picoeukaryote, Ostreococcus tauri. PLoS Path. 12, e1005965 (2016).
16 Frada, M., Probert, I., Allen, M. J., Wilson, W. H. \& de Vargas, C. The "Cheshire Cat" escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc. Natl. Acad. Sci. USA 105, 15944-15949 (2008).
17 Jacobsen, A., Larsen, A., Martínez Martínez, J., Verity, P. G. \& Frischer, M. E. Susceptibility of colonies and colonial cells of Phaeocystis pouchetii (Haptophyta) to viral infection. Aquat. Microb. Ecol. 48, 105-112 (2007).
18 Martínez Martínez, J. et al. New lipid envelope-containing dsDNA virus isolates infecting Micromonas pusilla reveal a separate phylogenetic group. Aquat. Microb. Ecol. 74, 17-28 (2015).
19 Tarutani, K., Nagasaki, K. \& Yamaguchi, M. Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton Heterosigma akashiwo. Appl. Environ. Microbiol. 66, 4916-4920 (2000).

20 Tomaru, Y., Mizumoto, H. \& Nagasaki, K. Virus resistance in the toxic bloom-forming dinoflagellate Heterocapsa circularisquama to single-stranded RNA virus infection. Environ. Microbiol. 11, 2915-2923 (2009).
21 Thomas, R. et al. Acquisition and maintenance of resistance to viruses in eukaryotic phytoplankton populations. Environ. Microbiol. 13, 1412-1420 (2011).
22 Schroeder, D. C., Oke, J., Malin, G. \& Wilson, W. H. Coccolithovirus (Phycodnaviridae): Characterisation of a new large dsDNA algal virus that infects Emiliana huxleyi. Arch. Virol. 147, 1685-1698 (2002).
23 Holligan, P. M. et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem. Cycles 7, 879-900 (1993).
24 Brown, C. W. \& Yoder, J. A. Coccolithophorid blooms in the global ocean. J. Geophys. Res. 99, 7467-7482 (1994).
25 Harris, R. P. Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Mar. Biol. 119, 431-439 (1994).
26 Stefels, J., Steinke, M., Turner, S., Malin, G. \& Belviso, S. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83, 245-275 (2007).
27 Bratbak, G., Egge, J. K. \& Heldal, M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 3948 (1993).
28 Lehahn, Y. et al. Decoupling physical from biological processes to assess the impact of viruses on a mesoscale algal bloom. Curr. Biol. 24, 2041-2046 (2014).
29 Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537-547 (2018).
30 Wilson, W. H. et al. Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J. Mar. Biol. Assoc. U.K. 82, 369-377 (2002).
31 Rosenwasser, S. et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant Cell 26, 2689-2707 (2014).

32 Malitsky, S. et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol. 210, 88-96 (2016).
33 Schleyer, G. et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nat. Microbiol. 4, 527-538 (2019).
34 Evans, C., Pond, D. W. \& Wilson, W. H. Changes in Emiliania huxleyi fatty acid profiles during infection with E. huxleyi virus 86: Physiological and ecological implications. Aquat. Microb. Ecol. 55, 219-228 (2009).
35 Wilson, W. H. et al. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309, 1090-1092 (2005).
36 Ziv, C. et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc. Natl. Acad. Sci. USA 113, E1907-E1916 (2016).
37 Vardi, A. et al. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton. Science 326, 861-865 (2009).
38 Fulton, J. M. et al. Novel molecular determinants of viral susceptibility and resistance in the lipidome of Emiliania huxleyi. Environ. Microbiol. 16, 1137-1149 (2014).
39 Vardi, A. et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc. Natl. Acad. Sci. USA 109, 19327-19332 (2012).

40 Feldmesser, E., Ben-Dor, S. \& Vardi, A. An Emiliania huxleyi pan-transcriptome reveals basal strain specificity in gene expression patterns. Sci. Rep. 11, 20795-20795 (2021).

41 Bidle, K. D. \& Kwityn, C. J. Assessing the role of caspase activity and metacaspase expression on viral susceptibility of the coccolithophore, Emiliania huxleyi (Haptophyta). J. Phycol. 48, 1079-1089 (2012).
42 Frada, M. J. et al. Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi. PLoS Path. 13, e1006775 (2017).
43 Nissimov, J. I. et al. Biochemical diversity of glycosphingolipid biosynthesis as a driver of Coccolithovirus competitive ecology. Environ. Microbiol. 21, 2182-2197 (2019).
44 Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527D532 (2007).
45 Hunter, J. E., Frada, M. J., Fredricks, H. F., Vardi, A. \& Van Mooy, B. A. S. Targeted and untargeted lipidomics of Emiliania huxleyi viral infection and life cycle phases highlights molecular biomarkers of infection, susceptibility, and ploidy. Front. Mar. Sci. 2, 81 (2015).
46 Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211-221 (2007).
47 Pagarete, A., Allen, M. J., Wilson, W. H., Kimmance, S. a. \& de Vargas, C. Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: Survival of the fattest. Environ. Microbiol. 11, 2840-2848 (2009).
48 Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
49 Michaelson, L. V., Dunn, T. M. \& Napier, J. A. Viral trans-dominant manipulation of algal sphingolipids. Trends Plant Sci. 15, 651-655 (2010).
50 Câmara dos Reis, M. et al. Exploring the phycosphere of Emiliania huxleyi: From bloom dynamics to microbiome assembly experiments. bioRxiv, 2022.2002.2021.481256 (2022).

51 Vincent, F. et al. Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during algal blooms. bioRxiv (2021).
52 Kuhlisch, C. et al. Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. Sci. $A d v$. 7, eabf4680 (2021).
53 Egge, J. K. \& Heimdal, B. R. Blooms of phytoplankton including Emiliania huxleyi (Haptophyta). Effects of nutrient supply in different N : P ratios. Sarsia 79, 333-348 (1994).

54 Fromm, A., Schatz, D., Ben-Dor, S., Feldmesser, E. \& Vardi, A. Complete genome sequence of Emiliania huxleyi virus strain M1, isolated from an induced E. huxleyi bloom in Bergen, Norway. Microbiol. Resour. Announc. 11, e00071-22 (2022).
55 Waterbury, J. B. \& Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393-3399 (1993).
56 Avrani, S., Wurtzel, O., Sharon, I., Sorek, R. \& Lindell, D. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474, 604-608 (2011).
57 Kegel, J. U., John, U., Valentin, K. \& Frickenhaus, S. Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi. PLoS ONE 8, e80684 (2013).

58 Li, Y. et al. Sphingolipids in marine microalgae: Development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla. Anal. Chim. Acta 986, 82-94 (2017).
$59 \mathrm{Li}, \mathrm{H}$. et al. Comparative lipid profile of four edible shellfishes by UPLC-Triple TOFMS/MS. Food Chem. 310, 125947 (2020).
60 Wang, R. et al. Identification of ceramide 2-aminoethylphosphonate molecular species from different aquatic products by NPLC/Q-Exactive-MS. Food Chem. 304, 125425 (2020).

61 Kato, H. et al. Recognition of pathogen-derived sphingolipids in Arabidopsis. Science 376, 857-860 (2022).
62 Marquês, J. T., Marinho, H. S. \& de Almeida, R. F. M. Sphingolipid hydroxylation in mammals, yeast and plants - An integrated view. Prog. Lipid Res. 71, 18-42 (2018).
63 Santos, T. C. B. et al. The long chain base unsaturation has a stronger impact on 1-deoxy(methyl)-sphingolipids biophysical properties than the structure of its C 1 functional group. Biochim. Biophys. Acta 1863, 183628 (2021).
64 Ali, U., Li, H., Wang, X. \& Guo, L. Emerging roles of sphingolipid signaling in plant response to biotic and abiotic stresses. Mol. Plant 11, 1328-1343 (2018).
65 Zhou, Y. et al. The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato. Sci. Rep. 6, 38742-38742 (2016).
66 Mamode Cassim, A. et al. Sphingolipids in plants: A guidebook on their function in membrane architecture, cellular processes, and environmental or developmental responses. FEBS Lett. 594, 3719-3738 (2020).
67 Schneider-Schaulies, J. \& Schneider-Schaulies, S. Sphingolipids in viral infection. Biol. Chem. 396, 585-595 (2015).
68 Orchard, R. C., Wilen, C. B. \& Virgin, H. W. Sphingolipid biosynthesis induces a conformational change in the murine norovirus receptor and facilitates viral infection. Nat. Microbiol. 3, 1109-1114 (2018).
69 Törnquist, K., Asghar, M. Y., Srinivasan, V., Korhonen, L. \& Lindholm, D. Sphingolipids as modulators of SARS-CoV-2 infection. Front. Cell Dev. Biol. 9, 689854 (2021).
70 Soudani, N., Hage-Sleiman, R., Karam, W., Dbaibo, G. \& Zaraket, H. Ceramide suppresses influenza a virus replication in vitro. J. Virol. 93, e00053-19 (2019).
71 Bukrinsky, M. I., Mukhamedova, N. \& Sviridov, D. Lipid rafts and pathogens: The art of deception and exploitation. J. Lipid Res. 61, 601-610 (2020).
72 Mackinder, L. C. M. et al. A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J. Gen. Virol. 90, 2306-2316 (2009).
73 Grossi, V., Raphel, D., Aubert, C. \& Rontani, J.-F. The effect of growth temperature on the long-chain alkenes composition in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 54, 393-399 (2000).
74 Wördenweber, R. et al. Phosphorus and nitrogen starvation reveal life-cycle specific responses in the metabolome of Emiliania huxleyi (Haptophyta). Limnol. Oceanogr. 63, 203-226 (2017).
75 Lowenstein, D. P., Mayers, K., Fredricks, H. F. \& Van Mooy, B. A. S. Targeted and untargeted lipidomic analysis of haptophyte cultures reveals novel and divergent nutrient-stress adaptations. Org. Geochem. 161, 104315 (2021).
76 Del Poeta, M., Nimrichter, L., Rodrigues, M. L. \& Luberto, C. Synthesis and biological properties of fungal glucosylceramide. PLoS Path. 10, e1003832 (2014).
77 Mashima, R., Okuyama, T. \& Ohira, M. Biosynthesis of long chain base in sphingolipids in animals, plants and fungi. Future Sci. OA 6, FSO434 (2019).

78 Ruiz, E., Oosterhof, M., Sandaa, R.-A. A., Larsen, A. \& Pagarete, A. Emerging interaction patterns in the Emiliania huxleyi-EhV system. Viruses 9, 61 (2017).
79 Thyrhaug, R., Larsen, A., Thingstad, T. F. \& Bratbak, G. Stable coexistence in marine algal host-virus systems. Mar. Ecol. Prog. Ser. 254, 27-35 (2003).
80 Baumeister, T. U. H., Vallet, M., Kaftan, F., Svatoš, A. \& Pohnert, G. Live single-cell metabolomics with matrix-free laser/desorption ionization mass spectrometry to address microalgal physiology. Front. Plant Sci. 10, 172 (2019).
81 Li, Z. et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat. Commun. 12, 2869 (2021).
Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499, 209-213 (2013).
83 Nissimov, J. I. et al. Draft genome sequence of four coccolithoviruses: Emiliania huxleyi virus EhV-88, EhV-201, EhV-207, and EhV-208. J. Virol. 86, 2896-2897 (2012).

84 Gerecht, A. C., Šupraha, L., Edvardsen, B., Probert, I. \& Henderiks, J. High temperature decreases the PIC / POC ratio and increases phosphorus requirements in Coccolithus pelagicus (Haptophyta). Biogeosciences 11, 3531-3545 (2014).
85 Barak-Gavish, N. et al. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Sci. Adv. 4, eaau5716 (2018).
86 Hummel, J. et al. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci. 2, 54 (2011).
87 R Core Team. R: A language and environment for statistical computing R foundation for statistical computing. https://r-project.org. (2020).
88 Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R. \& Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779-787 (2006).
89 Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. \& Neumann, S. CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283-289 (2012).
90 Alboukadel, K. \& Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.5. (2017).
91 Storey, J. D., Bass, A. J., Dabney, A. \& Robinson, D. qvalue: Q-value estimation for false discovery rate control. R package version 2.14.1. (2019).
92 Feldmesser, E., Rosenwasser, S., Vardi, A. \& Ben-Dor, S. Improving transcriptome construction in non-model organisms: Integrating manual and automated gene definition in Emiliania huxleyi. BMC Genomics 15, 148 (2014).
93 Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).
94 Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Res. 42, D222D230 (2014).
95 Lu, S. et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 48, D265-D268 (2020).
96 Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948 (2007).

97 Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797 (2004).
98 Katoh, K., Rozewicki, J. \& Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 11601166 (2019).

100 Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321 (2010).
101 Letunic, I. \& Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293-W296 (2021).
102 Sheyn, U. et al. Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export. ISME J. 12, 704-713 (2018).
103 Vincent, F. et al. AQUACOSM VIMS-Ehux - Core data. Dryad (2020).

Supplementary Information

Novel lipid biomarkers for algal resistance to viral infection in the ocean

Guy Schleyer ${ }^{1}$, Constanze Kuhlisch ${ }^{1}$, Carmit Ziv 1,2, Shifra Ben-Dor ${ }^{3}$, Sergey Malitsky ${ }^{1,3}$, Daniella Schatz ${ }^{1}$, Assaf Vardi ${ }^{1 *}$
${ }^{1}$ Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
${ }^{2}$ Current: Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
${ }^{3}$ Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
*Corresponding author: assaf.vardi@weizmann.ac.il

This PDF file includes:
Figures S1 to S34
Tables S1 to S11

Figure S8: Elbow method for determining the best number of clusters. The method was applied on untargeted LC-MS-based lipidomics data (using 12,190 mass features) derived from cultures of two resistant and two susceptible E. huxleyi strains (a) without addition of EhV and (b) with and without addition of EhV. In both cases, $k=4$ was chosen as the best number of clusters.

Figure S9: Two-dimensional hierarchical clustering of 43 differential lipid species (Table S1) in four E. huxleyi strains with and without EhV throughout a time course of four days. Clustering was performed on log-transformed and standardized peak areas of the adduct ion with the highest intensity. As in Fig. 2a, the samples are grouped into two main clusters that separate samples of the resistant (R) strains from the susceptible (S) ones $(n=96)$. Each cluster forms two sub-clusters that further separate the strains. The putative lipid species are also divided into four sub-clusters (i-iv), as in Fig. 2a. Nine GSL species were identified and are marked by numbers (Table 1). The peaks of GSLs $\mathbf{1}$ and $\mathbf{3}$, structural isomers with a similar retention time (Table 1), were integrated together as they were not baseline separated. * sGSL d18:2/c22:0.

GSL d19:4/h22:1 (resGSL, 11)

GSL d19:3/h22:2 (374-GSL, 13)

GSL d19:3/h23:2 (4)

GSL d19:4/h22:2 (resGSL, 12)

GSL d19:3/h22:3 (374-GSL, 14)

Figure S10: Structures of GSL species that differ between resistant and susceptible E. huxleyi strains and were identified in this study. Putative structures of previously undescribed GSL species within the E. huxleyiEhV model system, which are differential between resistant and susceptible E. huxleyi strains (Table 1). The structures, including LCB and FA composition, were determined based on LC-MS/MS analysis (Fig. S4-S17). LCB composition, which varies in the amount of double bonds, hydroxyl groups and the alkyl chain branching, seems to be the main factor that differentiates between the various groups of GSLs, and, consequently, between the cell types. The positions of double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S11: LC-MS/MS analysis of GSL d18:3/h22:1 (1). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=794.6107$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S12: LC-MS/MS analysis of GSL d18:3/h22:2 (2). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2^{2}). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=792.5980$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S13: LC-MS/MS analysis of GSL d19:3/h21:1 (3). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=794.6107$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

GSL d19:3/h23:2 (4)

Figure S14: LC-MS/MS analysis of GSL d19:3/h23:2 (4). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=820.6278$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S15: LC-MS/MS analysis of GSL d18:0/h22:0 (5). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=802.6722$ as the precursor ion (Table 1). The positions of the functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

GSL t18:0/h22:1 (9)

| 100 |
| :--- | :--- | :--- |

Figure S16: LC-MS/MS analysis of GSL t18:0/h22:1 (9). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=816.6531$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

| 100 |
| :--- | :--- | :--- | :--- |

Figure S17: LC-MS/MS analysis of GSL d19:4/h22:2 (resGSL, 12). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=804.5975$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S18: LC-MS/MS analysis of GSL d19:3/h22:2 (374-GSL, 13). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=806.6143$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

GSL d19:3/h22:3 (374-GSL, 14)

| |
| :--- | :--- | :--- | :--- |

Figure S19: LC-MS/MS analysis of GSL d19:3/h22:3 (374-GSL, 14). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=804.5981$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S20: LC-MS/MS analysis of GSL d18:0/h22:1 (6). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=800.6600$ as the precursor ion (Table 1). The positions of the double bond and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S21: LC-MS/MS analysis of GSL d18:1/h22:1 (7). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=798.6440$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S22: LC-MS/MS analysis of GSL t18:0/h22:0 (8). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=818.6702$ as the precursor ion (Table 1). The positions of the functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

GSL t18:0/h22:2 (10)

| |
| :--- | :--- | :--- | :--- |

Figure S23: LC-MS/MS analysis of GSL t18:0/h22:2 (10). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=814.6346$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

100				

Figure S24: LC-MS/MS analysis of GSL d19:4/h22:1 (resGSL, 11). A putative structure is presented, supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=806.6127$ as the precursor ion (Table 1). The positions of the double bonds and functional groups were assigned based on the most common structures in the Lipid Maps Structure Database (LMSD) ${ }^{1}$.

Figure S25: Temporal profiles of differential GSL species in two resistant (R) and two susceptible (S) E. huxleyi strains, with and without addition of EhV. The bar graphs show the mean relative peak area per cell \pm SD $(n=3)$ of cultures without addition of EhV (-EhV) and with addition of EhV $(+\mathrm{EhV})$. Peak areas were normalized to the internal standard (IS) glucosylceramide d18:1/c12:0. GSL species are numbered and ordered based on Table 1. An additional analysis with higher sensitivity was performed for some GSLs species, as shown in Fig. S19.

Figure S26: High sensitivity analysis of selected GSL species in two resistant (R) and two susceptible (S) E. huxleyi strains without addition of EhV. This analysis was performed to verify detection of GSL species that had low intensity in the untargeted lipidomics profiling. The bar graphs show the relative peak area per cell of each sample type $(n=1)$. Peak intensities were normalized to the IS glucosylceramide d18:1/c12:0. GSL species are numbered and ordered based on Table 1. n.d., not detected.

Figure S27: Expression of sphingolipid desaturase (sld) and sphingoid base hydroxylase (sbh) genes in the resistant E. huxleyi strain 379 and in the susceptible E. huxleyi strain 374 with and without addition of EhV. Normalized expression of (a) sld and (b) sbh genes in the resistant (R) E. huxleyi strain 379 and in the susceptible (S) E. huxleyi strain 374 with and without addition of EhV at 2 h and $24 \mathrm{~h}(n=1)$. Expression of sbh3 was below the limit of detection in all strains and conditions tested. Data was taken from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP, $n=1$, available at https://www.imicrobe.us, ${ }^{3}$), samples MMETSP0994-MMETSP0997 (E. huxleyi 379) and MMETSP1006-MMETSP1009 (E. huxleyi 374). n.d., not detected.

Figure S28: Expression of sphingolipid desaturase (sld) and sphingoid base hydroxylase (sbh) genes in E. huxleyi strain 373, 2090 and 374. Normalized expression of (a) sld and (b) sbh genes in the resistant (R) E. huxleyi strain 373 during the exponential (2 d) and stationary (12 d) growth phases, in the susceptible (S) E. huxleyi strain 2090 with and without addition of EhV at 1 h and 24 h , and in the susceptible E. huxleyi strain 374 during the exponential and stationary growth phases. Expression of $s b h 3$ was below limit of detection in all strains and conditions tested. Data was taken from Feldmesser et al. 2021 ${ }^{4}$. Values for E. huxleyi strains 373 and 374 are presented as the mean $\pm \operatorname{SD}(n=2)$.

Figure S29: Expression of EhV201 sphingoid base hydroxylase (sbh) during infection of the susceptible E. huxleyi strain 2090. Data taken from Rosenwasser et al., $2014^{5}(n=1)$. n.d., not detected.

Figure S30: Changes in in cellular content of 374-GSL species (group D) in response to viral infection of natural E. huxleyi populations in a mesocosm experiment. Concentration of 374-GSL species correlates with the population dynamics in the four bags (Table S7). Bags are ordered by increasing EhV abundance, with the lowest abundance in bag 3 and the highest in bag 4, as presented in Fig. 5b.

Figure S31: E. huxleyi isolates from the mesocosm experiment display different infection dynamics. (a) E. huxleyi isolate RCC6936 is susceptible (S) to EhVM1. (b) E. huxleyi isolate RCC6912 is susceptible to EhVM1, however, a resistant population recovers one week following infection. (c) E. huxleyi isolate RCC6961 is resistant (R) to EhVM1. E. huxleyi cell abundance (black) in cultures without (top) and with addition of EhVM1 (bottom) are presented, as well as the abundance of extracellular viruses (grey) in cultures with EhV. The black arrows indicate the addition of EhVM1 to the cultures. Values are presented as the mean $\pm \mathrm{SD}(n=2)$.

Figure S32: Resistance of the recovered cultures of E. huxleyi isolates RCC6912 and RCC6918 and the GSL composition of E. huxleyi isolate RCC6912. (a) Recovered cultures of E. huxleyi isolates RCC6912 and RCC6918 are resistant to the virus. E. huxleyi cell abundance (black) in cultures without (top) and with (bottom) addition of EhVM1 are presented, as well as abundance of extracellular viruses (grey) in cultures with EhVM1. Values are presented as the mean $\pm \mathrm{SD}(n=2)$. The black arrows indicate the addition of EhVM1 to the cultures. (b) GSL composition of the susceptible E. huxleyi isolate RCC6912 and of the cultures that recovered following infection and were resistant to the virus $(n=3)$. GSL species are grouped and numbered based on Table 1 . (c) E. huxleyi cell abundance in exponentially growing cultures used for analysis of GSL composition ($n=3$). The cultures were extracted at day 3 of the experiment.

Figure S33: Quantification of bacteria in cultures of two resistant and two susceptible E. huxleyi strains, with and without addition of EhV. (a) Bacterial abundance during the growth of the resistant (R) E. huxleyi strains 373 and 379 and the susceptible (S) E. huxleyi strains 2090 and 374. (b) Bacterial abundance following the addition of EhV201. Values for (a) and (b) are presented as the mean $\pm \mathrm{SD}(n=3)$.

Figure S34: Enumeration of E. huxleyi cells, EhV and bacteria using flow cytometry. (a) Enumeration of E. huxleyi cells. Cells were identified by plotting the autofluorescence of chlorophyll (ex: 488, em: 663-737 nm). A threshold was applied based on the forward scatter signal to reduce the background noise. (b) Enumeration of EhV and bacteria. Flow cytometric analysis was performed with excitation at 488 nm and emission at 525 nm . A threshold was applied based on the forward scatter signal to reduce the background noise. The gates 'EhV' and 'Bacteria' were set by comparing to reference samples containing either EhV201 or bacteria.

Figure S35: \boldsymbol{k}-Means clustering including the pooled QC samples. Clustering of resistant and susceptible E. huxleyi strains with and without addition of EhV together with the pooled QC samples based on untargeted lipidomics (using 12,190 mass features) and k-means clustering ($k=5$), as visualized by PCA. Percentage of explained variance is stated in parentheses. Each cluster is surrounded by an ellipse, with the mean marked by ' \times '.

CLUSTAL format alignment by MAFFT (v7.475)
E. huxleyi SLD3
C. tobinii3
I. galbana
C. roenbergensis2
O. tauri2
M. pusilla3
S. asiatica2
H. impetiginosus2
T. cacao2
C. follicularis2
P. trichocarpa2
A. trichopoda2
N. colorata2
T. turgidum2
B. distachyon
O. sativa2
P. miliaceum2
A. leveillei
A. thaliana2
P. patens2
S. moellendorffii2
K. nitens3
A. millepora2
E. pallida2
N. vectensis
E. siliculosus
T. pseudonana
E. huxleyi_SLD4 Isochrysis
S. microadriaticum
C. roenbergensis3
B. floridae
M. pusilla4
E. huxleyi_SLD2
C. tobinii1
M. pusillal
S. asiatical
H. impetiginosus1
C. follicularis1
T. cacaol
. miliaceum1
. turgidum1
. satival
. trichocarpal
A. thalianal
N. colorata1
A. trichopodal
S. moellendorffii1
. patens1
K. nitens 1
A. milleporal
D. melanogaster
D. pulex
A. pisum
C. virginica
o. bimaculoides
E. pallida1
C. pictabellii

Bacteroidetes 1
W. hederae
G. cichoracearum
S. phingobacteriales 1

EhV201_SLD
E. huxleyi_SLD1
E. huxleyi_SLD5
C. tobinii2
O. tauri1
M. pusilla2
K. nitens2
C. reinhardtii
C. roenbergensis1

Synechococcus
F. ambrosium
P. roqueforti
S. phingobacteriales2
B. acteroidetes2

Burkholderia

HMLGAALMGVFWQQLAGIG-HDLGH---SGVT--HSFR----RDHL----VGSLL-SAFM HMSGAVLMGVFWQQLAGIG-HDLGH---SGVT--HDFH----RDHR----IGSTL-SALM HMLGATVMGIFWQQLAGLG-HDLGH---SGVS--HMFY----TDMC----VGSTIGNALM HMAGAVFLALFWQQSAFFG-HDIGH---NAVT--HVRK----SDSW----WGMVMGNITG HMLGAVSLGLFWQQSMFIG-HDAGH---SSIT--FNRS----SDAM----IGWTVGNLFN RALGACLLGLFWQQSMFIG-HDAGH---GAIT--HDHR----RDFL----VGLVVGNLCN HLLCGGLMGFLWIQSGWIG-HDSGH---YQVM--PTRK----LNRV----AQILSGNCLA HLFCGGLMGFLWIQSGWIG-HDSGH---YQVM--LTPN----LNRF----AQILSGNCLA HLCSGGLMGFLWIQSGWMG-HDSGH---YQVM--CNRK----FNRL----AQILTGNCLA HHCCAVLMGLMWIQSGWIG-HDSGH---YQIM--PSPE----CNRF----VQVLSGNCLA RLVCGGLMGLMWIQSGWIG-HDSGH---YQVM--SSRG----FNCL----VQILSGNCLA HIGCGCIMGMIWTQSGWVG-HDSGH---YQVL--SNGK----LNRF----LQVLTGNCLT HVGSGCLMGFVWIQSGWIG-HDSGH---HKFI--KNTA----LNRF----AQVLSGNCLT HMFAGGLIGFIWIQSGWIG-HDSGH---HQIT--KHPA----LNRL----LQVVSGNCLT HLFSGGLIGFIWIQSGWIG-HDSGH---HQLT--THPA----LNRL----LQIISGNCLT HLLAGGLIGFIWIQSGWMG-HDSGH---HRIT--GHAA----LDRL----LQVLSGNCLT HLLAGGLIGFVWIQSGWIG-HDSGH---HRIT--GHPL----LNRV----VQVLSGNCLT HAACAGLLGILWMQIGFVG-HDSGH---YNVM--LTPK----LNRF----VQIFTGNCVT HLISAVLLGLLWIQSAYVG-HDSGH---YTVT--STKP----CNKL----IQLLSGNCLT HMLSAAMLGVVWNQSGWVG-HDTGH---CGMF--KNPN----IDRW----FAIIVGDCLS HCASAVLLGFAWIQAGWIG-HDTGH---TGMT--GSPR----ADSW----IGLLIGNALS HLASGLLLGLFWQQCAFVG-HDTGH---LSIT--RTRS----LDNL----IGLFVGNVCT QVASSFTMAAFWQQMAFVG-HDGGH---MAIT--HDFK----TDWK----IGIFVGNMTT QIFGGVLVAVFWQQMAFIG-HDAGH---HAIT--HNGT----WDDR----IGLVVGNLLT QVAAGILVAVFWQQMAFIG-HDAGH---HAIF--HDEQ----WDDR----LGGVVGNLLT QLCGAGLVGFYWQQLAFLG-HDAGH---RSHT--ADRA----SDDF----TAYCLILPLL HMLAAVLLGIFWQQFAFVG-HDCGH---MSAR---THA----RDHIDVPKLGALV-TFFN ILLSAALLALALQQGAFIG-HDTLH---NGVL--ARPR----GRTWRRAALAQLNAGALL ILLSAALLALSLQQAAFIG-HDTLH---NGVF--CRPR----GQGLSRSLLAQLNAGLLL TFVAGAAMGIAWQQIAFLA-HDADH---WGIT--SPPS----GSSF--NPLSWFLASVLF AALGGALVGLGIQQSAFIA-HDAAH---RGVI--PSRP----GGGF--NFLAWALGGPIF HGLAGVFLAFFWQQNGMLM-HDILH---HQAF--DDQR----LTYL----AGLVVAPLSF RILGAALLGLFWQQSLLIA-HDACH---RVMT--TNTK----VDKW----IGSVFGTLIG YLAIAYVFGATITQALFLAIHELAH---NLFF--KSPL---------HNRLFSMVANWPI YVLVAYVFGATITQALFLAIHELAH---NLFF--KTPV---------YNRYFSFIANFPI LVLAAYSLGGFATANLFLANHELSH---NLVF--ENTT---------ANRALGLFANLPV ILIIAYFFGSFLNHNLFLAIHELSH---NLAF--STPI---------YNRWLGIFANLPI ILMVAYFFGSFLNHNLFLAIHELSH---NLAF--QTPV----------YNRWLGIFANLPI ILAISYFFGSFLNHNLFLAIHELSH---NLAF--STPV---------YNRWLGIFANLPI ILAVAYFFGSFLNHNLFLAIHELSH---NLAF--STPV---------YNRWLGIFANLPI LLTVAYFFGSFLNHNLFLAIHELSH---NLAF--TTPS---------LNRWLGIFANLPI MLVVAYFFGSFLNHNLFLAIHELSH---NLAF--ATPS---------LNRWLGIFANLPI ILTVAYFFGSFLNHNLFLAIHELSH---NLAF--TTPS---------YNRWLGIFANLPI MLAIAYFFGSFLNHNLFLAIHELSH---NLAF--STPV--------- YNRCLGIFANLPV ILSIAYFFGSFLNHNLFLAIHELSH---NLAF--STPV---------YNRCLGIFANLPI ILAVAYFFGSFLNHNLFLAIHELSH---NLAF--STPS---------YNRWLGIFANLPI IVIVAYFFGSFLNHNLFLAIHELSH---NLAF--STPT--------- YNRWLGIFANLPI IVLLAYFFGAFLNHNLFLAIHELSH---NLVF--ATPL---------LNKILGIFANLPV VVTVAYFFGAFLNHNLFLAIHELSH---NLAF--STIV----------YNRLLGIFANLPI LVPFAYAVGAWFNHNLFLAIHELSH---NLAF--QTPL---------YNKLLGLFANIPI LFLVAYTIGGVINHALLLAVHEISH---NLAFGHSHAL---------HNRIFSLIANLPI LIVAAYCFGGIINHSLMLAVHEISH---NLAFGHSRPM---------HNRILGFICNLPI VIGLAYCFGGVINHSLMLAIHEISH---NLAFGHARPM----------ANRILGMIANLPI VMILAYCFGGVVNHSLMLAIHEIAH---NMGFGPKYPM---------YNKLLGMFANLPI VFLMAYIFGGTINHSLNLAIHEIAH---NLAFGHGRPL---------ANRALGMIANLPI IIIFAYCFGGVINHSMSLAIHEIAH---NLAFGTKYPL---------ANRALGIFGNLPL LIVMAYLVGAVINNGLLVALHEISH---NIVFGNSKPL----------LNRLFGFVANLPI VFFWAYAFGGCLNHSMTLAIHDISH---NVAFGNKEAK---------WNRLFGMFANLPI FIVTAYVVGATASHALFLAIHEITH---NLAF--KRTK---------HNNWLAFVANIPL FLLTAYVVGGTCNQNLFLAIHEITH---NLVF--KSRD---------ANKALAMVANLPV FFLTAYVVGATANQNLFLGIHEISH---NLAF--RSTK---------ANRALAVFANLPI IVGAAYLLGAFADHALFVMIHECAH---KLLF--KNAN---------ANRWAGMFANMPQ YLLSAYFVGATLMQTSFLFTHEITH---NTVF--KSVL---------YNRIFAYVIQTPA LVAHAWMIGATLANSSFLLVHEISH---DLVF--KAEW---------ANRVLGMVAQLPL FVVHVVVTWAILGQRFILGMHFAAH---RTLI--SPRMPG--AALL--NALPQLVLANFW IVPHLLITWVVFGQRFILAMHYAAH---IPLF--SKKKIGFAATLL--NAIPTTVMCNFY GASYFASVYGLFLQRFALALHYGTH---ASAF--RRDR--VAGRIL--DSVAGGFLAPFF GAAYVATFDALYLQRFILAMHYSTH---RRLL--KRRD-GLVAAFF--NRVNILLLAPLF GAAYLVLSNGLFLQRFLLGLHYAEH---LQIF--KSGL---PGAVL--NSLCPYFLCALF GVAYLALNYALFLQRYMLTLHVTEH---RNLF--KKE-----YGLL--NYIIPYVMCNFY GLLHVPFVFVVFAARFILGLHYWSHAPRGSVW--TKGM--PFASVL--QAIPTMFIAPFF GLFYVLFNLFIHARSFILAFHYSTH---TPIF--NRK-----WNFL--KHINTSILCNLF GVLH-FLMQFSYMGTYTLMMHQHIHM--RGIL--HKR-----LALF--DHLFPYILDPLM GALH-WLIMGFYCGAFTLMKHQHIHM--NGVL--TPK-----LYLF--DTLFPYLLDPMH AVPYFYISQLYFKGRFGLMFHCICH---RKFF--KKK-----YQWL--HTYITWIICPLF AAAYFILNNAIFKGPFLLMMHCTSH---RPFF--KKE-----YGFW--NHYHPWVIGPFF GVAY-MLVWNAFGDRFTMSYHCTLH---RRLF--RRQ-----YRVC--GILLDWVLCPFF
M. rosea

AVAVYVTLWAWYSAPVILMLHNTMH---RPFI--KQ------PKWL--NRVHPYVMSFFF
E. huxleyi_SLD3
C. tobinii3
I. galbana
C. roenbergensis2
O. tauri2
. pusilla3
. asiatica2
H. impetiginosus2
T. cacao2
. follicularis2
P. trichocarpa2
A. trichopoda2
N. colorata2
T. turgidum2
B. distachyon
O. sativa2
P. miliaceum2
A. leveillei
A. thaliana2
P. patens2
S. moellendorffii2
K. nitens3
A. millepora2
. pallida2
N. vectensis
E. siliculosus
T. pseudonana
E. huxleyi_SLD4

Isochrysis
S. microadriaticum
C. roenbergensis3
B. floridae
. pusilla4
E. huxleyi_SLD2
C. tobinii1
. pusilla1
. asiatical
. impetiginosus1
C. follicularis1
. cacaol
. miliaceum1
. turgidum1
. satival
P. trichocarpa1
A. thalianal
N. coloratal
A. trichopodal
. moellendorffii1
. patens 1
. nitens1
A. millepora1
. melanogaster
D. pulex
A. pisum
C. virginica
. bimaculoides
E. pallidal
C. pictabellii

Bacteroidetes1
W. hederae
G. cichoracearum
. phingobacteriales1
EhV201_SLD
E. huxleyi_SLD1
. huxleyi_SLD5
C. tobinii2
. tauri1
. pusilla2
K. nitens2
C. reinhardtii
C. roenbergensis1

Synechococcus
F. ambrosium
. roqueforti
. phingobacteriales2
B. acteroidetes2

GLSVG-WWKSDH-NTHHVVCNAVEHDPNI----QHMPMLAITDKVFRRPR--FWDT---Y
GLSVG-WWKSDH-NTHHVACNAIEHDPNI----QHMPMLAISPKIFSRPK--WWDT---Y GISTG-WWKRSH-NTHHVVCNSVENDPDI----QHLPVFAVAAKIFDHP---YLSS---Y GISLS-WWKRSH-NVHHVVCNSIENDPDI----QHMPILAVDKEIFGS----FFST---Y GVGIA-WWMATH-NVHHCACNSLECDPDI----QHMPVLAVTEKYFKS----VYSL---Y GVGIT-WWTTTH-NVHHVACNSLECDPDI----QHMPIIAVTPKYFKS----VWSL---Y GISIA-WWKWNH-NAHHIACNSLDYDPDL----QHMPFFAVSPKLFSS----IASK---F GISIA-WWKWNH-NAHHIACNSLDYDPDL----QHMPFFAVSSKLFYS----MISY---F GISIG-WWKWNH-NAHHIACNSLDFDPDL----QHMPFFVVSSKFFHS----LTSY---F GISIA-WWKWNH-NAHHIACNSLDFDPDL----QHMPLFAVSSKFFAS----LTSD---F GVGIG-WWKCNH-NAHHIACNSLDYDPDL----QHMPFFAVSSKFFSS----ITSC---F GLSIA-WWKNNH-NAHHIACNSLEFDPDL----QHMPLFAVSSRFFSS----LNSH---F GISIE-WWKRNH-NAHHIACNSLDFDPDL----QHMPLFAVSSKLFQS----LTSY---F GLGIA-WWKFNH-NTHHISCNSLDHDPDL----QHLPLFAVSTKLFNN----LWSV---C GLGIA-WWKFNH-NTHHISCNSLDHDPDL----QHLPLFAVSTKLFNN----LWSV---C GLSIA-WWKCNH-NTHHIACNSLDHDPDL----QHMPLFAVSSKLFG-----LWSY---F GLSIA-WWKCNH-NTHHIACNSLDHDPDL----QHMPLFAVSPKLFGN----IWSY---F GISIG-WWRWTH-TAHHIAVNSLDYDPDL----QHVPFLAVSKDILSS----LTSK---F GISIA-WWKWTH-NAHHIACNSLDHDPDL----QHIPIFAVSTKFFNS----MTSR---F GISMG-WWKRNH-NAHHIACNSIEYDPDL----QYIPLFAVTSKLFSN----LYSY---F GIGFQ-WWLRNH-NAHHFSCNNLEYDPDL----QYMPIFAISSRFFRSSRA-LHSY---F GIGIL-WWKRTH-NVHHIACNNVQYDPDI----QHIPLFAVSEKYFAS----LYSF---Y GVSIG-WWKKSH-NAHHIVTNSVEFDPDI----QHLPVFAVTEKFFKS----VKSM---Y GVSIG-WWQKSH-NAHHIVTNSIEFDPDI----QHLPVLAISEKYFKS----IYSF---Y GVSIG-WWKKSH-NAHHVVTNSVELDPDI----QHLPVLAVTDKFFNS----IKSI---Y GIGPQ-WWIDSH-NIHHVVCNDVHCDPDI----QHLPFMAISPKFFAS----LYSV---Y GISVA-WWKATH-NVHHAVPNSVDCDPDI----AHLPVFALHEHMFTS----LFNK---Y GISCG-MWLEEH-NLHHAYTLRPHADPQF----RYFPLWLQSVKEIPHWLAELPSA---P GISCE-MWLCEH-NLHHAYTLRPGEDPQF----RYFPLWLQSVKEIPLWLAELPSARTRP GISRS-MWNEEH-SMHHAITLRPQEDPQF----NYLPLWLISKKEL----------------GASMG-MWNEEH-NLHHAVTMRLHEDPQF----DYLPIWLTSEREV-----------------GMSSN-WWRDEH-WVHHMLLNSVSYEDDFVDPQMWEPIWAQNTKLFP-----LFQT---H GVGAA-WWNMEH-CEHHCVTQVVGGDPSA----GAAPVLCL-----------------------GIPYTIPFRGYH-LEHHKFQGVDGVDTDVPSY--------FEAQHIR-------------GIPYTIPFRGYH-LEHHKFQGVDGIDTDIPSL---------LECKIVR--------GP----GIPFSVAFKRYH-MEHHLFQGHDGVDTDIPTK--------GEAAVFSV-----GGA----GVPMSVTFQKYH-LEHHRFQGVDGVDMDVPSL--------TETKLVK-------NI------GVPMSVTFQKYH-LEHHRYQGVDGVDMDIPSL--------TEANLVR-------NV-----GVPMSVTFQKYH-LEHHRFQGVDGIDMDIPTY--------TEAHLVS-------NV----GVPMSVTFQKYH-LEHHRFQGVDGMDMDVPSY--------TEAHLVT------------GVPMSITFQKYH-LEHHRFQGVDGIDMDIPSQ---------AEAHAVK-------NA-----GVPMSVTFQKYH-LEHHRFQGVDGIDMDIPSQ--------TEAHVVK-------NT-----GVPMSITFQKYH-LEHHRFQGVDGIDMDIPSQ--------AEAHAVK-------NT-----GVPMSVTFQKYH-LEHHRFQGVDGIDMDIPSR--------AETLLVT------------GVPMSVTFQKYH-LEHHRFQGVDGIDMDVPTY--------TEAHLVT-------NI------GIPMSVTFQKYH-LEHHRYQGVDGWDMDVPSQ--------IEARLVT--------NL----GIPMSITFQKYH-LEHHRYQGVDGLDMDIPSL--------VEAKVVQ-------NP------GIPMSITFQKYH-LDHHNYQGIQGLDVDIPSY--------SEGRIVR--------NT-----SIPMSVTFQKYH-LEHHKYQGVEGMDMDIPSY--------TEGRLVT--------NV-----GIPMSVTFQKYH-LEHHRYQGIEGVDMDVPTY--------AEGHYVT--------NT-----GFPMAISFKKYH-LVHHRYQGDEELDADLPTE--------FEAQMFF--------NT-----GLPMSISFKKYH-LEHHRYQGDEAIDTDIPTL--------LEARLFD-------TT------GIPFSVSFKKYH-LEHHRYQGDENLDADIPTS--------LEAKLFC--------TT-----GLPFSVTFKHYH-LEHHRYQGDEKLDTDIPTY--------VEAKLFN--------ST----GVPISVSFKKYH-LEHHRYQGDVKKDVDIPSE---------FEGKMFN-------RT-----GVPVSITFKKYH-LEHHRFQGEDDIDVDIPTK--------FEAKFFN-------RT-----GIPCSVSFKKWH-IDHHRYLGDEEMDPDLPTE--------WEGRFFA-------NT-----GVPYATSFKKYH-VDHHRYLAGDGLDVDVPTA--------FEGRFFH--------SP----VVPYAMSFKEYH-RKHHFEQGKDGVDADIPLR--------NEAKMFK--------GI----GIPFAGTFKVYH-HEHHRYLGEDGIDTDLPTN---------FELLFLK--------NL----GLPYCASFRPYH-LTHHKSLGVDGLDTDLPTS--------FELLFLD-------------IFPSSVSFERYH-IKHHSFQGIHELDADLPNR--------WEAKMIN-------NS-----IVAYHESFRFYH-TSHHLELTREGGDPDIPSV--------MEATFTRQ------GV----LAPMAESFRYYH-AFHHKALGVEDTDPDIPTA--------WEEQLLQLPG--ALGV----GMPAG-MYYLHHVVMHHASNNLFSWDLSGTNS--------------------------------GMPAG-AYYVHHCIMHHOANNFFPHDVSSTMP GIPSG-VYKLHHDMMHHGENNALGRDLSSTEG----------------------------------GVPCG-VYWLHHIVMHHVDSNEIRKDLSSTEG GLPPG-MYRLHHIYMHHCENNLFPHDLSSTEV
 GIPAG-MYYLHHVAMHHRDNNMAPADLSSTMP GMPLW-TYYAHHIAMHHCENNVIPHDVSSTMP GHTWN-SYFYHHVKHHHIEGNG-PNDLSSTIR GHTWN-SYYYHHIKHHHVEGNG-GDDLSSTMY GHAPE-GYYSHHLGMHHVENNM-DDDTSSTMY GQTPE-TYYTHHLGMHHAENNL-PDDESCTMP

Burkholderia
M. rosea
E. huxleyi_SLD3
C. tobinii3
I. galbana
C. roenbergensis2
O. tauri2
M. pusilla3
. asiatica2
H. impetiginosus2
T. cacao2
C. follicularis2
P. trichocarpa2
A. trichopoda2
N. colorata2
T. turgidum2
B. distachyon
O. sativa2
P. miliaceum2
A. leveillei
A. thaliana2
P. patens2
S. moellendorffii2
K. nitens3
A. millepora2
E. pallida2
N. vectensis
E. siliculosus
T. pseudonana
E. huxleyi SLD4

Isochrysis
S. microadriaticum
C. roenbergensis3
B. floridae
M. pusilla4
E. huxleyi SLD2
C. tobiniil
M. pusillal
. asiatical
H. impetiginosus1
C. follicularis1
. cacaol
miliaceum1
T. turgidum1
. satival
. trichocarpal
A. thalianal
. coloratal
. trichopodal
S. moellendorffiil
. patens1
. nitens 1
A. milleporal
D. melanogaster
D. pulex
A. pisum
. virginica
. bimaculoides
. pallida1
C. pictabellii

Bacteroidetes 1
W. hederae
G. cichoracearum
S. phingobacteriales1

EhV201_SLD
E. huxleyi_SLD1
E. huxleyi_SLD5
C. tobinii2
. tauril
M. pusilla2
K. nitens2
. reinhardtii
C. roenbergensisi

Synechococcus
F. ambrosium
. roqueforti
. phingobacteriales2

GOTPG-TFYVHHMGMHHIDDNL-PRDLSSTMO
GIPTG--YAVHHLGMHHVEDNT-PEDLSSTQR-

HRKWVGMDD---AAH-WLVSHQHLFFYPL-MALGRWNLYAQGLIYLLTQPD---K-T---HRKWVGMDD---VAR-LLVSYQHLFFYPL-MALGRWNLYVQGLIYLLTQPD---K-T---HNKVFNFGA---VER-FLVAHQHLLFYPV-MMFARFNLYVQSWTLLLSSSG--RE-V---HQRQIVTDA---AAR-FLVAYQHILYFPV-MAVARFNLYIQSYLLLFSGE----R-I---HRRRMTYDR---VAR-LLVRYQHLTFYPI-MAVARINLYLQTLIFLFKAK----R-V---HNRRMPFDA---AAR-WLVSKQHYTFYPI-MAVARFNLYAQSIILLLTSK----E-ITL-YERTMKFDS---FAR-FLVASQHWTFYPV-MCFARINLFAQSFILLLSKR----K-V---YDRTMAFDS---VAR-FLVSNQHWTFYPV-MCFARINLFAQSFILLFSKR----K-V---YERKMNFDS---VAR-FLVSYQHWTYYPV-MCFARINLFAQSFALLLSKR----K-V---YERKLNFNS---VSR-FLVSYQHLTFYPV-MCFARINLFAQSFILLLSKR----R-V---YDRKLNFDS---VSR-FLVSYQHWTFYPV-MCLARINLFAQSFLILLSKK----K-L---YNRKMVFDR---ISR-YLVSYQHWTFYPV-MCFARINLLAQSIFFLITQK----K-V---YGRQMAFDG---LAR-FLVSYQHLTFYPV-MCFARINLFAQSIVLLLSKK----K-V---YERTLAFDA---ISK-FFVSYQHWTFYPV-MGFARINLLVQSIVFLITQK----K-V---YERTLAFDA---ISK-FFVSYQHWTFYPV-MGFARINLLVQSAVFLVSQK----K-V---YQRTLVFDA---ASK-FLISYQHWTFYPV-MCFARINLLIQSAVFLLSSR----K-V---YRRTLAFDA---ASK-FLISYQHWTFYPV-MCVARINLLIQSALFVLTEK----R-V---YGRKMTFDA---AAR-FLVSYQHWSFYPV-MAVARINLFTQSFLLLLSSR----P-M---YGRKLTFDP---LAR-FLISYQHWTFYPV-MCVGRINLFIQTFLLLFSKR----H-V---YDRVMPFDG---LAR-SLIAYQHWTFYPI-MAVARVNLFVQSLLVLTSKK----H-V---YDREMAFDA---IAR-LLVSYQHWTFYLV-MAVARVNLYAQSFIVAIWRK----R-V---HKRQMNFDR---AAR-VLVSYQHWTFYPI-MAVARWNLWAQTWILLLSGP----H-T---HERILYFDQ---VAR-FFVSNQHWLYYIV-MGLARFNLYVQSFLLVLSLP----S-G---HQRVMQYDK---LAK-FFVTYQHHLYFLV-MGLARFNLYLQSFLLALSKE----K-V---HDRVMHFDG---LAK-FFVRYQHHLYFLI-MGLARFNLYAQSFLLVLSKE----R-V---HDKIMIYDF---LGR-CLVSVQHLLFYPL-MCLSRTFLYVQSIVFVLAKA----R-A---HGRVMEFDW---LARNVFVPFQHFWYYPI-MAVARFNLYIQSALFLASKND--GH-A---LPRRAAWR----VVQ-CLTRVQHLTFLPLAMIVGRYNFLAISWAYALRR------------ILRAFVWR----CVQ-LLTRVQHITIAPMAMLIGRYNFLLISWVFAFSR------------DVAGTHVGF---LTR-MLVSVQHWTFLPVSVVIGRFNFYLISMLSALKRA----V-TAKN TLGGYSLDW---LGS-VLIPIQHFTFLPVSILVGRVTFHLISFIHASKAA----L-FGHN ------------LQA-FLIKIQHIIFIPVCMIAGRFGIIIDSM------K-----------ELQTKGLPK---IGR-ALVKLQALYYVPVCIFIGRFNLHLISILKAPSK-------------------------LSK-TAWACCQILTYAL-----------------------------
-------------VTK-VVWACCQILTYAL----------------------- RPMFIKQ----
------------LLK-TVWVMGQLFFYAL------------------------ RPMLVSP----
------------FTK-SIWVLFQLFFYAL-----------------------RPLFLKP----

-------------VTK-SVWVVFQLFFYAL--------------------------
------------VTK-AIWVIFQLFFYAL-----------------------RPVFLKP----

------------VSK-SIWVVLQLFFYAL-------------------------
------------LSK-SVWVVFQLFFYAL---------------------- RPLFLKP----

------------FAK-TIWVFLQLFFYAL--------------------------
------------FAK-SLWVIFQLFFYAL----------------------- RPVFLKP----
------------IAK-SIWVIFQLFFYAF------------------------
------------ASK-IVWVFFQLFFYAL-------------------------- RPLFVNP---
------------FSK-IAWVLCQLFFYAF-----------------------
------------LSK-LVWVILQLFFYAI-------------------------
------------PTK-LVWVILQPFFYCL----------------------------
------------FGK-FLWVCLQPFFYIF-------------------------
-------------FGK-VVWMFLQPLFYAF---------------------------
------------FGK-FIWVLLQPFFYAL---------------------------
------------LLK-LIWVILQPYFYAF------------------------ RPLFIRP----
------------FTK-FLWVVLQPLFYTI-------------------------
------------ATK-FLYVFLIPFFYSL----------------------------
------------PRK-ILWLFLQPVFYIL------------------------

------------LGK-LFFATFQILFYAI------------------------------
------------LGK-AFFATFQILFYAI-----------------------
------------FFGK-AIWLLFFPVFQLF----------------------------
------------LLAK-MIWLQTNLITYLL------------------------
------------GVR-LVALALNMIPYLF---------------------- RPILLHGP---

YDRSSPLHFFAYVINFMIHTFLYLPFYCI----------------------------------

YQRDNFGDFLKYFTTFILVGVKNTILYLY----------------------------------
B. acteroidetes2

Burkholderia
M. rosea

E. huxleyi SLD3
C. tobinii3
I. galbana
C. roenbergensis2
O. tauri2
M. pusilla3
. asiatica2
H. impetiginosus2
T. cacao2
C. follicularis2
. trichocarpa2
A. trichopoda2
. colorata2
T. turgidum2
B. distachyon
O. sativa2
P. miliaceum2
A. leveillei
A. thaliana2
P. patens2
S. moellendorffii2
K. nitens3
A. millepora2
E. pallida2
N. vectensis
E. siliculosus
T. pseudonana
E. huxleyi_SLD4

Isochrysis
S. microadriaticum
C. roenbergensis3
B. floridae
M. pusilla4
E. huxleyi SLD2
C. tobinii1
M. pusilla1
. asiatical
H. impetiginosus1
C. follicularis1
T. cacaol
. miliaceum1
. turgidum1
. satival
. trichocarpa1
. thalianal
N. coloratal
A. trichopoda1
S. moellendorffii1
. patens 1
. nitens 1
. milleporal
D. melanogaster pulex
. pisum
C. virginica
. bimaculoides
. pallidal
C. pictabellii

Bacteroidetes 1
W. hederae
G. cichoracearum
S. phingobacteriales1

EhV201_SLD
E. huxleyi_SLD1
E. huxleyi SLD5
C. tobinii2
. tauril
M. pusilla2
. nitens2
C. reinhardtii
C. roenbergensis1

Synechococcus
F. ambrosium
. roqueforti
---H-FRKTELAGIAVYFGWV-LGTALSMP-SWAESVGWVMLSHAVAGILHVQIVLSHWS -_-H-YPKTELAGIAVFFSWV-FATAWSMP-TWAQAVSWVMVSHAVAGVLHVQIVLSHWS ---H-YRRIEAAALVVYATWV-AAVALSMP-TWAETVGWILISHAVTALLHVQITVSHWA ---E-YKATEVGTLAIFSGLLVAAMYNYMS-SWQEGLAYLLLSHALAGVLHVQITLSHFA ---R-NRGMEFLTLGMFAAWL-SALIAQLP-S-GHRVPFFFLSHAVAGIIHVQICLSHFS ---K-RRTLELAVMGAYFAWL-AALVSAVP-SGWERLGFLLLSHAVGGVIHVQICLSHFS ---A-HRTQELIGLAVFWIWY-PLLVSRLP-NWPERALFVVSSFSVTGIQHVQFCLNHFS ---P-HRAQELFGVLVFWIWY-PLLVSYLP-NWTERLMFVLASFVVTSIQHVQFCLNHFS ---P-NRGQEILGLLVFWTWY-PLLVSCLP-NWGERVMFVVASFSVTGIQHIQFCLNHFS ---P-NRGQEMLGILVYWIWF-PLLVSCLP-TWGERIMFVVTSFSVTGIQHVQFCLNHFS ---STNRGLEFLGLVVFWTWY-PLLVSCLP-SWGERIIFVVASFSVTGIQHVQFCLNHFS ---P-KRNQELLGVLVFWLWF-PYLVVCLP-NWSERILFIICSFSVTGIQHVQFCLNHFS ---P-NRGQEILGILVFWIWY-TYLVSCLP-NWTERVIFVVCSLAVTGIQHVQFCLNHFS ---R-QRWLEIAGVAAFWVWY-PLLVSCLP-NWWERVAFVLASFVITGIQHVQFCLNHFS ---R-QRWLEIAGVAAFWVWY-PLLVSCLP-NWWERVAFVVASFVITGIQHVQFCLNHFS ---P-QRGLEIAGVAAFWVWY-PMVVSCLP-NWWERVAFVVASFVITGIQHVQFCLNHFS ---P-QRFLEIAGVAAFWAWY-PLLVSCLP-NWWERVAFVLSSFTICGIQHVQFCLNHFS ---Q-DRYLELLGLMVFWGWY-SLLVSCLP-NWGERAMFVAVSFAVSGIQHVQFCLNHFS ---P-DRALNIAGILVFWTWF-PLLVSFLP-NWQERFIFVFVSFAVTAIQHVQFCLNHFA ---P-DRWLELGAIGFFYLWF-FTLLSYLP-S-SERLVFVLVSFAVTGIQHVQFCLNHFS ---P-HRGWEIGSLLFFWAWL-FSLLSYLP-SYSERIAFLLIAMATTGVQHVQFCLNHFS ---P-DKTAEIAALMVFYGWL-ASLMSFIP-SWPVRIGFLCAAVALSGILHVQICLSHFP ---R-NKYFELFGLIFFWTWY-IYLCSFLP-TWTSLFIFVFVAHFLAGILHVQITLSHFS ---K-MRFLELLTMFLFWTWY-LYLCSYLP-TWTTRLAFVFLAHFLAGIIHIQITLSHFS ---K-LRVMEFVTMVLFWTWY-LTLCSYLP-TWSTRFAFVFLAHFLAGIIHIQITLSHFS ---K-KRVHELLSYVIFFCWN-AYLCSHLQ-GAWPRASYFLVSHAVSGILHVQITLSHFS ---G-RTTLDLMAFIGFFSWL-AVLVSCIP-SWPERIAFVFVSHAVAGLLNVQITLSHFS -----RQWADLAAMALHVGWFGAFLWALLP-GMSERLLFVAVHYALVGVLHVQLLLSHLC -----RKWLDVSFMAAHLCWFAIWLAVLLP-STRERLLFVAVHYACVGVLHVQLLLSHLC SRELCGGLLDVMGMVLFWTWY-VALVCNLD-TAAERTLFVLASNWTVGILHIQLVLSHLA SMVRFEGAMDVAGMLVYWTWY-SFVVSSLP-TAAERTAFVLCNVLCVGILHVQLLLSHLA ---E-KDLGTWAAFCVHWIAT-ALLMSMLP-NWEERCLFYGVAMLGEGVLHIQLLISHYS -----GKALDVALMTGYMSYV-YGLTRLVP-E-SERWRWFMIANAVCGVLHLILNMNHYP ---QDITAMHVTNWAVQIAFD-AAMLYAFG---WRPLAYMVLCILLAGGLH--PCAGHFI ---QEITRMHLYNWLAQIAFD-AAFFAAFG---WKPLFYMVFCIFLAGGLH--PCAGHFI ---KPMKAWDCLNLVTQVGFD-FAFVYLAG---PRAMLYLLLSVFLGGGLH--PIAGHFI _--KPPGIWEFVNLFIQVGLD-AGMVYLWG-_-WKSLGYLILSTFVGGGMH--PMAGHFI ---KPPGLWEFINLIIQLALD-VAMVYFWG---WKSFGYLILSTFVGGGMH--PMAGHFI ---KPPGFWEFTNFAIQIALD-AAMVYFWG---WKSFAYLILSTFVGGGMH--PMAGHFI ---KPPGYWEFINLFVQIGLD-ATLVYFCG---WKSFAYLILSTFVGGGMH--PMAGHFI ---KPPGLWEFTNLAIQVALD-ASLVYLHG---WRSLAYLILSTFVGGGMH--PMAGHFI ---KPPGLWEFTNLTIQVALD-AAMVYLYG---WKSLAYLILSTFLGGGMH--PMAGHFI -_-KPPGLWEFTNLIIQIALD-ASMVYFFG---WKSLAYLILSTFVGGGMH--PMAGHFI ---KPPGYWEFINFSIQIALD-AAVVYFWG---WRSLAYLILSTFVGGGMH--PMAGHFI ---KPPGYWEFINFLIQIVLD-VSVVLFFG---WRSFAYLILSTFVGGGMH--PMAGHFI -_-KPPGLWEATNLAVQLALD-AALVRFFG---WRSLAYLILATFVGGGMH--PMAGHFI ---KPPGLWEFTNLSIQLSLD-LFLVYFCG---WKSLAYLILATFLGGGMH--PMAGHFI ---KPPGLWEALNLSAQLLFD-AALVYFAG---YKPLAFLILSTFLGGGLH--PMAGHFI ---KKPGFWEVSNLLCQVAFD-ACLLYFAG---VKALAYLLLATFLGGGMH--PIAGHFI ---KPVGVWELSNLAINVVAD-LAMLYFWG---FKPIAYLLLASFLGGGLH--PAAGHFI ---QGPLPLEIINFVLQFSFD-ALLVHYWG---YKPLVFMIASSLLGMGLH--PVAGHFI ---KPPTRLEIINTVVQLTFN-ALIVYFLG---WKPLAYLLIGSILAMGLH--PVAGHFI ---LPPSMLEIINVIIQLSFD-FTVFYFLG---TKALVYLLAGSLLAMGVH--PVAGHFI ---KNPTALEIISVSIQLAFN-YWVYLYFG---TKVITYMLAGSLMAMGLH--PVAGHFI ---MPVTLLEVINFFVQVTFD-VIVYKYFG---IKAIFYFIQGTFLGTGLH--PLSGHFI ---KSLELLELINIFVQFSFD-AVVFYFLG---IKPIVYMIAGTLLATGLH--PMAGHFI ---KKPLPLEIANAILQLAVD-GLLVHWFG---WKYLVYLVASTLLGMGLH--PAAGHYI ---KPFTGLEVINVAVQLAYD-LLIYSLWG---PKPVFYMIAGSTLAMGIH--PISGHFI ---LEFDKWMIYNIIFQVAAM-AMILPFAG---WVGLLYLLLSLLFAGGLH--PTSGHFI ---KPPTPFVLLNAAVQVAFN-AAMYKTFG---SAVFFYSVLSTFFAGSLH--PCAAHFI ---VPFTAGHIINIAVQGLFD-YLIISYFS---ANSFYYMILSSFLAGSLH--PCAGHFI ---QNFDKWIVANVAVQVVFT-AAIWYFMG---WPAIGYLFLSFMFSVGLH--PLGARWI ---LPFSWYLLANWTVQMTFN-IGFFMMYG---IAPFLYLMLSAFLAGGIH--PLAAHFI ---PPVSGFMLLNVALQAAFD-AAFLAILG---WPGVLYTFWAILFAGGLH--PSAAHFI ---R-RFGLAGFALGSTGAYF-AAFHALHA-YHPAAFWISLGFSSVLGPVA--LMAGNFG ---K-RYDIAGVCAALLGTYM-LAIKFLYA-FNPLFFTCSLGIASVLGPFA--LMLGNFS ---G-MYGTAVKCVAGFVGTY-AAYTCVKS-LNAMAAFWIFVVPYFTSSFA--LMFGNWS ---R-RYALCAGVIAGLTASV-CAFLRLYM-VNPTAAIWTLAVPYVVSSVA--MMLGNWS -_-R-RLRLAAHTLVMLAAFA-AVVRQLWL-FNHVATIWVVAAPMLVASLA--MMFGNWA ---G-RLAEAAGCAACAMGYW-AGLLALWRHVNPVATLWVLLVPFFVSTFA--LMFGNWS ---G-NYRLLAQGIASAAFFL-AKIFLLMQ-VDAIATTFVFVLPFFVASLA--LMFGNWS ---K-RYKVATRCLVGTLIFF-ISIYYLFQ-LRPIATLFVFILPTTILSFA--LMEGNWK ---G-RISLAFKAAFWELSTY-TSLYTLYR-INSRATTFVFLIPLFLLRLG--LMAGNWG ---G-QFKYAVKCAFWEVGSY-VAIYMLYNYVNARATTFVFILPLTVMRLG--LMVGNWG
S. phingobacteriales2
B. acteroidetes 2 Burkholderia
M. rosea
-_-K-RRKLYMRLTVGEYVYL-AFCIGMCF-VNLKATLVVCIVPLIFARFV-_MMLGNWT --R-RKKLLYRSLRGELLFI-LMCIGLCF-INWPATVVVFISPFLISRVV--MMLGNWA ---R-NTKLIRQLLVGEVAFY-AAVSAAAY-WNLRATLVVFVFPFVFVRLM--MMIGNWV ---R-RYLMARRAVLGELGHA-VVIASALA-LDWRFGLVAFAFPTFAVRFL--MMVGNWG
E. huxleyi SLD3
C. tobinii $\overline{3}$
I. galbana
. roenbergensis2
D. tauri2
M. pusilla3
. asiatica2
H. impetiginosus2
T. cacao2
C. follicularis2
. trichocarpa2
A. trichopoda2
N. colorata2
T. turgidum2
B. distachyon
. sativa2
P. miliaceum2
A. leveillei
A. thaliana2
. patens2
S. moellendorffii2
K. nitens3
A. millepora2
. pallida2
N. vectensis
. siliculosus
T. pseudonana
E. huxleyi_SLD4

Isochrysis
S. microadriaticum
C. roenbergensis3
B. floridae
M. pusilla4
. huxleyi_SLD2
C. tobinii1
M. pusillal
. asiatical
H. impetiginosus1
C. follicularis1
. cacaol
. miliaceum1
turgidum1
. satival
. trichocarpal
A. thalianal
. coloratal
A. trichopodal
moellendorffiil
. patens 1
. nitens1
. millepora1
D. melanogaster
. pulex
A. pisum
C. virginica
. bimaculoides
E. pallida1
C. pictabellii

Bacteroidetes 1
W. hederae
G. cichoracearum
S. phingobacteriales1

EhV201_SLD
E. huxleyi_SLD1
. huxleyi SLD5
C. tobinii $\overline{2}$
. tauril
M. pusilla2
k. nitens2
C. reinhardtii
C. roenbergensis1

Synechococcus
. ambrosium

```
MHTYE--GRAYNG-----AD----------DEWYVTTMRTTMNVATPPWLD-WVHIGLQF
MHAYA--GRAYTG-----PD----------DEWYITTMRTTMNVSTPKWLD-FVHIGLQF
METYH--GHGYND-----ET----------DEWYITQLKTTMNVATPECLD-WLHIGLQF
EQTYH--GQAYND-----ET----------DEWFHMOVKTSLNVDCPLYMD-WFHGGLQF
RDVFE--GRP--------EN----------DEWVKMOLSGTMDIECPRWLD-WFHGGLQF
RNIFE--GRP--------EN----------GKWVEMQLSGTMDIDCPRYMD-WFHGGLQF
TSVYV--GPP--------RG----------NDWFEKQTSGTLNISCPSWMD-WFHGGLQF
SKVYI--GPP--------KG----------SDWFETQTSGTLNIKCSSWMD-WFHGGLQF
SSVYV--GPP---------SG----------NDWFEMQTAGTLDILCSSWMD-WFHGGLQF
SRVYV--GPP--------SG----------GDWFETQTMGTLDISCSSWMD-WFHGGLQF
SSVYV--GPP--------SG----------NNWFEKQTEGTLNISCSPWMD-WFHGGLQF
ASVYV--GRP---------KG----------NDWFEAQTKGSLDISCSPWMD-WFHGGLQF
SMVYV--GKP--------TA----------NDWFEVQTQGTLDIKCPPWMD-WFHGGLQF
SAVYV--GPP---------KG----------NDWFERQTAGTLDIKCSPWMD-WFHGGLQF
SAVYV--GPP---------KG----------NDWFERQTAGTLDIKCSPWMD-WFHGGLQF
SEVYV--GPP--------KG----------NDWFEKQTAGTLDIQCSPWMD-WFHGGLQF
SEVYV--GPP--------KG----------NDWFEKQTAGTLDILCSPWMD-WFHGGLQF
AHTYV--GPP--------RA----------NDWFEKQTKGSIDISCSTWMD-WFHGGLQF
ADVYT--GPP--------NG----------NDWFEKQTAGTLDISCRSYMD-WFFGGLQF
SPVYQ--GQP---------KS-----------KAWVESQARGTLNLSTPAYMD-WFHGGLQF
SPVYQ--GRRP-------RG---------DGQWLADQATGTLNLSCSKKWD-WFHGGLQF
MPVYD--GHV---------AT-----------KDYVQMQLDGTMDIDCPTWLD-WFHGGLQF
MDTYH--GHPNEV----FKG----------SGYALLQLQTTMDIECNPWLD-FFHGGLQF
METHX--GIPQES----FKN----------DKFLLSQMDTTMDIECNPWMD-FFHGGLQF
METYN--GLPLDA----FKE----------NRFLLSQMDTTMDIECDPNLD-FFHGGLQF
MDVTE--QPQYRN-----DE----------EGWVVTQLNTTLDVDCYRWMD-WFHGGLQF
RPIFD--TNKEGP----RFG----------GDFYSRNVLASLDVACPTYLD-WFHGGLQF
TQQFT--ADEE-------AA----------LGVLRFQLATTRNMRTCWWDA-WFHGGLEM
TQQFS--ADEE-------AT----------LGVFRFQLATTRNIATNAWDS-WFHGGLEK
TETFT--AEEE-------RV----------EQFFAFQLKTSRNIDSSWYDH-WFHGGLEF
MERFT--AEEE-------QQ-----------MGFFESQLRTSRNIDAPTWLDNVFHGGLEY
KDMYQ--KEEL-------HE----------MEFYRYQVMQNINITNPWWMD-WFHGGLNF
MPMLS--FPES-------QA----------LGWLRFQCVTTMNIASSSLTG-WYYGGLEW
SEHYV--FPH-------------------LAPKQETYSYYGPLNYLT--------WNVG--Y
SEHYV--FPH-------------------KSATQETYSYYGYLNWLT--------FNVG--Y
SEHYV--F---------------------EPGQETYSYYGPLNFLV--------YNVG--Y
SEHYV--F----------------------NSEQETYSYYGPLNLMT--------WSVG--Y
SEHYV--F---------------------NPVQETYSYYGPLNLMT--------WSVG--Y
SEHYV--F---------------------QPEQETYSYYGPLNLLT--------WHVG--Y
SEHYV--F----------------------KPDQETYSYYGPLNLLT--------WSVG--Y
SEHYV--F---------------------SPDQETYSYYGPLNLMT--------WHVG--Y
SEHYV--F---------------------SPEQETYSYYGPLNLMT--------WHVG--Y
SEHYV--F---------------------NPDQETYSYYGPLNLMT-------WHVG--Y
SEHYV--F-----------------------KPEQETYSYYGPLNFLT--------WHVG--Y
SEHYV--F-_-_-_---_------------NPNOETYSYYGPLNLLT-------WSVG--Y
SEHYV--F---------------------NPRQETYSYYGPLNLLT--------WHVG--Y
SEHYI--F----------------------KPDQETYSYYGPLNLVT--------WNVG--Y
SEHYV--F---------------------QKGQETYSYYGPLNLLT-------WNVG--Y
AEHYV--F---------------------LKGQETYSYYGPLNMLT-------WNVG--Y
AEHYV--F---------------------LQGQETYSYYGPLNFLL--------WHVG--F
SEHYM--F---------------------TKGYETYSYYGPLNWVT----------------
SEHYM--F---------------------AKGFETYSYYGPLNWIT----------NNVG--Y
SEHYM--F---------------------AKGFETYSYYGPLNWIT---------FNVG--Y
SEHYM--F----------------------HKGFETYSYYGPLNFIT-----------NNVG--Y
SEHYM--F----------------------IKGQETYSYYGPLNLLT----------FNVG--Y
SEHYM--F---------------------KKGYETYSYYGCLNAIT---------FNVG--F
AEHYM--F---------------------LKGQETFSYYGPLNWXT---------FNVG--Y
AEHYM--Y---------------------LKGYDTFSYYGPLNWLT----------FNVG--Y
SEHYV--F---------------------KEGQETYSYYGPLNLLT--------FNVG--H
AEHYM--FD--------------------GSGQETYSYYGVLNWLC-------YNVG--Y
AEHYL--LNGPPSGARDPRN---------KTPLPETFSYYGPLNILT--------YNVG--L
QEHYL--TH--------------------SAEQETYSYYGKLNAVA---------FNVG--F
TEHYN--FPG------------------MPEDQETSSYYGPFNMFI-------WNAG--Y
SEHVA--VDE---------RM--------LSTGQATASSYNWLQALT-------QFNAG--C
QHQFI--NPADP------AD---------NYGLTVNLVKAPFNMLT---------FNDG--Y
QHIFV--DPDSP------SS---------NYTLACNHVNAPFNMLT-------FNDG--Y
QHIFV--DPDKP------HC---------HYRNSYCAINHPDNQLT---------FNDG--Y
QHAFVKVDDDGG------RD---------DYRSSVTVLNHPDQQRT---------FNDG--F
QHLFL--DPARP------RS---------NYALTYNLVNAADNLKT--------FNDG--Y
QHVFV--DPDQP-------RN----------SYRSTYNCLACPDNRRT--------YNDG--Y
QHIFV--DPDAY-_----EDGVAKDADAVNYSLTFNCMNSPENGMT--------FNDG--Y
QHIFV--DPDDP------EN---------IYKSTYTCINTSTNSLN--------FNDG--Y
QHAFV--DADEP-------DS----------DYRSSITLIDVASNRHC--------FNDG--Y
```

P. roqueforti	QHAFV--DPADP------NS---------DYLSSITLIDVPSNRFS-------FNDG--Y
S. phingobacteriales2	QHSFV--DHAEP------EN---------LYKNSINCINTVYNQTC-------WNDG--Y
B. acteroidetes2	QHAFI--DPNDP------GN---------SYKNSITCINTTYNHQC-------WNDG--Y
Burkholderia	QHAFI--DPDHP------DN---------PYTSSTNTIDSRFNARV-------FNAG--Y
M. rosea	QHAFL--NTDRK------ND---------GISNSITCINSGYNKRA-------FNDG--Y

E. huxleyi_SLD3
C. tobinii3
I. galbana
C. roenbergensis2
O. tauri2
. pusilla3
S. asiatica2
H. impetiginosus2
. cacao2
C. follicularis2
. trichocarpa2
A. trichopoda2
N. colorata2
T. turgidum2
B. distachyon
. sativa2
P. miliaceum2
A. leveillei
A. thaliana2
P. patens2
S. moellendorffii2
K. nitens3
A. millepora2
E. pallida2
N. vectensis
E. siliculosus
т. pseudonana
E. huxleyi_SLD4

Isochrysis
S. microadriaticum
C. roenbergensis3
B. floridae
M. pusilla4
E. huxleyi_SLD2
C. tobinii1
M. pusilla1
S. asiatical
H. impetiginosus1
C. follicularis1
. cacaol
. miliaceum1
T. turgidum1
. satival
. trichocarpal
A. thaliana1
. coloratal
A. trichopoda1
. moellendorffiil
. patens1
. nitens1
A. millepora1
D. melanogaster
D. pulex
A. pisum
. virginica
. bimaculoides
. pallida1
C. pictabellii

Bacteroidetes 1
W. hederae
G. cichoracearum
s. phingobacteriales1

EhV201 SLD
E. huxleyi_SLD1
E. huxleyi_SLD5
C. tobinii2
. tauri1
M. pusilla2
. nitens2
C. reinhardtii
C. roenbergensis1

Synechococcus

QIEHHLFPRLPRHNLRLAR-DMVRE---VVEAHFPAGSAECKRLFPLGVAYHEP--GFFA QVEHHLFPRLPRHNLREAR-TMVKE---VVEKHFPAGSPECKRLFPNGIAYHEP--GFFE QIEHHLYPRLPRHNLRKAR-ELVRA---VCAKH---------------GIPYHEP--GFFE QVEHHLYPRLPRHNLRDCR-TLVRA---LCAKH--------------GITYNEL--PFFE QVEHHLCPRVPRHKLREFRETVVKP---FAEKN--------------GLQLHSV--GFWA QTEHHLVPRMPRHKLRRFREETLRP---WLKAH---------------GLTMDAP--TFWE QIEHHLFPRLPRCQLRRVS-PFVKE---LCKKY--------------GLPYNCA--SFWE QIEHHLFPRLPRCHLRKIS-PFVKE---LCKKH---------------GLPYDSA--SFWE QIEHHLFPRLPRCHLRKIS-PFVKE---LCKKH--------------SLPYNSA--SFWK QIEHHLFPRLPRCQLRKIA-PLVRD---LCKKH---------------NLPYNCA--SFWK QVEHHLFPRLPRCQLRRVS-PFIRE---LCKKH--------------NLPYNIV--SFWK QVEHHLFPRLPRWQLRKVA-PLVRA---LCKKH---------------GLPYVSV--TFWE
QIEHHLFPRLPRCQLRKIA-PLVRS---LCKKH---------------GLPYTSV--SFLE
QVEHHLFPRLPRCHYRMVA-PIVRD---LCKKH---------------GLSYGAA--TFWE QVEHHLFPRLPRCHYRMVA-PFVRD---LCKKH---------------GLPYAAA--TFWE QIEHHLFPRLPRCHLRKVS-PFVRD---LCKKH---------------GLPYAAA--SFWQ QIEHHLFPRLPRCHLRKVA-PYVRD---LCKKH--------------ELPYSAA--SFWD QVEHHLFPRLPRCHLRKIS-PFVKE---LCRKH---------------NLPYVSV--SFFE QLEHHLFPRLPRCHLRTVS-PVVKE---LCKKH---------------NLPYRSL--SWWE QIEHHLFPTLPRHNLRKVT-KFVRP---FCEKH--------------GLPYESV--SFWE QIEHHLFPQVPRHHLRAAS-EMVIKPL-LVDKH--------------GLDYKMV--TFWE
QVEHHLFPRLPRHNLRRVK-GTLRA---FCKKH---------------GLRYTSV--PFWE
QIEHHLFPRLPRHRLRETK-SKVQE---LCRKH--------------NVPYRSK--TFYE
QFEHHMFPRVARHNLRGIH-NEMKA---LCKKH--------------GLPFRSK--SFIE
QFEHHLFPRVARQNLRSIQ-EKMKL---LCKKH--------------GLPYRSK--SFVD
QTLHHLFPKLPRYNLRTVQ-SRVAA---LAEKH---------------GLTYHLY--PFLQ
QTLHHCYPRLGRQHLRKTE-PLIAS---LCKKH--------------SLPYTSK--SFVE
QIEHHLFPQLPRHRLRAVA-PRVKA---LAARH---------------GIAYLET--DFGE
QIEHHLFPQLPRHRLHAVA-PRVKA---LATKH---------------GVPYMEE--DFSA
QIEHHLFPQLPRHNLSKVK-PMVQE---ICSRH---------------GIPYRST--SFSQ
QIEHHLFPMLPRHNFARAK-PLVKE---ICDKH--------------GITYHSS--SFPN
HIEHHCFPRVPRHNMRQVG-SMIQE---LCRKH---------------DVPYDTT--GFFN
QIEHHLFPTMPRHNLRKVS-HRVKE---LCLAN---------------GVPYHVAEGGFWD
HNEHHDFPYIPWSRLPELR-RIAPEFYDNLAVCESW----------VGVIWDYI------
HNEHHDFPYVPWSRLPELK-RIAPEFYDNLEVCESW----------VGVIWDYV------
HNEHHDFPKVPGSRLHKIR-EIAPEYYDTLKYHTSW----------TKVIFEYI------
HNEHHDFPRIPGSRLHKVK-EIAPEYYNSLDSYRSW----------SQVIYAYI-------
HNEHHDFPRIPGSKLHKVK-EIAPEYYDHLDSYKSW----------SQVIYMYI------
HNEHHDFPRIPGSKLHKVK-EIAPEYYEALDSYKSW----------SQVIYMYI-------
HNEHHDFPRIPGNKLHKVK-KIAPEYYEGLESYKSW----------SQVIYMYV------
HNEHHDFPRIPGTRLHKVK-EIAPEYYESLRSYRSW-----------SQVIYMYI------
HNEHHDFPRIPGTKLHKVK-EIAPEYYNSLKSYRSW----------SQVIYMYV------
HNEHHDFPRIPGTRLYKVR-EIAPEYYNNLKSYKSW----------SQVIYMYI--------
HNEHHDFPRIPGSKLHKVK-DIAPEYYDGLESYKSW----------SQVIYMYL------
HNEHHDFPRIPGNKLHLVK-EIAGEYYEGLESYKSW----------SQVIYMYI------
HNEHHDFPRIPGNRLHKVR-EIAPEFYDKLHSYRSW----------SQVIYMYL------
HNEHHDFPRIPGSKLHKVK-QIAPEFYESFSSYKSW----------SQVIYMYI------
HNEHHDFPRIPGSKLYKLK-QIAPEFYEGLASHSSW----------IEVIYRYI--------
HVEHHDFPRIPGCKLHRVR-QIAPEFYEDLGHHTSW-----------SYVIYKYI------
HNEHHDFPRIPGSRLHKLK-AMAPEFYDNLAFHTSW----------SRVIYNYI------
HNEHHDFPSIPGSRLPLVR-EIAPEYYKDLPHHNSW----------TKVIYEFI------
HNEHHDFPAVPGSRLPEVK-RIAKEFYDTMPQHTSW----------TRVLYDFI------
HNEHHDFPSVPGSRLPQVK-AIAPEYYENLPHHNSW----------VKVLYDFI-------
HNEHHDFPFVPGSKLPQVK-KIAPEFYDNLPQHHSW----------TSVLYDFI------
HNEHHDFPSIPGCRLPELK-KIAPEYYDNLPHYNSW----------VKVIYDFI------
HNEHHDFPYVAGSKLPALR-KMAPEFYDNLPCHTSW----------VRVIYDFI------
HNEHHDFPSVPGSRLPLIK-KIAPEYYNNLKHHDSW----------IRVIYEFI------
HMEHHDFPSIPGSRLPLVK-KIAAEYYDHLPYHTSW----------VCVLWDFI------
HNEHHDFPNIPGCNLPKLR-KMAPEFYENLYYHTSW----------TKVITQFL------
HNEHHDFPAVSWLNLPKVR-NLAPEFYNHLQWHGSW-----------PLVTIRFI------
HNEHHDFPAVPWSRLPRLH-EIAKEFYDELPCHKSW----------VRVIWQFV------
HNEHHDFPSIPWNKLPLIK-KGAPEYYDTLHYHKSW----------TWLFLRFL------
HVEHHDFKSIPWTRLPDLR-KTAPEYYDSLYQFDSY----------VSTIYSFI------
HTEHHDLPCVPWTRLPLVR-RYAPEHYNHLVSHRSA----------TGVIVRFV------
HIVHHLNSVCHWSEMPLQF-------IKNLDKYEKH----------DALVFHSL--DYNE
HITHHVNSVCHWSEMPLNF-------IKNLDKYEQG----------GAIIFKHI--SFDE
HTIHHINSKLHWSELPEQF-------LATLDQFAKN----------DGLIFDNV--GFFD
HALHHVNSRLHWSEFPGAF-------VEKLAEHGAN----------DAVVFSGV--HFMD
HIVHHONSKLHWTELPLRF-------MQTLDKHAHE----------DALVFEGL--GFFD
HILHHLNSRLHWSELPQRF-------IDTLAAHDEN----------DALVFQGI--GFFD
HIIHHRWASLHWADLPQKC-------IDDLEAHARN----------DALIFSDA--DPMA
HIEHHENPGIPWHCLPKYF-------QSRIANYAEQ----------DGFIFTNI--GSGQ

F. ambrosium	HTSHHLNPMRHWREHPVSF-------LKTKHIYASQ----------QALVFHDI--DYLM
P. roqueforti	HTSHHLNPRRHWRDHPVAF-------LKQKDRYAKE---------DALVFRNV--DYIF
S. phingobacteriales2	HIIHHLRPGMHYTEMPNEF-------LKRKDEFAEN----------KAIVFDGI--HYLH
B. acteroidetes2	HIPHHEKPAMHFSEYPLYF-------QSTVDEYAKN----------NAVVFDGI--HYLH
Burkholderia	HIYHHVRKGTHYSELTKEF-------AANQEKYGRE---------DAVVFDRI--DIAQ
M. rosea	HIGHHLKATRHWTELPKDF-------VDNRERYARE---------GAIVFEGL--DFFL

E. huxleyi_SLD3
C. tobinii3
I. galbana
C. roenbergensis2
O. tauri2
M. pusilla3
S. asiatica2
H. impetiginosus2
T. cacao2
C. follicularis2
P. trichocarpa2
A. trichopoda2
N. colorata2
T. turgidum2
B. distachyon
O. sativa2
P. miliaceum2
A. leveillei
A. thaliana2
P. patens2
S. moellendorffii2
K. nitens3
A. millepora2
E. pallida2
N. vectensis
E. siliculosus
T. pseudonana
E. huxleyi_SLD4

Isochrysis
S. microadriaticum
C. roenbergensis3
B. floridae
M. pusilla4
E. huxleyi_SLD2
C. tobinii1
M. pusillal
. asiatical
H. impetiginosus1
C. follicularis1
. cacaol
. miliaceum1
T. turgidum1
O. satival
P. trichocarpal
. thalianal
N. coloratal
A. trichopodal
. moellendorffii1
P. patens 1
K. nitens1
A. milleporal
D. melanogaster
D. pulex
A. pisum
C. virginica
O. bimaculoides
E. pallidal
C. pictabellii

Bacteroidetes1
W. hederae
G. cichoracearum
S. phingobacteriales1

EhV201 SLD
E. huxleyi_SLD1
E. huxleyi_SLD5
C. tobinii2
O. tauril
M. pusilla2
K. nitens2
C. reinhardtii
C. roenbergensis1

HTSHHLNPMRHWREHPVSF-------LKTKHIYASQ----------QALVFHDI--DYLM
HTSHHLNPRRHWRDHPVAF-------LKQKDRYAKE----------DALVFRNV--DYIF
ITPHHEKPAMHFSEYPLYF--
HIYHHVRKGTHYSELTKEF-------AANQEKYGRE----------DAVVFDRI--DIAQ
HIGHHLKATRHWTELPKDF-------VDNRERYARE----------GAIVFEGL--DFFL

GNLEMWRV---LRSAAYAARGAKR GNLEMWRT---LKLTALAARSAKK ANALTISA---LRDAALEARKAKR GIQRVIDK---LHLTAKETRYLKL ANLEVFRT---LKLAAKQSRWAPH ANREVWCT---LRNCAREARLSPA ANVMTVRT---LRNAALQARDLAR ANVMTIRT---LRNAAIQARDFTK ANAMTIGT---LRSAALQARDLTN ANAMTLST---LRAAALQARDLSN ANAMTLET---LRTAALQARDLTN ANSMTIGT---LRAAALQARDLSN ANFLTLKT---LRTAALEARQFTD ANVMTWKT---LRAAALQAREATT ANVLTWKT---LRAAALQARVATT ANVLTWKT---LRAAALQARKATS ANVLTWKT---LRAAALQARNATS ANKMTIAT---LRNAALQARDLTN ANVWTIRT---LKNAAIQARDATN ANRMIIRT---LRTAALQARDFTK ANVMIIRT---LRAAAMEARDVSK ANRLIIKC---LRQHALEARDLSK ANLEVIQR---LKETATKAKCLSP ANMEVIGK---LKETSIKSESFSH ANIEVIQC---LKDTAEKSKCFSP ANIKTYLA---MRETARQAWTKPN CNMEVFNT---LKDAARSAKKWSP AVALCLRQ---LGRLAVELATVNP AMLLCAHN---LARLSIELATVNP ALRDVLSD---FRGLAMDIVNLKM AIALCLAD---LRRLATAVVTLEM AIWRTLVG---LHQAQKLFKLDPR ANWSVMKT---LHDVARGLVI--------------MRDDVGPYNRVKR -----------MRPEVGPFNRVKR -----------MDPSMGPFSRTMR -----------MDRTVGPFSRMKR -----------MDRTIGPFSRMKR -----------MDRTVGPFSRMKR -----------MDRTVGPFSRMKR -----------MDRTVGPFSRMKR -----------MDQTVGPFSRMKR -----------MDQTVGPFSRMKR -----------MDRTVGPFSRMKR -----------MDTTVGPYSRMKR -----------ADPTVGPFSRMKR
-----------MDRMVGPYSRMKR
-----------TDPTIGPFCRTIR
------------TDATVGPFSRMMR
-----------TDPTVGPFSRVMR
-----------MDPAIGPYARIKR
-----------MDPAVGPYARVKR
-----------TDPAIGPYARVKR
------------MDPNIGPYARIKR
-----------MDPEIGPYSRVRR
-----------FDPDIGPYSRIKR
-----------TDPNIGPYARIKH
-----------FCDSLGPFARVKR
-----------FRKDISLFNRIKR
-----------LDKEVGLFSRAKR
-----------LDKNVGLNCRVKR
-----------FDREISLFNRILR
-----------TDARINGFCRVRR -----------L----GHCRRVKT MSALIYTRQ--LRKLASYCVQLRA ISFAVFSGERGLRRLAKHVVQITP VGLAVMCGR--LHWLADRYVNVGQ VGVNLFLGR--YGHLADRYVNVGQ VGFLAMTGQ--LHKLADRYVDIGQ VGVMVFTGQ--LGKLAGHIVPCGP IGLAVMSGN--WDWVVSRYVHYGQ

Synechococcus	VGRLVLNGQ--LEQLADRYLNVGQ
F. ambrosium	VTVRLLMKD--YKRLAECLVPIGS
P. roqueforti	ITVNLLRKN--YDYLAKCLIPIGD
S. phingobacteriales2	IFTWLMMKK--YDKLADNLVNING
B. acteroidetes2	VFFYLMIKR--YDLLARHFVNIGN
Burkholderia	IWLLLVTRQ--HRKLATHFVRLPG
M. rosea	VSVLLWTGQ--WKVLAKRYVRLDG

Figure S36: Multiple amino acid sequence alignment of the conserved domain of SLDs. As the subfamilies differ strongly even within the domain, Mafft using the L-INS-i algorithm gave the best alignment (see Methods). Details of the sequences are listed in Table S5. Consensus symbols are as follows: asterisk (*) indicates fully conserved residues, (:) indicates conservation between groups of strongly similar properties, and (.) indicates conservation between groups of weakly similar properties.

CLUSTAL 2.1 multiple sequence alignment
E. huxleyi_SBH1
C. tobiniil
F. proliferatum
S. indica1
A. candidus 1
E. huxleyi_SBH2
C. tobinii2
P. marinus1
P. marinus2
P. olseni
S. microadriaticum
E. huxleyi_SBH4
E. huxleyi_SBH5

EhV201_SBH
Deltaproteobacteria
H. fermentalgiana
E. affinis
T. trahens 2
A. castellanii2
H. sapiens2

Archaeon1
S. rosettal

Archaeon2
A. castellanii1
T. trahens 1
E. huxleyi_SBH3
P. tetraurelia1
A. queenslandica
P. tetraurelia2
O. tauri
M. commoda
D. purpureum
H. sapiens1
A. candidus2
S. indica2
P. umbilicalis
C. merolae
E. huxleyi_SBH7
E. huxleyi SBH6
A. muludensis
M. brevicollis
S. rosetta2
E. huxleyi_SBH1
C. tobinii1
F. proliferatum
. indical
A. candidus1
E. huxleyi_SBH2
C. tobinii2
P. marinus1
. marinus2
P. olseni
S. microadriaticum
E. huxleyi_SBH4
E. huxleyi_SBH5 EhV201_SBH
Deltaproteobacteria
H. fermentalgiana
E. affinis
T. trahens2
A. castellanii2
H. sapiens2

Archaeon1
S. rosettal

Archaeon2
A. castellanii1
T. trahens 1
E. huxleyi_SBH3
P. tetraurelial
A. queenslandica
P. tetraurelia2
O. tauri
M. commoda
D. purpureum
H. sapiens1

FAVHVVTIDVWFYVTHRALHLPL-LYKWIHKFHHAFKAPAAIACVYANPIEFCVGNVGGV FAIHGIVIDVWLYGTHRLIHHPI-LYMWIHKFHHRFKAPTAVACVYANPLEFMIGNVGGV FAICLVAREVLFYYSHRLFHIPY-LYRRVHKIHHKFTAPVAFASQYAHPVEHIVANTIPI FAIALIIREALFYYLHRLFHAKR-LYPYIHKIHHRFTAPVALAAQYAHPVEHILVNVLPV IVLCLLMREVMFYYSHRLLHTPR-FYAPIHKQHHRFVAPIALAAQFAHPIEHIVANVLPV LLAHLLVNEVLFFYAHWALHQGP-LYRRIHKIHHEFTAPFALAAVHAHPLELLTADLVPF LVAHLLVNEVLFFYVHWALHKGS-LYKRIHKIHHEFTAPFALAAVHAHPIELIVADLIPF MIYFILVNEFLFFYGHWLFHASPFLYKKIHKVHHEYPAPNAFASLYCHPLELLIADFIPL MIYFILVNEFLFFYGHWLFHASPFLYKKIHKVHHEYPAPNAFASLYCHPLELLIADFIPL MIYFILVNEFLFFYGHWLFHASPYLYKKIHKMHHEYPAPNVFASLYCHPLELVIADFVPL IGFGVIVNEVLFFYGHWLMHANKFLYRHIHKIHHEFKAPMGLAAIYCHPLEFFVSDLMPL LASVIIGNEILFFYSHWALHHKA-LYAKIHKKHHEFTAPIALVAIYCHPIEFVLSDIVPL LASVIIGNEILFFYSHWALHTKT-LYARIHKKHHEFTSPIALVAIYCHPIEFVLSDIVPL LLSVILTNEVLFYYSHRALHHPK-LYAKFHKKHHEFISPVGAVAIYCTQIEFLVSDLLPL IIVAILCNEVTFYYGHRLLHENKWLYKNVHKIHHENTAPVALVAAYCHPVEMIVSNLAPL LVIFLLVDEVLFYYTHRACHEFPFLYKHVHKIHHOYTAPIGLAADYCHPLEHLFVNLIPN ILGFAVVDEILFYAAHRAAHSRP-LYKYVHKVHHEYTAPIALATDYCHPLEHCFVNVLPN LAFCVALEEILFYYGHRALHKPG-LYKAIHKQHHEFIAPIALAANYAHPIEVLLSNVLPL LLIFLAVEEVLFYYSHRALHLWN--YQRIHKIHHEFRAPISIASEYAHPVEYVVSNMLPL LAIFTLIEEVLFYYSHRLLHHPT-FYKKIHKKHHEWTAPIGVISLYAHPIEHAVSNMLPV LVVYVLLEEILFYSGHRLLHHPM-FYAPIHKFHHTYTAPFGIAAVYAHPIEHMLSNVLPV LAVSLVVEDTLFYWGHRILHHP-SIYKHIHKQHHQFHACVGIAALYAHPIEEVVANFIPT FLVSIVINDTLFYWGHRIMHHA-SIYKYIHKQHHKFNRSIGIAAEYAHPLEDLLCNTLPT LLVHILVQDTIFYWTHRLLHQP-FLYKRIHKQHHQFYTPVGIASEYAHPAEDFLT-QVAF IAVAVAVNETLFYFAHRTLHTK-ALYKAIHKQHHRYHAAVGIASEFAHPVEDLLANAIPT LAFAIAVDDTMFYWAHRALHHP-CVYKHIHKQHHEFKQPVGLATEYAHPLEEACN-TLAT IVFSMLIEDTCFYWTHRTLHSP-KLYSIIHKKHHEFYTSVSYAAIYTHPIEYVFGNVIPV IPLCVIVEDTLFYWIHRLLHTP-FLYKHLHKMHHQFHOPIALSFQYTHPIENFMTAGIPL FLFCIIIEDVGFYWSHRLLHIP-SLY-KYHKQHHQYSVTISISAEYSTAIEYLLSNLLPF IPVFFVIEDFYFYWIHRFLHHK-RVYKYVHKVHHEHKYPFGIAAEYAHPVETFFL-GIGT LPAFFVIEDFYFYWIHRALHHK-SVYKYVHKIHHEHTHPFGIAAEYAHPVETFFL-GIGT IICSFIIEDFYFYWVHRALHHG-IWYKYIHKVHHDHASPFGITAEYAHPLETLIL-GAGT CFGCAVIEDTWHYFLHRLLHHK-RIYKYIHKVHHEFQAPFGMEAEYAHPLETLIL-GTGF IAVFFVLEDTWHYFSHRALHWG-PLYKAIHKIHHQYSAPFGMAAEYASPIEVMIL-GFGT VAGFFVFEDFYHFVAHOALHYG-PLYRNIHKLHHKYSAPFGLAAEYAHPLETLIL-ALGT VALCFLLEDFCFYWGHRALHTR-ALYAAVHAVHHEHAAPFGAAAEYAHPAEVLFL-GTST ILFCLFVEDMCFYWGHRALHTP-WLYRYIHAIHHOYTAPFGAVAEFAHPIEVIFL-GMST ALAWFVLHDLSFYCYHRTLHEVPWLYASVHKPHHKFTAPFAWTSHAVHPAEMALQ-AAGA VAWQMVLHDAIFYHCHRLLHTR-AFYR-WHKDHHSVVGSYALAAEYASDAESFLGHNLPV ILLSIILQDIIFYHAHRALHHP-RIYKHIHKKHHEFTTPIALAALYAHPVEYFLSNILPV MAISLLLNDAVFYWAHRLLHHP-KLYARFHKQHHEYKGPVGFAAEYAGTLEQFLSNQLPV FGFSVLVNDALFYWTHRLLHMP-QLYARFHKQHHEYKATTGFAAEYASPLEQLLSNQLPV

VLGPALTR--------CHPYAAAYWLAFALTSTSLAHSGYRAFG-----------------VLGPALTN--------CHPYSAAFWMAYAITSTSFSHSGYTVFG-------------------A VLPPILLR--------THILTMWAFVAWQLIETATVHSGFDFFGG---------------AA VLPNALLR--------SHILTFWAFLAAMLIETSTVHSGYDFWPH----------------SLPGQILH--------SHILTFWAFVALELVETATVHSGFDFFGG---------------RA TAGFVLFR--------PHIFFVFLWIVGAALGTQTHHSGYRLPWIAAFDE--------QP TAGFVVFR--------PHIFFVFMWIIGACLGTQTHHSGYRLPWIAGFDE--------QP GAGAFFLG--------SHCSTFLLWSIYAVLGTEGHHSGIRWPWIMWFDH--------QP GAGAFFLG--------SHCSTFLLWSIYAVLGTEGHHSGIRWPWIMWFDH---------QP GAGAFCLG--------AHCSTFLLWSIYAVLGTEGHHSGIRWPWIVWFDH--------QP GAGLAAIR--------TNAFTGVVWMAFAVMATQTHHCGIRWPWIDFFSFNAE----AQP GAGLIVAH--------AHVFFALMWIVTAVIGTQVHHSGFRLPWHFGPDE---------QP GAGLIVAH--------AHAFFALMWIVTAVIGTQVHHSGFRLPWHFNPDE--------QP GVGLLFPYA-------AHAHFALTWIIAANIATQVHHSGMHMPYALGIDE--------QP TISFPLVG--------GHLFTMFVWICFAILGTQYHHSGYKMPWSVHFDK---------HP LAGALLVR--------AHAVTFIFW--MWWLS-QS---------------------NP IG-YIVCG--------PHAYSYLIWWLLSYLSSQTNHSGYRFPTADLTREP-------QP MAGPVLIG--------AHIVTMWTWFAIAIVGTLTHHCGYRFPWHPLFDH--------QP LAGPLLMG--------SHLATVWVWTAIAVTGTSNHHCGYALPWLRGL---------SSP IVGPLVMG--------SHLSSITMWFSLALIITTISHCGYHLPFLP----------------SP SAGPVLMQ--------SHPIVPMVWGVLALFNTMNVHSGYDFTHLLIF-----------PSP YSGCLISGC-----PLSVMVLWSFLR---LWETVDAHSGYAFDW--SPWNLFLT-IQGGA IGGCLFMGS-----HVVTLWLWLFLR---VIETVDTHSGYSWPF--DPFHLFPS-IQGGA IAGPLIMGS-----HIFTLYLWLLLR---LWETVDAHSGYALPFPLSPFSLF-----GVA LAGMLLVGP-----HLATLLVWLALR---VLETVDAHSGYAFPW--SPFHFM-----DVA ALGPLLLGS-----HVAVSVGYMGLK---LWQSIDAHSGMLLPVPLSPWNLLPG--MDCA FIGQKILGNK---MHIATLQLWLLFR---IGETIDGHSGYEFSW--SPYRLLP--FSSSA FAGPLLLGS-----HVYTVWLWMCVR---ITESMDGHSGYDLWF--MPFRYFP--FRPGA IIGPRLLGEK---LHLVTLLIWIGIR---VYKTLSAHSGYAFPW--EIFQYIP--FLAFS LLGPLFFAK-----HMVTLWVWLFFR---LLETVEDHSGYDVPWNPTNL--IP--FWGGA LLGPLFFAK-----HMVTLWAWLFVR---LWETVEDHSGYDLPWNPTNF--IP--FWGGA VIGPFIFSR-----DLFTLWVWLGTR---LYQTVECHSGYDFPWSITNL--IP--FWGGA FIGIVLLCD-----HVILLWAWVTIR---LLETIDVHSGYDIPLNPLNL--IP--FYAGS
A. candidus2
S. indica2
P. umbilicalis
C. merolae
E. huxleyi_SBH7
E. huxleyi_SBH6
A. muludensis
M. brevicollis
S. rosetta2
E. huxleyi_SBH1
C. tobiniī
F. proliferatum
S. indical
A. candidus1
E. huxleyi_SBH2
C. tobinii2
P. marinus1
P. marinus2
P. olseni
S. microadriaticum
E. huxleyi_SBH4
E. huxleyi_SBH5

EhV201_SBH
Deltaproteobacteria
H. fermentalgiana
E. affinis
T. trahens2
A. castellanii2
H. sapiens2

Archaeon 1
S. rosettal

Archaeon2
A. castellanii1
T. trahens 1
E. huxleyi_SBH3
P. tetraurelial
A. queenslandica
P. tetraurelia2
O. tauri
M. commoda
D. purpureum
H. sapiens1
A. candidus2
S. indica2
P. umbilicalis
C. merolae
E. huxleyi_SBH7
E. huxleyi_SBH6
A. muludensis
M. brevicollis
S. rosetta2

> VGCPILWCAITGDLHIFTMYVWIVLR---LFQAVDSHSGYEFPWSLHHF--LP--FWAGA LGGPILWTMYSGNFHIVTMYVWVTLR---LFQAVDAHSGYDFPWSLQHI--LP--FWSGA IVGPALLGP-----HLLTLYVYLALR---CMQTVECHSGYEFPWSLNVW--VP--WYGGA VAGPLIIGP-----HLLTLWGYLMVR---CWQTVDCHSGYDLPWSLNRW--FP---LYGGA MAGPLLWVRLYG-LPVRAWWCWLALV---QAQGVMDHSGYDLPAPLDCFGMLP--GFGGT FVPAMLLSL---LGDCVSFAAFLSWISVRLIHSYAIHSGYELP-WLVGALMMQS--SGAD ALPPALLG-----AHIVTFWFMLTWA---LVLAIIAHCGYELP-PIYGWNMEV------VLGPLLVGM-----HCSTWWLYLTWR----LWRTYEIHSGLMLQNTWLGRLGLL--HGHGA VVGPLLCRM-----TTTEWLVFLVWR---LWRTYEDHSGYDFHNTFLGRLGLS--HGYSA

EEHDTHHEHFSWNFG-VGILMDRAL-GT TSHDQHHEHFDFNFG-V-LITDAVL-GT YRHDRHHERFDVHFG-G-MPWLDWLHST EKHDRHHEVFIWNFG-ACLDWFDWMHGT KMHDSHHEKFNLNYG-V-LGLLDWAHGT DFHDFHHQRFSCCYG-N-IGWLDSLHGT DFHDFHHGKFNCCYG-N-IGWLDAMHGT DFHDFHHQKFNVNYG-N-IGFLDKIHGT DFHDFHHQKFNVNYG-N-IGFLDRIHGT DFHDFHHEKFHVNYG-N-IGFLDKMHGT NYHDFHHEKFNVNYG-A-MGWLDDLISK DFHDFHHQKFTCNYG-H-LGILDALHGT DFHDFHHEKFKCNYG-H-LGILDAVHGT TYHDLHHKHFNYNYG-A-IGILDKIHGT AYHDYHHEIFTSNYG-V-LGWLDALHGT NMHDLHHMKFTCNFG-S-MGILDKLHGT DFHDKHHERFDCNFG-T-NGVLDWLFST NFHDTHHERFLCNYG-L-LGILDWLHGT RFHDHHHLSFNTNFG-L-VGLLDHLHGT EFHDYHHLKFNQCYG-V-LGVLDHLHGT YFHDWHHEKFNENFG-V-GLGLDYMLGT ERHDFHHFQNKGSYG-SFTKFWDWVCGT ERHDFHHSHNLGCYG-SFTIFWDHIMGT DQHDYHHSQNKGCYG-SFFGLWDWICGT GKHDFHHSHNVGCFG-TFFSVFDMIFHT AAHDFHHSHNVGNFG-GFFTFWDRVCGT ESHNYHHSHNVGNYG-SFFVFWDTIMGS QVHDYHHSHNVGNYG-SFFTLWDKLCGT EFHSYHHSHNDGNFG-SFFVFWDYLFGT VHHDFHHKTFEGPYS-SVFTWCDWMFGT VHHDFHHKTFQGPYS-SIFTWCDWAFGT HFHDFHHETFVGNYA-STFTYLDKVFGT RHHDFHHMNFIGNYA-STFTWWDRIFGT DHHDLHHEKFVGNYS-SSFRWWDYLLNT DHHDFHHMAFTNNYS-TSFRWWDHLFGT EYHDWHHKTYFGNYA-STFTWWDAVYGT RQHDHHHKTYSGNYA-SMFIHMDWLFGT RFHDDHHRYFTGNYA-AALSLIDDLMGT AHHENHHTKNNGNFG--DSPLWDILMGT --HDMHHELFVGNFG--TIGICDVLYGT VYHDFHHTNNHGNFGGPANALWDVLGGT IYHDFHHSHNLGNFGGPANAFWDHIGGT

* * * :

Figure S37: Multiple amino acid sequence alignment of the conserved domain of SBHs. ClustalW alignment of the domain is shown. Details of the sequences are listed in Table S6. Consensus symbols are as follows: asterisk $(*)$ indicates fully conserved residues, (:) indicates conservation between groups of strongly similar properties, and (.) indicates conservation between groups of weakly similar properties.

Figure S38: LC-MS/MS analysis of 374-GSL d19:3/h22:2 (13) and hGSL d19:3/h22:2. (a) Extracted ion chromatogram (EIC) of $m / z 806.6146$ in E. huxleyi strains 374 (top) and 2090 (bottom). hGSL d19:3/h22:2 appears in both strains (RT 12.80 min), while $374-G S L$ d19:3/h22:2 (13) appears only in E. huxleyi strain 374 (RT 12.97 min). (b) LC-MS/MS spectra of both GSLs show similar fragmentation, suggesting that they are structural isomers, either in the LCB, FA or sugar headgroup.

GSL d19:3/h22:2 (hGSL)

Figure S39: LC-MS/MS analysis of hGSL d19:3/h22:2. A putative structure is presented, as reported previously ${ }^{6}$. The structure is supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=806.6146$ as the precursor ion (Table S3).

GSL d18:2/c22:0 (sGSL)

| 100 |
| :--- | :--- | :--- | :--- | :--- |

Figure S40: LC-MS/MS analysis of sGSL d18:2/c22:0. A putative structure is presented, as reported previously ${ }^{7}$. The structure is supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=870.6670$ as the precursor ion (Table S3).

GSL t17:0/h22:0 (vGSL)

${ }^{100}$			

Figure S41: LC-MS/MS analysis of vGSL t17:0/h22:0. A putative structure is presented, as reported previously ${ }^{8}$. The structure is supported by a list of fragments detected in MS/MS mode (Metabolomics Standards Initiative level 2 annotation ${ }^{2}$). Fragments were detected in positive ionization MS/MS mode using $[\mathrm{M}+\mathrm{H}]^{+}=804.6565$ as the precursor ion (Table S3).

1_Table S1: Putative lipid biomarkers for susceptible and resistant \boldsymbol{E}. huxleyi cells.

CL	Measured m / z	RT (min)	Adduct ion	Relative abundance in E. huxleyi strains*				Related adduct ions and fragments	Predicted formula	Theoretical m / z	Mass error (ppm)	Putative identification ${ }^{\dagger}$
				373	379	2090	374					
i	874.7850	16.27	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	0.03	1.00	0.11	0.02	$\begin{aligned} & 879.7416[\mathrm{M}+\mathrm{Na}]^{+} \\ & 895.7136[\mathrm{M}+\mathrm{K}]^{+} \\ & 915.8124\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{55} \mathrm{H}_{100} \mathrm{O}_{6}$	874.7864	-1.6	
i	1131.9499	17.69	$[\mathrm{M}+\mathrm{Na}]^{+}$	0.03	1.00	0.06	0.03	$\begin{aligned} & 1127.9918\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 1147.9221[\mathrm{M}+\mathrm{K}]^{+} \\ & 1168.0194\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{71} \mathrm{H}_{128} \mathrm{O}_{8}$	1131.9507	-0.7	
i	804.5975	12.25	$[\mathrm{M}+\mathrm{H}]^{+}$	0.00	1.00	0.00	0.00	$826.5792[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{47} \mathrm{H}_{81} \mathrm{NO}_{9}$	804.5990	-1.9	resGSL d19:4/h22:2 (12)
i	792.7025	15.75	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	0.09	1.00	0.02	0.02	$\begin{aligned} & 797.6631[\mathrm{M}+\mathrm{Na}]^{+} \\ & 813.6312[\mathrm{M}+\mathrm{K}]^{+} \\ & 833.7350\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{49} \mathrm{H}_{90} \mathrm{O}_{6}$	792.7081	-7.1	
i	1107.9525	17.79	$[\mathrm{M}+\mathrm{Na}]^{+}$	0.04	1.00	0.08	0.05	$\begin{aligned} & 1102.9943\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 1123.9291[\mathrm{M}+\mathrm{K}]^{+} \\ & 1144.0177\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{69} \mathrm{H}_{128} \mathrm{O} 8$	1107.9507	1.6	
i	1157.9644	17.54	$[\mathrm{M}+\mathrm{Na}]^{+}$	0.03	1.00	0.09	0.04	$\begin{aligned} & 1052.9989\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 1173.9388[\mathrm{M}+\mathrm{K}]^{+} \\ & 1194.0355\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{73} \mathrm{H}_{130} \mathrm{O}_{8}$	1157.9663	-1.6	
i	1103.9186	17.19	$[\mathrm{M}+\mathrm{Na}]^{+}$	0.03	1.00	0.06	0.02	$\begin{aligned} & 1098.9637\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 1119.8962[\mathrm{M}+\mathrm{K}]^{+} \\ & 1139.9843\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{69} \mathrm{H}_{124} \mathrm{O}_{8}$	1103.9194	-0.7	
i	1109.9645	18.22	$[\mathrm{M}+\mathrm{Na}]^{+}$	0.02	1.00	0.04	0.01	$\begin{aligned} & 1105.0076\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 1125.9380[\mathrm{M}+\mathrm{K}]^{+} \\ & 1146.0285\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{69} \mathrm{H}_{130} \mathrm{O}_{8}$	1109.9663	-1.6	
i	822.7543	16.28	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	0.05	1.00	0.06	0.01	$\begin{aligned} & 827.7097[\mathrm{M}+\mathrm{Na}]^{+} \\ & 843.6827[\mathrm{M}+\mathrm{K}]^{+} \\ & 863.7809\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{51} \mathrm{H}_{96} \mathrm{O}_{6}$	822.7551	-1.0	
CL	Measured m / z	RT (min)	Adduct ion	Relative abundance in E. huxleyi strains*				Related adduct ions and fragments	Predicted formula	Theoretical m / z	Mass error (ppm)	Putative identification ${ }^{\dagger}$

				373	379	2090	374					
i	794.7205	16.00	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	0.08	1.00	0.03	0.00	$\begin{aligned} & 799.6802[\mathrm{M}+\mathrm{Na}]^{+} \\ & 815.6542[\mathrm{M}+\mathrm{K}]^{+} \\ & 835.7536\left[\mathrm{M}+\mathrm{NH}+\mathrm{ACN}^{+}\right. \end{aligned}$ $549.4891 \text { fragment }$	$\mathrm{C}_{49} \mathrm{H}_{92} \mathrm{O}_{6}$	794.7238	-4.2	
i	842.7230	15.55	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	0.12	1.00	0.03	0.01	$\begin{aligned} & 825.6941[\mathrm{M}+\mathrm{H}]^{+} \\ & 847.6777[\mathrm{M}+\mathrm{Na}]^{+} \\ & 863.6524[\mathrm{M}+\mathrm{K}]^{+} \\ & 883.7512\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}^{+}\right. \end{aligned}$	$\mathrm{C}_{53} \mathrm{H}_{92} \mathrm{O}_{6}$	842.7238	-0.9	
ii	802.6722	14.44	$[\mathrm{M}+\mathrm{H}]^{+}$	0.08	1.00	0.05	0.04	$824.6601[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{46} \mathrm{H}_{91} \mathrm{NO}_{9}$	802.6772	-6.2	GSL d18:0/h22:0 (5)
ii	816.6531	13.77	$[\mathrm{M}+\mathrm{H}]^{+}$	0.31	1.00	0.04	0.02	$838.6379[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{NO}_{10}$	816.6565	-4.2	GSL t18:0/h22:1 (9)
ii	794.6107	$\begin{aligned} & \text { 13.12, } \\ & 13.03 \end{aligned}$	$[\mathrm{M}+\mathrm{H}]^{+}$	0.91	1.00	0.05	0.05	$816.5953[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{46} \mathrm{H}_{83} \mathrm{NO}_{9}$	794.6146	-4.9	$\begin{aligned} & \text { GSL d18:3/h22:1 (1) } \\ & \text { GSL d19:3/h21:1 (3) } \end{aligned}$
ii	792.5980	12.47	$[\mathrm{M}+\mathrm{H}]^{+}$	1.00	0.92	0.02	0.01	$\begin{aligned} & 814.5797[\mathrm{M}+\mathrm{Na}]^{+} \\ & 774.5857\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+} \end{aligned}$	$\mathrm{C}_{46} \mathrm{H}_{81} \mathrm{NO}_{9}$	792.5990	-1.3	GSL d18:3/h22:2 (2)
ii	756.5940	14.38	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	0.52	1.00	0.02	0.00	$\begin{aligned} & 739.5632[\mathrm{M}+\mathrm{H}]^{+} \\ & 761.5490[\mathrm{M}+\mathrm{Na}]^{+} \\ & 777.5237[\mathrm{M}+\mathrm{K}]^{+} \\ & 797.6189\left[\mathrm{M}+\mathrm{NH}+\mathrm{ACN}^{+}\right. \\ & 377.3207 \text { fragment } \end{aligned}$	$\mathrm{C}_{50} \mathrm{H}_{74} \mathrm{O}_{4}$	756.5931	1.2	
ii	392.3316	10.07		0.85	1.00	0.01	0.00					
ii	820.6278	13.18	$[\mathrm{M}+\mathrm{H}]^{+}$	1.00	0.44	0.03	0.02	$842.6108[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{48} \mathrm{H}_{85} \mathrm{NO}_{9}$	820.6303	-3.0	GSL d19:3/h23:2 (4)
ii	1103.7674	15.11	$[\mathrm{M}+\mathrm{Na}]^{+}$	1.00	0.28	0.05	0.02	$\begin{aligned} & 1098.8182\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 1119.7434[\mathrm{M}+\mathrm{K}]^{+} \\ & 1139.8386\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}^{+}\right. \end{aligned}$	$\begin{aligned} & \mathrm{C}_{72} \mathrm{H}_{104} \mathrm{O}_{7} \\ & \mathrm{C}_{54} \mathrm{H}_{112} \mathrm{O}_{20} \end{aligned}$	$\begin{aligned} & 1103.7680 \\ & 1103.7654 \end{aligned}$	$\begin{aligned} & -0.5 \\ & 1.8 \end{aligned}$	
ii	688.4957	10.09		0.89	1.00	0.05	0.02					
CL	Measured m / z	RT (min)	Adduct ion	Relative abundance in E. huxleyi strains*				Related adduct ions and fragments	Predicted formula	Theoretical m / z	Mass error (ppm)	Putative identification ${ }^{\dagger}$
				373	379	2090	374					

ii	377.3209	14.63	fragment	0.51	1.00	0.02	0.02	$\begin{aligned} & 739.5665[\mathrm{M}+\mathrm{H}]^{+} \\ & 756.6094\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 761.5500[\mathrm{M}+\mathrm{Na}]^{+} \\ & 777.5229[\mathrm{M}+\mathrm{K}]^{+} \\ & 797.6198\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{50} \mathrm{H}_{74} \mathrm{O}_{4}$			
iii	845.5698	13.46	$[\mathrm{M}+\mathrm{H}]^{+}$	1.00	0.03	0.07	0.03	$\begin{aligned} & 862.6009\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 867.5546[\mathrm{M}+\mathrm{Na}]^{+} \\ & 883.5267[\mathrm{M}+\mathrm{K}]^{+} \\ & 903.6300\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}^{+}\right. \end{aligned}$	$\mathrm{C}_{56} \mathrm{H}_{76} \mathrm{O}_{6}$	845.5720	-2.6	
iii	827.7633	14.97	$\left[\mathrm{M}+\mathrm{NH}_{4}+\right.$ ACN^{+}	1.00	0.05	0.04	0.02	$\begin{aligned} & 769.7073[\mathrm{M}+\mathrm{H}]^{+} \\ & \left.786.7392[\mathrm{M}+\mathrm{NH}]^{+}\right]^{+} \\ & 791.6890[\mathrm{M}+\mathrm{Na}]^{+} \\ & 807.6598[\mathrm{M}+\mathrm{K}]^{+} \end{aligned}$	$\mathrm{C}_{51} \mathrm{H}_{92} \mathrm{O}_{4}$	827.7605	3.4	
iii	789.6724	16.36	$[\mathrm{M}+\mathrm{Na}]^{+}$	1.00	0.01	0.01	0.06	$\begin{aligned} & 767.6915[\mathrm{M}+\mathrm{H}]^{+} \\ & 784.7193[\mathrm{M}+\mathrm{NH}]^{+} \\ & 805.6456[\mathrm{M}+\mathrm{K}]^{+} \\ & 825.7453\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}^{+}\right. \end{aligned}$	$\mathrm{C}_{51} \mathrm{H}_{90} \mathrm{O}_{4}$	789.6737	-1.6	
iii	803.6511	15.41	$[\mathrm{M}+\mathrm{Na}]^{+}$	1.00	0.00	0.02	0.07	$\begin{aligned} & 781.6673[\mathrm{M}+\mathrm{H}]^{+} \\ & 798.6957[\mathrm{M}+\mathrm{NH}]^{+} \\ & 819.6252[\mathrm{M}+\mathrm{K}]^{+} \\ & 839.7203\left[\mathrm{M}+\mathrm{NH} 4+\mathrm{ACN}^{+}\right. \end{aligned}$	$\mathrm{C}_{51} \mathrm{H}_{88} \mathrm{O}_{5}$	803.6529	-2.2	
iii	781.7055	16.51	$[\mathrm{M}+\mathrm{H}]^{+}$	1.00	0.01	0.05	0.07	$\begin{aligned} & 798.7120[\mathrm{M}+\mathrm{NH} 4]^{+} \\ & 803.6903[\mathrm{M}+\mathrm{Na}]^{+} \\ & 819.6631[\mathrm{M}+\mathrm{K}]^{+} \\ & 839.7612\left[\mathrm{M}+\mathrm{NH}+\mathrm{ACN}^{+}\right. \end{aligned}$	$\mathrm{C}_{52} \mathrm{H}_{92} \mathrm{O}_{4}$	781.7074	-2.4	
iii	795.6816	15.55	$[\mathrm{M}+\mathrm{H}]^{+}$	1.00	0.43	0.03	0.03	$\begin{aligned} & 812.7110\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 817.6689[\mathrm{M}+\mathrm{Na}]^{+} \\ & 833.6425[\mathrm{M}+\mathrm{K}]^{+} \\ & 853.7407\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}^{+}\right. \end{aligned}$	$\mathrm{C}_{52} \mathrm{H}_{90} \mathrm{O}_{5}$	795.6867	-6.4	
CL	Measured m / z	$\begin{aligned} & \text { RT } \\ & \text { (min) } \end{aligned}$	Adduct ion	Relative abundance in E. huxleyi strains*				Related adduct ions and fragments	Predicted formula	Theoretical m / z	Mass error (ppm)	Putative identification ${ }^{\dagger}$
				373	379	2090	374					

iii	901.7199	13.47	$\begin{aligned} & {\left[\mathrm{M}+\mathrm{NH}_{4}+\right.} \\ & \mathrm{ACN}]^{+} \end{aligned}$	1.00	0.03	0.03	0.60	$\begin{aligned} & 860.6871\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 865.6443[\mathrm{M}+\mathrm{Na}]^{+} \\ & 881.6238[\mathrm{M}+\mathrm{K}]^{+} \end{aligned}$				
iii	865.6523	14.17	$[\mathrm{M}+\mathrm{Na}]^{+}$	1.00	0.03	0.04	0.88	$\begin{aligned} & 860.6982\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 881.6211[\mathrm{M}+\mathrm{K}]^{+} \\ & 901.7237\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{52} \mathrm{H}_{90} \mathrm{O}_{8}$	865.6533	-1.2	
iii	865.6536	11.66	$[\mathrm{M}+\mathrm{Na}]^{+}$	1.00	0.02	0.04	0.69	$\begin{aligned} & 860.7000\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 881.6304[\mathrm{M}+\mathrm{K}]^{+} \\ & 901.7264\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{52} \mathrm{H}_{90} \mathrm{O}_{8}$	865.6533	0.3	
iii	901.7229	11.90		1.00	0.03	0.02	0.59					
iii	653.5090	10.67	$[\mathrm{M}+\mathrm{H}]^{+}$	1.00	0.02	0.05	0.21	$675.4895[\mathrm{M}+\mathrm{Na}]^{+}$				
iii	620.4907	10.04	$[\mathrm{M}+\mathrm{H}]^{+}$	1.00	0.01	0.01	0.13	$642.4722[\mathrm{M}+\mathrm{Na}]^{+}$				
iv	806.6143	12.98	$[\mathrm{M}+\mathrm{H}]^{+}$	0.00	0.00	0.00	1.00	$828.5963[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{NO}_{9}$	806.6146	-0.4	374-GSL d19:3/h22:2 (13)
iv	510.2931	4.39		0.02	0.04	0.13	1.00					
iv	804.5981	12.34	$[\mathrm{M}+\mathrm{H}]^{+}$	0.00	0.00	0.00	1.00	$826.5803[\mathrm{M}+\mathrm{Na}]^{+}$	$\mathrm{C}_{47} \mathrm{H}_{81} \mathrm{NO}_{9}$	804.5990	-1.1	374-GSL d19:3/h22:3 (14)
iv	557.5291	13.67	$[\mathrm{M}+\mathrm{H}]^{+}$	0.05	0.02	0.11	1.00	$\begin{aligned} & 574.5554\left[\mathrm{M}+\mathrm{NH} \mathrm{H}_{4}\right]^{+} \\ & 579.5114[\mathrm{M}+\mathrm{Na}]^{+} \\ & 595.4860[\mathrm{M}+\mathrm{K}]^{+} \\ & 615.5819\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$				
iv	555.5110	13.23	$[\mathrm{M}+\mathrm{H}]^{+}$	0.03	0.01	0.08	1.00	$\begin{aligned} & 572.5394\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 577.4965[\mathrm{M}+\mathrm{Na}]^{+} \\ & 593.4704[\mathrm{M}+\mathrm{K}]^{+} \\ & 613.5673\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{O}_{2}$	555.5141	-5.6	
iv	769.4680	6.52		0.00	0.04	0.40	1.00					
CL	Measured m / z	RT (min)	Adduct ion	Relative abundance in E. huxleyi strains*				Related adduct ions and fragments	Predicted formula	Theoretical m / z	Mass error (ppm)	Putative identification ${ }^{\dagger}$
				373	379	2090	374					
iv	870.6664	12.88	$[\mathrm{M}+\mathrm{H}]^{+}$	0.00	0.00	0.80	1.00	$\begin{aligned} & 892.6475[\mathrm{M}+\mathrm{Na}]^{+} \\ & 914.6282[\mathrm{M}+2 \mathrm{Na}]^{+} ? \end{aligned}$	$\mathrm{C}_{49} \mathrm{H}_{91} \mathrm{NO}_{11}$	870.6670	-0.7	sGSL d18:2/c22:0

								$852.6519\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ 620.5939 [M+H-(Sialic acid-H)]+			
iv	807.5005	10.62		0.00	0.01	0.67	1.00				
iv	1143.9105	18.44	$[\mathrm{M}+\mathrm{Na}]^{+}$	0.01	0.02	0.39	1.00	$\begin{aligned} & 1138.9480\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \\ & 1159.8859[\mathrm{M}+\mathrm{K}]^{+} \\ & 1179.9766\left[\mathrm{M}+\mathrm{NH}_{4}+\mathrm{ACN}\right]^{+} \end{aligned}$	$\mathrm{C}_{78} \mathrm{H}_{120} \mathrm{O}_{4}$	1143.9084	1.8
iv	1120.6988	11.38	$\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$	0.04	0.02	1.00	0.24	$1125.6523[\mathrm{M}+\mathrm{Na}]^{+}$			

[^0]Table S2: Additional putatively annotated GSLs species.

$\#$	GSL species LCB/FA	Measured $\boldsymbol{m} / \boldsymbol{z}$ $\left([\mathbf{M}+\mathbf{H}]^{+}\right)$	RT $(\mathbf{m i n})$	Predicted formula	Theoretical $\boldsymbol{m} / \boldsymbol{z}$ $\left([\mathbf{M}+\mathbf{H}]^{+}\right)$	Mass error $(\mathbf{p p m})$
6	$\mathrm{~d} 18: 0 / \mathrm{h} 22: 1$	800.6600	14.22	$\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{NO}_{9}$	800.6616	-2.0
7	$\mathrm{~d} 18: 1 / \mathrm{h} 22: 1$	798.6440	14.01	$\mathrm{C}_{46} \mathrm{H}_{87} \mathrm{NO}_{9}$	798.6459	-2.4
8	$\mathrm{t} 18: 0 / \mathrm{h} 22: 0$	818.6702	14.00	$\mathrm{C}_{46} \mathrm{H}_{91} \mathrm{NO}_{10}$	818.6721	-2.3
10	$\mathrm{t} 18: 0 / \mathrm{h} 22: 2$	814.6346	13.18	$\mathrm{C}_{46} \mathrm{H}_{87} \mathrm{NO}_{10}$	814.6408	-7.6
11	d19:4/h22:1 $($ resGSL $)$	806.6127	12.92	$\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{NO}_{9}$	806.6146	-2.4

8 Table S3: GSL species identified in the E. huxleyi-EhV model system.

Head group	LCB/FA composition	Chemical formula	$\begin{aligned} & \text { RT } \\ & \text { (min) } \end{aligned}$	Theoretical $\boldsymbol{m} / \boldsymbol{z}$ ($\mathbf{M}+\mathbf{H}]^{+}$)	Name in the E. huxleyi-EhV system	Common name* (LIPID MAPS ID)	Occurrence	Reference
Hexose	d18:0/h22:0	$\mathrm{C}_{46} \mathrm{H}_{91} \mathrm{NO}_{9}$	14.44	802.6772	Group B (5)	HexCer(d18:0/22:0(2OH))	Resistant cells, infected cells	This study
Hexose	d18:0/h22:1	$\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{NO}_{9}$	14.22	800.6616	Group B (6)	HexCer(d18:0/22:1(2OH))	Resistant cells, infected cells	This study
Hexose	d18:1/h22:1	$\mathrm{C}_{46} \mathrm{H}_{87} \mathrm{NO}_{9}$	14.01	798.6459	Group B (7)	HexCer(d18:1/22:1(2OH))	Resistant cells, infected cells	This study
Sialic acid	d18:1/c22:0	$\mathrm{C}_{49} \mathrm{H}_{93} \mathrm{NO}_{11}$	12.88	872.6827	sGSL		Susceptible strains, infected cells	Fulton et al., 2014
Sialic acid	d18:2/c22:0	$\mathrm{C}_{49} \mathrm{H}_{91} \mathrm{NO}_{11}$	13.25	870.6670	sGSL		Susceptible strains, infected cells	Fulton et al., 2014
Hexose	d18:3/h22:1	$\mathrm{C}_{46} \mathrm{H}_{83} \mathrm{NO}_{9}$	13.12	794.6146	Group A (1)	HexCer(d18:3/22:1(2OH))	All cell types	This study
Hexose	d18:3/h22:2	$\mathrm{C}_{46} \mathrm{H}_{81} \mathrm{NO}_{9}$	12.47	792.5990	Group A (2)	HexCer(d18:3/22:2(2OH))	All cell types	This study
Hexose	d19:3/h21:1	$\mathrm{C}_{46} \mathrm{H}_{83} \mathrm{NO} 9$	13.03	794.6146	Group A (3)	HexCer(d19:3/21:1(2OH))	All cell types	This study
Hexose	d19:3/h22:1	$\mathrm{C}_{47} \mathrm{H}_{85} \mathrm{NO}_{9}$	13.41	808.6303	hGSL	HexCer(d19:3/22:1(2OH))	All cell types	Vardi et al., 2012
Hexose	d19:3/h22:2	$\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{NO}_{9}$	12.80	806.6146	hGSL	HexCer(d19:3/22:2(2OH))	All cell types	Vardi et al., 2012
Hexose	d19:3/h22:2	$\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{NO}_{9}$	12.98	806.6146	374-GSL (13)	HexCer(d19:3/22:2(2OH))	Susceptible cells, not all strains	This study
Hexose	d19:3/h22:3	$\mathrm{C}_{47} \mathrm{H}_{81} \mathrm{NO}_{9}$	12.34	804.5990	374-GSL (14)	HexCer(d19:3/22:3(2OH))	Susceptible cells, not all strains	This study
Hexose	d19:3/h23:2	$\mathrm{C}_{48} \mathrm{H}_{85} \mathrm{NO} 9$	13.18	820.6303	Group A (4)	HexCer(d19:3/23:2(2OH))	All cell types	This study

Head group	LCB/FA composition	Chemical formula	$\begin{aligned} & \text { RT } \\ & (\mathrm{min}) \end{aligned}$	Theoretical m / z ($\left.[\mathbf{M}+\mathbf{H}]^{+}\right)$	Name in the E. huxleyi-EhV system	Common name* (LIPID MAPS ID)	Occurrence	Reference
Hexose	d19:4/h22:1	$\mathrm{C}_{47} \mathrm{H}_{83} \mathrm{NO}_{9}$	12.92	806.6146	resGSL (11)	HexCer(d19:4/22:1(2OH))	Resistant cells	This study
Hexose	d19:4/h22:2	$\mathrm{C}_{47} \mathrm{H}_{81} \mathrm{NO}_{9}$	12.25	804.5990	resGSL (12)	HexCer(d19:4/22:2(2OH))	Resistant cells	This study
Hexose	t16:0/h22:0	$\mathrm{C}_{44} \mathrm{H}_{87} \mathrm{NO}_{10}$	13.36	790.6408	vGSL	HexCer(t16:0/22:0(2OH))	Infected cells	Schleyer et al., 2019
Hexose	t17:0/h22:0	$\mathrm{C}_{45} \mathrm{H}_{89} \mathrm{NO}_{10}$	13.69	804.6565	vGSL	HexCer(t17:0/22:0(2OH)) (LMSP05010197)	Infected cells	Vardi et al., 2012 Ziv et al., 2016
Hexose	t17:0/h22:1	$\mathrm{C}_{45} \mathrm{H}_{87} \mathrm{NO}_{10}$	13.07	802.6408	vGSL	HexCer(t17:0/22:1(2OH))	Infected cells	Vardi et al., 2012 Ziv et al., 2016
Hexose	t17:0/h23:0	$\mathrm{C}_{46} \mathrm{H}_{91} \mathrm{NO}_{10}$	14.02	818.6721	vGSL	HexCer(t17:0/23:0(2OH))	Infected cells	Vardi et al., 2012 Ziv et al., 2016
Hexose	t17:0/h23:1	$\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{NO}_{10}$	13.45	816.6565	vGSL	HexCer(t17:0/23:1(2OH))	Infected cells	Vardi et al., 2012 Ziv et al., 2016
Hexose	t17:0/h24:0	$\mathrm{C}_{47} \mathrm{H}_{93} \mathrm{NO}_{10}$	14.33	832.6878	vGSL	HexCer(t17:0/24:0(2OH)) (LMSP05010196)	Infected cells	Vardi et al., 2012 Ziv et al., 2016
Hexose	t17:0/h24:1	$\mathrm{C}_{47} \mathrm{H}_{91} \mathrm{NO}_{10}$	13.80	830.6721	vGSL	HexCer(t17:0/24:1(2OH))	Infected cells	Vardi et al., 2012 Ziv et al., 2016
Hexose	t18:0/h22:0	$\mathrm{C}_{46} \mathrm{H}_{91} \mathrm{NO}_{10}$	14.00	818.6721	Group B / vGSL (8)	HexCer(t18:0/22:0(2OH))	Resistant cells, Infected cells	This study, Ziv et al., 2016
Hexose	t18:0/h22:1	$\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{NO}_{10}$	13.77	816.6565	Group B / vGSL (9)	HexCer(t18:0/22:1(2OH))	Resistant cells, Infected cells	This study
Hexose	t18:0/h22:2	$\mathrm{C}_{46} \mathrm{H}_{87} \mathrm{NO}_{10}$	13.18	814.6408	Group B / vGSL (10)	HexCer(t18:0/22:2(2OH))	Resistant cells, Infected cells	This study

$9 \quad{ }^{*}$ Common name is based on the LIPID MAPS classification system. LCB, long-chain base; FA, fatty acid; RT, retention time.

10 Table S4: Genes names and accession numbers.

Name	Accession
sld1	MZ152812
sld2	MZ152813, MZ152814 (KJ868223, previously called dcd2)
sld3	MZ152815
sld4	MZ152816
sld5	MZ152817, MZ152818
sbh1	MZ152819, MZ152820 (KJ868226, previously called sphinganine hydroxylase 1)
sbh2	MZ152821
sbh3	Predicted from the genome of E. huxleyi CCMP1516
sbh4	MZ152822
sbh5	MZ152823
sbh6	MZ152824, MZ152825
sbh7	MZ152826, MZ152827

11 Accession numbers in brackets are of genes that were deposited in GenBank from our earlier definitions ${ }^{5}$.

12 Table S5: Information regarding the proteins used to build the SLD phylogenetic tree.

Name	Organism	Accession number	Description
E. huxleyi SLD1	Emiliania huxleyi CCMP373	MZ152812	Sphingolipid desaturase 1
E. huxleyi SLD2	Emiliania huxleyi CCMP2090, CCMP373	MZ152813, MZ152814	Sphingolipid desaturase 2
E. huxleyi SLD3	Emiliania huxleyi CCMP2090	MZ152815	Sphingolipid desaturase 3
E. huxleyi SLD4	Emiliania huxleyi CCMP373	MZ152816	Sphingolipid desaturase 4
E. huxleyi SLD5	Emiliania huxleyi CCMP2090, CCMP373	MZ152817, MZ152818	Sphingolipid desaturase 5
EhV201 SLD	Emiliania huxleyi virus 201	AET97947.1	Fatty acid desaturase
A. leveillei	Anemone leveillei	AAQ10732.1	Delta-8-sphingolipid desaturase
A. millepora1	Acropora millepora	XP_029201914.1	Sphingolipid delta(4)-desaturase DES1-like
A. millepora2	Acropora millepora	XP_029197704.1	Delta(8)-fatty-acid desaturase 2-like
A. pisum	Acyrthosiphon pisum	NP_001155533.1	Sphingolipid delta(4)-desaturase DES1-like
A. thaliana1 \dagger	Arabidopsis thaliana	OP_192402.1	Fatty acid desaturase family protein
A. thaliana2	Arabidopsis thaliana	XP_011625523.1	SLD2
A. trichopoda1	Amborella trichopoda	XP_006847040.1	Sphingolipid delta(4)-desaturase DES1-like
A. trichopoda2	Amborella trichopoda	PSR04501.1	Acyl-lipid (9-3)-desaturase
Bacteroidetes1	Bacteroidetes bacterium SW_11_45_7	OJW85131.1	Fatty acid desaturase
Bacteroidetes2	Bacteroidetes bacterium 46-16	XP_003578001.2	Fatty acid desaturase
B. distachyon	Brachypodium distachyon	XP_002586717.1	Delta(8)-fatty-acid desaturase 2
B. floridae	Branchiostoma floridae	EEA04242.1	Hypothetical protein BRAFLDRAFT_121704
Burkholderia	Burkholderia sp. H160	GAV77917.1	Conserved hypothetical protein
C. follicularis1	Cephalotus follicularis		FA_desaturase domain-containing protein/Lipid_DES domain-
C. follicularis2	Cephalotus follicularis	GAV56989.1	containing protein
C. p. bellii	Chrysemys picta bellii	XP_005283813.1	Cyt-b5 domain-containing protein/FA_desaturase domain-
C. reinhardtii	Chlamydomonas reinhardtii	XP_001691564.1	Sphingolipid delta(4)-desaturase/C4-monooxygenase DES2-like
C. roenbergensis1	Cafeteria roenbergensis	KAA0156831.1	Hypothetical protein FNF29_00941
C. roenbergensis2	Cafeteria roenbergensis	Hypothetical protein FNF28_06948	

Name	Organism	Accession number	Description
C. roenbergensis 3	Cafeteria roenbergensis	KAA0174097.1	Hypothetical protein FNF27_04483
C. tobinii1	Chrysochromulina tobinii	KOO24852.1	Sphingolipid delta -desaturase des1-like protein
C. tobinii2	Chrysochromulina tobinii	KOO20797.1	Fatty acid desaturase
C. tobinii3	Chrysochromulina tobinii	KOO29180.1	Hypothetical protein Ctob_007971
C. virginica	Crassostrea virginica	XP_022329012.1	Sphingolipid delta(4)-desaturase DES1-like
D. melanogaster	Drosophila melanogaster	NP_476594.1	Infertile crescent, isoform A
D. pulex	Daphnia pulex	EFX83396.1	Hypothetical protein DAPPUDRAFT_48184
E. pallida 1	Exaiptasia pallida (Exaiptasia diaphana)	XP_020891967.1	Sphingolipid delta(4)-desaturase DES1
E. pallida2	Exaiptasia pallida (Exaiptasia diaphana)	XP_020912814.2, XP_020912805.1	Delta(8)-fatty-acid desaturase
E. siliculosus	Ectocarpus siliculosus	CBN74378.1	Fatty acid desaturase
F. ambrosium	Fusarium ambrosium	RSM00058.1	Hypothetical protein CDV31_011915
G. cichoracearum	Golovinomyces cichoracearum	RKF82449.1	Sphingolipid delta-desaturase
H. impetiginosus1	Handroanthus impetiginosus	PIN19733.1	Fatty acid desaturase
H. impetiginosus2	Handroanthus impetiginosus	PIN06828.1	Delta 6-fatty acid desaturase/delta-8 sphingolipid desaturase
I. galbana	Isochrysis galbana	AEV77089.1	Delta-6 fatty acid desaturase
Isochrysis	Isochrysis sp. CCMM5001	AFB82637.1	Fatty acid desaturase
K. nitens1	Klebsormidium nitens	GAQ87926.1	Dihydrosphingosine delta-4 desaturase
K. nitens2	Klebsormidium nitens	GAQ87984.1	Hypothetical protein KFL_003920030
K. nitens3	Klebsormidium nitens	GAQ79919.1	Sphingobase-D8 Desaturase
M. pusilla1	Micromonas pusilla CCMP1545	XP_003064164.1	Predicted protein
M. pusilla2	Micromonas pusilla CCMP1545	XP_003054909.1	Predicted protein
M. pusilla3	Micromonas pusilla CCMP1545	XP_003063519.1	Predicted protein
M. pusilla4	Micromonas pusilla CCMP1545	XP_003055443.1	Predicted protein
M. rosea	Minicystis rosea	WP_146730508.1	Fatty acid desaturase
N. coloratal	Nymphaea colorata	XP_031478825.1	Sphingolipid delta(4)-desaturase DES1-like
N. colorata 2	Nymphaea colorata	XP_031504778.1	Delta(8)-fatty-acid desaturase-like
N. vectensis	Nematostella vectensis	XP_001640617.1	Delta(8)-fatty-acid desaturase

Name	Organism	Accession number	Description
O. bimaculoides	Octopus bimaculoides	XP_014781463.1	
O. sativa1 ${ }^{\dagger}$	Oryza sativa Japonica Group	XP_015623789.1	Predicted: sphingolipid delta(4)-desaturase DES1-like
O. sativa2	Oryza sativa Japonica Group	XP_015651259.1	Sphingolipid delta(4)-desaturase DES1-like
O. tauri1	Ostreococcus tauri	XP_003082334.1	Delta(8)-fatty-acid desaturase 2
O. tauri2	Ostreococcus tauri	OUS49176.1	Fatty acid desaturase, type 1
P. miliaceum1	Panicum miliaceum	RLM73192.1	Fatty acid desaturase-domain-containing protein
P. miliaceum2	Panicum miliaceum	RLN34870.1	Sphingolipid delta(4)-desaturase DES1-like
P. patens1	Physcomitrella patens	XP_024361943.1	Delta(8)-fatty-acid desaturase 2-like
P. patens2	Physcomitrella patens	XP_024364920.1	Sphingolipid delta(4)-desaturase DES1-like
P. roqueforti	Penicillium roqueforti FM164	CDM35784.1	Acyl-lipid (9-3)-desaturase-like
P. trichocarpa1	Populus trichocarpa	XP_006377338.2	Fatty acid desaturase, type 1
P. trichocarpa2	Populus trichocarpa	XP_002308556.1	Sphingolipid delta(4)-desaturase DES1-like
S. asiatica1	Striga asiatica	GER36468.1	Acyl-lipid (9-3)-desaturase
S. asiatica2	Striga asiatica	GER35419.1	Sphingolipid delta(4)-desaturase DES1
S. microadriaticum	Symbiodinium microadriaticum	OLP82839.1	Fatty acid desaturase
S. moellendorffii1	Selaginella moellendorffii	XP_002971294.1, XP_002961512.1	Delta(8)-fatty-acid desaturase
S. moellendorffii2	Selaginella moellendorffii	Sphingolipid delta(4)-desaturase DES1-like	
Sphingobacteriales1	Sphingobacteriales bacterium	XP_02968817.1	Delta(8)-fatty-acid desaturase 2
Sphingobacteriales2	Sphingobacteriales bacterium 48-107	OJW43059.1	Fatty acid desaturase, partial
Synechococcus	Synechococcus sp. PCC 7336	WP_156820318.1	Fatty acid desaturase
T. cacao1	Theobroma cacao	Fatty acid desaturase	
T. cacao2	Theobroma cacao	Predicted: sphingolipid delta(4)-desaturase DES1-like	
T. pseudonana	Thalassiosira pseudonana CCMP1335	XP_002291331.1	Predicted: acyl-lipid (9-3)-desaturase
T. turgidum1	Triticum turgidum subsp. durum	VAH49645.1	Predicted protein
T. turgidum2	Triticum turgidum subsp. durum	VAI17523.1	Unnamed protein product
W. hederae	Wallemia hederae	TIA87401.1	Unnamed protein product
\dagger Functionally characterized proteins.		Hypothetical protein E3P99_03193	

[^1]14 Table S6: Information regarding the proteins used to build the SBH phylogenetic tree.

Name	Organism	Accession number	Description
E. huxleyi_SBH1	Emiliania huxleyi CCMP2090, CCMP373	MZ152820, MZ152819	Sphingoid base hydroxylase 1
E. huxleyi_SBH2	Emiliania huxleyi CCMP2090	MZ152821	Sphingoid base hydroxylase 2
E. huxleyi_SBH3	Emiliania huxleyi	Prediction from genome	Sphingoid base hydroxylase 3
E. huxleyi_SBH4	Emiliania huxleyi CCMP373	MZ152822	Sphingoid base hydroxylase 4
E. huxleyi_SBH5	Emiliania huxleyi CCMP373	MZ152823	Sphingoid base hydroxylase 5
E. huxleyi_SBH6	Emiliania huxleyi CCMP2090, CCMP373	MZ152825, MZ152824	Sphingoid base hydroxylase 6
E. huxleyi_SBH7	Emiliania huxleyi CCMP2090, CCMP373	MZ152826, MZ152827	Sphingoid base hydroxylase 7
EhV201_SBH	Emiliania huxleyi virus 201	AET97919.1	Hypothetical protein EPVG_00031
A. candidus1	Aspergillus candidus	XP_024676610.1	Putative C-4 methylsterol oxidase
A. candidus2	Aspergillus candidus	XP_024670972.1	Putative C-4 methyl sterol oxidase
A. castellanii1	Acanthamoeba castellanii str. Neff	XP_004336833.1	4Alpha-methyl-sterol C4-methyl-oxidase
A. castellanii2	Acanthamoeba castellanii str. Neff	XP_004336864.1	C5orf4 protein
A. mulundensis	Aspergillus mulundensis	XP_026600416.1	Uncharacterized protein DSM5745_09314
A. queenslandica	Amphimedon queenslandica	XP_011404818.2	PREDICTED: methylsterol monooxygenase 1-like
Archaeon1	archaeon	RYY81668.1	Fatty acid hydroxylase family protein
Archaeon2	archaeon	RYH18502.1	Fatty acid hydroxylase family protein
C. merolae	Cyanidioschyzon merolae strain 10D	XP_005537142.1	Hypothetical protein, conserved
C. tobinii1	Chrysochromulina tobinii	KOO21719.1	c-4 Methylsterol oxidase
C. tobinii2	Chrysochromulina tobinii	KOO23105.1	Sterol desaturase
Deltaproteobacteria	Deltaproteobacteria bacterium	MAA78328.1	Hypothetical protein CL916_03640
D. purpureum	Dictyostelium purpureum	XP_003291805.1	Hypothetical protein DICPUDRAFT_156442
E. affinis	Eurytemora affinis	XP_023341469.1	Fatty acid hydroxylase domain-containing protein 2-like
F. proliferatum	Fusarium proliferatum	RKL31181.1	Hypothetical protein BFJ72_g11198
H. fermentalgiana	Hondaea fermentalgiana	GBG26608.1	Methylsterol monooxygenase 1-1
H. sapiens1 ${ }^{\dagger}$	Homo sapiens	NP_006736.1	Methylsterol monooxygenase 1 isoform 1
H. sapiens2	Homo sapiens	AAH04506.2	C5orf4 protein, partial

Name	Organism	Accession number	Description
M. brevicollis	Monosiga brevicollis MX1	XP_001747965.1	Hypothetical protein
M. commoda	Micromonas commoda	XP_002508762.1	Predicted protein
O. tauri	Ostreococcus tauri	XP_003079549.2	Fatty acid hydroxylase
P. marinus1	Perkinsus marinus ATCC 50983	XP_002782009.1	Sterol desaturase, putative
P. marinus2	Perkinsus marinus ATCC 50983	XP_002771628.1	Lathosterol oxidase, putative
P. olseni	Perkinsus olseni	KAF4694963.1	Chromosome 5 4
P. tetraurelia1	Paramecium tetraurelia strain d4-2	XP_001449651.1	Hypothetical protein (macronuclear)
P. tetraurelia2	Paramecium tetraurelia strain d4-2	XP_001448034.1	Hypothetical protein (macronuclear)
P. umbilicalis	Porphyra umbilicalis	OSX72141.1	Hypothetical protein BU14_0463s0003
S. cerevisiae ${ }^{\dagger}$	Saccharomyces cerevisiae S288C	NP_010583.1	Sphingosine hydroxylase
S. indica1	Serendipita indica DSM 11827	CCA68111.1	Related to C-4 methyl sterol oxidase
S. indica2	Serendipita indica DSM 11827	CCA69868.1	Probable ERG25-C-4 methyl sterol oxidase
S. microadriaticum	Symbiodinium microadriaticum	OLP85489.1	Fatty acid hydroxylase domain-containing protein 2
S. pombe	Schizosaccharomyces pombe	NP_596489.1	Sphingosine hydroxylase Sur2
S. rosetta1	Salpingoeca rosetta	XP_004992472.1	Hypothetical protein PTSG_07059
S. rosetta2	Salpingoeca rosetta	XP_004995906.1	GTP binding protein 4
T. trahens1	Thecamonas trahens ATCC 50062	XP_013758029.1	4-Alpha-methyl-sterol C4-methyl-oxidase
T. trahens2	Thecamonas trahens ATCC 50062	XP_013761304.1	Sterol desaturase
Functionally characterized proteins.			

$15{ }^{\dagger}$ Functionally characterized proteins.

Table S7: Correlations between the abundance of E. huxleyi and EhV and the concentration of different GSL species in four bags during a mesocosm experiment.

	E. huxleyi	hGSL $19: 3 / 22: 2$	sGSL d18:2/c22:0	Biomass- associated EhV	vGSL t17:0/h22:0
E. huxleyi	1	0.73	0.72	-0.1	-0.01
GSL d18:3/h22:1 (1)	0.75	0.76	0.72	0.03	0.1
hGSL 19:3/22:1	0.66	0.7	0.65	-0.08	-0.01
hGSL 19:3/22:2	0.73	1	0.86	0.07	0.18
GSL d18:3/h22:2 (2)	0.65	0.97	0.81	0.15	0.26
sGSL d18:2/c22:0	0.72	0.86	1	0.03	0.16
374-GSL d19:3/h22:2 (13)	0.75	0.92	0.84	-0.06	0.06
GSL d19:3/h21:1 (3)	0.57	0.92	0.74	0.22	0.32
GSL d19:3/h23:2 (4)	0.53	0.89	0.7	0.28	0.34
sGSL d18:1/c22:0	0.58	0.86	0.75	0.17	0.3
374-GSL d19:3/h22:3 (14)	0.59	0.88	0.79	0.13	0.25
Biomass-associated EhV	-0.1	0.07	0.03	1	0.9
vGSL t17:0/h23:1	-0.07	0.11	0.11	0.95	0.98
vGSL t17:0/h22:1	-0.08	0.09	0.1	0.95	0.98
vGSL t16:0/h22:0	-0.06	0.11	0.12	0.92	0.99
vGSL t17:0/h24:1	-0.07	0.1	0.09	0.91	0.97
GSL d18:0/h22:1 (6)	-0.03	0.15	0.14	0.84	0.96
GSL d18:0/h22:0 (5)	-0.06	0.1	0.15	0.87	0.94
vGSL t17:0/h23:0	0.01	0.2	0.18	0.87	1
vGSL t17:0/h24:0	0	0.21	0.18	0.87	1
GSL t18:0/h22:0 (8)	0.01	0.19	0.2	0.85	0.99
vGSL t17:0/h22:0	-0.01	0.18	0.16	0.9	1
GSL t18:0/h22:1 (9)	-0.03	0.15	0.15	0.89	0.99
GSL t18:0/h22:2 (10)	-0.19	-0.11	-0.05	0.85	0.69

18 Rows and columns are organized based on hierarchal clustering (using the ' R ' package 'heatmap'). Pearson

20 Table S8: 'xcms' parameters used for peak picking.

Parameter	Value
fwhm	15
snthresh	9
mzdiff	0.01

Table S9: ‘xcms' parameters used for peak grouping and alignment.

Parameter	Value
bw	12
minsamp	2
mzwid	0.025
plottype	mdevden
smooth	loess
span	0.8
missing	2
extra	0

Table S10: Tukey's multiple pairwise comparison tests of GSL species in resistant and susceptible E. huxleyi strains.

Group	\#	GSL species	R-S	373-379	373-374+EhV	379-374+EhV	374-2090
A	1	d18:3/h22:1	0.00	0.90	0.97	0.21	0.32
	2	d18:3/h22:2	0.00	1.00	0.00	0.00	0.56
	3	$\mathrm{d} 19: 3 / \mathrm{h} 21: 1$	0.00	0.04	0.00	0.00	0.74
	4	d19:3/h23:2	0.00	0.00	0.00	0.00	0.73
B	5	d18:0/h22:0	0.00	0.20	0.06	0.00	1.00
	6	d18:0/h22:1	0.00	0.00	0.00	0.00	0.74
	7	d18:1/h22:1	0.00	0.53	0.00	0.01	0.15
	8	t18:0/h22:0	0.02	0.40	0.03	0.93	0.89
	9	t18:0/h22:1	0.00	0.77	0.03	0.00	0.99
	10	t18:0/h22:2	0.00	0.59	0.00	0.00	0.78
C	11	$\begin{aligned} & \text { d19:4/h22:1 } \\ & \text { (resGSL) } \end{aligned}$	0.00	0.00	0.52	0.00	0.73
	12	$\begin{aligned} & \text { d19:4/h22:2 } \\ & \text { (resGSL) } \end{aligned}$	0.00	0.00	0.64	0.00	0.77
D	13	$\begin{aligned} & \text { d19:3/h22:2 } \\ & \text { (374-GSL) } \end{aligned}$	0.01	0.00	0.00	0.00	0.00
	14	$\begin{aligned} & \text { d19:3/h22:3 } \\ & \text { (374-GSL) } \end{aligned}$	0.01	0.01	0.00	0.00	0.00

Differences in GSL abundance were tested by a one-way ANOVA followed by Tukey's post-hoc test, comparing: (i) the resistant E. huxleyi strains 373 and 379 and the susceptible E. huxleyi strains 2090 and 374 (with and without addition of EhV, 'R-S'); (ii) E. huxleyi 373 and 379 (with and without addition of EhV, '373-379'); (iii) E. huxleyi 373 (with and without addition of EhV) and E. huxleyi 374 with addition of EhV ('373-374+EhV'); (iv) E. huxleyi 379 (with and without addition of EhV) and E. huxleyi 374 with addition of EhV ('379-374+EhV'); and (v) E. huxleyi 374 and 2090 (with and without addition of EhV, '374-2090'). FDR-corrected p-values are presented for samples at day 2 of the experiment $(n=3)$. Values <0.01 are marked in light red. R, resistant; S, susceptible.

34 Table S11: Abundance ratios of GSL species in resistant and susceptible E. huxleyi strains.

Group	\#	GSL species	R/S	373/379	373/374+EhV	379/374+EhV	374/2090
A	1	d18:3/h22:1	15	0.6	0.9	1.5	3.4
	2	d18:3/h22:2	44	1.0	18	19	0.4
	3	d19:3/h21:1	87	1.4	76	55	1.1
	4	d19:3/h23:2	1314	2.8	1649	580	1.1
B	5	d18:0/h22:0	140	0.1	7.1	57	1.2
	6	d18:0/h22:1	776	0.2	289	1155	1.1
	7	d18:1/h22:1	65	0.2	0.3	1.4	13
	8	t18:0/h22:0	6.0	0.2	0.2	0.8	2.1
	9	t18:0/h22:1	540	0.3	23	79	1.5
	10	t18:0/h22:2	681	0.9	469	547	1.1
C	11	$\begin{aligned} & \text { d19:4/h22:1 } \\ & \text { (resGSL) } \end{aligned}$	11	0.0	0.9	79	1.1
	12	$\begin{aligned} & \text { d19:4/h22:2 } \\ & \text { (resGSL) } \end{aligned}$	33	0.0	0.9	680	1.1
D	13	$\begin{aligned} & \text { d19:3/h22:2 } \\ & \text { (374-GSL) } \end{aligned}$	0.1	0.7	0	0	212
	14	$\begin{aligned} & \text { d19:3/h22:3 } \\ & \text { (374-GSL) } \end{aligned}$	0.2	0.7	0	0	77

References

1 Sud, M. et al. LMSD: Lipid Maps Structure Database. Nucleic Acids Res. 35, D527D532 (2007).
2 Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211-221 (2007).
3 Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
4 Feldmesser, E., Ben-Dor, S. \& Vardi, A. An Emiliania huxleyi pan-transcriptome reveals basal strain specificity in gene expression patterns. Sci. Rep. 11, 20795-20795 (2021).

5 Rosenwasser, S. et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean. Plant Cell 26, 2689-2707 (2014).

6 Vardi, A. et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc. Natl. Acad. Sci. USA 109, 19327-19332 (2012).
7 Fulton, J. M. et al. Novel molecular determinants of viral susceptibility and resistance in the lipidome of Emiliania huxleyi. Environ. Microbiol. 16, 1137-1149 (2014).
8 Ziv, C. et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga. Proc. Natl. Acad. Sci. USA 113, E1907-E1916 (2016).

[^0]: 2 The putative lipids species are organized according to the clusters (CL) in Fig. 2a, with the cluster number indicated for each one. *The relative abundance in E. huxleyi strains 3 was calculated for the mean intensity in cultures without EhV as follows: the highest value for each mass feature (i.e., relative intensity) was set as one (colored in brown) and 4 was used to calculate the abundance in the other strains. Relative abundance of >0.1 was colored in light brown. \dagger GSL species were identified based on MS/MS spectra, 5 according to the Metabolomics Standards Initiative, 'Level 2 - putatively annotated compounds ${ }^{\prime 2}$, see Fig. S4-S12.

[^1]: $13{ }^{\dagger}$ Functionally characterized proteins.

