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Abstract. Yeast SCRaMbLE is an experimental method using designed synthetic yeast chromo-

somes to generate combinatorial diversity through genome rearrangements. These events occur at

designed loxPsym recombination sites through the activity of Cre recombinase. While the synthetic

SCRaMbLE system was designed to explore minimal genomes and permit rapid genome evolution,

the pattern of recombinations also reflects inherent properties of DNA looping required to coalesce

pairs of loxPsym sites.

Genomes of yeast strains generated by SCRaMbLE are analyzed here using a new statistical

mechanics model, called the SCRaMbLE Polymer Interaction (SPI) model. SPI uses polymer physics

to model recombinations, and implements efficient rejection sampling and histogram reweighting

algorithms to conduct SCRaMbLE experiments in silico.

Using SPI, we found that recombination events observed experimentally are consistent with a ran-

dom walk scaling exponent ranging between 0.45 and 0.6, which spans values of 0.5 for a Gaussian

polymer and 0.588 for a self-avoiding walk. SPI provides a highly accurate tool to study SCRaMbLE

recombinations and massively parallel genome recombination experiments.

Introduction

A fundamental problem in biology is the identification and characterization of the minimal genetic

information required for cellular life [1, 2, 3]. While evolutionary arguments indicate that strictly

non-essential genes will be lost, under favorable conditions, with unlimited rich nutrients and absent
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stresses, genomes may be minimized. For example, bacterial intracellular parasites and endosym-

bionts, with highly controlled intracellular environments, have evolved very small genomes through

gene loss [4, 5, 6, 7, 8]. The parasitic bacterium Mycoplasma genitalium, which lives in epithelial

cells, has the smallest known genome among organisms that can grow independently in axenic cul-

ture [9]; this bacterium’s 580 Kb genome contains only 482 protein-coding genes [10]. Symbiotic

bacteria require even less genetic information for life [11, 12]; for instance, the Candidatus Tremblaya

princeps, an endosymbiont of the citrus mealybug Planococcus citri, has a 139 Kb genome with just

121 genes [13].

These studies have consistently shown that genes involved in DNA replication, transcription,

and protein synthesis are largely conserved across different species, while genes responsible for

organism-specific metabolism can vary. Based on this principle, comparative genomics approaches

have proposed minimal gene sets required for life [14]. However, these statistical methods are limited

by the number of taxa available for inference and the quality of gene function annotation.

Conversely, large-scale knock-out studies have been performed in many organisms with the goal

of identifying genes that, when deleted, do not lead to a viable cell; this information is used to identify

set of genes that are individually essential for cellular life. For example, in Saccharomyces cerevisiae,

the best-characterized eukaryotic organism, about 17% of the 6, 000 annotated protein-coding genes

are essential for growth in rich media [15]. Although the remaining genes can be deleted individually,

simultaneous deletions can be lethal due to the accumulation of fitness defect or genetic interactions.

While synthesis and testing of all possible pairwise deletion combinations would therefore be highly

informative, this brute force approach already approaches the limits of experimental feasibility for a

single condition and is not feasible for higher order combinations.

Harnessing recent advances in synthetic biology and DNA synthesis, the Saccharomyces cere-

visiae 2.0 (Sc2.0) project aims to identify a minimal eukaryotic genome using a redesigned yeast

genome. Specifically, an in vivo evolutionary system named Synthetic Chromosome Recombination

and Modification by loxP-mediated Evolution system (SCRaMbLE) is embedded in the genome of

synthetic yeast [16, 17, 18]. Each non-essential gene of the synthetic genome carries at its 3’ end

(just downstream of the stop codon) a loxPsym site, a synthetic 34 bp palindromic DNA sequence.

Upon expression of Cre recombinase, pairs of loxPsym sites can interact essentially at random, lead-

ing to inversion or deletion of the intervening genomic region, or more complex rearrangements.

The genome rearrangements generated by SCRaMbLE provide diversity that can be used to select

for desired phenotypes. Phenotypes corresponding to minimal genomes include gene content and

chromosome length; in other contexts, fitness may correspond to the ability to survive in an extreme
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environment or to generate a desired metabolite and in these cases duplication of genes via SCRaM-

bLE can lead to a “gain of function”.

Sequencing strains subjected to SCRaMbLE under selection provides information that can be

used to identify the most important genes or rearrangements. However, performing this analysis re-

quires a model for the recombination events sampled by SCRaMbLE, which are random in principle

but may be constrained physically by factors such as DNA looping and stiffness, tethering of chromo-

somes to protein complexes, membranes or other DNA molecules. The loxPsym sites participating

in a recombination events are brought into contact by DNA looping, and the physical constraints

of looping introduce a distance-based recombination probability. Recombination hotspots and cold-

spots may exist as well, as they do for meiotic crossing over; identifying and distinguishing these

deviations from random recombination events biased by phenotypic selection requires development

of a null model for neutral SCRaMbLE recombination events that do not affect cellular fitness. Such

physics-based model could have general value in predicting probabilities of DNA looping structures

relevant to enhancer/promoter interactions, chromatin structure, and chromosome conformation cap-

ture.

Here we introduce the SCRaMbLE Polymer Interaction (SPI) model to study synthetic genomes

generated by SCRaMbLE. Our model adapts the contact probability for polymers used for DNA loop-

ing to estimate the probability of contacts between pairs of loxPsym sites [19, 20]. Parameters in the

model correspond to the long-range scaling exponent for polymer mean square distance, ν, the short-

range persistence length of DNA, b, and the mean number of recombination events per genome, λ. To

estimate model parameters, we developed a rejection sampling algorithm and an efficient histogram

reweighting method to enable large scale parameters exploration [21].

We then tested and validated SPI using whole-genome sequencing data of 64 synthetic yeast

strains containing a circular version of the synthetic right arm of chromosome IX, synIXR, which have

been previously rearranged using SCRaMbLE [22]. We examined the concordance between the re-

arrangements in the experimental strains and in strains simulated over a range of parameter values.

We particularly explored values of the scaling-exponent ν ranging from 0 (uniform probability) to 0.5

(non-self-avoiding walk) to 0.588 (numerical estimate for the self-avoiding-walk in three dimensions),

and the persistence length parameter, ranging from 50bp to 300bp, including the widely accepted

value of 150bp. After finding the best parameter settings by maximum likelihood, we compared the

structure and biological features of the simulated and SCRaMbLE genomes to infer fitness require-

ments and minimal chromosome length. Our results confirm that SPI is an accurate model for an-

alyzing SCRaMbLE experiments, and a useful exploratory tool to investigate minimal chromosomes
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conformations using only sequence information.

Methods

Genome structure and notation

The synthetic yeast genome is designed to generate structural rearrangements of genomic loci, also

called segments, flanked by loxPsym recombination sites. LoxPsym sites were designed to occur

primarily at the boundary between the coding and 3′ untranslated region of each non-essential gene,

yielding segments of varying lengths.

Here we considered the circular synthetic chromosome synIXR, which contains n = 43 segments,

numbered i = 1, 2, 3, . . . , n (see Supplementary Table 1). The structure of a rearranged genome is

represented by a list of integers G = {si}, where inverted segments are negative, deleted seg-

ments do not occur, and duplications and higher order amplifications yield multiple appearances of a

signed segment number. Integers associated with segments containing essential genes will always

be present [23]. Importantly, since the model parameters will be estimated using sequencing data

for synIXR, which is a circular chromosome, any circular permutation or complete reversal with sign

change is equivalent.

Distance-dependent recombination probability between loxPsym sites

Although deletions and inversions should occur with equal probability, an assumption already ex-

ploited by other models [24], the number of segments involved in a recombination event depends

on the probability of interaction between two loxPsym sites. Here we represent DNA as a polymer

of physical length L, effective monomer length m, and persistence length b [25, 19]. For a linear

polymer, when L > m, the probability density ρ(r;L) for end-to-end vector r is

ρ(r;L) = [2πσ2
L]−3/2 exp[−|r|2/2σ2

L] exp[−2/(L/b)2]. (1)

We assume that the variance follows the scaling law,

σ2
L ∼ (L/m)2νm2. (2)

For a long polymer with L � m, the mean square displacement is 〈|r|2〉 ≈ 3σ2
L. In the ideal case of

a non-self-avoiding walk, the scaling exponent ν = 0.5. For a self-avoiding walk in three dimensions
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there are no exact results, but theoretical approximations and simulations both give ν ≈ 0.588 [19].

Here we consider ν an adjustable parameter that can be estimated from the data.

The end-to-end contact probability from Eq. 1 for a linear polymer of length L is ρ(0;L). The

contact probability p(L,L′) between two sites a distance L apart in a circular polymer of total length

L+ L′ is approximated using the linear probability density for the two regions of length L and L′ and

neglecting the interactions between them,

p(L,L′) ≈ ρ(0;L)ρ(0;L′)/ρ(0;L+ L′). (3)

The denominator is a normalization factor that may be approximated as
∫
drρ(r;L)ρ(r;L′) and which

cancels out of the final results.

For a synthetic yeast chromosome, recombination events are restricted to positions corresponding

to pairs of loxPsym sites. For a pair ij of loxPsyms sites separated by Nij nucleotides in one direction

and N ′ij nucleotides in the other direction around the chromosome, the rate of contacts is proportional

to p(Nij , N
′
ij) (see Eq. 3). Thus, the probability that a pair ij of loxPsyms sites is involved in a

recombination event is the normalized probability Pij ,

Pij = p(Nij , N
′
ij)/

∑
k 6=l

p(Nkl, N
′
kl). (4)

Since all powers of m cancel, the recombination probabilities is independent of the monomer length

and symmetric in N and N ′, calculated as Pij = Qij/
∑

k 6=lQij and

Qij = (NijN
′
ij)
−3ν exp[−2b2(N−2

ij +N ′ij
−2

)]. (5)

Nonetheless, the recombination probabilities do depend on ν and b (see Figure 1). While the literature

value b = 150 bp is generally assumed for double stranded DNA (dsDNA) [26, 27], we treated b

as a parameter to be estimated from the data. While the model above is motivated in terms of

recombination probabilities for self-avoiding walks and non-self-avoiding walks, it can also describe

recombination events happening uniformly at random (ν = b = 0) and other biologically interesting

alternatives. This model therefore provides a unified framework for testing alternative hypotheses for

DNA looping in SCRaMbLE.
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Rejection sampling and histogram reweighting

We designed a rejection sampling algorithm to generate an ensemble of chromosomes consistent

with experimental constraints and phenotype selection strategies, in order to estimate model param-

eters and study different genomic features.

In practice, our sampling algorithm builds an initial chromosome with n ordered segments, which

undergoes s recombination events with s ∼ Poisson(λ). For each recombination, the pair of loxPsym

sites involved was selected according to Eq. 4, and the intervening segments undergo a inversion or

deletion with equal probability, as anticipated from the presence of the symmetric loxPsym site [22].

After s recombinations, a chromosome is accepted if it retained all the essential genes and lost at

least one auxotrophy marker, mirroring the selection that was applied to the SCRaMbLE strains.

Generating large ensemble of genomes by rejection sampling is computationally expensive, which

hinders large-scale parameter exploration to obtain accurate estimates. To overcome this problem,

we developed a histogram reweighting method [21], which allow us to collect statistics for multiple

parameters settings from a rejection sampling trajectory run with a single parameter set.

Let F be a property of a genome g, F (g). For a particular parameter set θ, the probability distribu-

tion of genomes is denoted Pθ(g), and the expectation of F is 〈F 〉θ is
∑

g Pθ(g)F (g)/
∑

g Pθ(g). In our

case, F is the average number of times a segment is present in an ensemble of genomes. Let Pθ′ be

a probability distribution for a set of parameters θ′. Formally, we can use the ensemble of genomes

obtained from Pθ to compute 〈F 〉θ′ as

〈F 〉θ′ =

∑
g Pθ′(g)F (g)∑

g Pθ′(g)
=

∑
g Pθ(g)[Pθ′(g)/Pθ(g)]F (g)∑

g Pθ(g)[Pθ′(g)/Pθ(g)]
=
〈Wθ′,θF 〉θ
〈Wθ′,θ〉θ

. (6)

The term Wθ′,θ(g) ≡ P ′θ(g)/Pθ(g) is the probability ratio for sampling a genome g from a distribution

with parameters θ′ instead of θ. Then, it is possible to compute Wθ′,θ for each genome, sampling

parameters θ = {λ, ν, b}, and desired parameters θ′ = {λ′, ν ′, b′}, as

Wθ′,θ(g) = (λ′/λ)n exp(−λ′ + λ) +
∏
{r}g

P (r; ν ′, b′)/P (r; ν, b) (7)

where the first term is the ratio between the expected number of recombination events, and the

product over r is computed over the sequence of recombination events leading to the final genome

structure g. Reweighting procedures should consider samples drawn from distributions that are close

to the reweighted parameters in order to reduce statistical errors [21]. For this reason, in our exper-

iments, for each reweighting parameter setting, we considered only genomes generated by simula-
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tions with the closest grid points in the parameter space.

For both rejection sampling and histogram reweighting, we estimated model parameters using

maximum likelihood. Specifically, let pθ(k) the probability of retaining segment k after SCRaMbLE,

as estimated by using SPI with parameters θ. Then, given a population g of SCRaMbLE strains, the

log-likelihood of the model can be computed as

L(θ | g) =
l∑

k=1

ln

(
n

gk

)
+ gk ln pθ(k) + (n− gk) ln (1− pθ(k)) (8)

where l is the number of segments in the chromosome, n is the total number of SCRaMbLE

strains, and gk is the number of strains retaining segment k.

We then computed confidence intervals for model parameters using bootstrap. Specifically, genome

replicates were sampled at random with replacements from the set of SCRaMbLE strains, and then

we selected model parameters using maximum likelihood; finally, for each parameter, we report the

corresponding 95% confidence interval.

Results

We used whole-genome sequencing data of 64 synthetic yeast strains including the episomal circular

synIXR chromosome to estimate parameters of our model. All experimental strains retained essential

genes and the centromere, a feature essential for chromosome replication, and were selected to

have lost at least one auxotrophic marker. Moreover, 31 of the 64 strains analyzed had at least

one duplicated segment; nonetheless, since our objective is to predict minimal genomes, we did not

explicitly model duplication events and counted each duplicated segment only once.

We then determined model parameters by maximum likelihood using grid search; specifically,

parameter were explored on a grid, Ω = λ × ν × b, where λ = [4, . . . , 13], ν = [0.3, . . . , 0.7], ν =

[50, . . . , 300] with a step size of 1, 0.05, and 50bp respectively (see Supplementary Table 2). With

this experimental design, we obtained a total of 540 parameters settings for which we generated 104

genomes each.

Here we found the best model parameters to be λ = 9, ν = 0.55, b = 200. (log-likelihood =

−178.713; see Figure 2A and Supplementary Table 3), with generally high-confidence (see Fig-

ure 2B). Specifically, the 95% confidence intervals for the scaling exponent ν, ranging from 0.45

and 0.6, suggests that recombination events induced by SCRaMbLE follow a self-avoiding walk but

not a uniform random process. The persistence length b instead is bound to 200 bp, suggesting

recombination event probability scales proportionally to the expected persistence length of DNA.
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The 95% confidence region for the recombination Poisson parameter was broad, with λ rang-

ing from 6 to 13 events. While this result supports an iterative recombination process induced by

SCRaMbLE, the estimates appear unrealistic as they would cause an excessive number of chromo-

somal aberrations unlikely to be compatible with life. Therefore, we examined the effective number of

events, λeff , that is the number of recombination events observed in a viable genome (see Figure 2C).

Here we found that the effective number of recombination events to be λeff ≤ 10, fewer than the

expected number of events for a Poisson random variable. This phenomenon is also confirmed when

looking at the percent of accepted genomes during our sampling process (see Figure 2D), which is

2-fold higher when λ ≤ 10 compared to any higher setting, consistent with the downward shift of λeff .

Taken together, this result suggests a potential upper-bound on the number of recombination events.

Successively, we tested whether explicitly modelling the interaction between loxPsym sites with a

polymer physics model provides more realistic genome ensembles compared to a null model, where

recombination sites can interact uniformly at random. A null model is equivalent to SPI for ν, b → 0.

Therefore, we fixed ν = b = 0, and we fit a null model using maximum likelihood to estimate the

number of events λ, over the space λ = [3, . . . , 15] with a step size of 1. We found that the expected

number of events for the null model to be λ = 12 (log-likelihood= −385.237, see Supplementary

Figure 1). We then performed a likelihood ratio test between SPI and the null model, and we found

that our model fits significantly better than the null (χ2 = 413.048, p = 2.03× 10−90).

Histogram reweighting enables fine-grained analysis of the scaling exponent and per-

sistence length parameters

We then focused on obtaining accurate estimates of the scaling exponent and persistence length

parameters, using our histogram reweighting method and genomes previously obtained by rejection

sampling. Here we reweighted over a grid of parameters bounded by the 95% confidence intervals

estimates for the ν and b parameters, using a step size of 0.01 and 10bp respectively, while keeping

the number of recombination events fixed at λ = 9, which is the maximum likelihood estimate obtained

by rejection sampling (see Supplementary Table 2). Using genomes generated by rejection sampling

with the closest grid points in the parameter space, we performed reweighting of 176 parameter

settings over ≈ 9× 104 genomes.

After reweighting, we found the best model parameters to be λ = 9, ν = 0.55, b = 200 (log-

likelihood: −179.295; see Figure 3A and Supplementary Table 3), which are the same obtained by

rejection sampling. Analysis of the bootstrap 95% confidence intervals confirms estimates obtained

by rejection sampling, with the scaling exponent being close to the known estimate of a self-avoiding
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walk polymer, whereas we obtained higher confidence on the persistence length parameter being

close to the known estimate for DNA (95% CI: [150bp, 210bp]; see Supplementary Table 3).

We validated these results by performing rejection sampling over the parameters sets used for

reweighting, and found the root mean squared error for the log likelihood to be 1.985 (see Figure 3B

and Supplementary Figure 2), confirming that reweighting is an accurate method for extensive pa-

rameters exploration with limited computational burden (see Figure 3C).

Discrepancies in deletion frequency can identify functional genomic regions

We then studied whether simulated genomes obtained by our model have structural and biological

features similar to the population of SCRaMbLEd strains.

To do that, we first tested whether simulated genomes differed from the population of SCRaMbLE

strains with respect to genome length (see Figure 4A); here we found no statistically significant dif-

ference (Wilcoxon rank sum test, W=364626, p=0.05409), with limited discrepancies observed only

for extremely short genomes. Analogously, we did not find any statistically significant difference in

the number of segments deleted per strain (see Figure 4B; Wilcoxon rank sum test, W = 277474, p=

0.06559), which confirms that our model generates ensembles of genomes with structural features

similar to SCRaMbLE strains.

We then compared the expected frequency of deletion of each segment with the observed deletion

frequency in SCRaMbLE strains, and found that our model is able to consistently describe patterns

of deletions observed after a SCRAMBLE experiment, either using rejection sampling or reweighting

(see Figure 4C). Deletions around the auxotrophic markers (segment 14 and 32) are enriched as

observed in SCRaMbLE strains. Essential genes are always retained (segments 2, 7, 9, 10, 12, 20),

and the number of segments deleted in the intervening regions is clearly constrained by their genomic

location.

We observed major deviations between the expected and observed deletion frequency in the

region between segments 22 and 27. In particular, segment 24 is never deleted in SCRaMbLE strains,

whereas it is deleted in ≈ 20% of the simulated genomes. The discrepancy is explained by the

presence of the Yeast vaccinia virus VH1 Homolog (YVH1) gene, the knock-out mutation of which

confers a slow-growth phenotype; since our population of SCRaMbLE strains were selected to have

near wild-type fitness, deletions of the YVH1 are not represented.

Taken together, we have shown that our model simulates genomes with structural and biological

features comparable to SCRaMbLE strains, and represents a an accurate model to identify physical

and biological constraints associated with cellular fitness.
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Discussion

The construction of synthetic yeast chromosomes integrating an inducible evolutionary system en-

abled the first large-scale genome minimization experiment [22]. We proposed a new statistical

mechanics model, called the SCRaMbLE Polymer Interaction (SPI) model, which can predict min-

imal genomes generated by a SCRaMbLE experiment. Here we hypothesized that the number of

viable minimal genome is conditioned on the probability of interaction between recombination sites.

We then modelled this recombination probability using polymer physics, and developed a rejection

sampling algorithm and an efficient histogram reweighting method, which we validated using whole

genome-data of a SCRaMbLE experiment conducted on strains integrating the synthetic right arm of

chromosome IX.

We demonstrated that our model provides accurate estimates of recombination events that can

lead to minimal genomes and that loxPsym sites interact following a distance-dependent self-avoiding

walk process rather than a random uniform interaction process, and it is limited by persistence length

of DNA. Interestingly, the predicted distribution of the chromosome length and number of deleted loci

is in strong agreement with the observed distribution in SCRaMbLE strains. Moreover, simulations

suggest that the SCRaMbLE genomes might have undergone multiple recombination events; this

could explain why long-range recombination events are observed despite the low interaction prob-

ability between the flanking loxPsym sites. However, this hypothesis would require further in vivo

experiments.

The ability to identify functional biological constraints just by comparing deletion frequencies

represents a powerful investigation tool. Our model represents a viable solution when looking for

cis-recombination events, while trans-recombination events (translocations), introduces an additional

layer of complexity; while cis-recombinations probability can be described as a function of genomic

distance, for recombining sites on different chromosome this is not possible. A solution would be to

introduce an additional term that adjusts the probability of interaction based on consideration of the

statistical probability of favored/unfavored chromosomal conformations. While trans-recombination

events can be mathematically modelled, estimating the parameters of an extended model could re-

quire a significant amount of data from high-throughput genome conformation capture experiments

not yet readily available.
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Figure 1: Distance-dependent contact probability between recombination sites on a circular

chromosome. We report the contact probability for two recombination sites, under a random (ν = 0),

non self-avoiding walk (ν = 0.5) and self-avoiding walk interaction model (ν = 0.588), assuming a

persistence length b = {150, 300} bp, where 150bp represents the estimated persistence length of

DNA.
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Figure 2: Model parameter estimation and analysis using rejection sampling.A) We report

the log-likelihood value for each parameter setting, while denoting with a crossed circle the best

parameter setting.B) bootstrap confidence intervals for each model parameter. C) We compare the

average expected and the effective number of recombination events for various λ values; the area

in light red represents the 95% confidence interval of the effective number of recombination events.

D) Analysis of the percentage of genomes accepted during sampling at various λ values; the area in

light red represents the 95% confidence interval of the number of percentage of accepted genomes.
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Figure 3: Model parameter estimation and analysis using histogram reweighting. A) We report

the log-likelihood value for each parameter setting, while denoting with a crossed circle the best

parameter setting. B) Analysis of log-likelihood estimates obtained by reweighting and sampling for

different ν and b values at λ = 9, which is the maximum likelihood estimate. C) Bootstrap confidence

intervals for each parameter.
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Figure 4: Structural and biological features analysis of simulated genomes. A) Analysis

of genome length and B) segments deletion distribution in simulated and observed SCRaMbLE

genomes. C) Deletion frequency of each segment estimated by sampling and reweighting compared

to the distribution observed in SCRaMbLE genomes.
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