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Abstract 

Animal behavioral decisions are dynamically formed by evaluating momentary sensory 

evidence on the background of individual experience and the acute motivational state. In 

insects, the mushroom body (MB) has been implicated in forming associative memories and 

in assessing the appetitive or aversive valence of sensory stimuli to bias approach versus 

avoidance behavior. To study the MB involvement in innate feeding behavior we performed 

extracellular single-unit recordings from MB output neurons (MBONs) while simultaneously 

monitoring a defined feeding behavior in response to timed odor stimulation in naïve 

cockroaches. All animals expressed the feeding behavior almost exclusively in response to 

food odors. Likewise, MBON responses were invariably and strongly tuned to the same odors. 

Importantly, MBON responses were restricted to behaviorally responded trials, which allowed 

the accurate prediction of the occurrence versus non-occurrence of the feeding behavior in 

individual trials from the neuronal population activity. During responded trials the neuronal 

activity generally preceded the onset of the feeding behavior, indicating a causal relation. Our 

results contest the predominant view that MBONs encode stimulus valence. Rather, we 

conclude that the MB output dynamically encodes the behavioral decision to inform 

downstream motor networks.   
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Introduction 

Animal behavioral decisions are based on the processing of momentary environmental 

conditions on the background of innate and experience dependent behavioral biases. In 

insects, and specifically in nocturnal species, olfactory cues play a major role in a variety of 

behavioral decisions involved e.g. in mating, oviposition, or navigation. During foraging, 

locating food sources and evaluating their quality is fundamental for survival and requires the 

accurate recognition of appropriate food odors to inform behavioral decisions. 

Feeding behavior in insects is experimentally accessible through the registration of well-

defined behaviors, e.g. in the proboscis extension response (PER) in bees (Bitterman et al., 

1983) and flies (Yetman and Pollack, 1987; Shiraiwa and Carlson, 2007) and the maxilla-labia 

response (MLR) in cockroaches (Arican et al., 2020). The individual decision of an animal 

about executing a feeding behavior can be modulated by its internal and behavioral states 

(see Discussion). These influences may enter at different stages of sensory-motor processing 

including the mushroom body (MB) (Devineni and Scaplen, 2022). 

While olfactory processing and learning in insects is being studied in great detail, we still lack 

understanding of how and at which stage of the recurrent sensory-motor pathway behavioral 

decisions are formed. Here we take advantage of the experimental accessibility in the 

cockroach that allows us to simultaneously monitor feeding behavior and record from central 

brain neurons in the individual animal with high temporal resolution. The MB is an evolutionary 

old and homologous central brain structure in insects (Strausfeld et al., 2009). The MB output 

integrates sensory input of different modalities (Li and Strausfeld, 1999; Yagi et al., 2016; 

Strube-Bloss and Rössler, 2018) through sensory projections with the internal state, the 

behavioral state and external sensory context (Cohn et al., 2015; Tsao et al., 2018; Siju et al., 

2020; Aimon et al., 2022) through a large number of recurrent, mostly neuromodulatory input 

(see Discussion). While the MB function has predominantly been assigned to the formation 

and recall of short and long term associative memories (Heisenberg, 2003; Menzel, 2012; 

Hige et al., 2015; Owald et al., 2015), recent studies in untrained animals have demonstrated 

an important role of the MB in processing attractive and repulsive sensory stimuli in the context 

of innate behaviors (Bräcker et al., 2013; Lewis et al., 2015; Tsao et al., 2018; Siju et al., 2020) 

as well as its involvement in state-dependent sensory-motor transformation (Okada et al., 

1999; Aimon et al., 2022). 

Previous studies, mostly conducted in honey bees (Strube-Bloss et al., 2011, 2016) and fruit 

flies (Aso et al., 2014b; Owald and Waddell, 2015; Hancock et al., 2022), have provided 

accumulated evidence that distinct populations of MB output neurons (MBONs) establish a 

code for the valence of a sensory stimulus with respect to its behavioral relevance and 
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specifically so as a consequence of associative learning (see Discussion). Here we 

demonstrate that a subpopulation of MBONs in the cockroach faithfully predicts the 

occurrence or non-occurrence of a defined feeding behavior in the cockroach on a single trial 

basis. Our results therefore contest the prevailing view that the output of the MB merely 

encodes the valence of sensory stimuli and we conclude instead that, at its output, the MB 

represents an integrated signal of internal state, momentary environmental conditions and 

experience-dependent memory to encode a behavioral decision. 
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Results 

Feeding behavior is expressed in response to food odors 

We start out with analyzing the odor specific feeding behavior in individual animals. We 

presented a set of 10 different odors and one additional control stimulus (clean air, Fig. 1) to 

each animal. Each stimulus is repeated 10 times (trials). The continuous recording of the 

animals’ mouthparts allowed for the detection of a behavioral feeding response on a trial-by-

trial basis. For each of the 10 trials per odor we thus obtained a binary data (no MLR vs. MLR) 

on the animal’s feeding response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Extracellular single-unit recordings from MB output with simultaneous recording of feeding 
behavior. a Schematic illustration of a harnessed cockroach with inserted electrodes connected to an amplifier 
(Amp) and analog to digital converter (ADC). A computer-controlled odor supply system (Olf) provides the odor 
stimulus to the antenna from its tip. A camera records the mouthparts of the cockroach allowing for the detection 
of the maxilla-labia response (MLR). b Background staining with Lucifer Yellow of the right hemisphere of a 
cockroach brain. The MB α and β lobes are clearly visible. The position of the electrode tip, shown in magenta, 
(white arrow) is located at the border of the MB β lobe where the primary neurites of the MBONs leave the MB. AL: 
antennal lobe, ca: mushroom body calyx. c Stimulation pattern with odor and control stimulations in pseudo-
randomized order. Extracellular differential recording during a single stimulation of 2 s duration (light red shading) 
with the odor cinnamaldehyde and the corresponding spiking activity of two single units. 
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We observed a clear overall behavioral response pattern across the set of tested odors in the 

group of animals (Fig. 2a). Only a small subset of four odors triggered repeated feeding 

behavior. In contrast, and consistently across all animals, almost no responses were evoked 

by the presentation of the remaining six odors. The few sparsely distributed responses to this 

subset of odors matches the low spontaneous response probability to the control stimulus 

(overall 2.2%). Importantly, the three responded odors isoamyl acetate (Iso), cinnamaldehyde 

(Cin) and benzaldehyde (Ben) are known food odors in the cockroach (Arican et al., 2020; 

Khoobdel et al., 2021). 

 

 

Figure 2: Behavioral feeding response exclusively occurs to food odors. a Number of observed feeding 
responses (MLR) over 10 trials per stimulus for the control and all odors in individual animals (matrix) and average 
across all animals (horizontal bar histogram) during the 2 s odor presentations. Stimuli: 1-hexanol (1-Hex), 1-
heptanol (1-Hep), 1-octanol (1-Oct), 1-pentanol (1-Pen), heptanal (Hep), octanal (Oct), 2-heptanone (2-Hep), 
isoamyl acetate (Iso), benzaldehyde (Ben), trans-cinnamaldehyde (Cin), control (Ctr). b Distribution of single trial 
behavioral response latency during and after odor presentation (binwidth = 100 ms), gray shaded area depicts 
stimulus presentation. The mean (median) behavioral response time was 776 ms (632 ms). 

 

Neuronal population response is dominated by food odors  

To gain insight into the role of the MB output in sensory-motor transformation we recorded 

extracellular single unit activity from the output region of the MB β lobe throughout the 

experiment (Fig. 1). In a first analysis we quantified the single neuron and population activity 

in response to odor stimulation. Across the MBON population we observed clear and 

consistent responses only to the three food odors that also evoked consistent behavioral 

responses (Fig. 3d). In Fig. 3a we show, as an example, the single-trial spike trains of a single 

MBON and the corresponding trial-averaged firing rates in Fig. 3b. This neuron shows a strong 

response to Iso, a weak response to Cin and no response to Ben. Analysis of the trial-

averaged neuronal population rate in Fig. 3c shows different population response profiles for 

the three odors. The fraction of responding neurons was largest for Iso and smallest for Ben, 
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reflecting the behavioral odor response pattern in Fig. 2a. The control stimulus did not evoke 

a response in any neuron. 

 

 

Figure 3: Neuronal population response during odor stimulation. a Exemplary spike raster plots of unit 16 
(animal 10) during 10 repeated presentations of four different stimuli (Ctr = control, Cin = cinnamaldehyde, Ben = 
benzaldehyde, Iso = isoamyl acetate). The normalized trial-averaged odor concentration as measured with the PID 
is shown in the background (light color). b Peristimulus time histograms across all 10 stimulus trials (binwidth = 
50 ms). Upward pointing triangle (▲) depicts the time point of valve switch at t = -90 ms before the odor arrives at 
the antenna tip (t = 0 ms). c Normalized trial-averaged firing rates across the population of 31 neurons. Color code 
indicates changes in the normalized firing rates relative to the baseline firing rate. d Matrix depicts normalized time-
averaged firing rates across all units and all stimuli during stimulus onset (order of odors left to right as in Fig. 2a 
top to bottom). Odor stimulus was presented in the interval 0 – 2 s. Rightward pointing triangle () in c & d indicates 
unit 16 shown in a & b. 
 

MBON responses reflect behavioral feeding responses to food odors 

We now consider the relation of single neuron responses and behavioral responses to the 

three food odors (Cin, Ben, Iso). To this end, and for each animal, we sorted all trials in two 

groups with respect to their behavioral response (MLR vs. no MLR). As a first result we find 

that the response spike count was consistently higher in behaviorally responded trials than in 

behaviorally unresponded trials for all recorded neurons (Fig. 4a).  

Next, we analyzed the time-resolved response rate for the two behavioral conditions. The 

exemplary firing rate profile of a single MBON in Fig. 4b demonstrates a clear and strong trial-

averaged response during trials that lead to a behavioral response, while no response 

occurred during behaviorally unresponded trials. Averaging the normalized firing rates across 

all MBONs confirms this picture where behaviorally responded trials show a prominent 

increase in firing rate in response to the olfactory stimuli whereas behaviorally unresponded 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2022. ; https://doi.org/10.1101/2022.09.14.507924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.507924
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

trials did not evoke a discernible response (Fig. 4c), indicating a differential involvement of 

MBONs in the two behaviorally distinct categories.  

To study in more detail the neuronal representation of odor and behavioral category we 

performed a principal component analysis (PCA) on the MBON population. Considering the 

1st and 2nd principal components in Fig. 4d, we find that for each of the three odors, the 

respective trajectory during behaviorally responded trials (MLR) separates from the trajectory 

during behaviorally unresponded trials (no MLR), confirming our result on the averaged 

neuronal responses in Fig. 4c. In line with previous results in the honey bee (Strube-Bloss et 

al., 2011) we also observe a distinct representation of all three food odors in the principal 

component space. 

Neuronal responses precede behavioral responses 

What is the relative timing of behavioral and neuronal response? To answer this question, we 

estimated behavioral and neuronal response latencies at the single-trial level. In each 

behaviorally responded trial we determined the first video frame after odor onset (t = 0) that 

indicated a MLR. The overall distribution of behavioral response latencies shown in Fig. 2b is 

skewed towards the time of odor onset. In Fig. 4e-g we compare, per odor, the cumulative 

distributions of neuronal and behavioral single trial responses. While for Cin (Fig. 4e) and Ben 

(Fig. 4f) the neuronal responses are detected earlier than the behavioral responses, the 

situation is more difficult to assess for Iso (Fig. 4g) where neuronal and behavioral responses 

were overall fastest. 

Note, that we applied a conservative strategy for estimating the single trial neuronal response 

onset, which minimizes the possibility of a premature response detection. At the same time 

and due to the stochastic nature of spike responses this approach tends to overestimate single 

trial latencies, specifically in weakly responded trials. To alleviate this estimation bias we used 

an additional approach where for each neuron we estimated its response latency from the trial 

averaged firing rate across all behavioral response trials for a given odor. This resulted in 

average single unit response latencies of 353 ms (range: 40-1,658 ms), 577 ms (67-1,821 ms) 

and 208 ms (27-1,575 ms) for the three odors Cin, Ben and Iso, respectively, indicating that 

individual MBONs express different response latencies. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 16, 2022. ; https://doi.org/10.1101/2022.09.14.507924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.14.507924
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

Figure 4: Mushroom body output reliably predicts behavioral response to food odors. a The median spike 
count during presentation of the food odors (Cin, Ben, Iso) computed across trials and per neuron is larger in 
behaviorally responded trials (MLR, ordinate) than in behaviorally unresponded trials (no MLR, abscissa) in all 
MBONs. b The time-resolved trial-averaged firing rate of a single MBON (unit 15, animal 10) shows a strong 
response to stimulation with food odors in behaviorally responded (MLR) but not in unresponded (no MLR) trials.  
c Across neuron average (N = 23) of normalized firing rate responses to food odors sorted by the animals’ behavior 
indicate a clear neuronal response only to behaviorally responded trials but none to behaviorally unresponded 
trials. d First against the second principal component (PC1, PC2) of MBON population response separated by 
stimulus (Cin, Ben, Iso) and by behavioral response (MLR vs. no MLR) before (gray) and during (colored) stimulus 
presentation indicates separability of odors and behavioral state. e-g Across the single-trial MLR (weak line; 
shading refers to the 100 ms duration of the individual video frame) and single-trial neuronal response onset time 
(strong line) during presentation of Cin (e), Ben (f) and Iso (g). Only trials, which exhibit a behavioral response are 
considered (MLR). h Accuracy of single-trial prediction of behavioral response from neuronal population activity 
(black) sharply increases ~250 ms after stimulus onset and reaches almost perfect prediction. Averaged single trial 
prediction accuracy of behavioral response (MLR) based on a logistic regression classifier. The test data set (black) 
is compared to a control data set with randomly shuffled MLR labels (gray). 

 

Neuronal population activity allows for the single-trial prediction of the 

behavioral response 

Can we decode the neuronal response to predict feeding behavior in the single trial? To 

answer this question, we trained and tested a machine learning classifier in a time-resolved 

manner. To this end we first labeled the single trial neuronal responses according to their 
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behavioral outcome (class label MLR vs. no MLR). We then separated the complete data set 

in a training and a test set. The former was used to train the classification algorithm in order 

to predict the class label based on the single-trial neuronal population activity. Classification 

performance was then evaluated on the test data set and quantified as accuracy. In a cross-

validation approach we repeated the procedure on different splits of training and test data sets. 

The result in Fig. 4h (black curve) shows the average accuracy as a function of trial time. 

Initially, after stimulus onset, accuracy is at chance level (50%, horizontal dashed line) before 

it rises sharply to plateau at a high level of >90% accuracy. As a control we repeated the 

complete classification approach on the same data set, albeit with randomly shuffled 

behavioral class labels. As a result, accuracy did not significantly deviate from chance level. 
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Discussion 

Over the past decade, a series of experimental studies on associative olfactory conditioning 

have concluded that the MB output encodes the valence of a sensory stimulus (see 

Introduction). The large majority of studies have been conducted in the fruit fly Drosophila 

melanogaster. With few exceptions (e.g. Sayin et al., 2019; Siju et al., 2020), these 

experiments evaluated learning induced plasticity at the level of MBONs and behavioral 

memory expression during a memory retention test in a behavioral group assay (Tully and 

Quinn, 1985) in separate groups of animals that underwent the same classical conditioning 

protocol (Aso et al., 2014b; Hancock et al., 2022). This approach did not allow to match 

neuronal and behavioral responses in the same individual and on a trial-to-trial basis. 

By taking advantage of the experimental accessibility in the cockroach that allows us to 

simultaneously record neuronal spiking activity and feeding behavior with high temporal 

resolution in the individual animal, we were in the position to perform combined trial-based 

analyses of neuronal and behavioral responses. Our results demonstrate a tight link between 

the neuronal response at the MB output and the actual execution of a defined feeding behavior 

on a trial-to-trial basis where the occurrence or non-occurrence of behavior could be faithfully 

predicted with a single-trial classification approach. Our results contest the predominant view 

that the MB merely encodes sensory stimulus valence that provides a stimulus dependent 

behavioral preference. From our data we conclude that the MB output momentarily encodes 

a behavioral decision that is required for the execution of a behavior. Indeed, it has been 

shown that MBONs project to premotor areas (Li and Strausfeld, 1997, 1999; Okada et al., 

2003; Aso et al., 2014a) and it has recently been shown that they can also make direct 

connections to descending neurons that innervate the ventral nerve cord (Hsu and 

Bhandawat, 2016; Emanuel et al., 2020; Li et al., 2020) in fruit flies and cockroaches.   

Our conclusion is in line with earlier experimental observations in the cockroach (Mizunami et 

al., 1998; Okada et al., 1999) and recent experimental interpretations in the fruit fly (Hige et 

al., 2015; Lewis et al., 2015; Tsao et al., 2018; Siju et al., 2020; Aimon et al., 2022), which 

have suggested a tighter and acute involvement of the MB output in motor control. By 

investigating innate behavior in the fruit fly, Tsao et al. (2018) conclusively showed that MBON 

output is required for the expression of food-seeking behavior. This result implies that MBON 

activity should causally precede the behavioral execution. With respect to the precise relative 

timing of MBON activity and behavioral response, our analyses show that, on average, the 

onset of physiological spiking responses in the recorded MBON population indeed preceded 

the feeding behavior of the mouth parts. Stimulus response latencies differed across individual 

MBONs where several neurons showed fast stimulus-response times as short as 40 ms while 
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others show considerably late response onsets after several hundred milliseconds and thus 

during the actual behavior. This feature of  MBON specific response latencies matches earlier 

results in MBON recordings from naïve honey bees that reported a considerable fraction of 

fast responding MBONs that establish a rapid encoding of odor identity within ~70-80 ms 

(Strube-Bloss et al., 2012). Interestingly, we find that both, neuronal and behavioral response 

latencies are odor specific. Isoamyl acetate, the major single molecule component of banana 

blend (Schubert et al., 2014) and highly attractive both for flies and cockroaches (Schubert et 

al., 2014; Arican et al., 2020; Khoobdel et al., 2021), provoked the fastest and strongest 

neuronal as well as the fastest behavioral responses. We may further suggest that the later 

MBON responses occurring during behavior reflect on the behavioral state of the animal and 

rely on feedback signals (Mizunami et al., 1998; Okada et al., 1999). Indeed, in the fruit fly it 

has been shown that ongoing walking behavior through feedback via dopaminergic, 

octopaminergic and serotonergic neuromodulatory neurons strongly can dynamically 

influences MB activity (Cohn et al., 2015; Siju et al., 2020; Aimon et al., 2022). 

In summary we hypothesize that the MB lobes are positioned at the center of the sensory-

motor loop where it continuously integrates sensory evidence and monitors the animal’s 

metabolic and current behavioral state to form behavioral decision that is encoded in the MB 

output. 
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Materials and Methods 

Animals 

For all experiments adult male Periplaneta americana were used. Laboratory colonies were 

kept at 26 °C with a reversed light-dark cycle (12 h: 12 h) and fed with oat flakes and water ad 

libitum. All experiments were conducted during the scotophase, the natural active phase of P. 

americana. 

Experimental setup 

For data acquisition an extracellular recording setup was used (Fig. 1). The recording 

electrode (adapted from Okada et al., 1999; Strube-Bloss et al., 2011) consisted of three 

polyurethane coated copper wires (Ø 14 µm; Electrisola, Escholzmatt, Switzerland) glued 

together with hard sticky wax (Siladent, Goslar, Germany). A Teflon coated silver wire 

(Ø 125 µm, World Precision Instruments) was used as reference. Wires were fixed to a head 

stage that was connected to a preamplifier (PA 103, Electronics Workshop, University of 

Cologne, Germany). Main amplification using a 4-channel amplifier (MA 102 differential 

amplifier, Electronics Workshop, University of Cologne, Germany) was performed in 

differential mode from all three possible pair combinations of electrode wires. Amplified signals 

were bandpass filtered (300 Hz to 5 kHz), A/D converted with 16-bit amplitude resolution and 

a sampling rate of 25 kHz using a data acquisition unit (CED Micro 1401 mk II, Cambridge, 

UK) and stored on a PC. 

An odor supply system (adapted from Strube-Bloss et al. (2011) was customized (by the 

workshop of the Department of Biology and an electrical engineer of the Institute of Zoology 

at the University of Cologne, Germany). The air stream (3.5 LPS charcoal filtered air) was split 

into two pathways. The first provided a permanent airstream (regulated with a restrictor, ∅ = 

0.25 mm). The second passed through 12 magnetic valves (LFAA1200118H, Lee, Sulzbach, 

Germany). Each valve enables computer-controlled switching to pass the airstream either 

through an empty glass bottle (100 ml volume) or through a glass bottle (100 ml volume) filled 

with 5 ml of a pure odorant. The air outlet was placed at the tip of the right antenna aligned to 

its longitudinal axes such that the complete antenna was covered by the airstream (Fig. 1a).  

A video camera (Logitech QuickCam Pro) was positioned in front of the animal’s head to 

capture movement of its mouthparts, enabling the detection of a behavioral response (MLR, 

Arican et al., 2020).  
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All parts of the setup were placed in a Faraday cage covered in opaque fabric for shielding. 

Experiments were conducted in red light (643 nm), invisible to the animals (Goldsmith and 

Ruck, 1958; Walther, 1958; Mote and Goldsmith, 1970). 

Animal preparation 

Animals were anesthetized by cooling to 4 °C and harnessed in a custom-made holder (Fig. 1). 

The neck was fixed with hard sticky wax. Maxillary palps and the first basal segment of the 

antennae (scapus) were fixed with periphery wax (Sigma Dental Surgident, Systems, 

Handewitt, Germany) to avoid movement and contact with the electrodes. A small window was 

cut between the compound eyes and above the bases of the antennae. Trachea and head 

glands on top of the brain were removed and the animal was placed in the Faraday cage with 

a magnetic stand. Visible contours of the brain were used as landmarks to place the electrode 

above the β lobe in the right brain hemisphere, the silver wire was placed in the left compound 

eye. The recording electrode was slowly inserted axially with a micromanipulator (Luigs & 

Neumann SM-6, Ratingen, Germany) while monitoring the recording signal until the typical 

large amplitude extracellular action potentials of MBONs were detected. Then the head was 

covered with periphery wax to avoid dehydration of the brain and electrode movement. 

Stimulus protocol 

Ten odors we used for stimulation: 1-hexanol (Merck KGaA, Darmstadt, Germany), 1-heptanol 

(Merck KGaA, Darmstadt, Germany), 1-octanol (Thermo Fisher Scientific, Waltham, MA, 

USA), 1-pentanol (Merck KGaA, Darmstadt, Germany), heptanal (Thermo Fisher Scientific, 

Waltham, MA, USA), octanal (Merck KGaA, Darmstadt, Germany), 2-heptanone (Thermo 

Fisher Scientific, Waltham, MA, USA), isoamyl acetate (Thermo Fisher Scientific, Waltham, 

MA, USA), benzaldehyde (Merck KGaA, Darmstadt, Germany) & trans-cinnamaldehyde 

(Merck KGaA, Darmstadt, Germany). This set of odors is composed of single molecular odors 

that are perceivable by cockroaches (Sakura et al., 2002; Arican et al., 2020; Paoli et al., 2020; 

unpublished data). The food odors isoamyl acetate (Iso), benzaldehyde (Ben) and trans-

cinnamaldehyde (Cin) were included because they are known to be able to elicit feeding 

behavior in cockroaches (Arican et al., 2020) and are clearly attributable to the specific food 

sources banana, almond, and cinnamon, respectively. The stimulation protocol comprised 10 

trials per odor and additional 10 trials for the control stimulus (clean air). The total of 110 

stimulations were presented in a different pseudorandomized order to each animal. The odors 

were presented for 2 s with an inter-trial interval (ITI) of 30 s (Fig. 1c).  
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To control for stimulus timing, we performed separate calibration measurements where odor 

concentration was measured at the antennal tip and base using a high temporal resolution 

photoionization detector (200B miniPID, Aurora Scientific, Aurora, ON, Canada). Odors 

consistently arrived at the antennal tip position with a delay of 90 ms with respect to the time 

of valve switching. We defined this time point as stimulus onset for subsequent analyses. In 

addition to the odor response some neurons showed a very brief spiking response that 

occured with high temporal precision immediately after valve switching and before the odor 

arrived at the antennal tip (Fig. 3b, ▲). We argue that switching a valve between the clean 

and the odorous air-stream caused a very brief interruption of the air stream detectable as a 

brief mechanical stimulus. We therefore interpret this initial brief and accurately timed neuronal 

response as a mechanosensory response. In addition, visual stimulation with either ultraviolet 

or bluish green light generated responses in a large subset of neurons (not shown) reflecting 

the MB role in multisensory integration. 

Data processing and spike sorting 

Preprocessing of extracellular recordings was performed with the software Spike 2 (v7.2, CED, 

Cambridge, UK). Semi-automated spike detection and a template-based spike sorting 

algorithm (Spike 2) was used. For spike detection we defined a threshold of minimum three 

times the signal’s standard deviation as computed outside the stimulation intervals. Templates 

of the spike waveform were generated by the software and subsequently manually revised. 

Simultaneous video recordings (10 fps with constant frame rate) were made with the Spike 2 

Video Recorder (v1.05, CED, Cambridge, UK) and analyzed manually in Spike 2 for MLR 

detection. In total, recordings of 21 animals were analyzed. From 19 animals 31 single units 

could be extracted and the MLR could be analyzed in 18 animals. In 15 animals neuronal 

signals and behavior were analyzed simultaneously. 

Visualization of recording position 

To visualize the recording tract, the tip of the electrode was dipped in Alexa Fluor 647 

Hydrazide (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) before insertion into the 

brain. After recording, the brain was dissected in fresh cockroach Ringer's solution (185 mM 

NaCl, 4 mM KCL, 6 mM CaCl2, 2 mM MgCl2, 10 mM Hepes, 35 mM Glucose, pH 7.2) and the 

whole brain was moved to 4% Formaldehyde in 0.1 M PBS overnight on a shaker at 4 °C. On 

the next day, the tissue was washed with 0.1 M PBS and 0.2% Triton X-100 in 0.1 M PBS with 

each solution three times for 10 min. Afterwards, the brain was incubated in 0.5% Lucifer 

Yellow CH dilithium salt (Merck KGaA, Darmstadt, Germany) diluted in 0.1 M PBS overnight 

on a shaker at 4 °C and washed again with 0.1 M PBS (5x 10 min) the next day. Finally, the 
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brain was dehydrated in ethanol (30%, 50%, 70%, 90%, 95%, 2x 100%; 10 min each step), 

cleared in methylsalycylate (VWR Chemicals, Radnor, PA, USA) and mounted in it. The 

recording tract was visualized using a confocal laser scanning microscope (Leica TCS SP8, 

Wetzlar, Germany) and the scans were processed with ImageJ (FIJI based on ImageJ 1.53c, 

Wayne Rasband, NIH, USA). 

Firing rate estimation 

For analysis and visualization of neural and behavioral data custom written code in Python 3 

was used. Firing rates were estimated by kernel convolution (Nawrot et al., 1999; Meier et al., 

2008) with a time resolution of 1 ms. Trials were first aligned to stimulus onset (t = 0). Four 

different kernel functions were used: (1) a symmetric non-causal (i.e. centered) Gaussian 

kernel 𝑘(𝑡) =
𝑎

√2𝜋𝜎
𝑒𝑥𝑝(−𝑡²/(2𝜎²)) supported on [−3𝜎, 3𝜎], (2) an asymmetric and strictly 

causal exponential kernel 𝑘(𝑡) = 𝑎 ⋅ 𝑒𝑥𝑝(−𝑡/𝜏) supported on [0, 5𝜏], (3) an asymmetric non-

causal alpha-shaped kernel (Krofczik et al., 2008) 𝑘(𝑡) =
𝑎⋅𝑡0

𝜏²
𝑒𝑥𝑝(−𝑡0/𝜏) for 𝑡0 > 0 and 0 

otherwise aligned to its center of gravity (𝑡0 = 𝑡 + 1.6783 ⋅ 𝜏) and supported on [−5𝜏, 5𝜏], (4) 

a strictly causal alpha-shaped kernel aligned at 𝑡0 = 𝑡 supported on [0, 6𝜏]. All kernels were 

normalized to unity such that ∫ 𝑘(𝑡) 𝑑𝑡 = 1
∞

−∞
. 

For each neuron rates were estimated from single trials and from the pooled responses across 

trials.  

To compute the baseline-corrected trial-averaged firing rate responses to odor stimulation per 

neurons we pooled spike trains across the respective set of trials and performed convolution 

with a Gaussian kernel (𝜎 = 50 ms) and divided the result by the number of trials. We then 

subtracted the baseline firing rate as averaged across the baseline time window [-20 s, -0.5 s]. 

To obtain normalized firing rates, we averaged the firing rates per neuron and divided them 

by the maximum firing rate of the respective neuron over all odors. 

Principal component analysis 

For PCA we selected units from animals that showed a behavioral response (MLR) to food 

odors (Cin, Ben, Iso) during at least one trial and at most during nine trials per odor such 

allowing for comparison between behaviorally responded and unresponded trials. Six animals 

(seven neurons) fulfilled this condition. Single trial rate estimates (non-causal alpha kernel, 

𝜏 = 200 𝑚𝑠) were used. The mean firing rate in the baseline window [−20 𝑠, −0.5 𝑠] was 

subtracted in each single trial. Single trial rates were grouped by odor identity and behavioral 

outcome (MLR vs. no MLR) before trial-averaging. All vectors were used together for PCA. 
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Response latencies 

To determine single trial neuronal response latencies, we used the baseline uncorrected data. 

Latencies were estimated from rate estimates with the causal exponential kernel ( 𝜏 =

250 𝑚𝑠). For this, baseline activity was estimated in the time window [−20 𝑠, −0.5 𝑠]. For each 

trial the 97-percentile of the baseline firing rate in the time window [−20 𝑠, −0.5 𝑠] was 

determined and used as threshold. If this value was smaller than 2.25 ⋅ 𝑚𝑎𝑥(𝑘(𝑡)) the 

threshold was set to 2.25 ⋅ 𝑚𝑎𝑥(𝑘(𝑡)). Response latency was determined as the time point of 

the first threshold crossing of the response rate from below within the time window [ 0 𝑠, 2 𝑠]. 

This conservative procedure minimizes the chance to detect any premature response caused 

by spontaneous activity. As a consequence, there is a tendency to overestimate single trial 

response latencies when a response is detected only after integrating several true response 

spikes. 

Based on the estimated firing rates of the single-trial analysis population onsets were 

analyzed. The single trials were grouped by their odor and unit identity. Baseline and stimulus 

activity was averaged across all trials in these groups. For each group the 97-percentile of the 

baseline firing rate was determined as response threshold. Neuronal onsets were detected in 

the group firing rate stimulus activity of the group, if a value was greater than the threshold as 

the border. If a neuronal onset was detected, the time point of the first crossing from below 

was considered as the time point of the neuronal onset. The mean across all units per odor 

was estimated. Units without a detected onset were ignored. 

Prediction of behavioral outcome 

For single trial prediction of a behavioral response from population activity during stimulation 

with food odors (Cin, Ben, Iso) we employed logistic regression classification with L2-norm 

(Python package Scikit-learn, Pedregosa et al., 2011) with regularization strength of 1.0. For 

training and testing the classifier we constructed neuronal pseudo populations (Rickert et al., 

2009) as follows. We first selected those animals that expressed feeding behavior (MLR) in at 

least 10 and at most 20 out of total 30 stimulation trials resulting in a population of 17 units. 

We then estimated single trial firing rates using a causal alpha kernel (𝜏 = 50 𝑚𝑠) and 

subtracted the mean firing rate in the baseline window [−20 𝑠, −0.5 𝑠]. All trials were grouped 

into two behavioral classes (MLR vs. no MLR). For each neuron and both classes, trials were 

then split into test (67%) and training set (33%). Training and testing were performed for each 

time point separately by randomly drawing (with replacement) 50 training and 20 test samples 

such that each sample consisted of a vector of 17 single trial firing rates. The mean and 

standard deviation of the training samples was estimated. Training and test data was centered 
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by this mean and scaled by this standard deviation. Prediction accuracy was calculated as the 

percentage of correctly predicted single trial behavioral outcomes in the test set. The training 

and test procedure was repeated 24 times based on independent random splits into test and 

training sets. As a means of control, the complete process is repeated for a surrogate data set 

with randomly shuffled MLR labels, predicting a performance at chancel level (50%). 
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