Abstract
HLA class II antigen presentation is key for controlling and triggering T cell immune responses. HLA-DQ molecules, which are believed to play a major role in autoimmune diseases, are heterodimers that can be formed as both cis and trans variants depending on whether the α- and β-chains are encoded on the same (cis) or opposite (trans) chromosomes. So far, limited progress has been made for predicting HLA-DQ antigen presentation. In addition, the contribution of trans-only variants (i.e. variants not observed in the population as cis) in shaping the HLA-DQ immunopeptidome remains largely unresolved. Here, we seek to address these issues by integrating state-of-the-art immunoinformatics data mining models with large volumes of high-quality HLA-DQ specific MS-immunopeptidomics data. The analysis demonstrated a highly improved predictive power and molecular coverage for models trained including these novel HLA-DQ data. More importantly, investigating the role of trans-only HLA-DQ variants revealed a limited to no contribution to the overall HLA-DQ immunopeptidome. In conclusion, this study has furthered our understanding of HLA-DQ specificities and has for the first time cast light on the relative role of cis versus trans-only HLA-DQ variants in the HLA class II antigen presentation space. The developed method, NetMHCIIpan-4.2, is available at https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵* shared first authorship
The revised version of the manuscript includes more background on the issue of cis and trans-only DQ molecules, as well as an external benchmark on DQ-heterozygous samples.