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Abstract16

AlphaFold-Multimer has greatly improved protein complex structure17

prediction, but its accuracy also depends on the quality of the mul-18

tiple sequence alignment (MSA) formed by the interacting homologs19

(i.e., interologs) of the complex under prediction. Here we propose a20

novel method, denoted as ESMPair, that can identify interologs of a21

complex by making use of protein language models (PLMs). We show22

that ESMPair can generate better interologs than the default MSA23

generation method in AlphaFold-Multimer. Our method results in bet-24

ter complex structure prediction than AlphaFold-Multimer by a large25

margin (+10.7% in terms of the Top-5 best DockQ), especially when26

the predicted complex structures have low confidence. We further show27

that by combining several MSA generation methods, we may yield even28

better complex structure prediction accuracy than Alphafold-Multimer29

(+22% in terms of the Top-5 best DockQ). We systematically analyze30

the impact factors of our algorithm and find out the diversity of MSA of31
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2 ESMPair

interologs significantly affects the prediction accuracy. Moreover, we show32

that ESMPair performs particularly well on complexes in eucaryotes.33

Keywords: Protein Complex Structure Prediction, Protein Language Model34

1 Introduction35

Most proteins function in a form of protein complexes[1–5]. Consequently,36

obtaining accurate protein complex structures is vital to understanding how37

a protein functions at the atom level. Experimental methods, such as X-ray38

crystallography and cryo-electron microscopy, are costly and low-throughput,39

and require intensive efforts to prepare samples for structure determination.40

The computational methods, termed as protein complex prediction (PCP)41

or protein-protein docking, is an attractive alternative for solving complex42

structures. PCP takes sequences and/or the unbound structures of individ-43

ual protein chains as inputs and then predicts the bound complex structures.44

Traditional computational methods often rely on the global search paradigm,45

such as fast-Fourier transform based methods like ClusPro [6], PIPER [7], and46

ZDOCK [8] and Monte Carlo sampling-based methods like RosettaDock [9],47

have been widely used in practice. These methods exhaustively search the con-48

formation space of a complex, and optimize score functions to obtain the final49

structures. Since the conformation space is large, these methods have to make50

restrictive constraints on the search space in order to obtain results within51

a reasonable amount of time. Typical constraints include reducing the search52

resolutions, making the input monomers rigid bodies, and using score func-53

tions that can be quickly evaluated [7, 8]. As a result, global search methods54

have relatively low prediction accuracy and are used with more computation-55

ally intensive local refinement methods to obtain higher resolution predictions56

[10]. To date, PCP is still a fundamental and longstanding challenge in com-57

putational structural biology [11, 12]. Various methods have been proposed58

for PCP, but with limited accuracy. When only sequences are given as inputs,59

PCP is even harder because the unbound structures of individual chains and60

auxiliary information on the complex interfaces are unavailable.61

In the last decades, deep learning has enabled substantial progress in quite62

a few computational structural biology tasks, such as protein contact [13–15],63

tertiary structure prediction [16–18], and cryo-electron microscopy structure64

determination [19, 20]. Among these, co-evolution analysis based contact65

prediction [18, 21, 22] and structure prediction [23, 24] have made sub-66

stantial progress and demonstrated state-of-the-act accuracy for monomers.67

These methods utilize the co-evolutionary information hidden in MSA to68

infer inter-residue interactions or three-dimensional structures of the targets.69

AlphaFold2 is the representative method, which has showed unparalleled accu-70

racy in CASP14 [16]. Recently, AlphaFold-Multimer [25], a derived version71

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerNovember 22, 2022. 

this version posted; https://doi.org/10.1101/2022.09.15.508065doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508065


Springer Nature 2021 LATEX template

ESMPair 3

of AlphaFold2 for multimers, significantly outperforms prior protein com-72

plex prediction systems [6, 23, 24]. However, compared to the accuracy of73

AlphaFold2 [16] on folding monomers, the accuracy of AlphaFold-Multimer on74

predicting the protein complex structures is far from satisfactory. Its success75

rate is around 70% and the mean DockQ score is around 0.6 (medium quality76

judged by DockQ) [24]. The most important input feature to AlphaFold-77

Multimer is the multiple sequence alignment (MSA) [23, 24]. Compared with78

AlphaFold2 [16] that takes the MSA of a single protein as the input, AlphaFold-79

Multimer needs to build an MSA of interologs for protein complex structure80

prediction. However, how to construct such an MSA is still an open problem for81

heteromers. It requires the identification of interacting homologs in the MSAs82

of constituent single chains, which may be challenging since one species may83

have multiple sequences similar to the target sequence (paralogs). Several algo-84

rithms have been proposed to identify putative interologs from genome data,85

such as profiling co-evolved genes [26], and comparing phylogenetic trees[27].86

Genome co-localization and species information are two commonly used heuris-87

tics to form interologs for co-evolution-based complex contact and structure88

prediction [25, 28]. Genome co-localization is based on the observation that,89

in bacteria, many interacting genes are coded in operons [29, 30] and are co-90

transcribed to perform their functions. However, this rule does not perform91

well for complexes in eukaryotes with a large number of paralogs, since it92

becomes more difficult to disambiguate correct interologs [28, 31]. The other93

phylogeny-based method for identifying interologs is first proposed in Com-94

plexContact [28] and later similar ideas are adopted by AlphaFold-Multimer.95

This method first identifies groups of paralogs (sequences of the same species)96

from the MSA of each chain, then ranks the paralogs based on their sequence97

similarity to their corresponding primary chain, and last pairs sequences of98

the same species and with the same rank together. However, they are all99

hand-crafted approaches which merely take effects on the specific domains.100

In this paper, we instead investigate general and automatic algorithms for101

constructing MSAs of interologs for heterodimers effectively.102

Representation learning via pre-training techniques has been prevailing in103

different applications [34–37]. Inspired by this, protein language models [38–104

40] (PLMs) have surged as the main regime for protein representation learning105

built on a large amount of protein sequences, which benefits downstream tasks,106

such as contact prediction [15, 39], remote homology detection [41, 42] and107

mutation effect prediction[43]. PLMs can comprehensively capture the biologi-108

cal constraints and co-evolutionary information encoded in the sequence, which109

is a plausible interpretation for their impressive performance on various down-110

stream tasks than canonical methods relying on dedicated hand-crafted traits.111

To this, a natural question arises: Can we leverage the co-evolutionary112

information featured by PLMs to build effective interologs?113

In this paper, we mainly focus on ab-initio protein complex structure pre-114

diction, i.e., predicting the complex structure without prior information on115

the binding interfaces of the target complex. To our best knowledge, we are116
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Fig. 1 Schematic illustration of ESMPair that builds interologs as the input
to AlphaFold-Multimer. Given a pair of query sequences as input: 1) we first search
the UniProt database [32] with JackHMMER [33] to generate the MSA for each query
sequence, 2) sequences of the same taxonomy rank are grouped into the same cluster, 3)
ESM-MSA-1b is applied to estimate the column attention score (ColAttn score) between
each sequence homolog of MSA with the query sequence. 4) One interolog is obtained by
directly concatenating two matched sequence homologs. We match two sequence homologs
of the same taxonomy group with similar attention scores from the two query sequences, 5)
AlphaFold-Multimer takes the interolog MSA as input to predict the complex structure.

the first to propose a simple yet effective MSA pairing algorithm that uses117

the immediate output from protein language models to form joint MSAs, i.e.,118

MSA of interologs. In particular, we leverage column-wise attention scores from119

ESM-MSA-1b [39] to identify and pair homologs from MSAs of constituent120

single chains, coined as ESMPair. We conduct extensive experiments on three121

test sets, i.e., pConf70, pConf80, and DockQ49. Compared with previous122

methods, ESMPair achieves state-of-the-art structure prediction accuracy on123

heterodimers (+10.7%, +7.3%, and +3.7% in terms of the Top-5 best DockQ124

score over AlphaFold-Multimer on three test sets, respectively). Moreover, we125

find out that the ensemble strategies, which combine ESMPair with other MSA126

pairing methods, significantly improve the structure prediction accuracy over127

the standard single strategy. We further analyze the performance of complexes128

from eukaryotes, bacteria, and archaea, and find out ESMPair performs the129

best on eukaryotes for which identifying interologs is quite difficult [28, 31].130

Most strikingly, on a few targets where one of the constituent chains is from131

eukaryotes while the other is from bacteria, ESMPair considerably outper-132

forms other baselines (+25% in overall performance over AlphaFold-Multimer),133

which strongly demonstrates that the PLM-enhanced MSA pairing method134

is robust for targets from different superkingdoms. Then we exposit that the135

diversity of interologs has a significant positive correlation with the predic-136

tion accuracy. Lastly, we explore other approaches that utilize the output of137

ESM-MSA-1b. For example, we take the cosine-similarity score between the138

sequence embeddings as the metric to build interologs, which performs on par139

with the default protocol used in Alphafold-Multimer. Generally, ESMPair is140
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Fig. 2 Comparing ESMPair and AF-Multimer predictions on newly-release
targets (a-f) and unresolved cases (g). a-f, The comparisons are made on the 74 targets
whose release data is later on 2018-4-30. a, The bar charts show the relative performance
gap between ESMPair and AF-Multimer on three categories: ESMPair outperforms AF-
M.; AF-M. outperforms ESMPair; Equal performance. b, The interface and ligand RMSD
distributions of predicted stuctures via ESMPair (Purple) and AF-M (Yellow). c-f, Four
cases are further visualized. Among this, the ligand orientation are wrongly-predicted via
AF-M. on 7VSI and 7AQU, while the binding site are wrongly-predicted by AF-M. on 7SL9
and 6FYH. g, The intermediate filament protein NFM-INA heterodimer structure predicted
via ESMPair shows a four-helix bundle. The gray boxes show the interacting motifs of coil
1A, coil 1B and coil 2 of the two proteins.

the first simple yet effective algorithm that incorporates the strength of PLMs141

into tackling the issues of identifying MSA of interologs. We believe ESMPair142

will facilitate the fields of protein structure prediction which highly resorts to143

the co-evolution information hidden in MSA.144

2 Results145

In this section, we first briefly outline the framework of ESMPair for pro-146

tein complex prediction (Section 2.1). Then, we discuss our proposed methods147

obtain better complex prediction accuracy than previous MSA pairing methods148

(Section 2.2). We find out the ensemble strategy showcase the excellent perfor-149

mance that the default single strategy (Section 2.3). We further quantitatively150

analyze several key factors and hyperparameters that may impact the perfor-151

mance of our method, and also explore the capability of different measurements152

to distinguish acceptable predictions from unacceptable ones (Section 2.4).153
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Table 1 DockQ scores and success rate of PLM-enhanced pairing methods
and baselines. We report the average of Top-5 Best DockQ score, Top-1 Best DockQ
score, and Success Rate (DockQ≥0.23) (%) on pConf70, Quality49, and pConf80 test sets.
For one test target, we predicted 5 different structures using the five AlphaFold-Multimer
models. Subscript in red represents the performance gain of our method over the default
MSA pairing strategy in Alphafold-Multimer (%).

Methods
pConf70 Quality49 pConf80

Top5 Top1 SR Top5 Top1 SR Top5 Top1 SR

Non-Pairing Methods

Block 0.199 0.179 30.4 0.212 0.194 49.0 0.351 0.319 51.2

Baseline Pairing Methods

Genome 0.215 0.182 33.7 0.219 0.195 49.0 0.377 0.346 54.7
AF-Multimer 0.234 0.203 42.4 0.247 0.219 58.0 0.408 0.369 62.5

PLM-enhanced Pairing Methods

InterLocalCos 0.218 0.180 33.7 0.236 0.210 52.3 0.389 0.353 56.5
InterGlobalCos 0.224 0.182 35.9 0.229 0.206 52.9 0.391 0.350 57.1
IntraCos 0.235 0.199 37.0 0.251 0.219 54.8 0.400 0.362 58.3

ESMPair
0.259
(+10.7)

0.214
(+5.4)

42.4
(+0.0)

0.265
(+7.3)

0.235
(+7.3)

58.7
(+1.2)

0.423
(+3.7)

0.378
(+2.4)

63.1
(+1.0)

2.1 ESMPair overview154

The overall framework of ESMPair is illustrated in Fig. 1 with the details155

in Methods. In complex structure prediction, predictors such as AlphaFold-156

Multimer make use of inter-chain co-evolutionary signals by pairing sequences157

between MSA of constituent single chains of the query complex. Formally,158

given a query heterodimer, we obtain individual MSAs of its two constituent159

chains, denoted as M1 ∈ AN1×C1 and M2 ∈ AN2×C2 , where A is the alphabet160

used by PLM, N1 and N2 are the number of the sequences in MSAs M1 and161

M2, and C1 and C2 are the sequence length. The MSA pairing pipeline aims at162

designing a matching or an injection π : [N1] → [N2] between MSAs from each163

chain to build the MSA of interologs, dubbed asMπ ∈ AN×(C1+C2), where N is164

the number of the sequence in the joint MSA. In practice, the MSA of interologs165

Mπ is a collection of the concatenated sequence {concat(M1[i],M2[π(i)]) :166

i ∈ P}, where P is the indices of the sequences from M1 that can be paired167

with any sequences from M2 according to the matching pattern π. Then MSA168

of interologs is taken by predictors as input to predict the structure of the169

query heterodimer. Our aim is to leverage the superiority of PLMs to explore170

an effective matching strategy π that facilities the protein complex structure171

prediction.172
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2.2 ESMPair outperforms other MSA pairing methods173

on heterodimer predictions174

Overall evaluation. For each test target we predict five 3D structures using175

Alphafold-Multimer’s 5 models and then report the average of Top-k (k=1, 5)176

Best DockQ score of the predicted structures and the corresponding success177

rate (SR) in Table 1. Our method outperforms the other methods. To be spe-178

cific, our method outperforms the AF-Multimer’s default MSA pairing strategy179

on all three test sets (0.259 vs. 0.234 on pConf70, 0.423 vs. 0.406 on pConf80,180

and 0.265 vs. 0.242 on Quality49, in term of Top-5 DockQ score). Our exper-181

imental results confirm that our proposed column-wise attention based MSA182

pairing method, denoted as ESMPair, is better than 1) the sequence similarity-183

based method used in AF-Multimer, and 2) the cosine similarity-based method184

based on the mixed noisy residue embedding, i.e., ESMPair(InterLocalCos),185

ESMPair(InterGlobalCos), and ESMPair(IntraCos). Hereinafter, we abbrevi-186

ate them as IntraLocalCos, InterGlobalCos, and InterCos.187

Among all the MSA pairing methods, block diagonalization performs the188

worst (-30% compared with ESMPair in terms of the average of Top-5 best189

DockQ). The result indicates that the inter-chain co-evolutionary information190

helps with complex structure prediction. Among MSA pairing baselines, AF-191

Muiltmer surpasses genetic co-localization by a large margin (+12.8% Top-5192

DockQ). All the proposed PLM-enhanced pairing methods substantially out-193

perform the block diagonalization and the genetic-based methods. Even though194

AF-Multimer may have overly optimistic performance using the default pair-195

ing method since the training MSAs are built using it, IntraCos MSA pairing196

method performs on a par with AF-Multimer, and ESMPair further exceeds197

it by a large margin (+4.2∼10.7% Top-5 DockQ score over three test sets).198

Intra-ranking methods are superior to inter-ranking ones both in199

effectiveness and scalability. From Table. 1, we can also see inter-200

ranking methods like InterLocalCos and InterGlobalCos underperform the201

intra-ranking ones, i.e. IntraCos and ESMPair. We speculate that as ESM-202

MSA-1b pre-trains in the monomer data, it fails to directly capture the203

underlying correlations across the constituent chains in the complex. Besides204

heterodimers, when it extends to predict the structure of multimer with more205

than two chains, intra-ranking strategies are the self-contained methods that206

only need to rank the MSAs in each single chain, and then match MSA of the207

same rank with other chains to build effective interologs with time complexity208

of O(N), where N is the depth of MSA. While the inter-pairing strategies suf-209

fer from the exponential growth of combinations with increasing interacting210

chains with the time complexity O(Nr), where r is the number of chains in the211

multimer. Thus, intra-ranking methods are more time-efficient and scalable212

than inter-ranking ones.213

ESMPair performs better on low pConf targets. As shown in Table. 1,214

the performance gap between ESMPair and AF-Multimer becomes narrower215

on pConf80 than on pConf70, with improvement ratio from 3.7% to 10.7%. To216

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerNovember 22, 2022. 

this version posted; https://doi.org/10.1101/2022.09.15.508065doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508065


Springer Nature 2021 LATEX template

8 ESMPair

dpConf80 Quality49c

Euca.&Bact.

Euca.

Bact.
Euca.&Bact.

Euca.

Bact.

0.1 0.5 0.9
pCRnI

0

40

80

Im
pr

Rv
em

en
t (

%
)

LLnear5egressLRn

[0,0.2) 0.4 0.6 0.8 1
pConI

0

40

80

,m
pr

ov
em

en
t (

%
)

a bOverall pConf70

e f

Euca.&Bact.

Euca.

Bact. Euca.&Bact.

Euca.

Bact.

Fig. 3 Comparison of the prediction performance on different domains. a-d, We
compare the DockQ score among ESMPair, AF-Multimer, and Genome on Eucaryote, Bac-
teria, and Eucaryote&Bacteria domains. The Euca.&Bact. is a special domain means the
two constituent chains in the heterodimer belong to the two domains respectively. Specif-
ically, the heterodimers of our dataset are from Eucaryotes, Bacteria, Viruses, Archaea,
Eucaryotes;Bacteria respectively. We group the data from Bateria, Viruses, and Archaea as
the Bateria domain. In all test sets, ESMPair significantly outperforms other two baselines
on the Eucaryote targets. e-f, The negative correlations between the relative improvement
between ESMPair and AF-Multimer.

take an in-depth analysis, we quantitatively analyze the correlations between217

the predicted confidence score (pConf) estimated by AF-Multimer and the218

performance gap of the average of Top-5 Best DockQ score between ESM-219

Pair and AF-Multimer on Quality49, as illustrated in Fig. 3(e-f). The relative220

improvement is negatively correlated (Pearson Correlation Coefficient is -0.49)221

with the predicted confidence score. When pConf is less than 0.2, the relative222

improvements even achieve 100%, while when pConf is more than 0.8, ESMPair223

performs nearly on par with AF-Muiltimer. This is because AF-Multimer can224

do well on a relatively easier target, it is very challenging to further improve it.225

ESMPair has the higher prediction accuracy on eucaryote targets.226

We further compare the DockQ distribution of ESMPair, AF-Multimer, and227

Genome on three kingdoms, i.e. Eucaryote, Bacteria, and Eucaryote&Bacteria,228
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as shown in Fig. 3(a-d), we can see that ESMPair rivals the other two MSA229

pairing methods on the Eucaryotes data by a large margin (0.420 for ESMPair230

, 0.402 for AF-Multimer, and 0.369 for Genome on the overall data). As we all231

know that it is notoriously different to identify homologous protein sequences232

for the Eucaryotes data, ESMPair has a desirable property to build effective233

interologs on the Eucaryotes. While in the Bacteria data, three strategies have234

similar performance (around 0.35 on the whole data). Most strikingly, we find235

ESMPair has an extraordinary performance on the Euca.&Bact. data over the236

other two methods (0.394 for ESMPair, 0.314 for AF-Multimer, and 0.277 for237

Genome on the overall data). We further check the performance gap for each238

target from the Euca.&Bact. data. ESMPair performs significantly better on239

the three out of six targets, 0.443 (ESMPair) versus 0.013 (AF-Multimer) on240

5D6J, 0.289 versus 0.201 on 6B03, and 0.864 versus 0.854 on 7AYE. Besides,241

ESMPair performs on par with AF-Multimer on the other three targets. These242

results shed light on the robustness of protein language models. As PLMs are243

pre-trained on billions of protein data [38–40], it can break the bottleneck244

that other hand-crafted MSA pairing methods, such as genetic-based methods,245

phylogeny-based methods, etc, which merely take effect in the specific domain.246

While our proposed PLMs-enhanced methods can identify the co-evolutionary247

signals effectively to build MSA of interologs across different superkingdoms.248

ESMPair outperforms AF-Multimer on the most of newly-released249

targets. We further select 74 targets that AF-Multimer does not train on [25],250

i.e., the targets whose release date is later than 2018-4-30 from the test dataset.251

Then we compare the performance of predicted structures on these targets252

between ESMPair and AF-Multimer in Fig. 2. From Fig. 2(a), ESMPair out-253

performs AF-Multimer on the most of targets (57%) with a relative larger254

performance gap, while AF-Multimer outperforms ESMPair on fewer targets255

(35%) with a relative lower gap. We further plot the distributions between256

interface RMSD and ligand RMSD of predicted structures via ESMPair and257

AF-Multimer in Fig. 2(b). The holistic distributions predicted by ESMPair258

are closer to the origin of coordinates than that predicted by AF-Multimer,259

which strongly proved ESMPair is superior to AF-Multimer on the predictions260

of newly-released targets.261

Furthermore, we show why ESMPair performs better than AF-Multimer262

by analysing four PDB targets, 7VSI, 7AQU, 6FYH, and 7VSI. in Fig. 2(c-f).263

Among these, 7VSI and 6FYH have a larger predicted iRMSD and lRMSD264

variance by AF-Multimer, because AF-Multimer predicts the wrong binding265

sites. While AF-Multimer predicts the right binding sites on 7SL9 and 7AQU266

that have a smaller predicted iRMSD and lRMSD variance, it unfortunately267

predicts the wrong ligand orientations. By contrast, our proposed ESMPair268

correctly predicts the binding sites on the receptor and also places the ligand269

in the approximately correct relative orientation.270

To better illustrate the usage of ESMPair in predicting the protein com-271

plexes without known resolved 3D structures, we inspected the intermediate272

filament heterodimer formed between the neurofilament medium polypeptide273
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Fig. 4 The comparisons between ESMPair and four alternative MSA pair-
ing approaches (a-d), and various ensemble strategy (e) on the targets from
pConf70. (a-d), The coordinates of each point demonstrate the reported DockQ score of
the target between ESMPair (x-axis) and other methods (y-axis). A point under the diag-
onal dash line implies ESMPair performs better than the compared method on this target.
The highlight regions represent the incorrect (white), acceptable (grey), medium (yellow),
and high-quality (purple) predicted models according to DockQ score. (e), The grey bars
represent the performance of single strategies, where G. stands for Genome, A. is for AF-
Multimer, and E. is for ESMPair. ESMPair is the best with 0.259 DockQ score and 42.4%
Success Rate. The yellow bars show the ensemble performance of the two strategies. Among
these, ESMPair + Genome performs the best with 0.277 DockQ score with 44.6% Success
Rate. The purple bar implies the best performance about the ensemble of all the three strate-
gies with 0.285 DockQ score with 46.8% Success Rate.

(NFM, UniProt ID P08553) and α-internexin (UniProt ID P46660), which is274

known to form an anti-parallel four-helix bundle[44, 45]. As shown in Fig. 2(g),275

both ESMPair and AF-Multimer correctly predict the three binding interfaces276

between the coil 1A, coil 1B and coil 2 motifs from NFM and α-internexin.277

However, ESMPair predicted the two coiled coils to pack as a four-helix bundle,278

which is consistent with the experimental evidences, while the AF-multimer279

predicted the two coiled coils to be separated. This case demonstrate the280

potential to apply ESMPair to model unresolved protein complexes.281

2.3 Ensemble improves the prediction accuracy282

From Fig. 4 (a-d), we found that different MSA pairing methods have their own283

advantages, even block diagonalization performs slightly better than ESMPair284

on about 30% targets, which implies that they can complement each other. To285

verify that, we combine ten models predicted by any two of the MSA paring286

methods, then we report the average of Top-5 Best DockQ score, as shown in287

Fig. 4 (e). The ensem strategies, i.e., the yellow and purple bars, significantly288

outperform the corresponding single strategy, i.e., the grey bars. Specifically,289

the performance of intra-ensemble strategies surpass the corresponding single290

strategy, for example, the DockQ score of ESMPair + ESMPair is 0.269 versus291

0.259 of ESMPair, which demonstrates that simply increasing the number of292

predictions of each model also benefits the structure prediction accuracy of293
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Fig. 5 Different factors affect the performance of structure prediction. The
correlations between the average of Top-5 Best DockQ score (Y-axis) and (a) the column
attention score predicted by ESM-MSA-1b, (b) the number of effective sequences measured
by Meff, (c) the number of species, and (d) the depth of matched MSA. (e) The distribution
of column attention score (X-axis) and the number of effective interologs in the paired MSA
(Y-axis). The red curve is the visualization of the fitted linear regression model. The Pearson
correlation coefficient is about -0.70, which strongly indicates that an increasing column
attention score results in the decreasing number of effective interologs.

each target. Among the inter-ensemble strategies, ESMPair pluses any one of294

the single strategy always have a better performance than the one without295

ESMPair, for example, the SR of ESMPair + Genome is 44.6% versus 40.4%296

of AF-Multimer + Genome. Finally, the ensemble of all three strategies, i.e.,297

the purple bar, reaches the best performance with 0.285 DockQ score and298

46.8% Success Rate, which motivates us that instead of merely using a single299

strategy to build interologs, the ensemble MSA pairing strategy may be the300

silver bullet to identify more effective interologs.301

2.4 More analytic studies of ESMPair: key factors,302

hyperparameters, and measurements to identify303

high-quality predictions304

In this part, we analytically and empirically investigate the inherent prop-305

erties of ESMPair. Generally, we find out the diversity of the formed MSA306

of interologs has a strong correlation with the performance of ESMPair.307

Moreover, we study the effect of different layers of ESM-MSA-1b [39] on identi-308

fying homologs. Lastly, we demonstrate the predicted confidence score output309

by AlphaFold-Multimer is a rational measurement to discriminate correct310

predictions from incorrect ones.311

The diversity about MSA of interologs affects the predicted struc-312

ture accuracy by ESMPair. We investigate the connections between the313
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performance of ESMPair and some key factors of the formed MSA of interologs,314

such as the column-wise attention score (i.e., ColAttn score), the number of315

effective sequences within MSA measured by Meff (i.e., #Meff), the number of316

species (i.e., #Species), and the depth of MSA (i.e., MSA Depth). To be spe-317

cific, we predict 1,689 heterodimers sampled from PDB without filtering and318

divide them into different regions according to the value of each factor. Notably,319

for ColAttn score, we average the score of each single chain in interolog, then320

re-scaling it in the logarithm form, and then averaging ColAttn score of all321

interologs from the paired MSA as the final score of the target. For #Meff,322

#Species, and MSA Depth, we directly calculate the corresponding statistics323

based on the interologs.324

The correlations between DockQ score and each of above factors are illus-325

trated in Fig. 5. #Meff, #Species, and MSA Depth have a similar trend that326

the predicted structure accuracy improves with the increasing of these factors.327

It implies that MSA with more diversity represents the more co-evolutional328

information that benefits structure predictions of AF-Multimer, which also329

meets with previous insights[39]. Moreover, the increasing ColAttn score330

results in the decreasing structure prediction accuracy. Considering the self-331

attention mechanism in the protein language model, given a sequence as the332

query, the self-attention mechanism aims at identifying the sequence with high333

homology affinity, i.e., the sequence with a high similarity score [15]. Therefore,334

a large ColAttn score indicates the MSA with a low #Meff, which potentially335

results in an inaccurate structure prediction. To justify our speculation, we336

explicitly characterize the dependency between ColAttn score and #Meff, as337

shown in Fig. 5 (e). ColAttn score has shown a negative correlation to the338

#Meff, with the Pearson correlation coefficient of -0.70, which elucidates that339

a higher ColAttn score reflects MSA with lower sequence diversity.340

ESMPair built on the last few transformer Layers has the bet-341

ter performance. As ESMPair leverages the column-wise attention output342

by ESM-MSA-1b[39] to rank and match interologs, how do the column-wise343

attention weight matrices by different transformer layers affect the efficacy of344

ESMPair? To answer this, we use the DockQ score of predicted structures as345

the metric to measure the quality of the input interologs built by ESMPair, as346

shown in Supplement Fig. A2. ESMPair that based on the attention output of347

layer 6 (0.258 DockQ score and 40.2% Success Rate), layer 7 (0.249 and 43.0%),348

and AVG (0.262 and 42.2%) perform better than other layers. Overall, the AVG349

aggregation of all the layers is relatively superior to others, thus we use AVG350

as the default setting of ESMPair. What’s more, ESMPair which built on the351

last few layers (6-12th) identifies homologous sequences more precisely than352

the former layers (1-5th). The phenomenon is consistent with the empirical353

insights about how to effectively fine-tune the pre-trained language models in354

the downstream tasks: the last few layers are the most task-specific, while the355

former layers encode the general knowledge of the training data[46–48], thus356

only aggregating latter layers may exploiting more homologous information357

form MSAs. We leave this in future work.358
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Predicted confidence score as an indicator to distinguish acceptable359

models. Practically, besides the substantial improved DockQ performance360

through ESMPair, it is also vital to figure out how to identify the correct mod-361

els (DockQ≥0.23) from incorrect ones [24]. To achieve this, we also predict all362

the 1,689 heterodimers via ESMPair, then we apply: 1) the predicted Confi-363

dence Score (pConf), 2) Interface pTM (ipTM), 3). predicted TM-score (pTM),364

and 4) the number of contacts between residues from two chains (the distance365

of Cβ atoms in the residues from different chains within 8 Å) (Contacts) as the366

metric to rank models, as shown in Supple. Fig. A1. From Fig. 1(a), we find367

both pConf and ipTM are capable of distinguishing acceptable models from368

unacceptable ones with AUC of 0.97. pTM has a worse performance with AUC369

of 0.85, as pTM is used as the pessimistic predictor to measure the predicted370

structure accuracy of each single chain, it ignores the interactions between371

chains. Contacts merely count the number of interacting residues from dif-372

ferent chains, which hardly indicates the accuracy of the predicted structure.373

pConf and iPTM both consider the structure in both the single chain and inter-374

faces, which are considerate indicators to validate the quality of the predicted375

structure. We further quantify the interplays between pConf and DockQ score376

of the predicted structure, as shown in Fig. 1(b), which further confirms the377

strong correlations between pConf and the structure prediction accuracy.378

3 Methods379

In this part, we introduce the framework of our proposed PLMs-enhanced MSA380

pairing method, i.e., ESMPair. Besides, we explore other promising alternative381

pairing methods built on PLMs, such as InterGlobalCos, InterGlobalCos, and382

IntraCos. The overall framework of ESMPair is illustrated in Fig. 1.383

3.1 The PLM-enhanced MSA pairing pipeline384

Previous efforts [38–40] have confirmed that protein language models (PLMs)385

can characterize the co-evolutionary signals and biological structure con-386

straints encoded in the protein sequence. Moreover, the MSA-based PLMs [15,387

39] further explicitly capture the co-evolutionary information hidden in MSAs388

via axial attention mechanisms [49, 50]. In light of this, we adopt the state-389

of-the-art MSA-based PLM, i.e., ESM-MSA-1b [39], as the basis to explore390

how to utilize them to build rational MSA of interologs to improve the protein391

complex prediction based on Alphafold-Mutimer [25].392

Column Attention (ESMPair). The column attention weight matrix,
which is calculated via each column of MSA via ESM-MSA-1b, can be treated
as the metric to measure pairwise similarities between aligned residues in each
column. Formally, for each chain, we have the MSA M ∈ AN×C . The collec-
tions of column attention matrices are denoted as {Alhc ∈ RN×N : l ∈ [L], h ∈
[H], c ∈ [C]}, where L is the number of layers in PLM, H is the number of
attention heads of each layer, and C is the sequence length, i.e., the number of
residues of each sequence. We first symmetrize each column attention matrix,
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and then aggregate the symmetrized matrices along the dimension of L, H
and C to obtain the pairwise similarity matrix among the sequences of MSA,
denoted as S ∈ RN×N (Eq.(1)). S is symmetric and its first row S1 ∈ R1×N

can be viewed as measuring similarity scores between the query sequence and
other sequences in the MSA,

S = AGG
l∈[L],h∈[H],c∈[C]

{Alhc + (Alhc)
⊤}, (1)

where ⊤ represents the transpose operation and AGG is an entry-wise aggre-393

gation operator such as entry-wise mean operation MEAN(·), sum operator394

SUM(·), etc. Unless otherwise specified, AGG is specified as SUM(·) in this395

paper.396

The MSA pairing strategy is specified as follows, for a query heterodimer,397

we first obtain S1 of individual MSAs of constituent single chains. Then we398

group sequences from the MSA by their species, and rank sequences according399

to their similarity score of S1 in each MSA, respectively. Finally, the sequences400

of each MSA with the same rank in the same species group are concatenated401

as interologs.402

Cosine Similarity. The cosine similarity measurement has been thoroughly403

explored by pre-train language models [51, 52]. Intuitively, as PLMs generate404

residue-level embeddings for each sequence in the MSA, the sequence embed-405

ding can be directly obtained by aggregating all the residue embeddings in406

the sequence. Thus we can calculate the cosine similarity matrix between each407

sequence to measure their pairwise similarities.408

To be more specific, we specify two MSA pairing strategies, i.e., Intra-409

ranking (IntraCos) and Inter-pairing, based on the cosine similarity measure-410

ment between sequence embeddings as follows:411

Intra-ranking (IntraCos). Firstly, for all sequences from a given MSA412

M ∈ AN×C , we obtain a collection of residue-level embedding {Eln ∈ RC×d :413

l ∈ [L], n ∈ [N ]}, where d is the embedding dimension. For sequence n ∈ [N ],414

we can obtain its sequence-level embeddings En = AGGl∈[L],c∈[C](Elnc) by415

aggregating over all layers L and all residues C, where En ∈ Rd. Then we416

compute cosine similarities between the query sequence embedding, E1, and417

other sequence embeddings, {En, where n ̸= 1}, in the MSA to obtain the418

pairwise similarity score matrix (IntraCosScore) S1 ∈ R1×N . After that, we419

build interologs like ESMPair does.420

Inter-ranking. Instead of ranking sequences in each MSA and matching421

sequences of the same rank, here we directly compute the similarity score422

matrix between sequences from different MSAs. Formally, given two MSAs423

M1 ∈ AN1×C1 and M2 ∈ AN2×C2 , we obtain two individual collections of424

sequence embeddings {E(1)
n : n ∈ [N1]} and {E(2)

n : n ∈ [N2]}. The inter-425

chain cosine similarity matrix is denoted by B ∈ RN1×N2 , where Bij =426

cos(E1[i], E2[j]). Without loss of generality, we assume Ni ≤ Nj , we propose427

two algorithms to build interologs as follows:428

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerNovember 22, 2022. 

this version posted; https://doi.org/10.1101/2022.09.15.508065doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508065


Springer Nature 2021 LATEX template

ESMPair 15

1. Global Maximization Optimization (InterGlobalCos). We for-429

malize the pairing problem as a maximum-weighted bipartite matching430

problem. The weighted bipartite G = (V,E) is constructed as follows:431

sequences from individual MSAs of two chains form the set of vertices in432

G, i.e., V (1) = {M (1)
i ∈ AC1 : i ∈ [N1]}, V (2) = {M (2)

j ∈ AC2 : j ∈ [N2]},433

and V = V (1) ∪V (2). There are no edges among sequences from the same434

chain MSA, thus V (1) and V (2) are two independent sets. There is an435

edge eij between M
(1)
i and M

(2)
j if these two sequences are from the same436

species; the weight associated with eij is Bij . An optimal MSA match-437

ing pattern can be obtained by Kuhn-Munkres (KM) algorithm[53] in the438

polynomial time.439

2. Local Maximization Optimization (InterLocalCos). KM algorithm440

finds a global optimal solution. However, as suggested by [54], in each441

species, the sequence that is most similar to the query sequence may be442

more informative, while other sequences that are less similar may add443

noises. Thus we propose a greedy algorithm that focuses on pairs that444

have high similarity scores with the query sequence. We iteratively select445

a pair of sequences (i, j) that have the largest score in B among sequences446

that have not been selected before until reaching a pre-defined maximal447

number of pairs.448

Complex structure prediction of heteromers with more than two449

different chains. The proposed methods, such as ESMPair and IntraCos,450

can be easily extended to build MSA of interologs for heteromers with more451

than two different chains. In practice, we can rank the MSAs in each query452

sequence by the similarity matrix obtained by the corresponding metric, then453

we match them of the same rank in each species to build effective interologs.454

3.2 Settings455

Evaluation metric. We evaluate the accuracy of predicted complex struc-456

tures using DockQ [55], a widely-used metric in the computational structural457

biology community. Specifically, for each protein complex target, we calculate458

the highest DockQ score among its top-N predicted models selected by their459

predicted confidences from Alphafold-Multimer. We refer to this metric as the460

best DockQ among top-N predictions.461

Datasets. In order to investigate how improving pairing MSAs can improve462

the performance of AlphaFold-Multimer, we construct a test set satisfying the463

following criteria:464

1. There are at least 100 sequences that can be paired given the species465

constraints.466

2. The two constituent chains of a heterodimeric target share < 90%467

sequence identity.468

We select heterodimers consisting of chains with 20∼1024 residues (due to469

the constraint of ESM-MSA-1b and also ignore peptide-protein complex), and470
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the overall number of residues in a dimer is less than 1600 (due to GPU mem-471

ory constraint) from Protein Data Bank (PDB), as accessed on March 3, 2022.472

We use the default AlphaFold-Multimer MSA search setting to search the473

UniProt database [32] with JackHMMER [33], which is used for MSA pairing.474

We also search the Uniclust30 database [56] with HHblits [57], which is used for475

monomers, i.e., block diagonal pairing. We further select those heterodimers476

with at least 100 sequences that can be paired by AlphaFold-Multimer’s default477

pairing strategy. We define two dimers as at most x% similar, if the maximum478

sequence identity between their constituent monomers is no more than x%.479

Overall, we select 801 heterodimeric targets from PDB that are at most 40%480

similar to any other targets in the dataset, and satisfy the aforementioned two481

criteria. Then we use AlphaFold-Multimer (using the default MSA matching482

algorithm) to predict their complex structures. Based on their predicted con-483

fidence scores (pConf) or DockQ scores, 92 targets with their pConf less than484

0.7 are denoted as the pConf70 test set. We select 0.7 as the low confidence485

cutoff based on our fitted logistic regression models over 7,000 DockQ and486

pConf pairs, because the conditional probability of the model having medium487

or better quality given pConf equals 0.7 is slightly greater than 0.5 (around488

0.6), while the probability is less than 0.5 if pConf equals 0.6. For more com-489

parisons, we also select 0.8 as the cutoff, which results in the pConf80 test set490

of 168 targets, and 155 targets with their predicted DockQ scores less than491

0.49 are denoted as the DockQ49 test set.492

Baselines. Several heuristic MSA pairing strategies have been developed for493

protein complex contact and 3D structure prediction [17, 23].494

Phylogeny-based method. The strategy is first proposed in ComplexCon-495

tact [28] for complex contact prediction and is widely adopted by the496

community. AlphaFold-Multimer employed a similar strategy. This strategy497

first groups sequences in an MSA by their species and then ranks sequences of498

the same species by their similarity to the query sequence. When there is more499

than one sequence in a species group, it joins two sequences of the same rank500

within the same species group to form an interolog. AlphaFold-Multimer uses501

this strategy and shows state-of-the-art accuracy in complex structure predic-502

tion [25]. Practically, we run the implementation code of Alphafold-Multimer503

following the default setting of official repertory1. Notably, we only evaluate the504

unrelaxed model without the template information for the time efficiency[16].505

Genetic distances. In bacteria, interacting genes sometimes are co-located506

in operons and co-transcribed to form protein complexes [58]. Consequently,507

we can detect interologs by the genetic distance of two genes. This strategy508

pairs sequences of the same species based on the distances of their positions509

in the contigs, which are retrieved from ENA. In our implementations, given510

a sequence from the first chain, we pair it with the sequence from the second511

chain that is closest to it in terms of genetic distance. If there are more than512

one closest sequence, we select the one that has the lowest e-value to the query513

1https://github.com/deepmind/alphafold
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sequence of the second chain; the e-value is calculated by the MSA search514

algorithm used to construct the chain MSA.515

Block diagonalization. This strategy pads each chain sequence with gaps to516

the full length of the complex [23]. Therefore, each sequence in the constructed517

joint MSA, except for the query sequence, will include non-gap tokens in518

exactly one chain and gap tokens in other chains. By sorting sequences in the519

joint MSA, we can make non-gap tokens to appear only in the diagonal blocks,520

thus this strategy is termed as block diagonalization. In our implementations,521

given a sequence from the first (second) chain, we append (prepend) non-gap522

tokens to it until the number of non-gap tokens equals the length of the second523

(first) chain.524

Running environment. We conduct the experiments on an Enterprise Linux525

Server with 56 Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz, and a single526

NVIDIA Tesla V100 SXM2 with 32GB memory size.527

4 Conclusion & Discussion528

This paper explores a series of simple yet effective MSA pairing algorithms529

based on pre-trained protein language models (PLMs) for constructing effective530

interologs. To our best knowledge, this is the first time that PLMs are used to531

construct joint MSAs. Experimental results have confirmed the proposed ESM-532

Pair significantly outperforms the state-of-the-art phylogeny-based protocol533

adopted by AlphaFold-Multimer. What’s more, ESMPair performs particularly534

better on targets from eukaryotes which are hard to be predicted accurately535

by AF-Multimer. We further confirm that, instead of using the conventional536

single strategy to build interologs, the ensemble MSA pairing strategy can537

largely improve the structure prediction accuracy. Generally, ESMPair has a538

profound impact on biological applications depending on the high-quilty MSA.539

In the future, we will continue to explore more potential ways to leverage the540

advantages of PLM in building and choosing MSA. We also looking forward to541

applying our proposed methods to improve current MSA-based applications.542

Limitations. In this paper, we merely consider how to build effective543

interologs for heterodimers, which broadly benefits biological applications544

depending on the high-quality MSA, such as the complex contact predic-545

tion [59, 60], complex structure prediction discussed in this paper, etc.546

However, there also have a large proportion of homodimers in biological assem-547

blies. As it is trivial to build interologs for them, how to select high-quality548

MSA for homodimers is a more challenging yet important question. Previ-549

ous work [39, 54] has an empirical insight that instead of using the full MSA550

searched from the protein sequence database, we can select a few high-quality551

MSA following some promisings, such as using the MSA maximizing the552

sequence diversity [39], or choosing the MSA owning the largest sequence sim-553

ilarity with the primary sequence [54]. To date, few efforts have systematically554

investigated the MSA-selection problem. We leave this for future work.555
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As we propose a series of MSA paring methods built on the output of556

PLMs, the representation ability of the PLMs directly affects the performance557

of our proposed methods. In this paper, we choose the state-of-the-art pro-558

tein language model so far, i.e., ESM-MSA-1b [39], to support our algorithms.559

However, it is always worth exploiting the potential correlations between differ-560

ent PLM configurations and the performance of our proposed PLM-enhanced561

methods to identify effective interologs.562

Although ESMPair has advantages over the default strategy adopted by563

AF-Multimer in identifying MSA of interologs, their success rate is similar.564

After a deep analysis, we observe ESMPair outperforms AF-Multimer most565

in acceptable cases (DockQ ≥ 0.23), however it is notoriously difficult for566

ESMPair to improve DockQ score of unacceptable cases to be acceptable567

(Only 3% targets). As we follow the pipeline of the complex structure pre-568

diction via AF-Multimer (Fig. 1), thus the limited ability of AF-Mulitmer569

becomes the bottleneck of the performance of ESMPair. Nevertheless, the570

above extensive experimental results have proved ESMPair consistently out-571

performs AF-Multimer despite AF-Multimer having an inductive training572

bias towards its default MSA pairing strategy. From the training process of573

AF-Multimer, we know that the performance of structure prediction highly574

depends on the quality of the input MSA. In light of this, we assume that if575

AF-Muiltimer can fine-tune, or totally train from scratch based on ESMPair’s576

MSA pairing method, the accuracy of structure predictions may be further577

improved. Moreover, compared with the conventional MSA pairing method578

that only uses a single strategy to identify interologs, the ensemble strategy has579

shown superior performance both in DockQ score and Success Rate without580

fine-tuning AF-Multimer. We assure that the ensemble strategy proposes a new581

perspective on how to comprehensively exploit the co-evolutionary patterns582

among MSA, thus further having a wide impact on the biological algorithms583

resorting to the input MSA.584
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Fig. A1 Different metrics assessment. a.ROC curve of different metrics of distinguish
acceptable cases (DockQ≥0.23) predicted by ESMPair. b.The distribution of predicted con-
fidences (pConf, x-axis) and DockQ scores (left y-axis). And the conditional probability of
the prediction having DockQ ≥0.23 given pConf. The red curve is the visualization of the
fitted logistic regression model.
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Fig. A2 The average of Top-5 Best DockQ scores of ESMPair based on the
different layers of ESM-MSA-1b on the pConf70 dataset. AVG means that ESMPair
is based on the column-wise attention matrix by averaging the one generated from all the
twelve transformer layers.

Appendix A Supplement Material596

The Number of Effective Interlogs (Meff). It counts the number of non-597

redundant interlogs in an MSA, which measures the amount of homologous598

information. Here we use the toolkit from RaptorX2 to estimate the value of599

Meff. Specifically, we set 70% sequence identity as the cutoff to judge if two600

interlogs are redundant or not. If the number of interlogs (including itself)601

similar to interlog i is ni, then the weight of interlog i is 1/ni. Finally, Meff is602

calucated by summing the weight of all interlogs.603

Supplement Experiments. We conduct some additionally experiments604

listed here.605

2https://github.com/j3xugit/RaptorX-3DModeling
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Table A1 The comparisons of Top-5 Best DockQ scores between ESMPair
(EP) and AF-Multimer (AFM) on all test cases.

PDBID EP AFM PDBID EP AFM PDBID EP AFM

1AOK 0.343 0.221 1CXZ 0.012 0.012 1FAP 0.095 0.098
1GKA 0.565 0.552 1H2L 0.457 0.632 1H2M 0.458 0.394
1KMI 0.622 0.64 1MAF 0.322 0.316 1NW9 0.606 0.384
1S6C 0.232 0.23 1T6B 0.123 0.094 1UZX 0.576 0.586
1VG0 0.617 0.554 1WRD 0.79 0.784 1YHN 0.076 0.064
2AKA 0.04 0.015 2F8E 0.104 0.019 2H7Z 0.693 0.702
2VRW 0.918 0.306 3AU4 0.281 0.071 3BEG 0.209 0.313
3CPJ 0.283 0.25 3OUN 0.04 0.018 3PIN 0.074 0.111
3PZD 0.051 0.308 3TUF 0.654 0.653 3V2A 0.332 0.332
3V6B 0.796 0.801 3VF0 0.04 0.038 3VMF 0.26 0.254
3W5K 0.044 0.052 3ZN1 0.896 0.882 4CZZ 0.9 0.912
4GFT 0.15 0.076 4HUK 0.027 0.052 4JEG 0.282 0.194
4LC9 0.035 0.027 4N3B 0.29 0.295 4P3Y 0.008 0.007
4TU3 0.005 0.005 4WM0 0.291 0.255 4YBH 0.006 0.005
4YN0 0.092 0.084 4YOC 0.288 0.084 4YXC 0.156 0.166
5FOY 0.004 0.005 5H3J 0.238 0.299 5JJW 0.158 0.197
5JQY 0.341 0.479 5JZU 0.319 0.321 5KVM 0.189 0.248
5LN1 0.049 0.052 5N7E 0.048 0.04 5OJ6 0.49 0.384
5TAR 0.009 0.008 5TQB 0.104 0.203 5TVQ 0.007 0.007
5WHZ 0.043 0.117 5WWL 0.475 0.491 5XEQ 0.009 0.009
5XLN 0.315 0.383 5YY0 0.139 0.16 5Z51 0.024 0.024
5Z5K 0.058 0.053 6ABO 0.013 0.025 6B03 0.289 0.201
6DXO 0.197 0.203 6FYH 0.024 0.596 6HG4 0.044 0.044
6HTF 0.103 0.072 6JT1 0.295 0.292 6KIP 0.497 0.007
6LOJ 0.015 0.38 6M49 0.179 0.181 6N89 0.031 0.034
6POG 0.019 0.007 6QU1 0.037 0.039 6THL 0.01 0.01
6TTT 0.903 0.898 6UML 0.348 0.219 6W38 0.013 0.01
6WCW 0.193 0.214 6YT3 0.761 0.706 7A8T 0.016 0.004
7BQU 0.594 0.266 7CEG 0.007 0.006 7K2V 0.01 0.004
7LY5 0.008 0.145 7MRS 0.834 0.881 7RSI 0.034 0.034
7SL8 0.013 0.004 7VSI 0.01 0.906 1BQN 0.152 0.154
1KTZ 0.923 0.925 1M4U 0.019 0.019 1TXQ 0.025 0.025
2IWT 0.858 0.9 2Q2E 0.373 0.36 2QNA 0.504 0.506
2X1X 0.842 0.836 2XJY 0.707 0.697 2Y0I 0.734 0.745
2Y48 0.908 0.881 2ZUP 0.675 0.658 3AV0 0.484 0.376
3C5X 0.871 0.89 3DI3 0.681 0.688 3EUJ 0.669 0.716
3LBX 0.672 0.677 3MCA 0.527 0.52 3N40 0.238 0.269
3NQU 0.853 0.854 3O1H 0.374 0.043 3OG6 0.835 0.824
3OJA 0.481 0.507 3ZYI 0.577 0.583 4DBG 0.814 0.822
4DSS 0.01 0.01 4F3L 0.163 0.163 4F7G 0.715 0.66
4LD3 0.922 0.917 4LJO 0.113 0.73 4OL0 0.586 0.582
4P2A 0.778 0.627 4PW9 0.678 0.732 4RGW 0.916 0.922
4RSI 0.741 0.747 4UN2 0.844 0.819 4WND 0.779 0.765
4XXB 0.872 0.88 4Y5O 0.639 0.612 5BQC 0.085 0.085
5C46 0.006 0.006 5C58 0.66 0.721 5CHL 0.733 0.76
5D6J 0.443 0.013 5KP6 0.856 0.851 5ME5 0.949 0.952
5NRO 0.826 0.834 5T94 0.775 0.802 5W83 0.791 0.825
5YVI 0.917 0.912 5Z2W 0.787 0.805 5ZRZ 0.611 0.884
6AKM 0.244 0.813 6EC0 0.795 0.762 6EG0 0.69 0.666
6FKM 0.692 0.651 6G4J 0.773 0.714 6IRE 0.438 0.422
6IRT 0.502 0.5 6IW8 0.472 0.47 6JZE 0.932 0.934
6L5K 0.633 0.658 6LZ0 0.631 0.604 6OBP 0.466 0.454
6OD1 0.448 0.34 6Q00 0.905 0.903 6S0A 0.602 0.634
6SF1 0.88 0.879 6UUI 0.779 0.786 6WO1 0.846 0.809
6ZPH 0.265 0.264 7AYE 0.856 0.864 7DCR 0.785 0.775
7JW7 0.025 0.008 7KNT 0.64 0.647 7LVS 0.754 0.748
1A6U 0.334 0.335 1ARO 0.108 0.112 1CC1 0.329 0.33
1F45 0.445 0.457 1G4U 0.315 0.312 1H2A 0.32 0.32
1HTR 0.329 0.329 1I79 0.329 0.328 1JEQ 0.334 0.332
1KA9 0.331 0.327 1MHM 0.325 0.325 1NT2 0.257 0.258
1U0S 0.333 0.334 1V18 0.592 0.513 1WQ1 0.327 0.328
2I07 0.277 0.445 2Q5W 0.316 0.313 2QK7 0.04 0.04
2QSF 0.269 0.274 2RD7 0.269 0.275 3A2F 0.188 0.187
3C7N 0.175 0.177 3LQC 0.475 0.482 3NUH 0.338 0.366
3NVM 0.233 0.232 3P71 0.266 0.265 3SU8 0.007 0.835
3U73 0.289 0.291 3WCY 0.465 0.447 3WWN 0.019 0.019
4C9B 0.305 0.306 4CRW 0.504 0.485 4DEY 0.328 0.327
4EHP 0.491 0.429 4GMN 0.128 0.13 4HG6 0.353 0.37
4KHA 0.383 0.385 4MRT 0.331 0.333 4N6R 0.32 0.319
4RCA 0.303 0.241 4RS1 0.33 0.33 4U1C 0.321 0.321
4YC7 0.304 0.311 4YL8 0.537 0.531 4ZN3 0.442 0.329
5CM2 0.333 0.332 5HPK 0.44 0.433 5L0W 0.299 0.3
5OW0 0.324 0.323 5VPA 0.532 0.535 5YQZ 0.31 0.31
5YWR 0.794 0.803 6GK2 0.309 0.309 6INE 0.267 0.28
6M7L 0.203 0.156 6NDU 0.818 0.81 6OVM 0.281 0.284
6PFJ 0.324 0.325 6TX3 0.317 0.31 6UCC 0.825 0.821
6YXQ 0.481 0.477 7AX1 0.291 0.294 7BY2 0.401 0.423
7NKZ 0.335 0.335 7SL9 0.253 0.542
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[58] Gueudré, T., Baldassi, C., Zamparo, M., Weigt, M., Pagnani, A.: Simul-790

taneous identification of specifically interacting paralogs and interprotein791

contacts by direct coupling analysis. Proceedings of the National Academy792

of Sciences 113(43), 12186–12191 (2016)793

[59] Fukuda, H., Tomii, K.: Deepeca: an end-to-end learning framework for794

protein contact prediction from a multiple sequence alignment. BMC795

bioinformatics 21(1), 1–15 (2020)796

[60] Varnai, C., Burkoff, N.S., Wild, D.L.: Improving protein-protein inter-797

action prediction using evolutionary information from low-quality msas.798

PloS one 12(2), 0169356 (2017)799

review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peerNovember 22, 2022. 

this version posted; https://doi.org/10.1101/2022.09.15.508065doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508065

	Introduction
	Results
	ESMPair overview
	ESMPair outperforms other MSA pairing methods on heterodimer predictions
	Ensemble improves the prediction accuracy
	More analytic studies of ESMPair: key factors, hyperparameters, and measurements to identify high-quality predictions

	Methods
	The PLM-enhanced MSA pairing pipeline
	Settings

	Conclusion & Discussion
	Author Contributions
	Data Availability
	Code Availability
	Supplement Material

