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Abstract 

People often fail to detect the second of two targets when there is a short time interval of ~500 

msec or less between them. This phenomenon is known as the attentional blink (AB). 

Accumulating evidence suggests that the AB is a result of a failure to select and consolidate the 

second target in working memory. The current literature has assumed that the standard mixture 

model of visual working memory (VWM) explains representation in the AB better than 

resource-based VWM models. However, no existing study has systematically compared VWM 

models in the AB domain. Here, we present a comparison of eight widely-used VWM models 

in four different AB datasets from three separate laboratories. We fitted each model and 

computed the Bayesian information criterion (BIC) values at an individual level, across 

different conditions and experiments, based on which we compared the models by their average 

model ranks. We found that, for most experiments presented here, the standard mixture model, 

the slot model, and their variants do outperform the others. We nevertheless also observed that 

certain details, such as the stimuli or spatial arrangement of targets used in the AB task, can 

result in different model rankings. Our results can help researchers to select the best model for 

their AB studies in the future, and thereby gain a better understanding of their data. 
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Introduction 

It is challenging for us to consciously perceive all the information in our surroundings. 

Here attention shines as a useful, selective cognitive function that is crucial to our daily lives. 

The limited nature of attention has already attracted considerable research. One of the most 

extensively researched paradigms is the attentional blink (AB), which refers to the phenomenon 

that people often fail to identify the second (T2) of two briefly presented target stimuli when 

the time interval (or lag) between them is within 200 – 500 msec (Broadbent & Broadbent, 

1987; Raymond et al., 1992). The most commonly used paradigm in AB studies is rapid serial 

visual presentation (RSVP; Potter & Levy, 1969), in which a quick succession of visual stimuli 

is shown at the same spot. The observer’s task is to identify certain targets while ignoring other 

distractors. In most AB studies, these targets are categorical items, such as letters, numbers, or 

images (for a review, see Dux & Marois, 2009; Martens & Wyble, 2010). 

Although the RSVP paradigm with categorical items has been demonstrated to be an 

excellent method for investigating the AB phenomenon, it can only evaluate task performance 

by measuring discrimination or detection accuracy. Actually evaluating the quality of target 

representations that are kept in mind during the AB is thereby challenging. However, using a 

continuous-report task in RSVP has recently enabled researchers to further investigate the target 

representations in the AB. The continuous-report task has been frequently utilized in the visual 

working memory (VWM) field (Bays et al., 2009; Fougnie & Alvarez, 2011; Kool et al., 2014; 

Oberauer et al., 2017; Zhang & Luck, 2008). During the task, participants are required to 

memorize targeted visual items, which are identified by a basic visual property that varies on a 

continuous, usually circular, dimension, such as color or orientation. In the reproduction stage, 

participants are then asked to recall the target on a continuous response scale, such as recreating 

its orientation by rotating a Gabor grating (Wilken & Ma, 2004). Consequently, the 

performance of a continuous-report task is not measured in a binary format, but rather as the 
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divergence between the target value and the corresponding response. The observer’s internal 

response to the target, s, follows a Von Mises distribution (the circular analog of the normal 

distribution), following the previous assumption (Wilken & Ma, 2004): 

𝑝𝑝(𝑥𝑥|𝑠𝑠, 𝜅𝜅) = 𝑉𝑉𝑉𝑉(𝑥𝑥; 𝑠𝑠, 𝜅𝜅) ≡  1
2𝜋𝜋𝐼𝐼0(𝜅𝜅)

𝑒𝑒𝜅𝜅cos (𝑥𝑥−𝑠𝑠), 

where 𝐼𝐼0 is the modified Bessel function of order zero and 𝜅𝜅 is a concentration parameter. 

Many models have been proposed to explain the representations in VWM in continuous-

report tasks (Alvarez & Cavanagh, 2004; Bays et al., 2009; Brady & Alvarez, 2011; Fougnie et 

al., 2012; Oberauer et al., 2012; van den Berg et al., 2012; van den Berg & Ma, 2018; Zhang & 

Luck, 2008). Moreover, a debate has unfolded between two groups of models that have different 

assumptions regarding the nature of VWM. One holds the view that VWM capacity is defined 

by a limited fixed number of discrete “slots” that are used to store items (Alvarez & Cavanagh, 

2004; Bays et al., 2009; Zhang & Luck, 2008). The other group hypothesizes that VWM 

capacity is a continuous resource that can be distributed freely over all items (Brady & Alvarez, 

2011; Fougnie et al., 2012; van den Berg et al., 2012). These models’ different theoretical bases 

lead to different quantitative predictions about the response error distributions in the 

continuous-report task. Hence, numerous studies have attempted to compare these models and 

assess their ability to explain the empirical data in the VWM domain (Donkin et al., 2013; 

Oberauer, 2021; van den Berg et al., 2014). 

These VWM models have recently also received attention in the AB field. Several 

studies have combined continuous reports in the AB with VWM models to investigate the 

nature of target representations. Asplund et al. (2014) applied a mixture-model analysis (Zhang 

& Luck, 2008) to data obtained by explicitly asking participants to recall their perception of T2 

along a continuous circular dimension. The authors estimated the precision of T2 

representations and the proportion of guess responses for T2. They found an increased 
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percentage of random guess trials at shorter lags, whereas lag had no effect on T2 precision. 

Their findings indicated that AB affects T2 perception in an all-or-none manner.  

Yet, in another study, Karabay et al. (2022) demonstrated that T2 awareness during the 

AB can be both gradual and discrete, using hierarchical Bayesian estimation to examine how 

the precision and guess rate parameters of the standard mixture model varied, based on different 

time intervals between two targets. Interestingly, they found that when the identification of the 

first target (T1) required the focus of attention on a single spatial location only, awareness of 

T2 was discrete (guess rate varied); on the contrary, when T1 identification induced a spatial 

spread of attention, awareness of T2 was gradual (precision varied). Similarly, Sy et al. (2021) 

evaluated T2 performance using both discrete mixture model and variable resource model. 

Intriguingly, their findings also confirmed that the temporal loss of T2 information during the 

AB might be either gradual or discrete. Specifically, when two targets (T1 and T2) shared a 

visual feature, their results indicated a gradual loss of T2 precision, with the variable resource 

model providing a better fit to the data. In contrast, they observed a discrete loss of T2 

information, and the mixture model performed better than the variable resource model in terms 

of fitting the data, when participants had to switch their attention to different target features 

(i.e., color for T1 and orientation for T2). 

As mentioned above, the integration of these VWM models into the AB domain has 

effectively proved these models’ ability to account for the AB data. However, findings about 

which model is actually better were mixed. Asplund et al. (2014) gave substantial support for 

the superiority of the standard mixture model. However, Sy et al. (2021) suggested that both 

the standard mixture model and variable resource model can be fitted to the AB data well, but 

under different experimental designs. In addition, previous comparisons of these VWM models 

in the AB domain have contained limitations regarding their implementations of the models. 

First, earlier studies have mainly focused on the comparison between the standard mixture 
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model and the variable resource model. The other commonly employed VWM models, which 

make distinct predictions about the response distribution, are rarely considered. For example, 

the Ensemble Integration model (Brady & Alvarez, 2011) assumes that other non-target items 

impact the report of a specific target item. In the context of the AB, this hypothesis is supported 

by Hommel and Akyürek (2005; see also Akyürek et al., 2012), who discovered that temporal 

integration occurred with successive targets in RSVP. Second, previous model comparisons in 

the AB task were built on different experimental conditions and model selection criteria 

(Asplund et al., 2014; Tang et al., 2020), making them hard to compare. In sum, a 

comprehensive assessment of the performance of these models in AB domain is lacking to date. 

Our study aims to provide the first systematical comparison between the eight 

commonly used VWM models in the AB domain: the Standard Mixture model, the Slot model, 

the Slots plus Averaging model, the Slots plus Resource model, the Swap model, the Ensemble 

Integration model, and two Variable Precision models. Previous research has indicated that 

differences may exist between the models based on “slots”, and the models based on variable 

resources in their measurement of target representations and their relationship to the conscious 

perception in the AB. Therefore, it is crucial to understand which model(s) provide a more 

accurate explanation than others, for the empirical data underlying the AB task. Our study uses 

continuous-report data from three previous studies, each from a different group of researchers 

(Asplund et al., 2014; Karabay et al., 2022; Tang et al., 2020), and one newly conducted 

experiment, to ensure the generalizability of our inferences.  
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Method 

Model Details 

Standard mixture model (StM). The StM model (Zhang & Luck, 2008) proposes a 

mixture distribution for response errors. When an item has been stored into VWM, the response 

value tends to center around the actual value, forming a Von Mises distribution, with the 

standard deviation (sd) representing the precision of the memorized representation. When there 

is no information about the item in VWM, the reported value should be random and fall into a 

uniform distribution, with the guess rate indicated by this uniform distribution. Formally, the 

response error distribution in this StM model is given by 

𝑝𝑝(𝑥𝑥|𝑠𝑠,𝑔𝑔, 𝑠𝑠𝑠𝑠) = (1 − 𝑔𝑔)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑠𝑠𝑠𝑠)� + 𝑔𝑔 1
2𝜋𝜋

, 

where 𝑥𝑥 is the reported value, s is the target value, and g is the guess rate, representing the 

probability of random guessing. 𝜅𝜅(𝑠𝑠𝑠𝑠) denotes the concentration parameter 𝜅𝜅 of the Von Mises 

distribution, corresponding to the standard deviation 𝑠𝑠𝑠𝑠 in the normal distribution. 

Two-component mixture models: Models that assume VWM has a limited number of slots 

The family of slot models (the Slot, slots plus averaging, and slots plus resource models) 

is built upon the core assumption that VWM consists of a limited number of discrete slots for 

storing visual representations (Cowan, 2001; Luck & Vogel, 1997). If the target object has been 

stored in one of these slots, its information is maintained in VWM. If the item has not been 

stored in any of these slots, then no information about it remains in VWM. 

Slot model. The classic Slot model (Cowan, 2001; Luck & Vogel, 1997) not only 

assumes the existence of limited slots in VWM, but also makes an additional assumption about 

the fixed number of these slots. If the number of to-be-remembered items, also called set size, 

is larger than the maximum number of the available slots, the excess items are ignored. Hence, 

in the Slot model, the guess rate 𝑔𝑔 is correlated with the maximum number of slots. Formally, 

the response error distribution is given by 
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𝑝𝑝(𝑥𝑥|𝑠𝑠,𝑔𝑔, 𝑠𝑠𝑠𝑠) = (1 − 𝑔𝑔)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑠𝑠𝑠𝑠)� + 𝑔𝑔 1
2𝜋𝜋

, 

The guess rate 𝑔𝑔 depends on the predicted capacity K in the way that 

𝑔𝑔 = (1 − max (0, min (1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑦𝑦 𝐾𝐾
𝑠𝑠𝑠𝑠𝑡𝑡 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠

))). 

Slots plus averaging model (SA). Zhang and Luck (2008) proposed an evolved version 

of the Slot model – the Slots plus Averaging model, which hypothesizes that multiple memory 

slots can be used to store a single item. When memory is probed, the observer reports the 

average of these multiple representations. Under this premise, this model further makes specific 

predictions about the precision variation range. Similar to the Slot model, the capacity K refers 

to the available number of memory slots. If the set size is decreased below the capacity K, the 

reported sd varies from a worse value (only one slot is allocated to the probed item) to a better 

value (all the available slots are allocated to the probed item). Specifically, the response error 

distribution of this model is written by 

𝑝𝑝(𝑥𝑥|𝑠𝑠,𝑔𝑔, 𝑠𝑠𝑠𝑠) = (1 − 𝑔𝑔)𝛾𝛾𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏)� 

+(1 − 𝑔𝑔)(1− 𝛾𝛾)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑤𝑤𝑤𝑤𝑏𝑏𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏)�  + 𝑔𝑔 1
2𝜋𝜋

, 

where 𝑤𝑤𝑤𝑤𝑏𝑏𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏 equals the sd of a single slot, and 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏 is equal to a single slot divided 

by the square root of the average number of slots, which are used to store the probed item 

(Palmer, 1990). Likewise, the guess rate is given by 

𝑔𝑔 = (1 − max (0, min (1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑦𝑦 𝐾𝐾
𝑠𝑠𝑠𝑠𝑡𝑡 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠 𝑁𝑁

))). 

And 𝛾𝛾 is the proportion of the items that get an extra slot, depending on the capacity K: 

𝛾𝛾 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑡𝑡𝑠𝑠𝑛𝑛𝑠𝑠 𝑤𝑤𝑐𝑐𝑡𝑡ℎ 𝑠𝑠𝑥𝑥𝑡𝑡𝑛𝑛𝑐𝑐 𝑠𝑠𝑠𝑠𝑜𝑜𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑡𝑡𝑠𝑠𝑛𝑛𝑠𝑠 𝑛𝑛𝑠𝑠𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠

= 𝐾𝐾 % 𝑁𝑁
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑡𝑡𝑠𝑠𝑛𝑛𝑠𝑠 𝑛𝑛𝑠𝑠𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠

. 

Slots plus resource model (SR). Although the SR model (Awh et al., 2007; Zhang & 

Luck, 2008) supports the same assumption as the models mentioned above, in which a fixed 

and limited number of items can be stored in VWM, it further assumes a distinct approach of 

allocating VWM resources. Specifically, this model allocates most of the VWM resources to a 
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probed item, leaving only a few resources for other, relatively irrelevant items. Hence, when 

set size (the number of probed items) do not exceed the VWM limits, the precision (sd) here 

can vary from a very small value to a very large one, as set size decreases. Formally, the 

response error distribution is given by 

𝑝𝑝(𝑥𝑥|𝑠𝑠,𝑔𝑔, 𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏) = (1 − 𝑔𝑔)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑠𝑠𝑠𝑠)� + 𝑔𝑔 1
2𝜋𝜋

, 

= (1 − 𝑔𝑔)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏(𝑁𝑁)� + 𝑔𝑔 1
2𝜋𝜋

, 

where 𝑏𝑏𝑒𝑒𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 denotes the precision when the majority of VWM resources are used for storing 

a single item, and N is the number of items that can be stored in VWM, depending on the 

capacity K: 

𝑁𝑁 = min(𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐 𝐾𝐾, 𝑠𝑠𝑒𝑒𝑏𝑏 𝑠𝑠𝑐𝑐𝑠𝑠𝑒𝑒 𝑛𝑛). 

The guess rate is represented as 

𝑔𝑔 = (1 − max (0, min (1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑦𝑦 𝐾𝐾
𝑠𝑠𝑠𝑠𝑡𝑡 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠 𝑁𝑁

))). 

 

The variable precision models: Models that assume VWM consists of a resource pool 

The VP models (Fougnie et al., 2012; Van den Berg et al., 2012) propose that VWM 

resources are allocated to items in a continuous and variable style, which causes the precision 

of VWM representation to vary across items and trials. It should be noted that there are two key 

differences between the VP models and the SR model, although they both propose that VWM 

is not (entirely) quantized. First, the VP models suggest that the limitation of VWM is defined 

by the representation quality instead of the number of memorized items. Second, the VP models 

imply a variability of VWM resource across trials and items, while the precision is equal across 

items and trials (given a fixed set size) in the SR model. In the original VP model proposed by 

van den Berg et al. (2012), instead of a complete loss of item information, the quality of that 

item representation may be quite poor (leading to a very low precision). Therefore, the response 

distribution is given by 
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𝑝𝑝(𝑥𝑥|𝑠𝑠, 𝐽𝐽) = 𝑉𝑉𝑉𝑉(𝑥𝑥; 𝑠𝑠, 𝜅𝜅(𝐽𝐽)). 

Here, 𝜅𝜅  is the concentration parameter that reflects the memory’s precision 𝐽𝐽 . The core 

hypothesis in the VP model is that it assumes the precision 𝐽𝐽 varies independently across items 

and trials. Furthermore, the precision J itself follows a specific distribution as a random variable.  

Van den Berg et al. (2012) further assume this specific distribution of precision J to be 

Gamma with mean precision 𝐽𝐽 ̅and scale parameter 𝜏𝜏: 

𝑝𝑝(𝐽𝐽|𝐽𝐽;� 𝜏𝜏) = 𝐺𝐺𝑐𝑐𝐺𝐺𝐺𝐺𝑐𝑐(𝐽𝐽|𝐽𝐽;� 𝜏𝜏). 

Therefore, the response distribution of the original VP model is a mixture of an infinite set of 

Von Mises distributions: 

𝑝𝑝(𝑥𝑥|𝑠𝑠; 𝐽𝐽,̅ 𝜏𝜏) =  �𝑝𝑝(𝑥𝑥|𝑠𝑠; 𝐽𝐽)𝑝𝑝(𝐽𝐽|𝐽𝐽;� 𝜏𝜏)𝑠𝑠𝐽𝐽 

      =  ∫𝑉𝑉𝑉𝑉((𝑥𝑥; 𝑠𝑠, 𝜅𝜅(𝐽𝐽))𝐺𝐺𝑐𝑐𝐺𝐺𝐺𝐺𝑐𝑐(𝐽𝐽|𝐽𝐽;� 𝜏𝜏)𝑠𝑠𝐽𝐽 

In the current study, we employed two versions of the VP models1, which have been customized 

by Suchow et al. (2013; memtoolbox.org), based on the fundamental theory of van den Berg et 

al. (2012). 

Variable-precision model (VP). In this specific VP model, the standard deviation of 

VWM representation follows a Gaussian distribution: 

𝑠𝑠𝑠𝑠 = 𝐺𝐺𝑐𝑐𝐺𝐺𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑛𝑛(𝑠𝑠𝑠𝑠|𝐺𝐺𝑛𝑛𝑏𝑏𝑚𝑚𝑏𝑏; 𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑚𝑚𝑏𝑏), 

where 𝐺𝐺𝑛𝑛𝑏𝑏𝑚𝑚𝑏𝑏  represents the mean of this normal distribution and 𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏𝑚𝑚𝑏𝑏  represents the 

standard deviation of this normal distribution. The response error distribution is then given by 

𝑝𝑝(𝑥𝑥|𝑠𝑠,𝑔𝑔, 𝜅𝜅) = (1 − 𝑔𝑔)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑠𝑠𝑠𝑠)� + 𝑔𝑔 1
2𝜋𝜋

. 

                                                 
1 In these versions, the guess rate 𝑔𝑔 is included into the variable precision models. 
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Variable-precision model with Gamma precision (VPG). In the VPG model, the 

precision 𝐽𝐽 of response is assumed to be distributed as a Gamma distribution, as in van den Berg 

et al. (2012): 

𝐽𝐽 = 𝐺𝐺𝑐𝑐𝐺𝐺𝐺𝐺𝑐𝑐(𝐽𝐽|𝐽𝐽;� 𝜏𝜏). 

And the precision is equal to the inverse variance, 𝐽𝐽 = 1
𝑠𝑠𝑠𝑠2

. The response error distribution of 

the VPG model is written by 

𝑝𝑝(𝑥𝑥|𝑠𝑠,𝑔𝑔, 𝜅𝜅) = (1 − 𝑔𝑔)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑠𝑠𝑠𝑠)� + 𝑔𝑔 1
2𝜋𝜋

. 

 

Models with interaction between items 

Ensemble integration model (EnsInt). Previous models mentioned in this article 

suggest that each item is stored in the VWM independently, which implies there is no 

interaction between the representations of these items. However, Brady and Alvarez (2011) 

demonstrated that the representation in VWM is affected by the item itself, as well as the 

integration of information of all the stimuli displayed. Their results showed that the reported 

size of a target item was shifted toward not only the mean size of the items with the same color, 

but also the mean size of all items displayed. The EnsInt model implemented in the current 

study is a simplified version of the Brady & Alvarez (2011) model, which introduces a 

parameter that represents the bias towards the mean value of all distractors. Since the first target 

is the only other relevant item in typical continuous-report AB tasks, in the context of the AB, 

we used T1’s value for this parameter, slightly simplifying the model. Formally, the response 

error distribution of the EnsInt model is given by 

𝑝𝑝(𝑥𝑥|𝑠𝑠,𝑔𝑔, 𝑠𝑠𝑠𝑠, 𝜇𝜇𝑠𝑠) = (1 − 𝑔𝑔)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 𝜇𝜇𝑠𝑠, 𝜅𝜅(𝑠𝑠𝑠𝑠)� + 𝑔𝑔 1
2𝜋𝜋

, 

where 𝜇𝜇𝑠𝑠 refers to the biased mean value, which is estimated based on the differences between 

the target (T2) and the other item (T1). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.508098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508098
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Swap model This model can be considered as an extension of the StM model. In addition 

to the two components of the response error distribution, namely a uniform distribution that 

indicates the proportion of random-guessing trials and a Von Mises distribution that represents 

the precision, Bays et al.(2009) introduced a third source of error: The probability of incorrectly 

reporting non-target items. Consequently, the Swap model has a three-component structure: 

precision, guess rate, and swaps (estimated by the measurement of the distance between 

reported values and non-target items): 

𝑝𝑝(𝑥𝑥|𝑠𝑠,𝑔𝑔, 𝑠𝑠𝑠𝑠, 𝜇𝜇𝑠𝑠) = (1 − 𝑔𝑔 − 𝛽𝛽)𝑉𝑉𝑉𝑉�𝑠𝑠 − 𝑥𝑥; 0, 𝜅𝜅(𝑠𝑠𝑠𝑠)� 

+𝛽𝛽
1
𝐺𝐺
�𝑉𝑉𝑉𝑉(𝑠𝑠 − 𝑥𝑥; 𝑠𝑠 − 𝜃𝜃𝑐𝑐 , 𝜅𝜅(𝑠𝑠𝑠𝑠))
𝑛𝑛

𝑐𝑐

+ 𝑔𝑔
1

2𝜋𝜋
 

where 𝛽𝛽 denotes the probability of incorrectly reporting the non-target items (distractors; i.e., 

T1) and {𝜃𝜃1, 𝜃𝜃2, …𝜃𝜃𝑛𝑛} are the values of a set of 𝐺𝐺 distractors. 
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Datasets 

As summarized in Table 1, we obtained three existing datasets from three separate 

laboratories (Asplund et al., 2014; Karabay et al., 2022; Tang et al., 2020), and added a fourth, 

new dataset in the present paper (Wang et al.). 

Asplund et al. (2014). The first dataset was obtained from Experiment 1 in Asplund et 

al. (2014), where square-shaped targets were embedded in circle-shaped colored distractors. T1 

was filled with either black or white, while T2 color was randomly chosen from 180 

equiluminant colors. T2 appeared at the first, second, fourth, or eighth position (labeled as Lag 

1, Lag 2, Lag 4, and Lag 8) following T1. The stimulus duration for each participant was set by 

a staircase method and resulted in an average value of 150 ms (SD = 10 ms). At the end of the 

stimulus stream, participants were asked to reproduce T2 using a color wheel, and to report 

whether the first target was black or white. 

Tang et al. (2020). The second dataset was retrieved from two behavioral experiments 

in the AB study by Tang et al. (2020), where a RSVP task was again employed. Specifically, 

there were 20 Gabor patches, and the orientation of the Gabors were integer angles ranging 

from 0 to 179 degrees, without replacement. Participants were instructed to memorize two 

targets (high-frequency gratings) among distractors (low-frequency gratings) and reproduce 

them at the end of each trial. Each target or distractor appeared for 40 ms, and the next item 

followed after a blank interval of 80 ms. The time interval between two targets was manipulated 

by setting different numbers of inter-items (lag). In Experiment 1, there were five lag conditions 

(1, 2, 3, 5, 7), while in Experiment 2, there were two lag conditions (3, 7).  

Karabay et al. (2022). Karabay et al. (2022) recently used two different paradigms, 

dwell time (DT) and RSVP, both with continuous report tasks, to examine the nature of 

awareness in the AB. We acquired seven sub-datasets from their experiments. Experiment 1A, 

1B, 2A, and 2B were run with the DT paradigm. Both targets were orientation gratings (in 
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Experiment 1A and 1B) or colors (in Experiment 2A and 2B). T1 and a distractor were 

presented, at the same time, above or below of the fixation dot, at an equal distance. The display 

of T2 was the same as T1, except the location changed to the left or right side of the fixation 

dot. On each trial, T1 and T2 target arrays were followed by a mask. The stimulus-onset 

asynchrony (SOA) between T1 and T2 was set to 250 ms and 800 ms. The RSVP paradigm was 

used in Experiment 3, 4, and 5, in which the targets were always orientation gratings. The 

number of distractor items between two targets were 2 (Lag 3) or 7 (Lag 8), and the SOA was 

set to 300 ms or 800 ms. In Experiment 3, the two targets appeared among a stream of distractors, 

similar to the design in Tang et al. (2020). In Experiment 4, there were simultaneously two 

streams of stimuli at the left and right sides of the fixation dot. In Experiment 5, T1 was 

presented within a single stream of distractors, but split into a dual stream with the presentation 

of T2, as in Experiment 4. 
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Table 1 

Details of the data sets. 

Datasets Exp. SOA (ms) Lag T1 feature T2 feature 
Original 

subject number 

Subject number 

for the analysis 

Asplund et 

al., 2014 

Exp. 1 NA - 1, 2, 4, 8 Categorical Color (1°-180˚) 27 26 

Tang et al., 

2012 

Exp. 1 50, 240, 

360, 600, 

720 

1, 2, 3, 5, 

7 

 

Orient. (1°-180˚) Orient. (1°-180˚) 22 17 

Exp. 2 360, 720 3, 7 Orient. (1°-180˚) Orient. (1°-180˚) 22 21 

Karabay et 

al., 2022 

Exp. 1A 250, 800 NA Orient. (1°-180˚) Orient. (1°-180˚) 23 22 

Exp. 1B 250, 800 NA Orient. (1°-180˚) Orient. (1°-180˚) 21 19 

Exp. 2A 250, 800 NA Color (1°-360˚) Color (1°-360˚) 26 25 

Exp. 2B 250, 800 NA Color (1°-360˚) Color (1°-360˚) 27 25 

Exp. 3 300, 800 3, 8 Orient. (1°-180˚) Orient. (1°-180˚) 24 22 

Exp. 4 300, 800 3, 8 Orient. (1°-180˚) Orient. (1°-180˚) 24 23 

Exp. 5 300, 800 3, 8 Orient. (1°-180˚) Orient. (1°-180˚) 23 22 

Wang et al. 

data  

Exp. 1 90, 300, 800 1, 3, 8 Orient. (1°-180˚) 

or Color (1°-360˚) 

Orient. (1°-180˚)  

or Color (1°-360˚) 

28 19 

Note. Exp. = Experiment; Orient. = Orientation; Wang et al. data refers to the new data set 

collected in the present study. 
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Wang et al. data 

In the new experiment, we manipulated feature changes between targets in the AB task 

(same or different), hypothesizing that matching target features might cause mutual bias in 

target reports, which might affect the model selection. Like the other studies, this experiment 

also featured continuous report of targets. 

Participants 

The minimum sample size of 24 subjects was determined by means of a G-power 

analysis (Faul et al., 2007), with the following parameters: significance level (α = .05), beta-

level (β = .2), and a medium to large effect size (Cohen's dz = .6). Twenty-eight undergraduate 

students (seventeen females and eleven males) from the University of Groningen were recruited 

in exchange for course credits (mean age = 19.6, range = 18-27). All participants reported 

normal or corrected-to-normal visual acuity and no color blindness. Informed consent forms 

and instructions were given to the participants prior to participation. Nine participants were 

excluded from further analysis, based on our exclusion criteria (see Subject Exclusion section). 

Prior to its execution, ethical approval was obtained from the ethical committee of the 

Psychology Department of the University of Groningen (Approval code PSY-1819-S-0209). 

The study was conducted in accordance with the Declaration of Helsinki (2008). 

Apparatus and stimuli 

Participants were individually seated on a desk chair in sound-attenuated lab chambers, 

at a viewing distance of approximately 60cm from a 22" CRT monitor (Iiyama MA203DT). 

The screen was set at a 1280 x 1024-pixel resolution, 16-bit color depth, and a 100Hz refresh 

rate. The trials were prepared and run in OpenSesame 3.2 (Mathôt et al., 2012) with the 

PsychoPy back-end (Peirce, 2007, 2009), under the Microsoft Windows 7 operating system. 

All the stimuli were displayed in the center of the screen on a grey background (RGB: 

128,128,128), as shown in Figure 1A. There were two kinds of target stimuli in the RSVP 
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stream (Figure 1B). The first kind of target consisted of orientation gratings with a spatial 

frequency of 1.8 cycles/degree of visual angle, presented within a circle of 2.2° of visual angle. 

The orientation of the gratings was chosen randomly from the range of 0-179°. The other kind 

of target consisted of circles (2.2° of visual angle) filled with one of 360 colors which were 

chosen randomly from the HSL color spectrum. A color wheel with these chosen 360 colors 

was used as the report probe. The distractors were grey-scale mosaic images (2.2° × 2.2° of 

visual angle), retrieved from Karabay et al. (2022).  

Procedure 

A 2 (Target feature: same or different) x 3 (Lag: 1, 3, 8) factorial design was 

implemented in this experiment. Two practice blocks, each including 16 trials, were 

administered at the beginning. After that, there were 540 experimental trials evenly distributed 

into 15 blocks. Practice trials were excluded from the analysis. Each trial started with a fixation 

dot that randomly lasted for 600-800ms. There were 18 items within the RSVP stream. Each 

item was shown for 80 ms, separated by a 10 ms inter-stimulus interval (ISI). T1 was randomly 

presented at the fifth, sixth, or seventh position of the stream. T2 was presented consecutively 

(Lag 1), after two items (Lag 3), or after seven items (Lag 8), following T1. T1 and T2 could 

have either the same feature (color or orientation), or different features. At the end of the stream, 

after a blank interval of 500ms, two response prompts were displayed successively.  

Participants were asked to reproduce the two targets in the correct order. They were 

asked to reproduce the target orientation by rotating a probe grating, or to reproduce the target 

color by choosing the exact color from a color wheel. Responses were collected with a standard 

mouse. Trial-based feedback was provided only in practice trials: A happy smiley was shown 

for correct trials, and an unhappy smiley for incorrect trials. Responses close to target values 

(below 20° reproduction error) were considered correct responses for feedback. In the 

experimental blocks, the average performance on T1 and T2 were displayed at the end of each 
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block. During the experiment, participants could have a self-paced break between blocks. The 

whole session took about 90 minutes to complete.  

Fig. 1 Illustration of the design of the newly conducted experiment. a. An example trial of the 

dual-target RSVP task at Lag 3. In this instance, the two targets have different features. b. 

Examples of possible targets in all combinations and orders of the two targets. 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.508098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508098
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Data Preparation 

As indicated, all the data sets we gathered for analysis were obtained from continuous-

report AB tasks. We reorganized the datasets to form a uniform structure, as per the following 

procedure: 

1. For each trial, response error for each target (T1 and T2) was calculated by subtracting 

the response value from the actual one. 

2. Trials in which the absolute deviations between T1 and T2 values were less than 22.5 

degrees were discarded. 

3. Response errors were limited to a range from -90 to 90 for orientations and from -180 

to 180 for colors. 

4. T2 performance was analyzed under the condition that T1 was correct (T2|T1), as is 

commonly done in AB studies, which means we only included the trials when the 

absolute error of T1 was less than 22.5 degrees. 

Model fitting and parameter estimates 

To fit all of the models mentioned above to the data sets, we used maximum likelihood 

estimation (MLE) to find the best estimation of parameters of each model. The general logic of 

MLE is to maximize the likelihood function to find out the specific parameter value, with which 

the chosen probabilistic model is most "likely" to generate the observed data. Here, for each 

subject of each condition within a single experiment, we carried out model fitting with the built-

in MLE function in MemToolbox (Suchow et al., 2013; memtoolbox.org). After the parameter 

value was calculated at an individual level, the medians across all subjects within each condition 

were listed as the most probable estimate of the specific model. Traditionally, the mean and 

standard deviation have been used to represent the estimate of the parameters. However, for 

some subjects’ data, there may be some outliers of the parameters, which would cause a high 

bias of the means. To gain a more robust insight into the parameter estimates and to compare 
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these parameters between different conditions and models, the current study thus used the 

medians of parameters instead of means, while keeping the standard deviation to represent the 

dispersion of the parameters. 

Model comparison 

Considering the comparison and selection of models, flexible models can fit a wide 

range of datasets by introducing additional parameters. However, this kind of fitness may lack 

evidence and also induce overfitting (Hastie et al., 2009). We used the Bayesian Information 

Criterion (BIC; Schwarz, 1978), a common penalized model comparison measurement, to 

evaluate the fitness of these models to the data, and to assess which model best describes the 

data. BIC values were calculated based on the natural logarithm of the likelihood function, often 

called the log-likelihood: 

𝐵𝐵𝐼𝐼𝐵𝐵 = 𝑘𝑘 ∗ log(𝑛𝑛) − 2𝐿𝐿𝐿𝐿, 

where k is the number of parameters, LL is the log-likelihood, and n represents the number of 

the observed data points. At the individual level, the BIC value was calculated using the model 

comparison function implemented in MemToolbox (Suchow et al., 2013; memtoolbox.org), 

with lower BIC scores indicating better model fit. Subtracting the lowest BIC value (the most 

likely model of each subject) from each model's BIC, we obtained the relative BIC of each 

model, at the subject level. 

Furthermore, to investigate the model performance against group data, we generalized 

the comparison results by ranking the models for each condition. First, we ranked the models 

for each participant based on the relative BIC and measured the ranks. Second, we averaged the 

ranks across all subjects for each condition. 

Simulating data from model 

Although the BIC indicates how well a model can fit the experimental data compared 

to other models, it does not detail the absolute performance of each model. To examine which 
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part of the data each model can fit well and which part less so, we simulated data sets from 

these models and visualized the comparison between model predictions and the actual T2 errors. 

To do so, we firstly applied the most probable parameters of each subject and each lag condition, 

which were obtained from the model fitting mentioned before, to the corresponding model. 

Then we simulated the same number of data points as we had collected from each subject in the 

same condition. Finally, we calculated the summary statistics of T2 errors separately for the 

data generated from the models and the actual data gathered from different studies. This 

simulation procedure was carried out with a custom-made function in Matlab, based on the 

SampleFromModel function in Memtoolbox. 

Subject Exclusion  

The actual subject numbers in the analysis of each study are listed in Table 1. The 

subject exclusion based on the Z-scores was carried out to allow more reliable results at the 

summarized group level. For each study, we Z-scored the differences of BIC values between 

the best model and the worst one for each subject, in each experimental condition (lag or target 

pair), and subsequently individual BIC values of each model at each condition were calculated. 

Finally, we removed the subjects whose absolute Z-scores were larger than three.  
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Results 

Asplund et al. (2014) 

Model Fit and Model Comparison 

Figures 2A and 2B present the model comparison analysis for the Asplund et al. (2014) 

data. Since Asplund et al.’s dataset consisted of entirely different T1 and T2 stimuli, the EnsInt 

model and the Swap model were excluded as they both need a third parameter for the similarity 

of two targets that was absent here.  

At the individual level, the StM, Slot, and SR models showed the best fit for most 

subjects’ data in all four lags, while the SA model showed a slightly higher BIC value for several 

subjects (Figure 2A). In contrast, the VP model and its variant, the VPG model, fitted worse 

compared to the StM model and its variants for most subjects. 

To further assess model performance at the group level, we summarized the individual 

model fitness values. Figure 2B shows the average model ranking for each lag (also see the 

exact ranks in Table 2). The pattern of the model ranking was similar to the model performance 

at the subject level. The StM, Slot, and SR models dominated the top ranks at all lags. The SA 

model had slightly larger ranks at Lag 2, 4 and 8. This was consistent with its performance at 

the subject level, having a higher BIC for a few subjects. Moreover, model performance was 

consistent across different lags indicating that the AB itself (in particular at Lag 2) did not 

change the shape of the response error distributions, compared to other lags. Moreover, for each 

lag condition, we computed the average BIC of each model across all subjects and then 

calculated the difference from the best model at that lag (Table 2). We found that the BIC of 

the VP model exceeded the best model by 5.95, 5.55, 5.28, and 4.71, respectively, at Lag 1, Lag 

2, Lag 4, and Lag 8. The same level of BIC differences from the best model was also found in 

the VPG model.  
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Fig. 2 Model comparison results for the Asplund et al. data. A. Model comparison at the subject 

level. Each column represents a subject, and each row represents a specific model. Each panel 

represents each lag condition. L1 = Lag 1; L2 = Lag 2; L4 = Lag 4; L8 = Lag 8. Cell color 

indicates each model’s relative BIC value. Larger relative BIC value means worse performance. 

B. Average model ranking for each lag. Per subject, we ranked these models by their BIC values, 

after which the average ranks (the bar length shown here) were obtained by averaging each 

model’s ranks within each lag across all subjects. Larger rank means worse performance. C. 

Comparison of the mean T2 error in the actual data sets and in the data simulated from the six 

selected models.  
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Model Simulation 

Table 3 lists the estimated parameters obtained from MLE, based on which we 

synthesized the mean T2|T1 error for six models. Figure 2C presents the comparison between 

the synthetic mean T2 error and the actual mean T2 error, both as a function of lag. Of particular 

interest was the response error of the second target when the time interval between the first and 

second target fell between 200 – 500 ms (mostly at Lag 2 here), to get an idea if these models 

can actually describe the data well during the AB. In general, the pattern of the simulated data 

was more or less similar to that of the actual data. One surprising point was that the SR model 

estimated a relatively high error at Lag 1, which caused it to fail in predicting the actual increase 

of response error from Lag 1 to Lag 2. 
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Table 2  

Model comparison results  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lag Model BIC 
Difference from  

the best model 

Average  

model rank 
Log-likelihood 

1 StM 1591.24 0.00 2.48 -788.80 

Slot 1591.24 0.00 2.48 -788.80 

SR 1591.24 0.00 2.48 -788.80 

SA 1591.31 0.08 2.56 -788.84 

VP 1597.18 5.95 5.27 -788.36 

VPG 1597.30 6.06 5.73 -788.42 

2 StM 1631.22 0.00 2.42 -808.77 

Slot 1631.22 0.00 2.42 -808.77 

SR 1631.22 0.00 2.58 -808.77 

SA 1631.44 0.22 2.88 -808.89 

VP 1636.77 5.55 5.12 -808.13 

VPG 1636.79 5.57 5.58 -808.14 

4 StM 1583.14 0.00 2.56 -784.74 

Slot 1583.14 0.00 2.63 -784.74 

SR 1583.14 0.00 2.48 -784.74 

SA 1583.50 0.36 2.79 -784.92 

VP 1588.42 5.28 5.35 -783.96 

VPG 1588.06 4.92 5.19 -783.78 

8 StM 1521.87 0.00 2.50 -754.11 

Slot 1521.87 0.00 2.52 -754.11 

SR 1521.87 0.00 2.58 -754.11 

SA 1522.20 0.33 2.71 -754.28 

VP 1526.58 4.71 5.35 -753.06 

VPG 1526.58 4.71 5.35 -753.05 
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Table 3 

Model parameters 

  
Lag 1 Lag 2 Lag 4 Lag 8 

Model Parameter Median SD Median SD Median SD Median SD 

StM g 0.39 0.09 0.45 0.09 0.34 0.14 0.26 0.14 

 
sd 21.29 6.15 21.29 4.36 20.86 4.60 19.91 4.04 

Slot capacity K 1.21 0.18 1.11 0.18 1.33 0.27 1.47 0.28 

 
sd 21.29 6.15 21.29 4.36 20.86 4.60 19.91 4.04 

SR capacity K 1.21 0.18 1.11 0.18 1.33 0.27 1.47 0.28 

 
bestSD 19.42 6.23 19.94 3.36 19.11 3.81 17.37 3.60 

SA capacity K 1.21 0.16 1.11 0.16 1.33 0.24 1.47 0.22 

 
sd 21.29 6.22 21.29 4.18 21.53 4.42 20.19 5.30 

VP g 0.38 0.09 0.43 0.11 0.31 0.14 0.23 0.14 

 
mnSTD 21.88 8.10 22.62 5.34 23.11 8.37 21.21 4.45 

 
stdSTD 5.15 5.81 7.69 7.35 7.07 10.48 7.34 4.77 

VPG g 0.34 0.11 0.39 0.12 0.27 0.15 0.20 0.15 

 
modePrecision 2.55×10-3 8.8×10-3 2.43×10-3 1.4×10-3 2.49×10-3 1.42×10-3 3.21×10-3 1.74×10-3 

 
sdPrecision 1.19×10-3 3.92×10-3 1.88×10-3 5.84×10-3 3.02×10-3 4.54×10-3 4.19×10-3 4.77×10-3 
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Tang et al. (2020)  

Model Fit and Model Comparison 

At the individual level, the StM model and the slot models (the Slot, SR, and SA models) 

performed similarly (Figure 3A). For some individuals' data from Experiment 1, the StM model 

and the slot models always showed a better fitness than the other models at all lags. However, 

it can clearly be seen that the Swap model strongly outperformed the other models for several 

participants at all lags, while it showed a moderate goodness-of-fit for other participants. It is 

also worth noting that the number of participants for which the Swap model was the winning 

one dropped as a function of lag. At Lag 1, 2, and 3, the EnsInt model was the best model for a 

subset of subjects. The extent of preference to the EnsInt model decreased at Lag 5 and 7, where 

the EnsInt model showed a relatively consistent and moderate performance across all subjects. 

The VP and VPG models were always the worst fitting ones for all subjects in all lags. In 

Experiment 2, there were two lag conditions (Lag 3 and Lag 7). The results presented a similar 

pattern to Experiment 1 with regard to lag. It was noteworthy that the Swap model was again 

the winning model for a subset of subjects at Lag 3, but only for one subject at Lag 7.  

The average model ranking shown in Figure 3B illustrates the model comparison results 

at the group level, and the exact ranks are listed in Table 4. For Experiment 1, at Lag 1, 2 and 

3, the StM, Slot, and SA models dominated the top ranks, while the Swap, SA, and EnsInt models 

were the second-best models. At Lag 5 and 7, there was a clear divergence between the winning 

models (the StM, Slot, SA and SR models) and the losing ones (the EnsInt, Swap, VP and VPG 

models). What stood out in this comparison was that for the EnsInt model and the Swap model 

in both Experiment 1 and Experiment 2, the rank differences between lags were quite 

pronounced. In contrast, other models had similar performance at different lags.  

The mean BIC value of each model (Table 4) at each lag showed that the performance 

of the Swap model changed with lags. For Experiment 1, the Swap model had the lowest BIC 
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value at Lag 1, 2, and 3, and it differed by 1.29 and 3.29 points from the best model at Lag 5 

and 7. This finding is coherent with existing AB theories such as STST (Bowman & Wyble, 

2007; Wyble et al., 2009), and with the notion of temporal integration (Akyürek et al., 2012; 

Hommel & Akyürek, 2005). These suggest that targets are bound to same episodic event if they 

are successively shown, possibly when the second target is processed (tokenized) more quickly 

than the first one. Then, timestamps of the targets might be confused, which cause T2 to be 

reported as T1 and vice versa. This account also predicts that the amount of swap errors should 

decrease strongly as a function of lag. For Experiment 2, the Swap model had a slight difference 

of mean BIC from the best model (2.72) at Lag 3, but a more substantial difference (6.34) at 

Lag 7. Furthermore, the StM, Slot, SR, and SA models always had similar mean BIC, which was 

consistent with the pattern in Figure 3.  

Fig. 3 Model comparison results for the Tang et al. data. A. Model comparison at the subject 

level. L1 = Lag 1; L2 = Lag 2; L3 = Lag 3; L5 = Lag 5; L7 = Lag7. B. Average model ranking 

for each lag and each experiment. C. Model simulations of T2 error as a function of lag.  
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Model Simulation 

Figure 3C displays the summary statistics for synthetic T2 response errors obtained from 

model simulation (Table 5 provides the estimated parameters used in the model simulation) and 

actual T2 response errors obtained from the Tang et al. data (2021). In Experiment 1, the VPG 

model had the highest prediction for T2 response error at Lag 1, over the actual data and other 

models. The T2 response errors from the VP, SR and SA models were lower than the 

experimental data. At Lag 2, 3, and 5, the divergences among these models and the actual data 

were nevertheless pretty narrow. At the longest time interval (Lag 7), the VP model and the StM 
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model generated lower T2 response errors. However, for Experiment 2, all models accurately 

simulated the data. 
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Table 4  

Model comparison results  

Experiment Lag Model BIC 
Difference from  

the best model 

Average  

model rank 
Log-likelihood 

Exp1 1 StM 332.16 4.54 3.18 -160.97 
Slot 332.11 4.48 3.18 -160.95 
SR 332.06 4.44 2.94 -160.93 
SA 332.51 4.89 4.00 -161.15 
EnsInt 332.43 4.81 4.29 -158.56 
Swap 327.62 0.00 3.71 -156.15 
VP 337.28 9.65 7.00 -160.98 
VPG 338.00 10.37 7.71 -161.34 

2 StM 530.76 4.91 3.21 -259.81 
Slot 530.41 4.56 2.88 -259.64 
SR 530.41 4.56 2.76 -259.64 
SA 531.10 5.25 3.74 -259.98 
EnsInt 531.92 6.07 5.06 -257.61 
Swap 525.85 0.00 3.76 -254.57 
VP 536.32 10.47 7.00 -259.81 
VPG 536.86 11.01 7.59 -260.08 

3 StM 534.71 3.23 3.12 -261.76 
Slot 534.53 3.05 2.85 -261.67 
SR 534.53 3.05 3.00 -261.67 
SA 535.32 3.83 3.79 -262.06 
EnsInt 536.34 4.85 4.94 -259.77 
Swap 531.48 0.00 3.59 -257.34 
VP 540.31 8.82 6.88 -261.75 
VPG 541.99 10.51 7.82 -262.60 

5 StM 558.18 0.10 2.88 -273.41 
Slot 558.08 0.00 2.68 -273.36 
SR 558.08 0.00 2.91 -273.36 
SA 558.32 0.24 3.18 -273.49 
EnsInt 561.01 2.93 5.53 -271.99 
Swap 558.87 0.79 4.82 -270.92 
VP 563.60 5.52 6.47 -273.29 
VPG 564.70 6.62 7.53 -273.83 

7 StM 515.42 0.08 2.44 -252.10 
Slot 515.42 0.08 2.68 -252.10 
SR 515.34 0.00 2.79 -252.06 
SA 515.43 0.09 2.56 -252.11 
EnsInt 520.72 5.38 6.21 -251.95 
Swap 518.94 3.60 5.50 -251.06 
VP 520.97 5.63 6.44 -252.07 
VPG 522.08 6.74 7.38 -252.63 
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Experiment Lag Model BIC 
Difference from  

the best model 

Average  

model rank 
Log-likelihood 

Exp2 3 StM 1378.49 0.00 2.86 -682.67 
Slot 1378.49 0.00 2.83 -682.67 
SR 1378.49 0.00 2.67 -682.67 
SA 1378.97 0.48 3.40 -682.91 
EnsInt 1383.55 5.06 5.48 -681.91 
Swap 1381.21 2.72 4.57 -680.74 
VP 1384.84 6.35 6.62 -682.55 
VPG 1386.82 8.33 7.57 -683.54 

7 StM 1321.24 0.19 2.48 -654.03 
Slot 1321.46 0.41 2.60 -654.14 
SR 1321.05 0.00 2.43 -653.93 
SA 1321.23 0.18 2.50 -654.02 
EnsInt 1327.73 6.68 6.17 -653.97 
Swap 1327.39 6.34 6.12 -653.80 
VP 1327.33 6.28 6.24 -653.77 
VPG 1329.83 8.78 7.48 -655.02 
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Table 5 

Model parameters 

  Exp1 Exp2 

  Lag 1 Lag 2 Lag 3 Lag 5 Lag 7 Lag 3 Lag 7 

Model Parameter Median SD Median SD Median SD Median SD Median SD Median SD Median SD 

StM g 0.58 0.40 0.56 0.45 0.34 0.43 0.26 0.35 0.12 0.37 0.31 0.33 0.16 0.29 

 sd 28.88 18.22 24.46 19.26 23.57 18.87 19.51 15.53 22.77 10.12 21.8 17.04 19.81 9.81 
Slot capacity K 0.72 1.58 0.88 1.44 1.33 1.61 1.49 0.94 1.76 1.23 1.38 1.51 1.67 1.47 

 sd 28.88 18.09 18.63 22.04 28.18 31.26 19.51 29.69 26.24 26.81 22.01 17.26 19.96 10.17 
SR capacity K 1.26 1.09 1.28 1.21 1.49 1.08 1.49 1.34 1.76 0.69 1.38 0.91 1.67 0.99 

 bestSD 25.00 56.47 35.34 70.69 23.74 37.22 20.06 46.69 20.81 46.00 25.21 41.09 14.96 42.42 
SA capacity K 1.60 1.02 2.00 1.55 2.00 1.28 1.49 1.18 1.78 0.39 1.39 0.86 1.74 0.59 

 sd 53.73 91.54 58.63 93.62 52.24 108.96 29.71 69.08 27.85 82.17 31.76 48.07 19.96 68.84 
EnsInt g 0.29 0.36 2.56×10-3 0.42 0.34 0.38 0.20 0.31 0.14 0.23 0.31 0.3 0.16 0.25 

 sd 30.22 19.14 33.77 18.46 28.18 14.89 21.84 14.76 26.24 20.22 24.8 14.91 19.81 13.94 

 samples 5.54×10-4 5.23×1012 7.09×10-7 1.39×1012 0.27 6.41×1012 2.47 6.40×1012 419.52 3.90×1012 56.09 6.21×1012 1.02×1013 7.27×1012 

Swap g 0.09 0.27 0.07 0.30 2.30×10-13 0.36 0.13 0.26 0.06 0.20 0.08 0.25 0.13 0.23 

 B 0.40 0.38 0.33 0.35 0.08 0.36 0.02 0.35 5.36 0.33 0.04 0.25 4.38×10-15 0.22 

 sd 24.85 14.20 21.98 22.98 28.18 15.39 23.13 9.28 25.04 11.41 25.41 16.24 19.81 10.85 
VP g 0.64 0.35 0.69 0.40 0.67 0.39 0.41 0.36 0.10 0.34 0.35 0.29 0.16 0.27 

 mnSTD 39.92 15.50 46.65 16.62 38.95 15.59 24.51 13.22 31.46 13.51 25.42 15.68 21.14 11.23 

 stdSTD 0.01 3.48 0.03 3.66 0.01 5.23 0.03 9.88 2.00 8.04 0.02 5.28 2.37 3.88 
VPG g 0.92 0.22 0.88 0.17 0.84 0.27 0.60 0.36 0.49 0.33 0.68 0.30 0.26 0.33 

 
mode- 
Precision 5.10×10-4 0.79 5.02×10-4 0.47 5.15×10-4 0.03 5.03×10-4 1.32×10-4 5.00×10-4 5.23×10-4 5.00×10-4 7.13×10-4 5.00×10-4 1.66×10-4 

 sdPrecision 5.00×10-4 12.13 5.97×10-4 12.12 5.72×10-4 12.13 5.71×10-4 5.70×10-4 6.55×10-4 3.79×10-3 5.00×10-4 001 5.00×10-4 2.13×10-4 
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Karabay et al. (2022)  

Model Fit and Model Comparison 

Figure 4A presents the model comparison results at the subject level for the Karabay et 

al. (2022) data. Comparing these results between different experiments in their study, the most 

apparent observation was that the models’ goodness-of-fit in Experiment 2 was clearly different 

from those in other experiments. In Experiment 2A and 2B, the targets having only a color 

feature, the VP and VPG models showed a good fit for most subjects, at two different SOA’s . 

Especially for some subjects, these two models outperformed all of their competitors. The 

EnsInt model and the Swap model produced the worst data fit. However, here the StM, Slot, SR 

and SA models showed two extremes of fitness, either being the best or the worst. 

If we turn to the results of other experiments, they shared a similar pattern of model 

fitness, in which these models were divided into two sides, the StM, Slot, SR and SA models 

being the better ones and the EnsInt, Swap, VP and VPG models being the worse. Some further 

observations can nevertheless be made. First, at the subject level in Experiment 1A and 1B, the 

VP model showed either the best or the worst performance for several subjects, which was 

rarely the case in Experiment 3 (where higher BIC values were obtained for almost all subjects). 

At the subject level in Experiment 4 and 5, the VP model had moderate fitness for most subjects 

at long SOA. For most subjects, the BIC value of the VP model was lower than the 

corresponding value of the EnsInt model and the Swap model. Whereas at short SOA, the VP 

model performed similar to the EnsInt model and the Swap model. Second, good fitness of the 

Swap model for a few subjects was observed in Experiment 3, at short SOA. Third, for the SA 

model, there was a clear trend of improving fitness scores for some subjects from short SOA to 

long SOA (except in Experiment 2). 

In line with the results at the subject level, the VP and VPG models had a better fitness 

at the group level in Experiment 2 than in other experiments (Figure 4B). Moreover, the average 
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model ranks of the StM, Slot, SR and SA models in Experiment 2 were larger than their ranks 

in other experiments (also see the exact ranks in Table 6). For all the experiments except 

Experiment 2, the rankings of the SA model at long SOA were higher than their counterpart at 

short SOA, which was consistent with the performance of the SA model at the subject level. 

The mean BIC value of the SA model (Table 6) demonstrated the same performance pattern, 

having a better fit to the data at long SOA. The BIC value differences from the best model were 

0.99, 1.29, 1.54, 1.07 and 1.08 at short SOA, respectively for Experiment 1A, 1B, 3, 4 and 5, 

while at long SOA the corresponding values were 0.22, 0.31, 0.04, 0.15 and 0.27. The Swap 

model obtained its best rank at short SOA in Experiment 3, with a relatively small BIC 

difference value of 2.09. 

Fig. 4 Model comparison results for the Karabay et al. (2022) data. A. Model comparison at the 

subject level. B. Average model ranking for each lag and each experiment. 
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Model Simulation 

The results of MLE using the Karabay et al. data are listed in Table 7. We sampled 

response errors of all eight models with corresponding estimated parameters. Generally, the 

divergences among these model simulations and the actual data were narrow (Figure 5). 

Compared to other models, the VP and VPG models generated somewhat higher T2 errors at 
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short SOA in Experiment 1A, 1B and 3, whereas in Experiment 2A and 2B, these two models 

generated simulations that were most similar to the actual data.  

Fig. 5 Model simulations for the Karabay et al data. Each panel presents the comparison of the 

mean T2 error in actual data sets and in data simulated from eight models, separately for each 

experiment.  
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Table 6 

Model Comparison Results 

  Short SOA Long SOA 

Experiment Model BIC 

Difference 
from  

the best 
model 

Average  
model 
rank 

Log-
likelihood BIC 

Difference  
from  

the best 
model 

Average  
model 
rank 

Log-
likelihood 

Exp1A StM 2175.49 0.00 2.57 -1080.71 2269.85 0.00 2.39 -1127.80 
Slot 2175.49 0.00 2.39 -1080.71 2269.85 0.00 2.39 -1127.80 
SR 2175.49 0.00 2.39 -1080.71 2269.85 0.00 2.39 -1127.80 
SA 2176.48 0.99 3.02 -1081.21 2270.07 0.22 3.02 -1127.91 
EnsInt 2182.62 7.13 6.30 -1080.76 2276.98 7.13 6.39 -1127.80 
Swap 2182.53 7.05 6.39 -1080.71 2276.98 7.13 6.43 -1127.80 
VP 2181.16 5.67 5.77 -1080.03 2275.57 5.72 5.68 -1127.10 
VPG 2184.18 8.69 7.18 -1081.54 2277.58 7.73 7.32 -1128.10 

Exp1B StM 2240.97 0.01 2.34 -1113.41 2273.55 0.00 2.45 -1129.62 
Slot 2240.96 0.00 2.26 -1113.40 2273.55 0.00 2.45 -1129.62 
SR 2240.96 0.00 2.26 -1113.40 2273.55 0.00 2.55 -1129.62 
SA 2242.25 1.29 3.45 -1114.05 2273.86 0.31 2.76 -1129.77 
EnsInt 2248.40 7.44 6.63 -1113.58 2280.70 7.15 6.61 -1129.61 
Swap 2248.12 7.16 6.32 -1113.44 2280.67 7.12 6.82 -1129.60 
VP 2246.86 5.90 5.79 -1112.81 2278.80 5.25 5.53 -1128.66 
VPG 2248.79 7.83 6.95 -1113.78 2280.31 6.76 6.84 -1129.42 

Exp2A StM 1837.75 0.00 3.36 -911.76 1860.37 0.65 3.44 -923.04 
Slot 1837.75 0.00 3.36 -911.76 1860.37 0.65 3.38 -923.04 
SR 1837.75 0.00 3.36 -911.76 1860.37 0.65 3.36 -923.04 
SA 1837.83 0.08 3.44 -911.80 1859.72 0.00 3.10 -922.71 
EnsInt 1842.47 4.72 6.12 -910.56 1865.49 5.78 6.40 -922.03 
Swap 1844.53 6.79 7.52 -911.59 1867.17 7.45 7.64 -922.86 
VP 1838.08 0.33 4.44 -908.37 1860.30 0.58 4.44 -919.43 
VPG 1838.54 0.79 4.40 -908.60 1860.15 0.44 4.24 -919.36 

Exp2B StM 2391.85 0.10 2.94 -1188.60 2353.50 0.00 2.96 -1169.40 
Slot 2393.00 1.26 3.30 -1189.18 2353.63 0.13 3.04 -1169.47 
SR 2391.91 0.16 3.00 -1188.63 2353.50 0.00 2.96 -1169.40 
SA 2391.75 0.00 2.76 -1188.55 2353.50 0.00 2.96 -1169.40 
EnsInt 2399.15 7.40 6.96 -1188.59 2360.40 6.89 7.04 -1169.18 
Swap 2399.16 7.41 7.08 -1188.59 2360.51 7.00 7.44 -1169.23 
VP 2395.52 3.77 4.88 -1186.77 2356.06 2.56 4.84 -1167.01 
VPG 2396.02 4.27 5.08 -1187.03 2355.54 2.04 4.76 -1166.75 
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  Short SOA Long SOA 

Experiment Model BIC 

Difference 
from  

the best 
model 

Average  
model 
rank 

Log-
likelihood BIC 

Difference  
from  

the best 
model 

Average  
model 
rank 

Log-
likelihood 

Exp3 StM 1925.87 0.00 2.55 -956.00 1877.01 0.00 2.34 -931.52 
Slot 1925.87 0.00 2.36 -956.00 1877.10 0.09 2.43 -931.57 
SR 1925.87 0.00 2.45 -956.00 1877.61 0.60 2.86 -931.82 
SA 1927.41 1.54 3.68 -956.77 1877.05 0.04 2.55 -931.54 
EnsInt 1931.54 5.67 5.57 -955.37 1883.98 6.97 6.02 -931.51 
Swap 1927.96 2.09 5.34 -953.58 1883.71 6.70 6.11 -931.38 
VP 1932.77 6.90 6.50 -955.99 1883.43 6.42 6.14 -931.24 
VPG 1935.26 9.39 7.55 -957.23 1885.83 8.82 7.55 -932.44 

Exp4 StM 1920.94 0.00 2.43 -953.51 1887.85 0.00 2.57 -936.94 
Slot 1920.94 0.00 2.43 -953.51 1888.18 0.33 2.87 -937.10 
SR 1920.94 0.00 2.37 -953.51 1887.85 0.00 2.57 -936.94 
SA 1922.01 1.07 3.28 -954.04 1888.00 0.15 2.65 -937.01 
EnsInt 1927.05 6.11 5.74 -953.08 1894.64 6.80 6.46 -936.84 
Swap 1927.49 6.54 6.17 -953.30 1894.36 6.51 6.33 -936.70 
VP 1927.41 6.47 6.26 -953.26 1893.35 5.50 5.57 -936.19 
VPG 1928.96 8.02 7.30 -954.04 1895.27 7.42 7.00 -937.15 

Exp5 StM 1436.58 0.00 2.34 -711.63 1456.38 0.00 2.39 -721.50 
Slot 1436.70 0.12 2.45 -711.69 1456.46 0.09 2.48 -721.54 
SR 1436.58 0.00 2.30 -711.63 1456.38 0.00 2.39 -721.50 
SA 1437.66 1.08 3.09 -712.17 1456.65 0.27 2.75 -721.63 
EnsInt 1442.68 6.09 6.00 -711.35 1463.00 6.62 6.48 -721.46 
Swap 1443.12 6.53 6.41 -711.57 1463.06 6.69 6.80 -721.49 
VP 1442.67 6.09 6.00 -711.35 1462.16 5.79 5.73 -721.04 
VPG 1444.36 7.78 7.41 -712.19 1463.38 7.01 7.00 -721.65 
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Table 7 

Model parameters  

  Exp1A Exp1B Exp2A Exp2B 

 
 

Short SOA Long SOA Short SOA Long SOA Short SOA Long SOA Short SOA Long SOA 

Model Parameter Median SD Median SD Median SD Median SD Median SD Median SD Median SD Median SD 

StM g 0.35 0.29 0.31 0.18 0.64 0.22 0.35 0.18 0.06 0.11 0.06 0.10 0.13 0.11 0.06 0.06 

 sd 23.38 17.02 17.94 7.07 18.01 6.98 15.09 4.53 18.59 4.25 17.74 3.13 23.50 5.05 20.64 2.99 

Slot capacity K 1.30 1.45 1.38 0.36 0.73 0.45 1.30 0.35 1.87 0.23 1.89 0.24 1.75 0.43 1.87 0.27 

 sd 23.38 17.02 17.94 7.07 18.01 7.55 15.09 4.53 18.59 4.25 17.74 3.13 23.50 5.04 20.64 3.01 

SR capacity K 1.30 1.01 1.38 0.36 0.73 0.45 1.30 0.35 1.87 0.23 1.89 0.28 1.75 0.23 1.87 0.11 

 bestSD 22.56 11.92 16.23 6.92 18.08 8.09 13.68 4.45 13.64 3.29 13.07 2.41 17.32 4.52 15.51 2.45 

SA capacity K 1.30 1.49 1.38 0.28 1.11 0.25 1.30 0.31 1.87 0.19 1.89 0.49 1.75 0.35 1.87 0.11 

 sd 31.45 22.38 17.94 8.03 24.48 14.62 15.18 4.43 18.59 4.22 17.84 2.92 23.50 5.14 20.64 2.99 

EnsInt g 0.38 0.31 0.31 0.18 0.45 0.27 0.35 0.18 0.07 0.11 0.06 0.10 0.13 0.11 0.06 0.06 

 sd 23.38 15.09 17.94 7.07 19.00 17.13 15.09 4.53 18.40 4.19 17.80 3.07 23.50 5.05 20.63 3.04 

 samples 8.05×1012 8.14×1012 6.55×1012 5.85×1012 5.96×1012 7.07×1012 6.13×1012 8.47×1012 2.72 1.87×1012 2.99 5.14×1011 2.35×1012 3.40×1012 9.97×1011 2.48×1012 

Swap g 0.35 0.29 0.31 0.18 0.53 0.24 0.35 0.18 0.06 0.09 0.05 0.08 0.13 0.11 0.06 0.06 

 B 1.67×10-15 6.28×10-3 2.93×10-15 4.81×10-15 2.89×10-15 5.60×10-3 2.31×10-15 5.32×10-3 4.55×10-15 2.26×10-2 9.33×10-15 1.58×10-2 4.21×10-15 1.33×10-3 5.73×10-15 3.51×10-3 

 sd 23.38 17.10 17.94 7.07 18.16 12.15 15.09 4.53 18.67 4.16 17.84 3.09 23.50 5.05 20.64 3.00 

VP g 0.29 0.29 0.28 0.18 0.52 0.24 0.34 0.20 0.04 0.11 0.03 0.10 0.09 0.10 0.06 0.05 

 mnSTD 38.82 17.37 18.79 11.99 18.54 16.29 15.55 5.98 18.75 5.69 17.95 3.13 23.45 6.85 21.07 3.29 

 stdSTD 2.44 11.24 5.34 12.62 2.03 14.30 4.64 4.94 7.37 5.76 6.88 3.21 6.91 5.64 6.65 3.21 

VPG g 0.67 0.24 0.35 0.23 0.59 0.22 0.30 0.21 0.03 0.11 0.01 0.11 0.06 0.10 0.03 0.05 

 
mode- 
Precision 5.00×10-4 3.11×10-3 5.00×10-4 1.25×10-4 5.00×10-4 6.89×10-4 6.18×10-4 3.00×10-4 4.22×10-3 1.69×10-3 4.72×10-3 2.28×10-3 2.29×10-3 1.04×10-3 2.88×10-3 1.02×10-3 

 sdPrecision 6.48×10-4 10.66 5.01×10-4 7.87×10-4 5.00×10-4 6.37×10-3 5.00×10-4 2.96×10-3 4.22×10-3 3.43×10-2 4.77×10-3 4.38×10-3 1.88×10-3 1.79×10-3 2.78×10-3 2.08×10-3 
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  Exp3 Exp4 Exp5 

 
 

Short SOA Long SOA Short SOA Long SOA Short SOA Long SOA 

Model Parameter Median SD Median SD Median SD Median SD Median SD Median SD 

StM g 0.55 0.28 0.15 0.16 0.45 0.21 0.24 0.16 0.33 0.29 0.34 0.23 

 sd 17.65 14.04 18.45 6.09 16.10 6.75 15.63 3.98 18.32 13.83 17.01 6.47 

Slot capacity K 0.90 0.57 1.70 0.56 1.09 0.43 1.53 0.43 1.34 1.20 1.31 1.47 

 sd 17.65 14.04 18.45 6.08 16.10 6.75 15.63 4.06 18.32 13.69 17.22 6.46 

SR capacity K 0.90 0.61 1.70 0.86 1.09 0.46 1.53 0.62 1.34 0.78 1.31 0.46 

 bestSD 18.66 12.00 15.34 5.77 16.07 5.20 13.48 3.32 16.07 10.28 15.75 5.01 

SA capacity K 1.07 1.16 1.70 0.98 1.09 0.28 1.53 0.33 1.35 0.76 1.36 0.33 

 sd 26.78 67.46 19.03 9.32 17.46 9.76 15.90 4.42 23.44 46.85 18.03 8.50 

EnsInt g 0.41 0.29 0.15 0.16 0.45 0.21 0.24 0.16 0.33 0.29 0.34 0.23 

 sd 19.69 15.74 18.45 6.09 15.90 7.04 15.63 3.99 18.08 14.16 17.01 6.47 

 samples 2.65×1012 1.06×1013 6.41×1012 8.65×1012 6.17×1012 6.54×1012 6.06×1012 5.86×1012 4.53×1012 6.56×1012 5.06×1012 1.06×1013 

Swap g 0.43 0.24 0.15 0.16 0.45 0.20 0.24 0.15 0.32 0.28 0.33 0.18 

 B 1.69×10-12 0.13 5.27×10-15 9.68×10-3 5.37×10-15 0.05 4.42×10-15 2.85×10-2 3.25×10-15 7.55×10-2 2.63×10-15 1.43×10-2 

 sd 18.32 12.00 18.45 6.07 16.10 5.69 15.90 3.95 19.55 13.18 17.01 7.32 

VP g 0.58 0.29 0.13 0.15 0.45 0.22 0.21 0.16 0.32 0.28 0.28 0.21 

 mnSTD 19.19 16.04 19.21 10.46 17.37 9.36 16.85 7.71 20.70 16.06 19.26 13.48 

 stdSTD 0.02 5.83 0.95 7.40 0.02 6.29 5.58 6.86 2.68 11.66 6.35 13.93 

VPG g 0.66 0.28 0.14 0.20 0.44 0.20 0.21 0.16 0.62 0.29 0.36 0.23 

 
mode- 
Precision 5.00×10-4 0.37 5.00×10-4 2.63×10-4 5.00×10-4 2.13×10-4 5.00×10-4 1.69×10-4 5.00×10-4 0.84 5.00×10-4 1.58×10-4 

 sdPrecision 5.00×10-4 14.7 5.00×10-4 1.79×10-4 5.03×10-4 1.07×10-3 5.24×10-4 1.59×10-3 5.10×10-4 10.70 5.05×10-4 1.57×10-2 
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Wang et al. data 

Model Fit and Model Comparison 

In general, under different experimental conditions (lags and target pairs), the models 

with the lowest BIC values were consistent across most subjects, namely the StM, Slot, SA and 

SR models (Figure 6A). Different from the superior and stable performance of the other three 

top models, the SR model had a poor fit for several subjects for the color–color target pair at 

Lag 3 and 8. When the second target was a color item (color-color or orientation-color target 

pair), the VP and VPG models fitted better at Lag 3 than at Lag 1. Especially when the two 

targets were both colors, the VP and VPG models had lower BIC values for several subjects, 

both at Lag 3 and Lag 8, while the Swap model best fitted several subjects’ data at Lag 1. When 

the two targets were both orientation Gabors, the EnsInt and Swap models exhibited their best 

fitness at Lag 1, obtained lowest BIC values for a few subjects at Lag 3, and the worst fitness 

consistently at Lag 8. This tendency in the Swap model’s performance was similar to that in 

Tang’s two experiments, in which the two targets were orientation Gabors presented in an 

RSVP stream. 

The SA model ranked first when the second target was a colored circle, regardless of the 

lags (see the exact ranks in Table 8; Figure 6B). For the other two target pair conditions, the SA 

model had good performance with only small differences from the best models (Table 8).  

Looking at the results for the different target pairs, in specific lag conditions it was 

obvious to see that the VP and VPG models reached higher rankings (smaller rank numbers) for 

the color-color and orientation-color target pairs than for the other target pair conditions, at Lag 

3 and Lag 8. At Lag 1, the EnsInt and Swap models had larger ranks when the two targets shared 

the same feature (color-color or orientation-orientation), while at Lag 3 and Lag 8, these two 

models fitted better (having smaller ranks) when the second target was an orientation Gabor. 
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Fig. 6 Model comparison results for the Wang et al. data. A. Model comparison at the subject 

level. The panels in each row present the results with the same lag but different target pairs; the 

panels in each column present the results with the same target pair but different lags. 'CC' means 

color-color target pair; 'CO' means color-orientation target pair; 'OO' means orientation-

orientation target pair; 'OC' means orientation-color target pair. L1 = Lag 1; L3 = Lag 3; L8 = 

Lag 8. B. Average model ranking for each lag and each target pair.  
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Model Simulation 

The estimated parameters (Table 9) were used to simulate data from eight models. In 

the simulated data, we did not observe decreased performance at Lag 3 when both targets were 

colors (Figure 7; left two panels). When the second target was an orientation Gabor, the actual 

T2 response errors revealed the same pattern as the other data sets analyzed before. The eight 

models explained the actual data well for the color-orientation and orientation-orientation target 

pairs. Nevertheless, at Lag 1 of the color-orientation target pair, the EnsInt, Swap, VP and VPG 

models simulated lower T2 errors. Moreover, the Swap model had problems simulating the 

errors at Lag 3 and Lag 8. Most models simulated T2 error well when both targets were 

orientations, except for the Slot model’s lower T2 errors at Lag 3 and the StM model’s lower 

T2 errors at Lag 8. 

Fig. 7 Model simulations for the Wang et al. data. Each panel presents the comparison of the 

mean T2 error in actual data sets and in data simulated from eight models, separately for each 

lag and each target pair condition. 
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Table 8 

Model comparison results 

  CC CO 

Lag Model BIC Difference from  
the best model Average model rank Log-likelihood BIC Difference from  

the best model Average model rank Log-likelihood 

1 StM 292.13 0.13 3.05 -140.82 348.75 0.14 2.79 -169.04 
Slot 292.13 0.13 2.66 -140.82 348.77 0.16 2.55 -169.05 
SR 292.69 0.69 3.45 -141.10 348.75 0.14 2.55 -169.04 
SA 292.00 0.00 2.05 -140.76 348.62 0.00 2.11 -168.97 
EnsInt 296.48 4.48 5.89 -140.38 353.70 5.08 5.95 -168.84 
Swap 295.85 3.86 5.58 -140.06 353.71 5.10 6.58 -168.85 
VP 296.71 4.71 6.21 -140.49 353.24 4.63 6.37 -168.62 
VPG 297.14 5.14 7.11 -140.71 354.18 5.57 7.11 -169.09 

3 StM 379.12 0.21 2.74 -184.01 382.00 0.12 2.58 -185.68 
Slot 379.12 0.21 2.58 -184.01 381.87 0.00 2.29 -185.62 
SR 382.18 3.27 4.34 -185.54 381.87 0.00 2.24 -185.62 
SA 378.91 0.00 2.03 -183.90 382.16 0.28 2.89 -185.76 
EnsInt 384.31 5.41 6.55 -183.83 386.88 5.01 5.74 -185.46 
Swap 383.97 5.06 6.61 -183.66 386.80 4.92 5.68 -185.42 
VP 382.78 3.87 5.32 -183.07 387.22 5.35 6.95 -185.63 
VPG 383.05 4.14 5.84 -183.20 388.23 6.36 7.63 -186.14 

8 StM 383.86 0.25 2.87 -186.38 346.27 0.00 2.39 -167.87 
Slot 383.87 0.26 2.92 -186.39 346.27 0.00 2.50 -167.87 
SR 385.21 1.61 3.61 -187.06 346.27 0.00 2.39 -167.87 
SA 383.61 0.00 2.08 -186.25 346.49 0.22 2.92 -167.98 
EnsInt 389.06 5.46 6.37 -186.21 350.75 4.48 5.50 -167.48 
Swap 388.87 5.26 7.00 -186.11 351.33 5.06 6.00 -167.77 
VP 387.14 3.54 5.16 -185.25 351.42 5.15 6.97 -167.81 
VPG 387.55 3.94 6.00 -185.45 351.65 5.38 7.32 -167.92 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.508098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508098
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 
 

 
  OC OO 

Lag Model BIC Difference from  
the best model Average model rank Log-likelihood BIC Difference from  

the best model Average model rank Log-likelihood 

1 StM 246.32 0.19 3.68 -118.01 139.90 0.00 2.92 -65.63 
Slot 246.32 0.19 2.39 -118.01 139.91 0.01 2.53 -65.64 
SR 246.32 0.19 2.39 -118.01 139.90 0.00 2.42 -65.63 
SA 246.13 0.00 1.74 -117.92 140.05 0.15 2.76 -65.71 
EnsInt 250.71 4.58 5.58 -117.63 143.37 3.47 5.50 -65.21 
Swap 251.43 5.30 7.11 -117.99 142.79 2.89 5.82 -64.92 
VP 250.75 4.62 6.05 -117.65 144.17 4.27 6.53 -65.61 
VPG 251.29 5.16 7.05 -117.92 145.04 5.13 7.53 -66.04 

3 StM 227.58 0.11 3.18 -108.76 326.45 0.20 2.76 -158.10 
Slot 227.58 0.11 2.45 -108.76 326.40 0.14 2.61 -158.07 
SR 228.22 0.75 3.08 -109.09 326.25 0.00 2.32 -158.00 
SA 227.47 0.00 2.03 -108.71 326.74 0.48 3.32 -158.24 
EnsInt 231.75 4.28 5.89 -108.34 329.97 3.72 5.39 -157.30 
Swap 232.39 4.92 6.79 -108.66 330.30 4.05 5.42 -157.46 
VP 231.40 3.93 5.47 -108.16 331.67 5.41 6.66 -158.14 
VPG 232.06 4.59 7.11 -108.49 332.36 6.11 7.53 -158.49 

8 StM 227.24 0.37 3.26 -108.60 341.08 0.00 2.37 -165.34 
Slot 227.27 0.39 2.89 -108.61 341.08 0.00 2.45 -165.34 
SR 227.34 0.47 3.08 -108.65 341.08 0.00 2.47 -165.34 
SA 226.88 0.00 1.45 -108.41 341.26 0.18 2.92 -165.42 
EnsInt 231.47 4.59 5.79 -108.19 346.20 5.12 5.66 -165.29 
Swap 232.27 5.39 7.47 -108.60 345.62 4.54 5.61 -165.00 
VP 231.17 4.30 5.74 -108.05 346.20 5.12 6.63 -165.29 
VPG 231.43 4.55 6.32 -108.17 346.92 5.83 7.89 -165.65 
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Table 9  

Model parameters 

  CC CO 

  Lag 1 Lag 3 Lag 8 Lag 1 Lag 3 Lag 8 

Model Parameter Median SD Median SD Median SD Median SD Median SD Median SD 

StM g 0.08 0.11 0.04 0.04 0.04 0.08 0.07 0.16 0.26 0.29 0.33 0.28 

 sd 9.21 2.39 9.11 1.81 9.15 1.63 14.47 8.16 25.94 17.43 12.99 5.35 
Slot capacity 1.84 2.50 1.91 0.90 1.92 1.06 1.86 1.37 1.35 1.26 1.34 0.55 

 sd 9.21 2.39 9.11 1.81 9.15 1.68 14.75 8.15 19.58 17.03 12.99 9.12 
SR capacity 1.89 0.86 2.59 1.00 2.62 0.91 1.86 0.72 1.35 0.93 1.40 0.53 

 bestSD 6.87 1.91 7.64 1.30 7.12 1.14 10.73 5.75 22.31 10.67 11.37 38.06 
SA capacity 1.84 0.62 1.93 1.43 1.92 1.75 1.86 1.11 1.53 1.45 1.40 0.40 

 sd 9.66 2.46 9.57 2.62 9.91 3.73 14.47 8.65 33.24 26.43 14.61 72.65 
EnsInt g 0.07 0.11 0.04 0.04 0.04 0.08 0.09 0.20 0.24 0.29 0.31 0.26 

 sd 9.04 2.52 9.11 1.85 9.03 1.62 13.73 5.14 25.94 18.60 12.77 7.91 

 samples 5.82 2.10×1012 4.22×1011 3.73×1012 14.94 2.15×1012 7.70 2.05×1012 1.07×1012 5.25×1012 10.80 5.82 
Swap g 1.27×10-7 7.50×10-2 3.52×10-2 4.11×10-2 4.28×10-4 0.07 0.04 0.13 0.16 0.25 0.29 1.27×10-7 

 B 8.50×10-10 0.05 6.06×10-14 1.72×10-2 1.50×10-13 0.02 5.61×10-8 5.67×10-2 9.83×10-11 0.14 3.60×10-14 8.50×10-10 

 sd 9.46 2.16 9.06 1.71 9.15 1.80 14.47 7.50 30.39 16.31 12.47 9.46 
VP g 0.05 0.11 1.73×10-14 2.86×10-2 7.96×10-15 6.32×10-2 5.58×10-2 0.14 0.32 0.27 0.33 0.05 

 mnSTD 9.21 2.60 8.18 2.62 8.78 2.35 14.76 12.03 25.93 15.98 13.22 9.21 

 stdSTD 2.63 3.16 3.36 3.34 4.43 2.76 3.29 11.98 0.02 8.38 0.02 2.63 
VPG g 2.84×10-3 0.11 3.0×10-7 2.43×10-2 3.36×10-4 4.89×10-2 7.48×10-2 0.20 0.63 0.25 0.32 2.84×10-3 

 modePrecision 1.67×10-3 1.04×10-3 2.03×10-3 1.7×10-3 1.86×10-3 4.49×10-3 7.09×10-4 5.02×10-4 5.00×10-4 0.20 7.94×10-4 1.67×10-3 

 sdPrecision 6.98×10-4 1.53×10-2 1.51×10-3 3.63×10-2 1.81×10-3 3.17×10-2 5.00×10-4 7.59E-03 5.00×10-4 15.80 5.00×10-4 6.98×10-4 
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  OC OO 

  Lag 1 Lag 3 Lag 8 Lag 1 Lag 3 Lag 8 

Model Parameter Median SD Median SD Median SD Median SD Median SD Median SD 

StM g 2.27×10-14 0.03 4.87×10-14 5.41×10-2 2.67×10-14 3.83×10-2 8.32×10-14 0.29 0.48 0.38 0.29 0.27 

 sd 7.79 2.92 7.78 2.66 7.51 2.40 15.56 12.02 16.34 16.66 18.94 12.25 
Slot capacity 2.47 2.62 2.19 1.84 2.62 2.58 2.14 1.20 1.04 1.29 1.42 1.93 

 sd 7.79 2.92 7.78 2.66 7.67 2.50 15.56 11.94 21.61 18.32 18.94 12.25 
SR capacity 2.73 0.74 2.78 1.03 2.77 0.86 2.06 1.30 1.26 1.12 1.42 0.73 

 bestSD 5.51 2.05 5.80 1.78 6.29 1.78 13.26 8.07 19.29 44.53 16.06 9.42 
SA capacity 2.99 1.98 2.38 1.33 2.90 1.48 2.00 2.23 1.40 1.16 1.42 1.50 

 sd 11.30 3.43 8.89 3.04 9.97 4.28 19.40 22.45 39.64 90.98 20.07 18.06 
EnsInt g 0.00 0.06 0.00 0.05 0.00 0.04 0.00 0.25 0.52 0.38 0.30 0.27 

 sd 7.79 3.08 7.58 2.60 7.51 2.56 18.75 11.01 19.87 23.04 18.69 7.91 

 samples 1.55 1.80×1012 1.56 2.51×1012 15.24 1.52×1012 1.08×1012 7.33×1012 0.56 6.64×1012 6.57×1012 9.01×1012 
Swap g 4.74×10-9 2.88×10-2 5.19×10-9 4.76×10-2 1.59×10-8 3.83×10-2 2.99×10-5 0.24 6.38×10-2 0.30 0.29 0.24 

 B 1.13×10-13 1.36×10-2 1.23×10-12 2.29×10-2 1.49×10-14 8.68×10-6 6.57×10-6 0.18 2.11×10-10 0.32 9.26×10-15 0.11 

 sd 7.79 2.77 7.78 2.64 7.51 2.40 14.49 10.60 27.28 18.24 17.94 11.64 
VP g 5.80×10-15 2.54×10-2 5.01×10-14 0.04 4.49×10-15 0.03 1.15×10-14 0.28 0.49 0.35 0.29 0.27 

 mnSTD 7.69 3.30 7.49 3.82 7.36 2.71 16.34 12.36 35.49 16.36 19.66 14.08 

 stdSTD 0.88 2.16 1.69 3.20 2.88 2.01 0.02 4.54 0.02 2.99 0.02 9.76 
VPG g 3.55×10-8 1.64×10-2 1.97×10-4 3.79×10-2 4.30×10-8 0.03 0.24 0.31 0.67 0.24 0.36 0.29 

 modePrecision 2.03×10-3 3.67×10-3 2.73×10-3 8.64×10-3 2.75×10-3 1.86×10-3 5.97×10-4 3.73×10-2 5.50×10-4 6.73×10-3 5.00×10-4 1.85×10-4 

 sdPrecision 5.05×10-4 0.01 5.00×10-4 3.82×10-2 1.48×10-3 4.40×10-3 5.34×10-4 0.12 5.00×10-4 11.50 5.00×10-4 7.98×10-4 
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Discussion 

Our study's fundamental motivation was to systematically compare eight commonly 

used VWM models in the AB domain: the StM, the Slot, the SA, the SR, the EnsInt, the Swap, 

the VP, and the VPG models. Previous research has successfully used the StM model to account 

for the representations in the AB task (Asplund et al., 2014; Sy et al., 2021; Karabay et al., 

2022), but some studies have suggested that VWM representations could also be explained well 

with variable precision across and within trials (the VP and VPG models; Fougnie et al., 2012; 

Van den Berg et al., 2012). Meanwhile, the EnsInt and Swap models, in which potentially 

important nontarget reports are considered, have gained little attention in the model choices in 

the AB domain to date. Since no existing studies have systematically compared these VWM 

models, we did so in the present study. We applied MLE for the parameter estimation, which 

allowed us to assess these models' fitness to four data sets of the AB task, from three different 

laboratories, and then compare them based on the BIC. Moreover, we utilized the parameter 

values of each model to generate simulated data sets, in order to further investigate if these 

models produce a good description of the experimental data in all circumstances. 

Our findings showed a clear separation between the models. Both at the group and 

subject level, there was substantial evidence for the superiority of the StM, Slot, SA and SR 

models, across different experiments, whereas the EnsInt, Swap, VP, and VPG models were not 

among the best models. These results align with that of a previous study by Asplund et al. 

(2014), who also found that the StM model better explains the data from the AB task over the 

variable precision model families. The four 'top' models (the StM, Slot, SA and SR models) share 

a crucial characteristic, that is, they are based on the hypothesis that not all the items can be 

encoded into VWM, but only a fixed and limited number of items can be stored in VWM. In 

the error distributions of these models, once the set sizes exceed the number of available 'storage 

slots' in VWM, the errors obey a uniform distribution representing these random responses. 
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In our results, there were minor differences among these four models. A possible 

explanation for this might be that the set size of all the data sets we analyzed here can be 

considered as two (the first and second targets), which is most probably smaller than the number 

of available VWM slots (cf. Cowan, 2001). The hypothesis regarding the set sizes is the major 

theoretical divergency of these four models. For the Slot, SA and SR models, the proportion of 

remembered items is based on predictions about the available memory slots (the capacity K), 

while the StM model has no predictions about the exact number of slots. Therefore, our model 

comparison results between these four models may be limited by the constant and same set size 

across different data sets. In this case, future research, in which the different set sizes are applied 

in the AB domain, will need to be undertaken (e.g., Akyürek, Hommel, & Jolicœur, 2007). 

One of our interests in this article was to investigate if the time interval (lag or SOA) 

between the two targets can be a factor in comparing models' fitness. The results were mixed 

when comparing a single model's performance across different lags. In the two experiments of 

Tang et al. (2020) and several experiments (except Experiment 2A and 2B) of Karabay et al. 

(2022), the SA model provided a better explanation of the data at longer time intervals. A 

possible account for this pattern may be that when the set size is smaller than the available 

'memory slots', one item may be stored in multiple slots, according to the assumptions of the 

SA model, which leads to an averaging representation precision. Hence, it is possible that, when 

the time interval is short, there is not enough time for resource allocation and averaging (Bonnel 

& Miller, 1994; Luck et al., 1996). Nevertheless, the lag between targets did not always affect 

model performance in the color AB task. For example, Experiment 2A and 2B of the Karabay 

et al. (2022), the Asplund et al. (2014) data, and the Wang et al. data set with the color-color 

target pair, there was no evidence showing that the time interval influenced the model fitness.  

Regarding the models that consider nontarget reports (the EnsInt and Swap models), it 

should be noted that these models performed better at shorter lags, and were highly favored at 
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Lag 1 (See Fig 3). In the present datasets, this tendency was only observed under the single-

stream RSVP paradigm, with the two targets both being orientations. Our results about the 

performance of the Swap model accorded with previous research, which has demonstrated that 

temporal target integration and target report order reversals occurred frequently at Lag 1 

(Akyürek et al., 2007, 2012; Hommel & Akyürek, 2005). This, in turn, is in line with the 

account offered by the eSTST model of the AB (Wyble et al., 2009) for the phenomenon of Lag 

1 sparing (i.e., the lack of an AB at that lag), which holds that both targets are consolidated 

together when they successively follow each other without intervening distractors. Although 

the inner mechanism of the EnsInt model and the Swap models is different, the key divergence 

between these two models and the others is that they suggest the representations of each item 

in the VWM are not independent but can be influenced by other items. Especially for the AB 

task, the T2 error distribution predicted by these two models can be affected by the first target. 

It might thus be reasonable to conclude that the failure of these two models at longer lags could 

be attributed to the weaker influence of T1 on T2. 

For the VP and VPG models, our findings indicate that they have better performance at 

longer lag or SOA, in each of the data sets. First, looking at the subject level, more subjects 

favored these two models at longer lags. Then at the group level, the rankings for these two 

models were slightly higher at longer lags than those at shorter lags. In previous studies, the 

assessments for the models with variable precision were mixed. Asplund and his colleagues 

(Asplund et al., 2014), who suggested that the perception in the AB is a discrete process in their 

study, showed that the variable precision model did not fit the data well, but the standard 

mixture model did. However, Sy et al. (2021) demonstrated that the variable precision model 

could describe the graded loss of T2 information in the AB in their data. Although our analysis 

cannot address whether the nature of the awareness in the AB is gradual or discrete, the findings 
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that the VP and VPG models’ performance is affected by the lag may imply that lag may also 

be a factor in the process of visual information gaining access to awareness. 

Given the results we discussed above, it should be noted that there was some evidence 

that target features also affect model performance to an extent. For the Wang et al. data set, the 

model comparison results of distinct experimental settings within the same study showed strong 

evidence that the VP and VPG models performed better for colored targets over orientations. 

This finding broadly supports the work of Bae et al. (2014), who reported increased variability 

in color WM. Furthermore, the performance of the EnsInt and the Swap models was also 

associated with the target features. These models explained the data better when the two targets 

shared a common feature, such as the orientation-orientation and the color-color target pairs in 

the Wang et al. data set. Based on the core principles behind the EnsInt and the Swap models, 

it is plausible that when the two targets in the AB task have the same characteristic, the T2 

response is more easily influenced by T1. Indeed such interactions including attraction and 

repulsion are also observed in VWM tasks when two targets share the same feature (Chunharas 

et al., 2022), highlighting an interesting commonality between the two domains. In future 

research in the AB domain, it might be advisable to select and assess model-based performance, 

dependent on the specific target feature applied in the task. 

 

Conclusion 

In summary, this study set out to evaluate the fitness of eight commonly used VWM 

models in four different data sets obtained from the AB task. We found that the models that 

hypothesize there are limited ‘storage slots’ in VWM, such as the StM model, the Slot model 

and its variants, performed best in accounting for the data in the majority of experiments we 

analyzed. The second significant finding was that both the lag and the commonality in, and the 

kind of, target feature (color or orientation) played an important role in model performance. In 
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our simulation analysis, the divergences among the synthetic data sets from all the eight models 

were too small to draw strong inferences, but our simulation results at least showed the 

applicability of these VWM models in the AB domain. Overall, the systematical model 

comparisons in our study, not only across different lag conditions, but also across different 

kinds of targets, may help to guide the future selection of models to assess representation and 

task performance in the AB field. 
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