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Abstract

Bet hedging consists of life history strategies that buffer against environmental variability by

trading off immediate and long-term fitness. Delayed germination in annual plants is a classic3

example of bet hedging, and is often invoked to explain low germination fractions. We examined

whether bet hedging explains low and variable germination fractions among 20 populations

of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation6

in reproductive success among years. Leveraging 15 years of demographic monitoring and 3

years of field germination experiments, we assessed the fitness consequences of seed banks and

compared optimal germination fractions from a density-independent bet-hedging model to ob-9

served germination fractions. We did not find consistent evidence of bet hedging or the expected

trade-off between arithmetic and geometric mean fitness, though delayed germination increased

long-term fitness in 7 of 20 populations. Optimal germination fractions were 2 to 5 times higher12

than observed germination fractions, and among-population variation in germination fractions

were not correlated with risks across the life cycle. Our comprehensive test suggests that bet

hedging is insufficient to explain the observed germination patterns. Understanding variation15

in germination strategies will likely require integrating bet hedging with complementary forces

shaping the evolution of delayed germination.
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Introduction18

Organisms across the tree of life exhibit life-history strategies that allow persistence in the face

of environmental uncertainty. For annual plants, interannual variation in reproductive success

driven by environmental variation can favor the evolution of delayed germination that establishes21

soil seed banks. Seed banks not only buffer plant populations against environmental change

and stochasticity (Eager et al. 2014; Paniw et al. 2017), but also increase effective population

size (Nunney 2002; Waples 2006), and maintain genetic diversity (McCue and Holtsford 1998).24

Theory thus suggests that seed banks have key ecological and evolutionary consequences (Evans

and Dennehy 2005).

Evolutionary ecologists have long interpreted delayed germination, caused by persistent or27

variable seed dormancy, as a bet hedging strategy (Bulmer 1984; Cohen 1966; Ellner 1985a,b;

Philippi and Seger 1989; Simons 2011). Bet hedging increases geometric mean fitness by reducing

variability in reproductive success, even if it decreases the arithmetic mean fitness (Seger and30

Brockman 1987). At the level of individuals, this trade-off between fitness mean and variance is

the product of a single genotype that expresses phenotypic variance (Philippi and Seger 1989;

Seger and Brockman 1987). For example, a genotype that produces seeds with varying levels of33

dormancy may have lower fitness in years when all seedlings successfully set seed because only

a fraction of the bet hedging genotype’s seeds contribute to next year’s population. However,

geometric mean fitness is multiplicative and thus sensitive to variability in reproductive success36

between years. A seed bank prevents the bet hedging genotype’s extinction if there is any chance

of complete reproductive failure. Genotypes without delayed germination would be lost. The

value of delayed germination also depends on how safe the seed bank is; if seed mortality is39

high, there is a greater risk to remaining in the soil (Cohen 1966). Ultimately, the individual-level

advantage of bet hedging translates to the population-level by increasing long-term population

growth rates and persistence.42

Some empirical studies suggest that delayed germination, relative to a strategy with com-
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plete germination, meets the criteria for bet hedging (Clauss 1999; Evans et al. 2007; Gremer

and Venable 2014; Kalisz and McPeek 1993). Specifically, these studies identify the following45

population-level patterns: (1) reduced arithmetic mean fitness but (2) lower variance in fitness

(Clauss 1999), (3) higher long-term stochastic population growth rate (Kalisz and McPeek 1993),

or all three at once (Evans et al. 2007; Gremer and Venable 2014). Some degree of delayed ger-48

mination should be favored when there is a nonzero probability of complete reproductive failure

(Cohen 1966). Species exhibit substantial intraspecific variation in germination fractions (e.g.,

Fernández-Pascual et al. 2013; Gremer et al. 2020; Torres-Martı́nez et al. 2017), and determining51

the fitness consequences of this variation remains an open area of inquiry.

If delayed germination functions as a bet hedging strategy that maximizes geometric mean

fitness, the optimal germination fraction in a population is expected to have evolved in response54

to that population’s seed mortality and temporal variability in reproductive success (Cohen 1966;

Franch-Gras et al. 2017; Pinceel et al. 2021). A strong test of whether germination fractions are

optimally adaptive would be to compare observed and optimal germination fractions, taking57

into account the complete life-history (Childs et al. 2010; Simons 2011). For example, interspe-

cific comparisons of a winter annual plant community in the Sonoran Desert demonstrated the

adaptive value of delayed germination; lower germination fractions were accurately predicted60

for species whose seeds experienced low mortality and whose seedlings had high variability in

reproductive success (Gremer and Venable 2014). However, we are not aware of studies focused

on whether intraspecific (among-population) differences in delayed germination reflect variation63

in the fitness consequences of germination. Such a test would provide evidence that delayed

germination functions as bet hedging and determine the extent to which observed germination

fractions maximize fitness (categories V and IV in Simons 2011).66

Populations of the winter annual, Clarkia xantiana ssp. xantiana, in the southern Sierra Nevada

are distributed across a complex landscape of varying elevation, slope, aspect, precipitation, and

temperature (Fig. 1A; Eckhart et al. 2011; Gould et al. 2014). Despite early work that suggested69

the species lacked a seed bank (Lewis 1962), multiple lines of evidence now support the presence
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and relevance of a seed bank in populations of C. xantiana ssp. xantiana. In field experiments,

seeds can germinate at least up to three years after being buried in bags (Eckhart et al. 2011) or72

pots (M. A. Geber, unpublished data). Fifteen years of surveys suggest that the seed bank allows

some populations to persist exclusively as seeds for as long as 4 consecutive years (Fig. 1B). Seeds

can also remain viable for up to 11 years when buried in bags 30 cm below the soil surface (D. A.75

Moeller, unpublished data). Clarkia xantiana ssp. xantiana seeds lack morphological adaptations

for dispersal (Knies et al. 2004), and the species’ small-scale spatial distribution is consistent

with dispersal limitation (Kramer et al. 2011). We thus expect a limited role for dispersal to78

complement delayed germination under temporal variability (Venable and Brown 1988), and

little seed dispersal among populations during this study.

A previous study of C. xantiana ssp. xantiana population dynamics identified a decrease in81

population growth rate from west to east across the species’ distribution in the southern Sierra

Nevada, CA (Eckhart et al. 2011). Germination rate of first-year seeds increased from west to east

(Eckhart et al. 2011). Variability in rainfall during the growing season shows a similar pattern as84

germination, from less variable (and wetter) in the west to more variable (and drier) in the east

(Eckhart et al. 2011). Demographic observations (Eckhart et al. 2011) and transplant experiments

demonstrate that seed set can exhibit dramatic interannual variation associated with rainfall [e.g.,87

30-fold between a wet and dry year in Geber and Eckhart (2005)].

Here, we test whether observed germination fractions and life-history patterns in Clarkia xan-

tiana ssp. xantiana are consistent with predictions made by bet hedging models. We combine 1590

years of observations on reproductive success and 3 years of seed burial experiments from 20

populations to address the following questions. (1) Does delayed germination and the forma-

tion of a seed bank meet the criteria for bet hedging? Specifically, for each population, we test93

whether delayed germination decreases arithmetic mean fitness, reduces the variability in fitness,

and increases the long-term stochastic population growth rate. Next, we tested whether the ob-

served germination fractions are likely to be adaptive. (2) For each population, does the optimal96

germination fraction predicted by bet hedging models match observed germination fraction? We
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find that life-history patterns are not entirely consistent with bet hedging expectations. We thus

examine the relationship between germination fraction and risk, both by seeds before germina-99

tion and by seedlings after germination. Under bet hedging, we expect a negative correlation

between germination fraction and risk, so we specifically ask the following questions: (3) Is there

a negative correlation between germination fraction and seed survival across populations? (4) Is102

there a negative correlation between germination fraction and variability in per-capita reproduc-

tive success across populations?
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A.

B.

Figure 1: Map of the populations, and summary of aboveground observations of demography.
(A) Elevation map of study populations. (B) Graphical summary of 15 years of aboveground
observations at study populations. Open circles indicate that no seedlings survived in permanent
plots; Xs indicate that no seedlings or plants were observed in surveys. Populations are arrayed
from west (bottom) to east (top).
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Methods105

Clarkia xantiana ssp. xantiana life history

Clarkia xantiana ssp. xantiana is a winter annual that germinates with late fall and winter rains,

and sets seeds during the summer drought, in California’s Mediterranean climate. In our study108

region, the Kern River Canyon and Valley (Kern and Tulare Counties, California, U.S.A.), ger-

mination happens from November through March. Seedlings grow in winter and spring, and

surviving plants flower in late spring and early summer, late April into mid-June. Pollinated111

fruits set seed in the early summer, June to July, and fruits subsequently dry out and gradually

split open. Most seeds appear to be shed from fruits within 3-4 months after production, but

can remain on the plant for more than a year. Seeds are small (< 1 mm in width) and have no114

structures to aid in aerial or other dispersal.

We represent the Clarkia xantiana ssp. xantiana life-history in terms of transitions from October

of year t to October of year t + 1. Transitions are the product of seed survival and germination,117

and aboveground seedling survival to fruiting, fruit production, and seeds per fruit. For this

study, we assume that the new and old seeds differ in their survival rates in the seed bank, but

do not include additional age structure and assume germination of new and old seeds is the120

same. We also assume that all plants experience the same vital rates upon germination. We

describe population growth rate by the following equation:

λ = g1Y(t)s0s1 + (1 − g1)s2s3. (1)123

Germination is given by g1. Seed survival from seed production in June/July to the first October

is s0. Seed survival from the first October to germination in January/February is s1. Survival

of ungerminated seeds from January/February to the next October is s2. Seed survival from126

October to the second germination opportunity the following January/February is s3. Per-capita

reproductive success in year t, Y(t) is the product of seedling survival to fruiting, fruits per plant,
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and seeds per fruit. All parameters are summarized in Table 1.129

Creating the dataset

We used field surveys and experiments to assemble observations of above- and below-ground

demography for 20 populations of Clarkia xantiana ssp. xantiana across its range (Table 2, S1).132

A subset of the demographic data has been used to test hypotheses about geographic variation

in population growth rate and species distributions (Eckhart et al. 2011; Pironon et al. 2018).

Here, we used field surveys to collect data on seedling survival, fruit production, and seed set.135

We also conducted field experiments to observe emergence of seedlings and seeds remaining

intact in the soil seed bank. We used the data from the surveys and experiments to estimate

the demographic parameters that describe the life cycle (Equation 1). Ultimately, we used these138

estimates to calculate per-capita reproductive success, seed survival, and germination to test

predictions of bet hedging models.

Field surveys for aboveground components of demography141

We conducted field surveys of seedlings, fruiting plants, fruits per plant, and seeds per fruit

at two spatial scales (Figure 2A; Eckhart et al. 2011). First, in October 2005, we established 30

1 × 0.5 m2 permanent plots at each of the 20 study populations. The permanent plots were144

arrayed across four to six transects per site, and each plot was 2.5 m apart along a transect.

Permanent plots were used for annual surveys of seedlings, fruiting plants, and fruits per plant.

Second, additional, haphazardly distributed 1 × 0.5 m2 plots were used each year to supplement147

estimates of fruits per plant from permanent plots, and to identify plants for fruit collection. By

collecting fruits from plants outside the permanent plots, we did not affect seed input into the

permanent plots.150

To estimate the survival of seedlings to fruiting plants, we counted seedlings (nijk) and fruiting

plants (yijk) in each permanent plot each year from 2006–2020. Seedlings and fruiting plants were

counted in January/February and June, respectively, in plot i, year j, and population k.153
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Of more than 8000 observations, there were fewer seedlings than fruiting plants in approxi-

mately 5% of observations; 50% of these had 1 fewer seedling than fruiting plant (Table S5). There

are at least two possible sources of undercounts of seedlings. An observer might miss small156

seedlings that were present at the January/February seedling census, or additional seedlings

emerged after the census. We assume that we did not under- or over-count fruiting plants be-

cause plants stand out from the background vegetation in June. To account for the undercount of159

seedlings, we recoded the data so that the count of seedlings was equal to the number of fruiting

plants observed later in the season.

To determine the number of fruits per plant, we counted the number of fruits per plant on162

up to 15 plants in each of the permanent plots from 2007–2020, and on additional plants in

the haphazardly distributed plots from 2006–2020 (Figure 2A). We combined counts from plants

in permanent and haphazardly distributed plots, because the latter often sampled a broader165

distribution of plant sizes and combining them allowed us to better estimate fruit number per

plant in years with relatively few plants in permanent plots.

From 2006–2012, we counted the number of undamaged fruits on a plant. We then took the168

damaged fruits on a plant and visually stacked them end to end to estimate how many additional

undamaged fruits that was equivalent to (e.g., two half fruits corresponded to one undamaged

fruit). We used this as our count (yTFE
ijk ) of total fruit equivalents on plant i, in year j, and in171

population k. From 2013–2020, we separately recorded the number of undamaged (yUF
ijk ) and

damaged (yDF
ijk ) fruits on a plant.

From 2006–2020, we counted the number of seeds in one undamaged fruit (yUS
ijk ) collected174

from each of 20-30 plants in the haphazardly distributed plots. Our counts corresponded to fruit

i, in year j, and in population k. From 2013–2020, we also counted the number of seeds in one

damaged fruit (yDS
ijk ) collected from each of 20-30 plants in the haphazardly distributed plots.177
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Field experiments for belowground components of demography

We conducted a field experiment to estimate seed persistence from fall (October) to winter (Jan-

uary/February), emergence in the winter, and seed persistence from winter to fall (Fig. 2B). At180

each population, we buried seeds in mesh bags in the fall, counted intact seeds and seedlings

in a subset of bags in the winter, and then retrieved those bags the following fall to count intact

seeds and conduct a two-stage lab trial to assay viability of intact seeds. Seed persistence and183

emergence do not incorporate loss of seed viability because seeds that are intact in the field may

not be viable. We thus combine the field and lab experiments to estimate seed survival and

germination, which do account for loss of viability.186

The experiment consisted of three rounds starting in October 2005, 2006, or 2007. For each

round, we collected seeds at each population in summer before the round started. For each

population, we pooled and distributed seeds across 5×5-cm nylon mesh bags (100 seeds/bag). In189

October, we returned the bags to the population at which the which seeds were collected, staked

one bag near each permanent plot (Methods: Field surveys for aboveground demography) and

covered the bags with soil.192

In Round 1, we placed 30 bags at each population in October 2005. We unearthed a first set of

10 bags in January 2006 to count the number of intact seeds (y) and the number of seedlings (yg)

(Age 0 in Fig. 2B). We returned the bags to the ground until October 2006, when we retrieved195

bags to the lab to count intact seeds (y) and test seed viability (see below). In the second year of

Round 1, we counted intact seeds and seedlings in a second set of 10 bags unearthed in January

2007 (Age 1 in Fig. 2B). We again returned these bags to the ground until October 2007, when we198

retrieved these 10 bags to count intact seeds and test seed viability. In the third year of Round 1,

a third set of 10 bags was unearthed in January 2008 to count intact seeds and seedlings (Age 2

in Fig. 2B), and brought to the lab in October 2008 for seed counts and viability tests.201

The experiment was repeated in all populations two more times. Round 2 started in October

2006 with 20 bags per population, and 10 bags were dug up in the first and second year (2007 and
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2008, respectively). Round 3 started in October 2007 with 10 bags per population, and 10 bags204

each were dug up after one year (2008). We thus made three sets of observations associated with

age 0 seeds (brought to the lab after one year in the field), two sets of observations associated

with age 1 seeds (brought to the lab after two years in the field), and one set of observations207

associated with age 2 seeds (brought to the lab after three years in the field).

In October of each experimental year, the seeds remaining intact in the subset of bags that

were brought to the lab were counted and tested for viability in a two-stage trial (Fig. 2B). We210

placed up to 15 seeds from each bag on moist filter paper in a disposable cup; over a 10-day

span, we counted and removed germinants every two days. Because we conducted 2-3 tests of

15 seeds each per bag, we summed the number of seeds tested (nviab
g ) and germinating (yviab

g ) to213

summarize the trials and successes.

After 10 days, up to 10 remaining ungerminated seeds were sliced in half and individually

placed into 96-well plates filled with a solution of tetrazolium chloride, which stains viable tissue216

red. We covered the plates with foil. Each 96-well plate contained seed from at least one bag per

population of a given seed-age class. We counted viable seeds every 2 days for 10 days. For each

bag, we summed the number of seeds tested (nviab
v ) and staining (yviab

v ) to summarize the trials219

and successes.
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Figure 2: Graphical summary of the observations, models, and parameters used to estimate per-
capita reproductive success, germination, and seed survival. (A) A graphical representation of
the relationship between the structure of observations and the data. A directed acyclic graph for
the model of seedling survival to fruiting, with colors corresponding to the simulated example
in the plots showing the relationship between model parameters, marginalized probabilities, and
data. (B) A graphical representation of the field seed bag experiments and lab viability trials.
The experiments are related to estimates of seed survival, germination, and viability.
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Statistical models

We used observational and experimental data from 20 populations to estimate the demographic222

parameters that describe the life cycle (Fig. 2). To calculate variation in per-capita reproduc-

tive success for the study populations, we obtained annual estimates for seedling survival to

fruiting, fruits per plant, and seeds per fruit from the field surveys. Because our goal was to225

compare patterns of seed bank dynamics among populations, we obtained population-level esti-

mates for germination and seed survival from the seed bag burial experiment. We refer readers

to Appendix S2 for a description of the statistical models, directed acyclic graphs, and for the228

mathematical expressions for the posterior proportional to the joint distribution for all the mod-

els.

Aboveground components of demography231

We used a hierarchical, Bayesian approach to fit models to observations of seedling survival,

fruits per plant, and seeds per fruit. As an example, we describe the structure of the model

for seedling survival to fruiting, which is essentially a generalized linear mixed model with a234

binomial likelihood and a logit link (Fig. 2A). We use directed acyclic graphs (DAGs) to illustrate

the relationship between the observations, the model, and parameters of interest. In the field,

we counted seedlings (nseedlings
ijk ) and fruiting plants (yfruiting

ijk ) in plot i, year j, and population237

k. These quantities are outlined in black in the DAG and are shown as black points in the

corresponding graphs. The model uses a binomial likelihood and relates the data to a probability

of survival, αS. This parameter is logit-transformed and links the year-level distribution, outlined240

in orange, to the observations. Parameters for the year-level distribution are annual estimates

of the mean, which are drawn from the population-level distribution, outlined in purple. We

write the model using hierarchical centering to account for the structure of our observations and243

for computational efficiency (Evans et al. 2010; Ogle and Barber 2020), but it is equivalent to a

random effects structure in which years are nested within populations.
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The models for fruits per plant and seeds per fruit have a similar hierarchical structure but246

use Poisson likelihoods and a log link (Appendix S2.2.2). We separately modeled observations

of total fruit equivalents per plant for 2006–2012 and total fruits per plant for 2013–2020. In

years with observations of total fruits per plant, we also estimated the proportion of fruits that249

were undamaged vs. damaged. We estimated undamaged seeds per fruit for 2006–2020, and

combined those estimates with counts of damaged seeds per fruit to infer the proportion of

seeds that were lost to herbivory for 2013–2020. For each set of observations, we fit separate252

models to each population so that the resulting annual estimates were partially pooled towards

the population-level mean. To make the two sets of observations for fruits per plant compatible,

we used the proportion of fruits per plant that were damaged and the proportion of seeds lost to255

herbivory on a damaged fruit to calculate total fruit equivalents per plant from 2013–2020.

We chose to fit hierarchical, Bayesian models to our data for several reasons. First, hierarchical

models perform well for making inferences about annual variation in demography (Metcalf et al.258

2015). Second, the study period included substantial variation in sample size (Tables S2-S4, S6-

S9), including years in which we did not observe plants in permanent plots even when they were

present in the broader population (Fig. 1B). Hierarchical models for seedling survival introduce261

partial pooling, which allows us to account for sampling variation in fitting the model rather

than post-hoc. Third, our approach makes it straightforward to quantify uncertainty associated

with annual estimates of components of reproductive success. Fourth, estimating germination264

and seed survival from the seed bag experiment required combining three datasets (see below),

a process that is a strength of Bayesian methods (Hobbs and Hooten 2015).

Belowground components of demography267

Estimating seed survival and germination from the seed experiment required combining datasets.

Here, we describe and graphically illustrate the model that we fit to observations from field ex-

periments (Fig. 2B). The model we fit to the observational data jointly accounts for loss of seeds270

from the seed bank through mortality and germination. Germination occurs once a year in the
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winter, and is estimated from the seeds that germinate each year. Mortality occurs throughout

the year, and is estimated from the seeds that remain intact. In Fig. 2B, the model describes the273

stairstep shape of the curve in the lower left panel. In practice, we fit a survival function that is

the product of discrete germination and mortality hazards (Klein and Moeschberger 2003).

Separately, we obtained viability of seeds using the two-stage lab trials. Each lab trial con-276

sisted of two binomial experiments that measured (1) germination of intact seeds and then (2)

viability of seeds that did not germinate. We combined these estimates to infer viability in each

population and year. The lab trials involved destructive sampling, and we only conducted them279

when bags were retrieved in October (filled points in lower right panel of Fig. 2B). We inferred

the viability of intact seeds in January by assuming that seeds lost viability at a constant rate (ex-

ponential decay). Further, we interpolated between estimates by assuming that viability changed282

at a constant rate between years, and that all seeds were viable at the start of the experiment

(open points in lower right panel of Fig. 2B).

Finally, because plants set seed in July but the field experiments with seed bags did not285

start until October, we did not have direct observations to inform estimates s0, the probability

of seed survival from seed production in July to four months later in October. To infer seed

survival during this part of the life cycle, we combined data from the field surveys and seed bag288

experiments (Elderd and Miller 2016). We assumed that the seedlings emerging in permanent

plots in 2008 were primarily from seeds produced in permanent plots in the previous two years,

2006 and 2007, that survived to and germinated in 2008. We ignored contributions from older291

seeds, assuming for simplicity that they make up a small proportion of seedlings. We used counts

of fruiting plants in the permanent plots, and estimates of seed set per fruiting plant, to calculate

the average seed set per transect in 2006 and 2007. We then linked seed set, and estimates of294

seed survival and germination from the seed bag burial experiment, to the average number of

seedlings observed in permanent plots. Once we joined these observations, we inferred s0 as the

proportion of seeds lost between seed set in July and October.297
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Model statements, implementation, and fitting

We show the expressions for the posterior proportional to the joint distribution, and correspond-

ing directed acyclic graphs, for all models in Appendix S2. Prior choice is described in Ap-300

pendix S3, and Table S10 shows all parameters with associated priors. We prepared data for

analysis using the tidyverse (Wickham and RStudio 2021) and tidybayes (Kay and Mastny 2020)

packages in R version 3.6.2 (R Core Team 2019). We wrote, fit all models, and estimated posterior303

distributions using JAGS 4.10 with rjags (Plummer et al. 2019). We used the MCMCvis package

to work with the model output, check chains for convergence, and recover posterior distributions

(Youngflesh et al. 2021). We randomly generated initial conditions for all parameters with a prior306

by drawing from the corresponding probability distribution in R before passing the initial values

to rjags. We ran three chains for 45,000 iterations. The first 10,000 iterations were for adapta-

tion, the next 15,000 iterations were discarded as burn-in, and we sampled the following 15,000309

iterations. We assessed convergence of the MCMC samples with visual inspection of trace plots,

by calculating the Brooks-Gelman-Rubin diagnostic, R̂, and by calculating the Heidelberg-Welch

diagnostic (Hobbs and Hooten 2015; Elderd and Miller 2016).312

Computing vital rates

In the following sections, we describe how we used estimates from the statistical models to

obtain the parameters that describe the Clarkia xantiana ssp. xantiana life-history. The calculations315

summarized here are described in detail in Appendix S4.

Per-capita reproductive success

We calculated annual per-capita reproductive success as the number of seeds produced per318

seedling each year, on average (Gremer and Venable 2014; Venable 2007). In other words, it

is the product of the annual mean probabilities of seedling survival to fruiting, fruits per plant,

and seeds per fruit. We calculated the posterior mode of annual estimates for each of these321
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parameters in each year (the orange distribution in Fig. 2A) and multiplied them to obtain the

per-capita reproductive success in that year.

To compute per-capita reproductive success, we used 15 years of observations from each of324

20 populations. Our observations throughout the study period include missing data that reflects

natural variability in population size or the spatial distribution of plants at study populations

(Fig. 1B). We accounted for missing data while calculating per-capita reproductive success. In327

some years (n=3), we observed no seedlings or fruiting plants in permanent plots or in additional

plots distributed haphazardly across the population, while in other years (n=8) we observed

seedlings but no fruiting plants at the population. We assumed that this reflects a true absence330

of fruiting plants in that year and that there was no seed set in these years, so we set fruits

per plant and seeds per fruit to 0. In one year at one population, we observed a single fruiting

plant with 3 fruits, from which we did not collect seeds. For this estimate, we substituted the333

population average of seeds per fruit. Finally, there were years (n=11) when there were no

plants in permanent plots but we found plants elsewhere throughout the population. We had

no information about seedling survival in these years, and so used the population’s average for336

seedling survival to fruiting.

Belowground vital rates

Estimates from the seed bag burial experiment describe persistence, the probability that a seed339

remains intact in the seed bank, and emergence, the probability that an intact seed becomes a

seedling. To estimate seed survival and germination, which account for loss of seed viability

in our estimates of seed survival and germination, we combined information from the seed342

bag burial experiment and the lab trials (Table S11). First, we estimated the probability that

seeds persist, or remain intact, in the seed bank (Fig. 2B). We combined estimates for persistence

with the viability estimates to calculate seed survival, the probability that seeds remains intact345

and viable in the seed bank. Similarly, we combined estimates for emergence with viability to

calculate germination, the probability that viable, intact seeds become seedlings. We used the
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seed survival (s1, s2, s3) and germination (g1) probabilities to test predictions from bet hedging348

theory. Because seed survival from seed set in July to October (s0) implicitly included loss of

seed viability, we did not adjust these estimates.

Analysis351

Demographic test of bet hedging

We used estimates for the vital rate components to test whether delayed germination is an adap-

tive bet hedging trait in Clarkia xantiana ssp. xantiana. The life-history described by equation 1354

incorporates a seed bank. Specifically, populations form a seed bank by delaying germination

(i.e. g1 < 1). Immediate germination (g1 = 1) eliminates the seed bank, in which case equation 1

reduces to357

λ =
N(t + 1)

N(t)
= Y(t)s0s1. (2)

Per capita reproductive success, Y(t), is calculated as the product of seedling survival to fruiting,

fruits per plant, and seeds per fruit. We tested whether delayed germination (g1 < 1) functions360

as bet hedging by eliminating the seed bank (Eq. 2). If delayed germination is consistent with bet

hedging, we expect eliminating the seed bank to increase arithmetic mean fitness, increase the

variability in fitness, and decrease the long-term stochastic population growth rate (Clauss 1999;363

Evans et al. 2007).

To calculate the arithmetic mean population growth rate, we calculated an average environ-

ment growth rate, λa (Evans et al. 2007). We assumed that each of the 15 values for per-capita366

reproductive success, Y(t), are equally likely. We obtained values for the average population

growth rate with the field estimates of germination as well as with the seed bank eliminated

(g1 = 1). In each case, we used the posterior modes of the parameters in equations 1 or 2.369

To calculate temporal variability in population growth rate, we drew 1,000 samples from

the 15 years of per-capita reproductive success estimates with replacement. We paired these

resampled years of estimates with the population-level values for germination and seed survival372
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rates to calculate annual population growth rates. For both the case with and the case without a

seed bank, we calculated the variance of the sequence of population growth rates.

To calculate the long-term stochastic population growth rate, we used the same sequence of375

population growth rates that we used to calculate temporal variability in fitness. We calculated

the long-term stochastic population growth rate with the field estimates of germination, as well

as with the seed bank eliminated (g1 = 1). We used the following equation to calculate the378

stochastic population growth rate

λs = exp
(∑ log( N(t)

N(t−1) )

1000

)
= exp

(∑ log(λ)
1000

)
. (3)

To examine the effect of uncertainty about parameter estimates on our results, we used the381

full posterior distribution for parameter estimates to calculate the arithmetic mean growth rate,

temporal variability in population growth rate, and long-term stochastic population growth rate

(Appendix S5.1).384

Density-independent model for germination fractions

We calculated the optimal germination fraction for the observed variation in reproductive success

and seed survival. For each population, we used a sequence of 1,000 resampled values for387

per-capita reproductive success, Y(t), and the observed seed survival probabilities, s0, s1, s2,

and s3, to calculate population growth rates at each germination fraction, G, along an evenly

spaced grid of values from 0 and 1. Temporal variation was incorporated into the model by390

resampling per-capita reproductive success, Y(t). The optimal germination fraction is the value

of G that maximizes the geometric mean of the population growth rate. We found the optimal

germination fraction by using a one-dimensional optimization algorithm to find the optimal G393

between 0 and 1 (Brent 1973). For each population, we replicated the optimization 50 times; each

time, we drew a new sequence of years, Y(t) and recalculated G. To summarize the results for

each population, we calculated the median and 95% percentile intervals of these replicates. To396
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evaluate the relationship between the optimal and observed germination fractions, we calculated

the Pearson correlation coefficient between the median of the optimal G and the posterior mode

of g1.399

To assess the influence of parameter uncertainty on optimal germination fractions, we exam-

ined how optimal G varied when we sampled from the posterior distribution of each parameter

in the population model (Appendix S5.2). For each sample, we found the optimal germination402

fraction, G, for 50 replicates.

Correlation between germination and seed survival

We tested whether observed germination, g1 was negatively correlated with seed survival, s2s3.405

We calculated the probability that seeds which do not germinate in January remain in the seed

bank until the following January. We obtained the posterior distribution for the correlation

between germination and seed survival by calculating the sample correlation of g1 and s2s3 at408

each iteration of the MCMC output.

Correlation between germination and variability in per-capita reproductive success

We tested whether observed germination, g1 was negatively correlated with the temporal vari-411

ability in per-capita reproductive success for each population. We estimated variability by sam-

pling the posterior distribution of reproductive success for each year and calculating the geomet-

ric SD of per capita reproductive success as exp(SD (log (per capita reproductive success+0.5))).414

We obtained the sample correlation of germination and geometric SD of per capita reproductive

success at each iteration of the MCMC output.
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Results417

Demographic test of bet hedging

To determine whether the seed bank meets the criteria for bet hedging, we compared the arith-

metic mean population growth rate, variance in population growth rate, and long-term stochas-420

tic population growth rate with and without a seed bank. The arithmetic mean growth rate was

greater without a seed bank than with a seed bank (Fig. 3A). The variability in population growth

rates was also greater without a seed bank than with a seed bank (Fig. 3B). However, the long-423

term stochastic population growth rate was not always higher with a seed bank (Fig. 3C); the

stochastic population growth rate was only greater with a seed bank in 7 out of 20 populations.

These results were robust to uncertainty in parameter estimates (Fig. S7).426

Observed germination fractions are lower than predicted by a

density-independent model

To evaluate the density-independent model, we compared observed germination to predicted429

germination optima (Fig. 4). Optimal germination fractions were less than 1 in 13 out of 20

populations (Fig. 4). Optimal and observed germination fractions were uncorrelated (Fig. 4;

r=-0.158, p=0.507). Predictions from the density-independent model were higher than observed432

germination fractions. These results were robust to uncertainty in parameter estimates, in most

populations, but parameter uncertainty produced a wide range of optimal germination fractions

for GCN and FR (Fig. S8).435

Germination and seed survival are uncorrelated

To assess the relationship between germination and risk experienced by seeds that remain in the

seed bank, we calculated the correlation between germination fraction and seed survival. We did438
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not observe a correlation between germination and seed survival in the seed bank (Fig. 5A). The

95% credible interval for the posterior distribution of the correlation between germination and

seed survival overlapped 0.441

Germination and variability in per-capita reproductive success are uncorrelated

To assess the relationship between germination and risk experienced after germination, we cal-

culated the correlation between germination fraction and geometric standard deviation in per-444

capita reproductive success. The correlation between germination and geometric standard devia-

tion in per-capita reproductive success was negative (Fig. 5B). However, the 95% credible interval

for the posterior distribution of the correlation overlapped 0, indicating that there was not strong447

support for a non-zero correlation between germination and variability in reproductive success.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.508102doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.508102
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Test of the demographic patterns expected with bet hedging. (A) Plot of the arithmetic
population growth rate without a seed bank against arithmetic population growth with a seed
bank. (B) Plots of the variance in annual population growth rate without a seed bank against
the variance in population growth rate with a seed bank. (C) Plot of the long-term stochastic
population growth rate without a seed bank against the long-term stochastic growth rate without
a seed bank. In all plots, the dotted line is the 1:1 line.
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Figure 4: Comparison of observed and predicted, optimal germination fractions from a density-
independent model of bet hedging. For each population, the observed germination fraction,
g1, is estimate from the model for seed bank vital rates. Each point is the population-specific
mode of the posterior of g1 for a model fit to data from seed bag experiments from 2005-2008
plotted against the predicted, optimal germination fractions. For each population, we found
the optimal germination fraction for a density-independent population model. We ran 1000
replicates in which we resampled the annual estimates of per-capita reproductive success. Values
for predicted germination fractions are the medians of these replicates, and the error bars are the
95% percentile intervals.
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Figure 5: Relationship between germination and seed survival, and between germination and
the geometric standard deviation of per-capita reproductive success. (A) The observed germi-
nation probability, g1, plotted against probability of seed survival, s2s3. (B) Correlation between
observed germination probability, g1, and the geometric standard deviation of per-capita re-
productive success, a measure of the temporal temporal variability in per-capita reproductive
success. In both panels, points are the posterior modes; error bars are the 68% highest posterior
density intervals (under a normal distribution, 68% of the distribution is within ±1 standard
deviation).
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Discussion

We used an extensive demographic dataset to conduct an unusually comprehensive test of450

whether bet hedging explained germination patterns among populations of Clarkia xantiana ssp.

xantiana. All 20 populations in our study exhibit delayed germination. However, we found weak

support for the expected trade-off between arithmetic and geometric mean fitness, mixed sup-453

port that delayed germination acts as bet hedging, and no evidence that observed germination

fractions are adaptive under a density-independent bet hedging model. Observed germination

fractions were also uncorrelated with risk experienced by seeds that remain in the seed bank or456

by plants after germination. Collectively, we interpret our results to suggest that delayed ger-

mination acting as bet hedging alone is insufficient to explain germination patterns among our

study populations.459

Demographic test of bet hedging

To determine if delayed germination functions as bet hedging in each population, we tested for a

trade-off between arithmetic and geometric mean population growth rate mediated by reduced462

variability in population growth rate (Cohen 1966; Philippi and Seger 1989). We observed average

germination fractions below 0.3 in all populations. However, our demographic analysis failed to

demonstrate the expected trade-off between mean and stochastic population growth rate, despite465

15 years of observations of reproductive success (Table 3). We evaluated a strategy with the

observed germination fraction against a strategy with no seed bank (Evans et al. 2007). Delayed

germination reduced average population growth rate (Fig. 3A) and variance in reproductive468

success (Fig. 3B). But for most populations, delayed germination did not increase long-term

stochastic population growth rate (Fig. 3C).
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Observed germination fractions are lower than predicted by bet hedging models471

To complement the demographic test of bet hedging, we calculated the optimal germination frac-

tions that maximize each population’s growth rate (Childs et al. 2010; Simons 2011). We derived

these optimal germination fractions by parameterizing density-independent population models474

with estimates of seed survival and reproductive success (Gremer and Venable 2014). Some de-

layed germination was favored by the observed levels of seed mortality and temporal variability

in reproductive success in 13 populations (Fig. 4; Table 3). Relative to the demographic test, the477

optimal germination fractions thus provide slightly more support for the idea that delayed ger-

mination acts as bet hedging. However, even when we predicted optimal germination fractions

less than one, these were still much higher than germination fractions observed in the field. We480

may have underestimated germination if we missed seedlings that died before, or if there was

additional germination after, our annual census of seed bags. But the predicted germination

fractions are 2 to 5 times the observed fractions, and we think it is unlikely that we underesti-483

mated germination to this extent. We also did not find the expected positive correlation between

observed and predicted germination fractions. Jointly, we interpret these results to suggest that

even when delayed germination is favored, the observed germination fractions are lower than486

would be adaptive under density-independent bet hedging alone. Our results also parallel the

findings in Gremer and Venable (2014) that density-independent models tend to predict higher

germination fractions than observed in the field.489

Germination and risk across the life cycle

Under bet hedging, we expected that seeds from populations that experienced a greater degree of

risk in the seed bank would have lower germination fractions (Cohen 1966; Gremer and Venable492

2014; Venable 2007). While high mortality risk in the soil seed bank should select against delayed

germination, we did not find support for the expected relationship among germination and

seed survival (Fig. 5A; Table 3). Some populations with low seed survival also exhibited low495
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germination (e.g., FR, BR, SM), while some populations with high seed survival also had high

germination (e.g., S22, CP3).

High variability in per-capita reproductive success should also select for delayed germina-498

tion (Cohen 1966). However, in our study populations, variability in reproductive success was

uncorrelated with germination (Fig. 5B; Table 3). We observed similar germination fractions

(approximately 0.1) for populations with very different levels of variability in reproductive suc-501

cess (similar germination probabilities for a range of geometric standard deviations from 3-9 in

Fig. 5B). Lack of support for this prediction is consistent with other results in our study. Pop-

ulations with low variability in reproductive success and low germination were often the same504

populations that did not experience complete reproductive failure (Fig. 1B), for which stochas-

tic population growth rates were higher without a seed bank, and for which we predicted high

optimal germination fractions (e.g., OKRE, CP3 in Fig. 4).507

Temporal variability in reproductive success

Delayed germination decreases arithmetic mean fitness, and the variance in fitness, because it

dampens the effect of years with low per-capita reproductive success. To meet the criteria for510

bet hedging, delayed germination should also increase geometric mean fitness; whether it does

so depends strongly on the minimum reproductive success or probability of reproductive failure

(Childs et al. 2010; Cohen 1966; Evans et al. 2007). At the extreme, if there is no risk of repro-513

ductive failure, a strategy with delayed germination should always have lower geometric mean

fitness than one with full germination. All populations in which stochastic population growth

rate without a seed bank is lower than with a seed bank (URS, LCW, LCE, OKRW, FR, GCN, SM;516

Fig. 3C) either experienced reproductive failure or had no seedlings survive in permanent plots

in at least one year (Fig. 1B). In contrast, populations in which stochastic population growth rate

without a seed bank is higher than with a seed bank include those populations that either had519

some plants survive in permanent plots (LO) or populations in which plants set seed in all years.

Although our demographic observations were exceptionally broad, 15 years of observations may
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have been insufficient to encounter reproductive failure in some populations. Our measurements522

may thus be conservative for testing predictions of bet hedging theory.

At the same time, California is experiencing an ongoing drought and the 2005-2020 study

period included precipitation anomalies with severe ecological impacts (Cook et al. 2015; Prugh525

et al. 2018; Williams et al. 2022). Studies of bet hedging through delayed germination often

assume precipitation variability is a primary driver of variability in fitness (e.g., Clauss and

Venable 2000; Philippi 1993b; Tielbörger et al. 2012; Venable 2007). If this were the case in C.528

xantiana ssp. xantiana, our study should have had a high chance of observing its effects on

reproductive success. Instead, it is possible that precipitation alone may not be enough to explain

variation in reproductive success in some populations.531

Seed mortality across the life cycle

While seed mortality in the seed bank after seeds have had the opportunity to germinate selects

against delayed germination, seed mortality before seeds have had the opportunity to germinate534

favors the evolution of delayed germination (Gremer and Venable 2014). Seed mortality after

the germination opportunity is a risk borne by seeds that remain in the seed bank. In contrast,

seed mortality between seed production and the germination opportunity discounts reproductive537

success. It may thus be safer for a seed to remain in the seed bank if there is substantial seed

mortality between seed set and the opportunity to germinate.

We conducted a follow-up analysis that shows the optimal germination fractions we predicted540

are more sensitive to estimates of seed survival before than after germination (Appendix S5.3).

Optimal germination fractions could thus be lower than we predicted if we overestimated seed

survival before germination (s0 or s1). To estimate survival from seed production in June/July543

to burial in October, s0, we combined observations from surveys and field experiments. We may

have overestimated survival if our approach failed to fully capture mortality due to seed preda-

tion. In addition, the seed bag burial experiments could have overestimated seed survival from546

October to January, s1, if deep burial of seeds is a major source of loss from the seed bank, as bags
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prevent seeds from mixing into the soil. However, the experiments may underestimate survival if

seed densities in bags are high enough to promote the growth of pathogenic fungi (Van Mourik549

et al. 2005). These caveats could also affect estimates of seed survival after germination (s2 or s3),

but the optimal germination fraction is not as sensitive to these parameters.

Intra- and interspecific interactions shape optimal germination fractions552

In this study, we considered a density-independent model of bet hedging, which is particu-

larly sensitive to variability in reproductive success resulting from complete reproductive fail-

ure (Cohen 1966). However, density-dependence can also affect the value of delaying germina-555

tion because competitors may alter reproductive success; years that would otherwise be good

for growth and reproduction may become less favorable if there is strong competition (Ellner

1985a,b). Although our estimates of per-capita reproductive success implicitly incorporate the558

effects of density (Ellner 1985b), we did not explicitly model density-dependence in reproductive

success. Optimal germination fractions may thus be lower than we predicted in this study if we

were to calculate evolutionary stable strategies that account for competition (e.g., Gremer and561

Venable 2014).

More broadly, competitive and facilitative interactions with intra- and inter-specific plant

neighbors, as well as with pollinators, herbivores, and seed predators, could all modify the564

temporal variability of reproductive success. Reproductive success in C. xantiana ssp. xantiana

is affected by plant neighbors (James and Geber 2021), mammalian herbivores (Benning et al.

2019), and insect pollinators (Moeller 2004). If these interactions amplify variability in per-capita567

reproductive success, they could also favor lower germination fractions than those we predicted

here (Brown and Venable 1991). Crucially, we would need to measure and model the temporal

variability in the effect of these interactions in order to understand their impact on the evolution570

of delayed germination.
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Phenotypic plasticity in germination

To test bet hedging theory, we estimated fixed, population-level germination fractions with field573

experiments in which we collected and buried seeds in the same population. While we assumed

that the germination fractions reflected genetic differentiation among populations, germination

phenotypes are influenced by seed genotype, maternal genotype, and offspring or maternal en-576

vironment (Clauss and Venable 2000; Lampei et al. 2017; Philippi 1993a; Tielbörger and Petrů

2010; Tielbörger et al. 2012). We could not partition the relative contribution of these influences

in this study but, in general, germination phenotypes of C. xantiana ssp. xantiana do exhibit plas-579

ticity. In the field, germination varies interannually with rainfall (Geber and Eckhart 2005) and

among microsites (James et al. 2020). In the lab, germination responds to water potential and

temperature (I. Vergara and V. M. Eckhart, unpublished data). If germination reflects a response to582

environmental cues such as these, the distribution of those cues in the study years would deter-

mine the observed germination fractions (Clauss and Venable 2000). Studies that experimentally

partition phenotypic variation in germination phenotypes of C. xantiana ssp. xantiana would be585

extremely valuable in complementing the present work.

Our results suggest that variation in germination fractions among populations of Clarkia xan-

tiana ssp. xantiana is unlikely to be explained exclusively by bet hedging. Instead, we hypothesize588

that germination strategies are likely shaped by the combined influence of bet hedging and plas-

ticity. Bet hedging assumes that the reproductive success is unpredictable at the time of germina-

tion (Cohen 1966). If germination responds to environmental cues that also predict reproductive591

success, plasticity should evolve in accordance to the correlation between the cue and fitness;

such adaptive germination plasticity is termed predictive germination (Cohen 1967; Venable and

Lawlor 1980). Empirical studies suggest that germination strategies may often be a mix of bet594

hedging and predictive germination (Clauss and Venable 2000; Evans et al. 2007; Gremer et al.

2016; Simons 2014). More generally, strategies are expected to combine bet hedging and plasticity

in proportion to the uncertainty and predictability in the environment (Donaldson-Matasci et al.597
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2013; Tufto 2015).

To incorporate predictive germination into our bet hedging model, we could build on the

approach taken by Gremer et al. (2016). Briefly, we would estimate annual germination frac-600

tions and retain the observed correlation between germination and reproductive success when

calculating population growth rates. Estimating the correlation between germination and repro-

ductive success would require more data than we have with the three years of seed bag burial603

experiments. While it is beyond the scope of the present study, examining how bet hedging and

plasticity jointly contribute to the evolution of delayed germination in C. xantiana ssp. xantiana

would be an excellent task for future work.606
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Tables

Table 1: Vital rate components of the structured population model.
Component Description Data contributing to quantity
Seed survival

s0 Probability that a seed produced in
July of year t is intact and viable in Oc-
tober of year t

Seed bag burial experiment, viability
trials, seedling counts in permanent
plots, fruiting plant counts in perma-
nent plots, fruit per plant counts, seeds
per fruit counts

s1 Probability that a seed survives from
October of year t to January of year t+
1, for seeds produced in year t

Seed bag burial experiment, viability
trials

s2 Probability that a seed survives from
January of year t+ 1 to October of year
t + 1, for seeds produced in year t

Seed bag burial experiment, viability
trials

s3 Probability that a seed survives from
October of year t+ 1 to January of year
t + 2, for seeds produced in year t

Seed bag burial experiment, viability
trials

Germination

g1 Probability of germination for a seed
that has survived to January of year t+
1, for seeds produced in year t

Seed bag burial experiment, viability
trials

Per-capita reproductive success

σ Probability of seedling survival to
fruiting, from a January/February cen-
sus through reproduction in June/July

Seedling count in permanent plots,
fruiting plant count in permanent
plots

F Number of fruits per fruiting plant Fruit counts on plants in permanent
plots, fruit counts on plants in addi-
tional plots, seeds per fruit counts on
plants in additional plots

φ Number of seeds per fruit Seeds per fruit counts on plants in ad-
ditional plots
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Table 2: Summary of observations and experiments
Parameter data Description Time span

Seed vital rates — —
Seed survival and germination Seed bag burial 2005-2008
Seed viability Viability trials 2005-2008
Seedling survival — —
Seedling survival to fruiting Field surveys 2006-2020
Fruits per plant — —
Total fruit equivalents per plant Field surveys 2006-2012
Undamaged and damaged fruits per plant Field surveys 2013-2020
Total fruit equivalents per plant Extra plots 2006-2012
Undamaged and damaged fruits per plant Extra plots 2013-2020
Seeds per fruit — —
Seeds per undamaged fruit Lab counts 2006-2020
Seeds per damaged fruit Lab counts 2013-2020
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Table 3: Summary of key results for tests of bet hedging.
Demographic test of bet hedging Summary
Reproductive success accounting for complete reproductive failure
1. λa(noSB) > λa(SB) 20/20 populations
2. Var

(
λ(noSB)

)
> Var

(
λ(SB)

)
20/20 populations

3. λs(noSB) < λs(SB) 7/20 populations
Predicted vs. observed germination Summary
Germination fractions less than 1 13/20 populations
Life history components Posterior mode (95% credible interval)
Correlation between germination and seed
survival

ρg,s2s3 = −0.067 (−0.465, 0.408)

Correlation between germination and geo-
metric standard deviation of per-capita repro-
ductive success

ρg,GSD = −0.121 (−0.422, 0.341)
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Figure legends

Figure 1: Map of the populations, and summary of aboveground observations of demography.

(A) Elevation map of study populations. (B) Graphical summary of 15 years of aboveground

observations at study populations. Open circles indicate that no seedlings survived in permanent

plots; Xs indicate that no seedlings or plants were observed in surveys. Populations are arrayed

from west (bottom) to east (top).

Figure 2: Graphical summary of the observations, models, and parameters used to estimate per-

capita reproductive success, germination, and seed survival. (A) A graphical representation of

the relationship between the structure of observations and the data. A directed acyclic graph for

the model of seedling survival to fruiting, with colors corresponding to the simulated example

in the plots showing the relationship between model parameters, marginalized probabilities, and

data. (B) A graphical representation of the field seed bag experiments and lab viability trials.

The experiments are related to estimates of seed survival, germination, and viability.

Figure 3: Test of the demographic patterns expected with bet hedging. (A) Plot of the arithmetic

population growth rate without a seed bank against arithmetic population growth with a seed

bank. (B) Plots of the variance in annual population growth rate without a seed bank against

the variance in population growth rate with a seed bank. (C) Plot of the long-term stochastic

population growth rate without a seed bank against the long-term stochastic growth rate without

a seed bank. In all plots, the dotted line is the 1:1 line.
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Figure 4: Comparison of observed and predicted, optimal germination fractions from a density-

independent model of bet hedging. For each population, the observed germination fraction,

g1, is estimate from the model for seed bank vital rates. Each point is the population-specific

mode of the posterior of g1 for a model fit to data from seed bag experiments from 2005-2008

plotted against the predicted, optimal germination fractions. For each population, we found

the optimal germination fraction for a density-independent population model. We ran 1000

replicates in which we resampled the annual estimates of per-capita reproductive success. Values

for predicted germination fractions are the medians of these replicates, and the error bars are the

95% percentile intervals.

Figure 5: Relationship between germination and seed survival, and between germination and

the geometric standard deviation of per-capita reproductive success. (A) The observed germi-

nation probability, g1, plotted against probability of seed survival, s2s3. (B) Correlation between

observed germination probability, g1, and the geometric standard deviation of per-capita re-

productive success, a measure of the temporal temporal variability in per-capita reproductive

success. In both panels, points are the posterior modes; error bars are the 68% highest posterior

density intervals (under a normal distribution, 68% of the distribution is within ±1 standard

deviation).
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