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Abstract

Continuous recognition has long been used to study the recency effect in
recognition memory. In continuous recognition, response time (RT) increases
as a logarithmic function of the lag since a probe was last presented. Al-
though this could simply be due to decaying trace strength, careful exam-
ination of response time (RT) distributions showed that the onset of RT
distributions changed with the logarithm of the lag since a probe was orig-
inally presented. Each doubling of lag resulted in a shift of roughly 20 ms
in the rise time of the RT distributions. To test the hypothesis that this
increase was simply due to increased facility in processing the probe item,
Experiment six repeated items six times. Repetition resulted in faster RT's,
but did not change the effect of log lag on RT. In light of recent neurophysio-
logical evidence, we consider the hypothesis that memory requires a recovery
of temporal context, and the time to retrieve a prior temporal context goes
up with the logarithm of the time since it was experienced.

In recognition experiments, participants must judge if a given probe was previously
experienced or new. As the recency of a repeated probe decreases, the accuracy of this
judgment decreases, and response times (RT) increase (Shepard & Teghtsoonian, 1961;
Murdock & Anderson, 1975; Monsell, 1978; Hockley, 1982; Donkin & Nosofsky, 2012).
Despite decades of empirical and modeling work, the cause of this recency effect remains
unclear. In continuous recognition, there is no separation between a study phase and a test
phase; the participant must make a new/old judgment on every trial. Consider the task of
an individual engaged in continuous recognition. The individual must correctly identify an
item as old by comparing it to the contents of their memory. In continuous recognition, the
recency effect manifests as a sublinear increase in RT with increasing lag of the repeated
probe (Hintzman, 1969; Okada, 1971; Hockley, 1982). Hockley (1982) in particular, found
a logarithmic increase in RT with increasing lag. A question that remains however is, why
does it take longer to retrieve memories experienced further in the past? One hypothesis
is that the strength of memory traces decay over time or with intervening items. A second
hypothesis is that it takes longer to retrieve memories from further in the past. These
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hypotheses are not mutually exclusive.

Strength models are consistent with traditional signal detection models of recognition
memory (Murdock & Dufty, 1972; Wixted, 2007; Rotello, 2017), in which the output of
memory for each probe consists of a scalar decision variable. Strength models can be
implemented in distributed memory models that assume that memory is a composite store
containing a noisy record of features from all the studied items (e.g., J. A. Anderson, 1973,;
Murdock, 1982; Shiffrin, Ratcliff, Murnane, & Nobel, 1993). A composite memory store
can account for the recency effect if the features of items experienced further in the past are
stored with less fidelity than items experienced more recently. Indeed the confidence/RT
relationship (Norman & Wickelgren, 1969; Murdock & Dufty, 1972) is consistent with the
hypothesis that old probes that evoke more strength should result in both faster RTs and
high confidence in their prior occurrence. A strength model can account for the logarithmic
relationship between RT and recency increase if the strength of the match between a probe
and the contents of memory decreases appropriately (J. R. Anderson, Bothell, Lebiere, &
Matessa, 1998) and if this strength is coupled with a model of information accumulation
(e.g., S. Brown & Heathcote, 2005; Ratcliff, 1978; Usher & McClelland, 2001). The key
feature of strength models is that information about all traces becomes available at the
same time during retrieval.

Another class of models in recognition memory hypothesize that at least some correct
judgments in item recognition result from a detailed recollective process (Mandler, 1980;
Tulving, 1985; Yonelinas, 1997). Recollection results in the availability of detailed source
information about the encoding context of the probe stimulus and this retrieval process can
succeed or fail (Province & Rouder, 2012; Kellen & Klauer, 2014). Although the output
of recollection need not be constant (Onyper, Zhang, & Howard, 2010) the recollective
process should take some time before it provides information about the probe (Hintzman &
Curran, 1994). If the time to recover an episodic memory depends on its recency, a discrete
state model could also account for the logarithmic effect on RT. It has been proposed
that recollection depends on recovery of a gradually-changing temporal context (Tulving
& Madigan, 1970; G. Schwartz, Howard, Jing, & Kahana, 2005; Folkerts, Rutishauser, &
Howard, 2018). Perhaps the time to retrieve a prior state of temporal context depends on its
“distance” from the present state of temporal context. The finding that RT in continuous
recognition increases with the log of lag reflects the fact that temporal context changes as
a function of log time (G. D. A. Brown, Neath, & Chater, 2007; Howard, Shankar, Aue, &
Criss, 2015; Howard, 2018; Cao, Bladon, Charczynski, Hasselmo, & Howard, 2021).

These two hypotheses—the recency effect is due to decaying trace strength wvs the
recency effect is due to a discrete retrieval process that takes an amount of time that
depends on recency—can be distinguished by examining the shape of the RT distributions
(Figure 1, top). If recency only affects the strength of a memory trace, then the time
needed to begin evaluating a given memory is the same regardless of how far in the past
the probe was experienced. The strength of that match, however, should depend on the
probe’s recency. If, however, old judgments must await the termination of a discrete retrieval
process, then RT distributions should rise at different times (Figure 1, bottom). If there is
no difference in the quantity of evidence that is retrieved by this discrete retrieval process,
then the distributions at different lags will maintain a constant offset from each other as
one moves through the distribution. Critically, a change in the time to initiate the search as
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a function of lag cannot be accounted for by a purely strength based account of the recency
effect.

While a shift in the RT distribution is consistent with a recency dependent retrieval
process during the memory comparison phase, this is not the only possible explanation. The
probe must be encoded before it can be compared to memory. A shift in the RT distributions
would also be consistent with the hypothesis that recently-experienced probes are processed
faster prior to memory retrieval. If the recency of a repeated item allows it to be processed
faster as a probe, then repeating the item again should have an additional effect on RT. This
implies that the time it takes for an item to become available in memory should depend on
the recency of both previous presentations. If changes are driven by improved processing of
recently-presented probes, then the recency of both previous presentations ought to both
affect RT. In contrast, if the recency effect instead arises due to a recency dependent delay
in initiating retrieval of a memory, then the delay would only depend on the most recent
lag. Further, this would predict that the effect of recency should be the same on both the
first and second presentations.

To the best of our knowledge, a systematic change in the time to initiate the memory
search has not previously been observed in continuous recognition. The main issue in
continuous recognition is that as lag increases, accuracy decreases (Hockley, 1982; Shepard
& Teghtsoonian, 1961), making it more challenging to measure the effect of recency on
retrieval dynamics independently of changes in accuracy. Brady, Konkle, Alvarez, and Oliva
(2008) showed participants hundreds of memorable images in a continuous recognition task
with lags varying over more than two orders of magnitude, with lags from 1 (no intervening
items) to 128. In addition, the RT data from Brady et al. (2008) are minimally affected by
sequential dependencies, which are known to affect RTs in recognition memory (Malmberg
& Annis, 2012), as repeated items could not take place in adjacent trials. Because of the
wide range of lags tested, and the elimination of sequential dependencies, Brady et al. (2008)
is well-suited to study the effect of recency on RT distributions. This paper analyzes the RT
data collected during the Brady et al. (2008) task (referred to as Experiment 1), and five
additional experiments designed to assess the generality of this finding. All six experiments
show a systematic change in the rise time of RT distributions as a function of log lag,
suggesting a discrete retrieval process that depends on the recency of the to-be-retrieved
memory. Experiment 6 assesses the alternative hypothesis that the change in the rise time of
RT distributions is due to probe fluency by repeating old items up to five times, presumably
saturating probe fluency. Despite an overall decrease in RT for repeated items—indicating
that the manipulation of probe fluency was successful—the effect of recency on RT was
unchanged.

Methods

Table 1 contains a summary of the major methodological differences between the six
continuous recognition experiments. In short, experiment 2 was a replication of experi-
ment 1 (Brady et al., 2008) using a different subject population (i.e., Amazon M-Turk or
Boston University Students). Experiments 3-6 displayed phase scrambled noise rather than
a fixation cross between each image. In experiment 4, words from the Toronto Word Pool
(Friendly, Franklin, Hoffman, & Rubin, 1982) were used as stimuli rather than images. In
experiments 1-4, participants were only required to respond if they believed the stimuli
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Figure 1. Distinguishing two potential accounts for the recency effect from response
time distributions. Top. In strength-based accounts of recency, all items are available simulta-
neously but older items (darker lines) are represented with less fidelity than newer items (lighter
lines). Left: Probability density functions of response times for each lag. The shape of the distribu-
tion changes with the drift rate. Middle: A cumulative distribution of response times for different
lags. RT distributions start at the same point regardless of lag, but spread as you move into later
quantiles. Right: A plot of lag modulation factor as a function of quantile. In strength-based ac-
counts of recency, lag modulation factor is zero at the start of the distribution and monotonically
increases for later quantiles. Bottom. If the recency effect arises due to a delay in recovering older
temporal contexts, then older items require more time before evidence accumulation can begin. Left:
Probability density functions of response times for each lag. Rather than varying in their drift rate,
newer items begin accumulating evidence before older items. Middle: A cumulative distribution of
response times for different lags. Because the distributions do not change their shape, the distance
between response times is similar across deciles. Right: The Lag Modulation Factor as a function
of quantile. The change in the start to accumulate evidence results in a non-zero intercept.
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Exp. 1 Exp. 2 Exp. 3
Subject Pool Amazon M-Turk BU Students BU Students
Inter-trial display Fixation Cross Fixation Cross Phase Scrambled Noise
Stimuli Images Images Images
Response Instructions | Old Only Old Only Old Only
Number of Repetitions | 2 2 2

Exp. 4 Exp. 5 Exp. 6
Subject Pool BU Students BU Students BU Students
Inter-trial display Phase Scrambled Noise Phase Scrambled Noise Phase Scrambled Noise
Stimuli Words Images Images
Response Instructions | Old Only New/Old New/Old
Number of Repetitions | 2 2 5

Table 1: The major methodological differences between the six continuous recognition experiments.
The experiments varied on the subject pool that participants were recruited from (Amazon M-
Turk or Boston University Students), what was displayed between each trial (fixation cross or phase
scrambled noise), the type of stimuli used (images or words), the instructions given to the participants
(respond only to repeated items or indicate if the current item is new/old), and the number of times
an item could be repeated (2 or 5).

had previously been presented, in experiments 5-6 participants had to respond new/old on
every trial. Finally in experiments 1-5, some stimuli were repeated a second time while in
experiment 6 some stimuli were repeated five times.

FExperiment 1

Participants. Fourteen individuals participated in this study in exchange for financial
compensation. Participants were recruited via Amazon Mechanical Turk. All participants
completed the task simultaneously, and completed the task at computer workstations that
were matched for similar screen size and viewing distance.

Materials. Stimuli were assembled from a commercially available database (Hemera
Photo-Objects, Vol. I and II) and searches done on Google Image Search. Each participant
viewed a series of 2500 images, 396 of which were randomly chosen to be repeated. Of these
396 images, 56 were repeated immediately (lag 1), 52 were repeated such that the previous
presentation was two trials prior (lag 2), 48 were repeated four trials after their previous
presentation, and so on out to 16 images repeated at lag 1024. Lags greater than 128 were
not considered, as repetitions occurred across blocks. No two consecutive trials were allowed
to contain repeated images, preventing sequential effects. Some images were repeated twice,
at lags greater than 1, to avoid adjacent repeat trials. In order to minimize the effect of
fatigue, and to simplify counterbalancing when repeats of various lags would occur, the
trials with repeated items were the same for all participants. However, all participants
viewed images in different orders, and different images were repeated for each participant.

Procedure. Participants viewed ten blocks of images, which lasted around 20 minutes
each. All blocks contained 290 trials, except for the first block which consisted of 289
trials, and the tenth and final block which consisted of 287 trials. Participants were given a
5 minute break between each block, and instructed to not discuss any images they had seen.
Images were presented for 3 seconds, with a fixation cross presented for 800 ms between
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each image. The stimuli, approximately 7.5° by 7.5° of visual angle, were presented one at
a time in the center of the screen. Participants were instructed to hit the space bar if the
current image had previously been presented. They did not need to do anything on trials
where they judged the current image to be new. Participants only received feedback on
trials in which they responded. On false alarm trials the fixation cross following the trial
was red, and on trials which were hits, the fixation cross turned green.

Ezperiment 2

Participants. Twenty-nine individuals participated and were compensated with $15
for their time. All participants were members of the Boston University community, and
were recruited via the quick job page. Participants gave informed written consent prior to
beginning the study, and the protocol was approved by the Boston University Charles River
Institutional Review Board. Participants completed the task at different times at one of
two 21.5 inch, mid-2011 iMac computers.

Materials. The experiment was implemented in PyEPL (Geller, Schlefer, Sederberg,
Jacobs, & Kahana, 2007). Stimuli were pulled from the same set of images as used in
experiment 1. Each participant viewed a series of 650 images, 250 of which were randomly
chosen to be repeated. Of those 250 images, 30 were repeated immediately (lag 1), 28
were repeated at a lag of 2, and so on out to 16 images repeated at lag 128. Repetitions
that occurred across blocks were not considered. For each subject, 27 items were repeated
a second time at lags 2, 4, and 16 (9 per lag). For items repeated a second time, the
lag between its first presentation and first repetition was restricted to 8, 16, and 64. The
presentation order of images and the trials which contained repetitions were randomized for
each subject.

Procedure. Participants viewed two blocks of images, which lasted around 20 minutes
each. Both blocks consisted of 450 trials. Participants were given a short break (5 minutes)
between the two blocks. Images were presented for 2.6 seconds, with a fixation cross pre-
sented for 400 ms between each image. The stimuli, approximately 7.5° by 7.5° of visual
angle, were presented one at a time in the center of the screen. Participants were instructed
to hit the space bar if the current image had previously been presented. They did not need
to respond on trials where they judged the current image to be new. Participants only
received feedback on trials in which they responded. On false alarm trials the fixation cross
following the trial was red, and on trials which were hits, the fixation cross turned green.

Ezperiment 3

Participants. Thirty-nine individuals participated and were compensated with $15
for their time. All participants were members of the Boston University community, and
were recruited via the quick job page. Participants gave informed written consent prior to
beginning the study, and the protocol was approved by the Boston University Charles River
Institutional Review Board. Participants completed the task at different times at one of
two 21.5 inch, mid-2011 iMac computers.
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Materials. The experiment was implemented in PyEPL (Geller et al., 2007). Stimuli
were assembled from the same set of images as used in the previous experiments. In this
experiment, there was a wider range of lag values, ranging from lag 1 to lag 512. In order to
better accommodate these longer lags, participants viewed a series of 1360 images, 276 of
which were randomly chosen to be repeated. Of those 276 repeated images, 30 were chosen
to be repeated immediately (lag 1), 28 were repeated at a lag of 2, and so on out to 12
images repeated at lag 512. Repetitions that occurred across blocks were not considered.
For each subject, 27 items were repeated a second time at lags 2, 4, and 16 (9 per lag). For
items repeated a second time, the lag between its first presentation and first repetition was
restricted to 8, 16, and 64. As in experiment 2, both the order of the images, and the trials
where repeated items occurred were randomized for each participant.

Procedure. Participants viewed two blocks of images, which lasted around 35 minutes
each. Both blocks consisted of 680 trials. Participants were given a short break (5 minutes)
between the two blocks. Images were presented for 2.6 seconds, however instead of a fixation
cross, phase scrambled images were used as masked separators and presented for 400 ms
between each image. The stimuli, approximately 7.5° by 7.5° in visual angle, were presented
one at a time in the center of the screen. Participants were instructed to hit the space bar
if the current image had previously been presented. They did not need to do anything on
trials where they judged the current image to be new. Participants only received feedback
on trials in which they responded. On false alarm trials a red square appeared around the
image and on trials which were hits, a green square appeared around the image.

Experiment 4

Participants. Thirty-three individuals participated and were compensated with $15
for their time. All participants were members of the Boston University community, and
were recruited via the quick job page. Participants gave informed written consent prior to
beginning the study, and the protocol was approved by the Boston University Charles River
Institutional Review Board. Participants completed the task at different times at one of
two 21.5 inch, mid-2011 iMac computers.

Materials. The experiment was implemented in PyEPL (Geller et al., 2007). Stimuli
were assembled from the Toronto Word Pool (Friendly et al., 1982), a list of common English
nouns. Participants viewed a series of 1360 words, 276 of which were randomly chosen to be
repeated. Of those 276 repeated words, 30 were chosen to be repeated immediately (lag 1),
28 were repeated at a lag of 2, and so on out to 12 images repeated at lag 512. Repetitions
that occurred across blocks were not considered. For each subject, 27 items were repeated
a second time at lags 2, 4, and 16 (9 per lag). For items repeated a second time, the lag
between its first presentation and first repetition was restricted to 8, 16, 64. Both the order
of the words, and the trials containing repeat items were randomized for each participant.

Procedure. Participants viewed two blocks of words, which lasted around 35 minutes
each. Both blocks consisted of 1360 trials. Participants were given a short break (5 minutes)
between the two blocks. As in experiment 3, stimuli were presented for 2.6 seconds, and
phase scrambled images were used as masked separators and presented for 400 ms between
each image. The stimuli, approximately 7.5° by 7.5° of visual angle, were presented one at
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a time in the center of the screen. Participants were instructed to hit the space bar if the
current word had previously been presented. They did not need to do anything on trials
where they judged the current word to be new. Participants only received feedback on trials
in which they responded. On false alarm trials a red square appeared around the word and
on trials which were hits, a green square appeared around the word.

Experiment 5

Participants. Fourty-one individuals participated and were compensated with $15
for their time. All participants were members of the Boston University community, and
were recruited via the quick job page. Participants gave informed written consent prior to
beginning the study, and the protocol was approved by the Boston University Charles River
Institutional Review Board. Participants completed the task at different times at one of
two 21.5 inch, mid-2011 iMac computers.

Materials. Stimuli were assembled from the same set of images as used in experi-
ments 1-3. Participants viewed a series of 1360 images, 276 of which were randomly chosen
to be repeated. Of those 276 repeated images, 30 were chosen to be repeated immediately
(lag 1), 28 were repeated at a lag of 2, and so on out to 12 images repeated at lag 512.
Repetitions that occurred across blocks were not considered. For each subject, 27 items
were repeated a second time at lags 2, 4, and 16 (9 per lag). For items repeated a sec-
ond time, the lag between its first presentation and first repetition was restricted to 8, 16,
and 64. Both the order of the images, and the trials where repeated items occurred were
randomized for each participant.

Procedure. Participants viewed two blocks of words, which lasted around 35 minutes
each. Both blocks consisted of 680 trials. Participants were given a short break (5 minutes)
between the two blocks. As in experiment 3, stimuli were presented for 2.6 seconds, and
phase scrambled images were used as masked separators and presented for 400 ms between
each image. The stimuli, approximately 7.5° by 7.5° of visual angle, were presented one at
a time in the center of the screen. Different from previous experiments, participants were
instructed to hit the left arrow key if the current image was repeated, and the right arrow
key if the current image was new. Participants only received feedback on trials in which
they responded. On incorrect trials (false alarms and misses) a red square appeared around
the image and on correct trials (hits and correct rejections) a green square appeared around
the image.

Ezperiment 6

Participants. Fourty-six individuals participated and were compensated with $15
for their time. All participants were members of the Boston University community, and
were recruited via the quick job page. Participants gave informed written consent prior to
beginning the study, and the protocol was approved by the Boston University Charles River
Institutional Review Board. Participants completed the task at different times at one of
two 21.5 inch, mid-2011 iMac computers.
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Materials. Stimuli were assembled from the same set of images as used in experi-
ment 5. Participants viewed a series of 1360 images, 276 of which were randomly chosen
to be repeated. Of those 276 repeated images, 30 were chosen to be repeated immediately
(lag 1), 28 were repeated at a lag of 2, and so on out to 12 images repeated at lag 512. Rep-
etitions that occurred across blocks were not considered. For each subject, 27 items were
repeated five times. For items repeated more than once, the lag between its first presenta-
tion and first repetition was restricted to 8, 16, and 64. For all subsequent repetitions, the
possible lags were 2, 4, and 16 (9 per lag and number of repetitions). Both the order of the
images, and the trials where repeated items occurred were randomized for each participant.

Procedure. Participants viewed two blocks of words, which lasted around 35 minutes
each. Both blocks consisted of 1360 trials. Participants were given a short break (5 minutes)
between the two blocks. Stimuli were presented for 2.6 seconds, and phase scrambled images
were used as masked separators and presented for 400 ms between each image. The stimuli,
approximately 7.5° by 7.5° of visual angle, were presented one at a time in the center of
the screen. As in experiment 5, participants were instructed to hit the left arrow key if
the current image was repeated, and the right arrow key if the current image was new.
Participants only received feedback on trials in which they responded. On incorrect trials
(false alarms and misses) a red square appeared around the image and on correct trials a
green square appeared around the image.

Analyses

Analyses were performed using R statistical software. Both linear and logistic regres-
sions were performed as mixed effects regressions, using the NLME package in R (Pinheiro,
Bates, DebRoy, Sarkar, & R Core Team, 2021). All analyses were performed on the base
2 log of the lag. Due to the possibility that responses for items repeated immediately may
not necessarily involve retrieval from memory, lag 1 repetitions were not considered in any
regressions. Lags larger than 128 were also not considered. Within Subject error bars were
calculated using the method outlined in Morey (2008).

All data and code used to perform analyses have been made publicly available on
Github and can be accessed at https://github.com/tcnlab/ConRec.

Results

To anticipate the results, the data from all six experiments showed evidence that the
time to retrieve a memory, as operationalized by the onset time of the RT distribution,
changed systematically with the recency of the probe item. When considering probes re-
peated once, they were faster and more likely to be recognized the more recently an item
was last presented. Analysis of response time distributions showed an effect of recency
even for the fastest response times. Analysis of multiple repetitions found that correct
RT’s decreased with the number of previous presentations. Critically, the time to access a
previously presented probe only depended on the recency of its most recent presentation.
Further, the effect of recency was the same regardless of the number of repetitions. In all
figures, experiment 1 corresponds to black circles and solid lines, experiment 2 corresponds
to black triangles and dashed lines, experiment 3 corresponds to blue circles and solid lines,
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Figure 2. The recency effect is robust across experimental conditions. a. Hit Rate as
a function of log, lag for Experiments 1-6. The hit rate goes down with lag. There is a more
pronounced drop in the hit rate at higher lags. b. Median response time as a function of log2 lag.
Median response time increased linearly with the logarithm of lag. c¢. The 1st decile as a function
of log2 lag. 1st decile response times increased linearly with the logarithm of the lag at a similar
rate as median response times. Error bars in all figures represent the 95% confidence interval of the
mean across participants normalized using the method described in Morey (2008).

experiment 4 corresponds to blue triangles and dashed lines, experiment 5 corresponds to
red circles and solid lines, and experiment 6 corresponds to red triangles and dashed lines.

First Repetitions

Items presented more recently were more likely to be recognized. The average false
alarm rate was low across experiments. In experiment 1, the false alarm rate was 1.4
percent, the highest hit rate was at lag 1 at 99.6 percent (corresponding to a d-prime of
4.85) and lowest at lag 128 at 89.7 percent (d' = 3.46). In experiment 2, the false alarm
rate remained low across participants at 3.8 percent, hit rate was highest for lag 1 at
96.2 percent (d' = 3.55), and lowest for lag 128 with an average hit rate of 69.2 percent
(d' = 2.27). Experiment 3 was similar to experiment 2, the false alarm rate was 3.0 percent,
hit rate was the highest for lag 1 at 91.9 percent (d’ = 3.28), and lowest for lag 128 with an
average hit rate of 69.2 percent (d' = 3.28). In experiment 4, which used words as stimuli,
the false alarm rate was higher than in previous experiments at 6.9 percent, hit rate was
highest for lag 1 at 94.2 percent (d’ = 3.06), and lowest for lag 128 with an average hit rate
of 61.5 percent (d' = 1.78). In experiment 5, which used the same stimuli as experiments
1-3 but required a new/old response, the false alarm rate was similar to those experiments
at 2.0 percent, but overall hit rate was lower. Hit rate was highest for lag 1 at 86.1 percent
(d" = 3.12) and lowest for lag 128 with an average hit rate of 46.2 percent (d' = 1.94).
Experiment 6, which also required new/old responses for each trial was resulted in a similar
false alarm rate of 2.6 percent, hit rate was highest for lag 1 at 84.4 percent (d' = 2.96),
and lowest for lag 128 with an average hit rate of 46.2 percent (d' = 2.03). Subjects were
able to distinguish old probes from new probes successfully out to at least six minutes.

Average subject hit rate as a function of log lag is plotted in Figure 2a. There was a
recency effect in accuracy for all experiments. In order to quantify the decrease in accuracy
for increasing lags, we performed a mixed effects logistic regression on hit rate, treating log
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Hit Rate | Exp. 1 Exp. 2 Exp. 3
Intercept | 6.04 £ 0.47 3.454+0.18 2.744+0.16
z=12.75,p < 0.001 z=19.18,p < 0.001 z=17.54,p < 0.001
Slope —0.46 £0.07 —0.31 +0.02 —0.28 + 0.02
z=-6.72,p < 0.001 z=-13.88,p < 0.001 =z =-15.27,p < 0.001
Exp. 4 Exp. 5 Exp. 6
Intercept | 3.39 £ 0.22 2.174+0.15 2.38 £0.15
z=15.17,p < 0.001 z =14.59,p < 0.001 z=16.22,p < 0.001
Slope —0.37£0.02 —0.31 +0.02 —0.28 +0.02
z=-17.53,p < 0.001 2z =-16.90,p <0.001 z=-15.85,p < 0.001

Table 2: Slope and intercept values from a logistic mixed effects regression of lag on hit rate for first
repetition items. All tests were performed on the base 2 logarithm of lag. Bold z-scores indicate
significance at the p < 0.05 level. Across all six experiments, hit rates decreased as a function of lag.

lag as a fixed effect and subject as a random effect. Table 2 shows the results of this analysis
for each experiment. Across all six experiments, hit rate significantly decreased with each
doubling of lag (p < 0.001). Subjects we less likely to correctly recognize repeated items
the further in the past they were presented.

More recent items were recognized faster than older items. Figure 2b shows the average
median correct response time across subjects as a function of log lag. There was a recency
effect on median response times; more recently presented items were recognized faster than
less recent items. To confirm the existence of this recency effect, a mixed effects linear
regression, treating subject as a random effect and log lag as a fixed effect was performed.
Table 4 shows the results of this analysis for each experiment. Across all six experiments,
median response times significantly increased for each doubling of lag (p < 0.001). Subjects
recognized items faster the more recently they were presented.

As shown in Figure 1, the two classes of models that explain the recency effect make
differing predictions about how the leading edge of their distributions should vary with lag.
Figure 3 shows the empirical cumulative response time distributions for all lags. The curves
rise at different points, with smaller lags rising earlier than larger lags, indicating an effect
of lag for even the fastest responses. As leading edge of the distribution is well described by
the first decile (Ratcliff & Smith, 2004; Smith & Ratcliff, 2009), evidence of a recency effect
at this point in the distribution would indicate a shift in the RT distributions. Figure 2c
shows the average first decile correct response time across subjects as a function of log
lag. There was a recency effect present for the fastest responses. A mixed effects linear
regression on 1st decile response times, treating subject as a random effect and log lag as a
fixed effect confirmed this visual impression. Table 4 shows the results of this analysis for
each experiment. For each doubling of lag, first decile response times significantly increased.
These findings demonstrate that there was a recency effect for even fastest response times,
consistent with the shift predicted by a recency dependent retrieval process.

Non-parametric analyses of response time distributions indicate that more recent
memories are available earlier than less recent memories. In order to better formalize
this shift, particularly for the fastest responses, we calculated the slope of each subject’s
response times as a function of log lag, which we refer to as its “Lag Modulation Factor”,
and measured it at different quantiles. As illustrated in Figure 1, a strength-based account
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Figure 3. Time to access memory changed systematically with lag in all six experi-

ments. Unsmoothed across-participant cumulative response distributions for each lag. Shorter lags
correspond to darker lines. Note that the cumulative distributions shift with decreasing recency. The
inset consists of a zoomed in view of the rising points of the distributions. For all six experiments,
there is consistent evidence that newer items are available before older items.

Median Exp. 1 Exp. 2 Exp. 3
Intercept | 0.934 £ 0.042 0.578 £0.013 0.639 £ 0.021
t(83) = 22.22,p < 0.001 t(221) = 45.05,p < 0.001  ¢(227) = 30.16,p < 0.001
Slope 0.013 £ 0.003 0.021 £ 0.002 0.026 £ 0.002
t(83) = 4.54,p < 0.001 t(221) = 13.65,p < 0.001  ¢(227) = 13.20,p < 0.001
Exp. 4 Exp. 5 Exp. 6
Intercept | 0.646 £ 0.022 0.669 £ 0.020 0.700 £0.016
t(197) = 28.88,p < 0.001  ¢(179) = 32.85,p < 0.001  ¢(209) = 42.55,p < 0.001
Slope 0.033 £ 0.003 0.024 £ 0.002 0.017 £ 0.001
t(197) = 9.69,p < 0.001 t(179) = 10.52,p < 0.001  ¢(209) = 11.98,p < 0.001

Table 3: Slope and intercept values from a linear mixed effects regression of lag on median response
times for first repetition items. All tests were performed on the base 2 logarithm of lag. Bold t-scores
indicate significance at the p < 0.05 level. Across all six experiments, response times increased as a
function of lag.
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1st Decile | Exp. 1 Exp. 2 Exp. 3
Intercept | 0.734 £ 0.033 0.492 £ 0.008 0.542 £0.012

t(83) = 22.05,p < 0.001 t(221) = 60.63,p < 0.001  ¢(227) = 45.17,p < 0.001
Slope 0.023 £+ 0.002 0.017 £ 0.001 0.018 £ 0.001

t(83) = 9.29,p < 0.001 t(221) = 15.65,p < 0.001  #(227) = 14.22,p < 0.001

Exp. 4 Exp. 5 Exp. 6
Intercept 0.524 £0.012 0.563 £ 0.014 0.586 £ 0.013

t(197) = 41.91,p < 0.001  ¢(179) = 39.26,p < 0.001  ¢(209) = 44.59,p < 0.001
Slope 0.024 £+ 0.002 0.022 £+ 0.002 0.017 £ 0.001

t(197) = 14.76,p < 0.001  ¢(179) = 13.66,p < 0.001  ¢(209) = 13.23,p < 0.001

Table 4: Slope and intercept values from a linear mixed effects regression of lag on first decile
response times for first repetition items. All tests were performed on the base 2 logarithm of lag.
Bold t-scores indicate significance at the p < 0.05 level. Across all six experiments, response times
increased as a function of lag.

predicts that Lag Modulation Factor is zero for the fastest responses, and increases later
in the distribution. If instead, recency determines when a memory can be compared to
the probe, then Lag Modulation Factor is non-zero, even for the fastest responses. The
results of the Lag Modulation Factor analysis offered substantial support to this view. For
all six experiments, a mixed effects linear regression of lag modulation factor onto quantile,
treating subject as a random effect and quantile as a fixed effect was fit to the data. Table 5
shows the results of this analysis for the six experiments. Critically, in all six experiments
lag modulation factor was significant at the intercept (p < 0.001), indicating there was
an effect of lag on response time for even the fastest responses. The rate at which lag
modulation factor changed throughout the distribution varied across experiments, casting
further doubts on the ability of a composite model to account for this pattern of results. In
experiments 2 (p < 0.01), 3 and 4 (p < 0.001), lag modulation factor significantly increased,
consistent with a drift rate that is slower for less recent items. This is complicated how-
ever by the finding that lag modulation factor did not significantly change with quantile
in experiments 5 and 6 (p > 0.1), and significantly decreased in experiment 1 (p < 0.001).
This pattern of results is also striking when looking at the subject level. Figure 4 plots the
intercept values for each subject’s lag modulation factor as calculated by a linear regression
of Lag Modulation Factor onto quantile. With the exception of a single subject in experi-
ments 2 and 3, all participants in all experiments had a positive lag modulation factor at
the intercept. Taken together, these results provide strong support that the recency effect
in continuous recognition is driven by a change in the time at which items become available.

Multiple Repetitions

Analysis of first repetition responses showed evidence that recency changes response
time distributions via a shift in the distribution, consistent with a change in the time to
access memory. In order to consider the hypothesis that the recency effect was attributable
to changes in encoding, we examined response times for probes repeated more than once.

Only the most recent lag impacted response times for items repeated multiple times.
Response times depended only on the most recent lag. We performed a mixed effects linear
regression of median response times for items repeated a second time, treating the most
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Figure /. Recency impacted response times for even the fastest responses. Histograms
of each subject’s slope per lag (ms) for the fastest responses as calculated by the Lag Modulation
Factor analysis. Across all six experiments, subjects had significant recency effects at the start of

their RT distributions.

Lag Modulation Factor | Exp. 1 Exp. 2 Exp. 3
Intercept 25.25 +3.72 16.08 £1.12 15.92 £1.37
t(97) = 6.78,p < 0.001 t(258) = 14.41,p < 0.001  #(265) = 11.62,p < 0.001
Slope —26.69 £ 4.12 6.29 +1.84 13.20 £ 1.78
t(97) =-6.47,p < 0.001  ¢(258) = 3.41,p < 0.01 t(265) = 7.44,p < 0.001
Exp. 4 Exp. 5 Exp. 6
Intercept 21.44 + 3.25 21.70 +£2.71 16.97 +1.37
t(230) = 6.61,p < 0.001  ¢(209) = 8.02,p < 0.001 t(244) = 12.38,p < 0.001
Slope 24.16 +4.27 3.23£2.37 —-1.16 £1.92

£(230) = 5.66, p < 0.001

£(209) = 1.36,p = 0.17

£(244) = —0.60, p = 0.55

Table 5: The slopes and intercepts of the linear mixed effects regression on Lag Modulation Factor
as a function of Quantile across the six experiments for first repetition items. Bold t-scores indicate
significance at the p < 0.05 level. The intercepts calculated from the lag modulation factor analysis
were significant in all six experiments.
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recent lag (lagy) and the lag between the first and second presentations of the image (lag;)
as fixed effects and subject as a random effect (Table 6). In experiments 1-5, this analysis
found that doubling lag, significantly increased median response times, while doubling lag;
did not have a significant effect. In experiment 6, while doubling lag, resulted in a significant
increase in response times, unlike in previous experiments, doubling lag; also resulted in
a significant increasing in response times of. Subsequent analyses suggest this divergence
in results was an artifact of how the lists were assembled. In experiment 6, which was
kept consistent with experiments 2-5, lag; was confounded with number of repetitions. For
items repeated a second time, lag; could equal 8, 16, and 64, for all subsequent repetitions,
lag; could equal 2, 4, and 16. It is possible that response times do not increase with lag;,
but instead our analysis is capturing that second repetition items are slower than items
repeated 3 or more times. In order to determine if this was the case, two follow up analyses
were performed. When considering only items repeated three or more times, removing the
confound of lag; and repetition, only the most recent lag impacted response times. As
before, we performed a mixed effects linear regression of median response times for items
repeated a three or more times, treating the most recent lag (lagy) and the lag between
the previous repetition and its previous presentation (lag;) as fixed effects and subject
as a random effect. We found a significant effect of lag, on RT (0.011 £ 0.002,¢(278) =
6.77,p < 0.001), but no significant effect of lag; (—0.001 + 0.002,¢(488) = —0.31,p =
0.75). As an additional control, we performed the same mixed effects linear regression for
median response times on items repeated twice or more as before, but included a fixed
variable that was 1 if a trial contained the second repetition of an item, and zero for all
other repetitions in order to separate the effect of (lag;) from a repetition effect. We
found significant effects of lagy, (0.008 £ 0.002,%(592) = 4.25,p < 0.001) and repetition
(0.058 + 0.006, £(592) = 9.30, p < 0.001), but lag; did not significantly effect response times
(—0.002 £ 0.002,¢(592) = —1.36,p = 0.17). These subsequent analyses suggest that our
results in experiment 6 are in line with the previous experiments, and indicate that the
recency effect is not the result of improved encoding for more recently presented items.

Items repeated multiple times are retrieved faster, but the effect of recency is consistent
across repetitions. Figure 5 shows median subject response times as a function of log lag and
number of repetitions. Subjects were faster for items repeated more than once, but the effect
of recency was consistent across repetitions. A linear mixed effects regression on median
response times was performed treating subject as a random effect and log lag, number of
repetitions, and the interaction of lag and repetition as fixed effects (Table 7). The same
pattern of results emerged for all six experiments, there were significant main effects of log
lag and repetition, but their interaction was not significant. That is, while participants
were faster to respond the more times an item was presented, and were slower for less
recent items, the delay to access those less recent items remained consistent regardless of
how many times an item was presented. Taken together, these results indicate that the
recency effect does not appear to be the result of better fidelity or improved encoding for
more recent items, but rather arises at the comparison stage.

The time that items repeated multiple times become available depends on its recency.
As demonstrated via Lag Modulation Factor, for items repeated once, the time an item
becomes available depends on its recency (Figure 3). Although experiments 1-5 do not
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Median Exp. 1 Exp. 2 Exp. 3
Intercept | 0.871 + 0.041 0.534 £ 0.015 0.605 £+ 0.022

t(393) = 21.11,p < 0.001  ¢(294) = 35.71,p < 0.001  ¢(302) = 27.04,p < 0.001
Lag 2 0.021 £ 0.005 0.012 £ 0.002 0.012 £+ 0.003

t(393) = 4.34,p < 0.001 t(294) = 5.37,p < 0.001 t(302) = 4.43,p < 0.001
Lag 1 —0.004 £ 0.004 —0.001 £ 0.002 —0.004 £ 0.003

t(393) = —0.83,p = 0.41 t(294) = —0.54,p = 0.59 t(302) = —1.36,p = 0.17

Exp. 4 Exp. 5 Exp. 6
Intercept | 0.634 £ 0.027 0.649 £ 0.025 0.573 £0.017

t(261) = 23.06,p < 0.001  ¢(235) = 26.30,p < 0.001  ¢(488) = 34.30,p < 0.001
Lag 2 0.010 £ 0.005 0.012 £+ 0.004 0.007 £+ 0.002

t(261) = 2.00,p = 0.046 t(235) = 3.26,p = 0.001 t(488) = 4.83,p < 0.001
Lag 1 0.001 £ 0.005 —0.005 £ 0.004 0.007 £+ 0.002

#(261) = 0.30,p = 0.78

£(235) = —1.48,p = 0.14

#(488) = 3.56,p < 0.001

Table 6: Slope and intercept values from a linear mixed effects regression of the lag between an item’s
second and third presentation (lag,) and the lag between an item’s first and second presentation
(lag;) and on median response times for items repeated a second time. All tests were performed on
the base 2 logarithm of lag. Bold t-scores indicate significance at the p < 0.05 level. Across all six
experiments, response times increased as a function of lag, but did not systematically vary for lag;.

Median Exp. 1 Exp. 2 Exp. 3
Intercept 0.934 + 0.042 0.602 £ 0.012 0.674 £ 0.020

t(179) = 22.44,p < 0.001  £(182) = 50.35,p < 0.001  #(187) = 33.34,p < 0.001
Slope 0.013 £ 0.004 0.013 £ 0.002 0.012 £ 0.003

t(179) = 3.47,p < 0.001  £(182) = 5.48,p < 0.001  t(187) = 4.56,p < 0.001
Repetition —0.069 £ 0.023 —0.067 £+ 0.009 —0.080 £ 0.009

t(179) = -2.96,p = 0.004  #(182) = -7.52,p < 0.001  (187) = -8.52,p < 0.001
Rep X Slope | 0.004 &£ 0.005 —0.004 £ 0.003 0.002 £ 0.004

£(179) = 0.84,p = 0.40 t(182) = —1.13,p = 0.26  £(187) = 0.52,p = 0.60

Exp. 4 Exp. 5 Exp. 6
Intercept 0.670 £ 0.020 0.671 £0.016 0.686 £ 0.016

#(162) = 34.06,p < 0.001  #(147) = 42.30,p < 0.001  £(487) = 42.45,p < 0.001
Slope 0.024 £ 0.004 0.007 £ 0.002 0.009 £ 0.003

£(162) = 5.87,p < 0.001  £(147) = 3.03,p = 0.003  t(487) = 3.36,p < 0.001
Repetition —0.044 £ 0.016 —0.048 £ 0.009 —0.039 £ 0.003

£(162) = -2.82,p = 0.006  £(147) = -5.33,p < 0.001  t(487) = -13.89,p < 0.001
Rep X Slope | —0.007 £ 0.006 0.004 £ 0.003 0.001 £ 0.001

#(263) = —1.15,p = 0.25  #(147) = 1.15,p = 0.25 +(487) = 0.88,p = 0.38

Table 7: Slope and intercept values from a linear mixed effects regression of lag and number of

repetitions on median response times. All tests were performed on the base 2 logarithm of lag.
Bold t-scores indicate significance at the p < 0.05 level. Across all six experiments, response times
decreased with number of repetitions, but the effect of lag was the same regardless of number of

repetitions.
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Figure 5. The effect of recency on response times was the same regardless of repetitions.
Median response time as a function of the most recent lag and number of repetitions. To the extent
the lines are parallel, it means that the effect of recency on median RT’s was the same for across
repetitions. Analyses reported in the text demonstrated that only the most recent lag affected the
RT of old probes repeated twice.

have enough trials to calculate a reliable Lag Modulation Factor for items repeated multiple
times (9 trials per lag and subject), we can perform this on the data from experiment 6 (36
trials per lag and subject). We performed a mixed effect linear regression of Lag Modulation
Factor onto quantile, treating subject as a random effect and quantile as a fixed effect. We
found that Lag Modulation Factor was significantly different from zero at the intercept,
9.82 £+ 1.11,%(244) = 8.87,p < 0.001, but did not significantly change as a function of
quantile 1.29 + 1.85,¢(244) = 0.70,p = 0.49. That is, while there was an effect of recency
for items repeated multiple times, for even the fastest responses, the effect of recency did
not change throughout the distribution of responses. Taken together, these results offer
strong support for the hypothesis that the recency effect is caused by the recovery of a
temporal context, where the time to retrieve a context depends on its recency.
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General Discussion

It has long been known that response times in a continuous recognition experiment
increase with the lag to the probe. If memory search requires accessing a timeline to find
the appropriate memory, then the RT increase could be associated with a shift in the
distribution. These six experiments showed that lag consistently shifted RT distributions.
Consistent with this account, RT’s to second repetitions depended only on the most recent
lag, as if the search terminated upon finding the first match. Although RTs were faster to
second repetitions overall, the effect of the most recent lag on second repetition RTs was
the same as the effect of lag on first presentation RTs (Figure 5). Consistent with earlier
findings (e.g., Hockley, 1982), our results showed a sublinear shift with lag. This paper’s
results are roughly consistent with a logarithmic increase in RT as a function of lag; each
doubling of lag resulted in a shift of approximately 16-26 ms in the RT distribution.

At first glance, the results of this study are consistent with sequentially accessing a
logarithmically-compressed timeline. There is extensive evidence for self-terminating serial
search models in short-term memory tasks (Hacker, 1980; Hockley, 1984; McElree & Dosher,
1993; Sternberg, 2016). There is also evidence consistent with scanning along a timeline in
judgement of recency tasks (Hintzman, 2010; Tiganj, Singh, Esfahani, & Howard, 2021).
To be clear however, we are not suggesting that what we see here is scanning. The effect
of doubling lag in our experiments resulted in an increase in RT of 16-25 ms, much faster
than the increases seen in tasks believed to show scanning.

Most previous item recognition studies however have found evidence for parallel mem-
ory access, not sequential, in study-test recognition (Nosofsky, Little, Donkin, & Fific, 2011;
Ratcliff & Murdock, 1976; McElree & Dosher, 1989; Hockley, 1984; Nosofsky, Cox, Cao, &
Shiffrin, 2014). Several potentially important methodological differences may account for
the discrepancy between those studies and this paper’s results. This experiment used con-
tinuous recognition rather than the study-test procedure (Nosofsky et al., 2011; Ratcliff &
Murdock, 1976; McElree & Dosher, 1989; Hockley, 1984; Nosofsky et al., 2014). In addition,
more recent lags were tested more frequently than more remote lags, new probes occurred
far more often than repeated probes, and repeated probes could not appear in adjacent
trials. The question of which combination of these methodological differences accounts for
evidence supporting a timeline is a significant one that merits further investigation. It is
worth noting that there is no reason in principle that a compressed timeline could not be
accessed in parallel (Howard et al., 2015), whereas it is not clear how (or why) a composite
representation could allow for changes in the time at which items become available. No-
tably, if a logarithmically-compressed timeline is accessed in parallel, the recency effect for
the strength of match would fall off like a power law (Howard et al., 2015), much like the
change Donkin and Nosofsky (2012) observed experimentally in drift rate.

Logarithmic compression is ubiquitous in psychology. Behaviorally, one way this
manifests is via the Weber-Fechner law, the finding that the perceived intensity of stimulus
changes with the log of its actual intensity (Fechner, 1860/1912). It has also been well
established that compression is seen in neural populations. For example, the representa-
tion of visual space is logarithmically compressed as a function of distance from the fovea
(E. L. Schwartz, 1980; Van Essen, Newsome, & Maunsell, 1984). Compression is also seen
in time cells, neurons with temporal receptive fields which consistently fire at a specific time
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during a delay. Time cells show compression in that more cells have receptive fields earlier
in the delay, and later firing cells have larger receptive fields (Tiganj, Cromer, Roy, Miller,
& Howard, 2018; Cruzado, Tiganj, Brincat, Miller, & Howard, 2020). A recent analysis
of time cells in rodent hippocampus, an area critical to episodic memory function, demon-
strated that time cell compression is in fact logarithmic (Cao et al., 2021), such that, their
distance in neural space goes up with log lag.

Episodic recollection is believed to be the result of occurs following the recovering a
previous spatiotemporal context. This recovery results in behavioral changes, such as the
contiguity effect. Previous recognition studies have found evidence that following episodic
recollection, there is a boost in performance for items presented close in time to the just
recovered item (G. Schwartz et al., 2005; Folkerts et al., 2018). In addition to behavioral
effects, episodic recollection is accompanied by a neural contiguity effect as well (Folkerts
et al., 2018), such that the similarity of the population at test is most similar to when
the just recollected item was first presented, but also shows a high similarity to other
items presented around the same time at study. The present datasets do not allow for
us to measure a contiguity effect, as adjacent trials did not contain repetitions and we do
not have a measure to separate “episodic recollection” trials from more familiarity base
recognition. Despite this, our results are consistent with the hypothesis that the time to
recover a temporal context depends on its recency in log space.
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