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ABSTRACT

Unraveling sequence determinants which drive protein-RNA interaction is crucial for studying1

binding mechanisms and the impact of genomic variants. While CLIP-seq allows for transcriptome-2

wide profiling of in vivo protein-RNA interactions, it is limited to expressed transcripts, requiring3

computational imputation of missing binding information. Existing classification-based methods4

predict binding with low resolution and depend on prior labeling of transcriptome regions for training.5

We present RBPNet, a novel deep learning method, which predicts CLIP crosslink count distribution6

from RNA sequence at single-nucleotide resolution. By training on up to a million regions, RBPNet7

achieves high generalization on eCLIP, iCLIP and miCLIP assays, outperforming state-of-the-art8

classifiers. CLIP-seq suffers from various technical biases, complicating downstream interpretation.9

RBPNet performs bias correction by modeling the raw signal as a mixture of the protein-specific10

and background signal. Through model interrogation via Integrated Gradients, RBPNet identifies11

predictive sub-sequences corresponding to known binding motifs and enables variant-impact scoring12

via in silico mutagenesis. Together, RBPNet improves inference of protein-RNA interaction, as well13

as mechanistic interpretation of predictions.14
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1 Background16

RNA-binding proteins (RBPs) are a family of proteins that bind to coding and non-coding transcripts, usually through17

recognition of short sequence or structural features commonly known as motifs [8]. To date, over 2, 000 proteins have18

been experimentally identified as RNA-binding, rendering it one of the largest cellular protein groups [13]. RBPs are19

involved in every aspect of post-transcriptional regulation, including modification, stabilization, localization, splicing20

and translation of RNAs [20]. Misregulation of RBPs, as well as mutations in their amino acid sequence or the sequence21

of their RNA targets, has been associated with an abundance of human diseases, including neurological and psychiatric22

disorders [42]. Therefore, uncovering binding preferences and RNA targets of RBPs is crucial for understanding the23

role of RBPs in post-transcriptional regulatory pathways and for quantifying the impact of their dis-regulation in context24

of human disease. Nowadays, the most common protein-centric experimental approach to profile RNA-binding in vivo25

is via individual-nucleotide resolution Cross-Linking and Immunoprecipitation followed by sequencing (CLIP-seq)26

[22, 54] and its derivatives, which enables transcriptome-wide detection of protein-RNA interactions for a protein of27

interest. Variants of CLIP-seq, including individual-nucleotide and enhanced CLIP (iCLIP and eCLIP, respectively),28

further allow for detection of protein-RNA crosslinking events at single-nucleotide resolution. Here, in brief, cells29

are radiated with UV light, forming covalent cross-links between RNA molecules and bound proteins. Protein/RNA30

complexes are then purified with protein-specific antibodies and the bound proteins are digested. Subsequently, the31

bound RNA molecules are reverse-transcribed to cDNA, followed by high-throughput sequencing. Reverse-transcription32

often truncates at the cross-linked site due to a small peptide remaining bound to the site after protein digestion. After33

alignment of reads to the reference genome, this leads to an accumulation of read-starts at one nucleotide down-stream34

of the cross-linked site. The resulting nucleotide-wise count signal can then be used to identify binding sites of the RBP35

of interest as RNA regions where the signal is significantly higher than expected, given some background model [49].36

CLIP-seq data is commonly post-processed with peak callers, which identify a number of regions of enriched signal37

(also referred to as binding sites), usually in the order of thousands. As peak calling is subject to unspecific cross-linking38

events in the underlying data, inferring target-specific signal from CLIP data is crucial. Multiple studies have identified39

a number of CLIP-associated biases, including background signal from abundant RNAs that are not properly washed40

during library preparation, library contamination with bound RNAs of other RBPs and strong UV crosslinking bias41

towards single-stranded uridine-rich motifs [16]. CLIP-seq experiments are often paired with a control, to account for42

unspecific background signal. For instance, the eCLIP protocol is designed to generate a size-matched input (SMInput)43

control by omitting the IP step such that the resulting library represents RNA fragments crosslinked to a mixture of44

background proteins with a similar molecular weight as the target RBP. Therefore, eCLIP SMInput data is a powerful45

resource to correct computational methods for experimental bias and reduce the number of detected unspecific binding46

events for an RBP of interest.47

Analysis of experimentally identified RNA binding-sites can give insight into both the functional role of the RBP as well48

as the RNA sequence and structure feature by which it identifies (and binds to) its RNA targets. In addition, knowledge49

of the binding preference of an RBP enables imputation of protein-RNA interaction on RNAs not present at the time50

of the experiment. While traditional methods for de novo motif finding [3] or more sophisticated generative models51

[19] analyze identified RNA binding sites directly, for instance by aggregating enriched sub-sequences into motif52

position-weight matrices (PWMs), more recent model-based approaches [25, 37] attempt to model RBP-binding as a53

function of RNA sequence for a given protein of interest. That is, model-based approaches attempt to find a function of54

the form f : RNA → σ(CLIP ), where σ is some post-processing function on the raw experimental CLIP, for instance55

a peak caller. Model-based analysis of RBP binding has several key advantages over traditional model-free approaches.56

First, the availability of a model allows for imputation of missing binding site information. As only a fraction of57

transcripts may be expressed in the experimental cell type at a given time, CLIP-seq experiments generally draw an58

incomplete picture of an RBP’s binding landscape. Here, predictions from RBP binding models may aid researchers59

in generalizing their analysis to unobserved transcripts by providing candidate sites of protein-RNA interaction. The60

ability to impute missing binding information on arbitrary RNA sequences is especially relevant for the analysis of61

RBP-binding to foreign sequences, such as foreign RNAs derived from viruses [21]. Second, the model f represents a62

simplified abstraction of the in vivo biology, that is, the recognition of a binding site in a target RNA sequence by the63

protein of interest. Besides identifying drivers of RNA target recognition (e.g. binding motifs), the ability to study f64

enables "what-if" analysis, allowing one to explore how changes in the RNA input sequence affect RBP binding. For65

instance, researchers may investigate the impact of single-nucleotide variants (SNVs) on RBP binding in silico.66

Deep learning enabled ground-breaking performance on tasks across a broad domain of research, including the67

computational modeling of protein-RNA interaction [1, 14, 5, 41]. Current state-of-the-art RBP binding predictions68

models are generally classification-based, that is, given an input RNA sequence, the model is tasked with predicting69

whether the sequence is bound or unbound by the protein of interest. While classification-based models represent70

a significant improvement over traditional methods, they have several limitations. First, training and evaluation of71

classification-based models requires prior annotation of sequences with high-quality binary bound/unbound labels,72
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generally through the use of peaks callers, making the model heavily dependent on upstream preprocessing steps.73

Therefore, performance of classification-based models is highly sensitive towards the availability of unbiased bona74

fide binding sites. Second, predictions of classification-based models generally have low resolution. While methods75

commonly take as input RNA sequences of 100s of nucleotides in length, the predicted label is assigned to the entire76

input region. This create ambiguity with regards to the exact location of the protein-RNA interaction site, which usually77

spans only a few nucleotides. Third, binary labels (bound and unbound) modeled by classification-based methods78

represent a strong simplification of the information yielded by CLIP-seq experiment. Compression of the CLIP-seq79

signal footprint within transcript region to a binary value may lead to loss of essential information for understanding the80

nuances of protein-RNA interaction.81

Recently, a new class of models has emerged, which directly predict experimental signal from genomic sequences [2, 27].82

For instance, BPNet [2] trains a dilated convolutional neural network which models transcription factor (TF) binding by83

predicting ChIP-nexus signal from DNA sequences at base resolution. However, there is a lack of sequence-to-signal84

models for prediction tasks on RNA sequences, including the task of modeling protein-RNA interaction via CLIP-seq85

signal prediction. In context of CLIP-seq, the presence of technical biases and cell-type specific RNA abundance pose a86

challenge with respect to the identification of sequence-mediated binding mechanisms at single-nucleotide resolution.87

Therefore, models need to account for the fact that the observed signal may partially be observed due to technical biases,88

rather then protein-RNA interaction of target RBP. This effect may further depend on the RNA sequence context, as is89

the case for nucleotide-specific crosslinking biases or sample contamination with other RBPs which themselves have90

certain sequence-depended binding preferences.91

To fill this gap we developed RBPNet, a sequence-to-signal dilated convolutional neural network, which learns a direct92

mapping of RNA sequences to crosslink count signal extracted from CLIP-seq experiments. Given a variable-length93

RNA input sequence, RBPNet predicts the distribution of crosslink counts at single-nucleotide resolution along the94

input sequence, thereby enabling learning the binding profile of an RBP on a transcripts of arbitrary length. Existing95

sequence-based models of CLIP data are binary classifiers which necessitate important preprocessing steps, thus loosing96

the high resolution and the quantitative nature of the data In contrast to current state-of-the-art classifiers, RBPNet does97

not require a peak caller to produce transcript regions as candidate sites for model training. Instead, it uses a lenient98

cutoff-based approach to train on all regions that show an enrichment of crosslink counts, thereby making maximal99

use of signal generated by the underlying experiment. By additionally modeling the background signal of a paired100

control experiment, RBPNet implicitly learns the bias and protein-specific crosslinking components of the total signal,101

allowing one to disentangle genuine signal from noise. By training on hundreds of thousands of regions per RBP102

CLIP experiment, RBPNet reaches high accuracy in predicting RBP binding signal shape on held-out test data across103

eCLIP, iCLIP and miCLIP experiments. Further, it allows for direct inference of predictions across variable-length104

sequences and whole transcripts, while outperforming state-of-the-art RBP binding classification models with respect to105

the identification of crosslink sites derived from PureCLIP [31], a single-nucleotide peak caller. By performing model106

interpretation with Integrated Gradients, we demonstrate the capability of RBPNet to accurately identify the sequence107

patterns driving RBP-RNA interactions and enable binding motif discovery. Lastly, we show the high potential of108

RBPNet in scoring the impact of single-nucleotide genetic variants on RBP binding, and thereby enable prioritization109

of functional variants.110
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2 Results111

RBPNet predicts crosslink count distribution from RNA sequence112

RBPNet is a deep convolutional sequence-to-signal neural network for modeling protein-RNA interaction profiles, which113

takes as input a RNA sequence and outputs a probability vector of the same length, describing a discrete distribution of114

counts within that sequence. In the context of eCLIP, iCLIP or other individual nucleotide CLIP technologies, RBPNet115

predicts the distribution of cDNA truncation events, as a result of protein-RNA crosslinking and hereafter also referred116

to as "crosslink counts", along an input RNA sequence. In this study, RBPNet was trained and evaluated on a large117

cohort of eCLIP, iCLIP and miCLIP datasets. An outline of the study is shown in Figure 1a, which gives a schematic118

overview of training data generation, model training and interrogation for investigating sequence determinants of RBP119

binding, including binding motif extraction.120

The RBPNet model architecture consists of two major parts - the model body, comprised of the input layer followed by121

several convolutional blocks with residual connections, and the model head, which performs the final mapping of the122

input sequence representation, derived from the body model output, to a probability vector (Figure 1b). Importantly,123

while RBPNet is trained on fixed-length inputs, its purely convolutional architecture enables prediction on RNA124

sequences of arbitrary length. During training, the predicted probability vector is used to parameterize a multinomial125

distribution of crosslink counts and, given the position-wise observed counts in the input sequence interval, a negative126

log-likelihood loss is computed. In other words, the model is penalized in cases where it is unlikely that the observed127

crosslink counts were drawn from the distribution predicted by the model. RBPNet thus learns the shape of the128

crosslink count signal, which is subject to the RNA sequence under the assumption that RNA sequence composition129

is a driver of recognition (and subsequent binding) by RBPs. Similar to other CLIP-based protocols, eCLIP is130

known to be subject to experimental biases, for instance as a result of enhanced photoreactivity of single-stranded131

uridine (U) nucleotides during UV-radiation or contamination of eCLIP libraries with other RBPs [15]. Importantly,132

these biases are sequence-dependent and directly affect the distribution of cDNA truncation counts, hindering the133

identification of genuine sequence determinants of RBP binding. For that reason, eCLIP experiments are paired with134

a size-match input (SMInput) control experiment which omits the protein-specific immunoprecipitation (IP) step,135

therefore capturing background crosslinking signal from other RBPs or technical biases. To prevent pattern learning136

of unspecific background and bias signal, RBPNet models the crosslink signal of the control experiment alongside137

the eCLIP signal. Specifically, RBPNet attempts to explain the observed eCLIP signal as a mixture of two signal138

components - the control component, which is explicitly learned from the control experiment, and an unobserved target139

component, which represents the protein-specific signal (Methods 5.6). The total signal, that is, the count distribution of140

the eCLIP experiment, is then given by a weighted sum of the two components. This is illustrated schematically in the141

RBPNet output head in Figure 1b as well as in Supplementary Figure 1a, which outlines the network forward pass in the142

output head. The mixture of the two signals (target and control) is parameterized by a coefficient π, which is predicted143

from the RNA sequence and ranges between 0 and 1. Importantly, we control for technical bias in CLIP assays which144

we modeled with an additive mixture. This is in contrast to BPNet, a model for chromatin-immunoprecipitation assays145

which is dominated by DNA accessibility and sequence preference biases that were modeled as multiplicative noise [2].146

RBPNet disentangles bias and protein-specific signal147

The formulation of the total eCLIP signal as an additive mixture allows for disentanglement of the target from the148

control signal, where the predicted target signal represents in theory the bias-free, protein-specific crosslinking signal.149

This is exemplified in Figure 1c, which shows the observed eCLIP and SMInput read start counts (top), as well as150

the total, target and control signal predictions (bottom) using an RBPNet model trained on eCLIP data from the QKI151

RBP. The RBPNet total track (blue) captures well the experimental eCLIP read-start count profile, where the highest152

enrichment of eCLIP counts can be observed at position 113 of the sequence, immediately upstream of the known153

QKI binding motif (U)ACUUA [6]. Disentangling the predicted signal with RBPNet shows that the enrichment at154

this position is mostly attributed to the target, i.e. the true QKI-specific binding signal (green). On the other hand, the155

experimental eCLIP profile harbors two regions with lower enrichment of read start count around relative positions 102156

and 189. Disentangling of the RBPNet total signal reveals that the count enrichment in these regions likely originated157

from experimental bias, as these regions coincide with elevated signal predictions of the control track (red). Further158

investigation of RBPNet predictions via Integrated Gradients (IG) [50] feature importance scores with respect to each159

signal track revealed that the known QKI binding motif (U)ACUUA [6] is correctly recovered in the IG map of the target160

track, corroborating the evidence that the predicted target signal shape corresponds to the bona fide QKI binding signal.161

In contrast, no clear2 QKI motif is observed in the IG maps of the control track, while the recovery of U-rich sequence162

2Note that the QKI-specific signal is partially captured in the bias track. While the SMInput experiment omits the immunoprecipi-
tation, subsequent size-selection for the target protein still leads to a modest enrichment of protein-specific crosslink signal
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motifs at the modes of the predicted control track distribution further strengthen the observation that those regions163

correspond to experimental bias. While the predicted total track is a weighted average of target and control signal (with164

a mixing coefficient of 0.92, such that the target is dominating over the control track), genuine QKI binding signal is165

correctly recovered by the predicted target track. Likewise, signal enrichment mainly representing experimental bias166

are recovered by the control track, while being present in very low proportions in the target signal.167

RBPNet predicts eCLIP signal shape at replicate-level accuracy168

We next performed evaluation on 103 RBPNet models trained on data from ENCODE [53] eCLIP experiments. To169

this end, for each eCLIP experiment, candidate training pairs of 300nt long sequences and crosslink count footprints170

were first generated without the use of a peak caller via lenient signal-thresholding (Methods) and subsequently split171

chromosome-wise into train, validation and test sets (Methods). Overall, we obtained an average of 302, 752 candidate172

sites across eCLIP datasets, with a minimum of 7, 937 sites for LARP7 and a maximum number of 1, 105, 807 sites173

for HNRNPC. Subsequently, RBPNet models were trained separately for each RBP for at most 50 epochs, while the174

validation loss was observed for the purpose of early-stopping (Methods). Example predictions on hold-out samples175

with highest total observed counts for TIA1, QKI and U2AF2 are depicted in Figure 2a. Predictions show a high176

Pearson correlation coefficient (PCC) with the observed eCLIP counts (0.763, 0.830 and 0.872 for TIA1, QKI and177

U2AF2, respectively), demonstrating that RBPNet can recapitulate the eCLIP signal shape at high accuracy. Next, we178

quantitatively assessed correlation of predicted and observed signal distribution. Figure 2b shows the average PCC of179

RBPNet (total track) predictions with observed eCLIP counts on hold-out samples versus the average PCC of counts180

between the two eCLIP replicates on the same sequence intervals. RBPNet achieves an average PCC between 0.200181

(SSB) and 0.587 (HNRNPC), with an average PCC of 0.328. Strikingly, RBPNet prediction appear to outperform182

replicates, which have an average PCC of 0.149 across all RBPs. The reason for this are two-fold. First, correlation183

between RBPNet predictions and observed counts are computed with respect to the merged count of both replicates,184

which reduces sampling effects and thus may increase PCC. Second, RBPNet predicts the count-generating distribution185

in the given interval, conditioned on the RNA sequence. In contrast, the observations in each replicate represent samples186

from the true (but unknown) count-generating distribution. As the estimated signal distribution by RBPNet approaches187

true distribution, the expected PCC between RBPNet predictions and a sample exceeds the expected PCC between the188

two samples (Supplementary Text).189

RBPNet enables whole-transcript inference and recovers single-nucleotide resolution binding sites190

We next leveraged RBPNet’s ability of performing prediction of RNA sequences of arbitrary length, despite being191

trained on fixed-length inputs. We explored first whether RBPNet can infer signal on entire transcripts by first192

selecting genes from GENECODE (Release 40) [10] from hold-out chromosomes and subsequently performing193

RBPNet predictions using models for all ENCODE RBPs. Figure 2f and 2g shows RBPNet predictions (total track) on194

ENSG00000173207.12 and ENSG00000137955.15 for QKI and HNRNPC, respectively. Indeed, RBPNet predictions195

show a high correlation with the observed eCLIP counts (0.645 and 0.816, respectively), demonstrating that RBPNet196

models trained on rather short, fixed-size inputs generalize well to the task of whole-transcript prediction.197

Given that RBPNet predictions show high correlation with observed eCLIP counts, we next assessed whether high-198

scoring RBPNet predictions coincide with peaks called by PureCLIP [31], a single-nucleotide peak caller that identifies199

significant crosslink sites from eCLIP and SMInput cDNA truncation counts using a Hidden Markov Model. To this end,200

we performed whole-genome peak calling with PureCLIP on ENCODE eCLIP datasets (Methods 5.10.2), identifying on201

average 46, 459 crosslink (CL) sites per RBP, with a minimum and maximum number of CL sites of 1, 083 and 585, 772202

for NIP7 and HNRNPC, respectively. For each RBP, hold-out chromosome genes were intersected with PureCLIP203

CL sites and transcripts harboring at least 10 CL sites were selected for downstream evaluation. Subsequently, whole-204

transcript signal shape prediction was performed via RBPNet on selected transcripts. Here, predictions of the target track205

were used as PureCLIP peaks were called using both eCLIP and SMInput background signal information (Methods).206

For each transcript, auROC and average precision (AP) performance metrics were computed by treating positions at207

PureCLIP CL sites as positives and all other positions as negatives (Supplementary Table 1). Since RBPNet predicts the208

distribution of crosslink sites along genes, the probability at each position correlates with the genes length as well as209

the abundance of RBP binding on the transcript, rendering position-wise RBPNet predictions uncomparable across210

transcripts. Therefore, auROC and AP metrics are computed within transcripts and later averaged across transcripts211

in order to report the final, RBP-specific auROC and AP scores. In order to assess how the RBPNet behaves with212

respect to classification-based models, we next compared RBPNet predictions to DeepRiPe, a state-of-the-art classifier213

for prediction of protein-RNA interaction, by using a sliding-window approach to obtain pseudo single-nucleotide214

resolution scores (Methods). Since pre-trained DeepRiPe models for HepG2 ENCODE datasets were obtained directly215

from Ghanbari et al. [14], sequences in our hold-out set may have been present during training of DeepRiPe.216
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Figure 2c and 2d show the average auROC and AP scores, respectively. RBPNet outperforms DeepRiPe on all RBPs217

in terms of auROC performance, with an average auROC of 0.89 and a minimum and maximum auROC of 0.58 and218

0.98 for SSB and HNRNPK, respectively. In contrast, DeepRiPe achieves a significantly lower average auROC of219

0.74. Interestingly, RBP-wise auROC scores of RBPNet and DeepRiPe are strongly correlated (PCC = 0.72). This may220

suggest that some ENCODE eCLIP libraries are of lower quality or that RNA binding of some RBPs is more difficult to221

predict from sequence, possibly due to a lack of sequence binding motifs. Notably, RBPNet shows a lower variance of222

auROC performance across RBPs. Given that classification-based models such as DeepRiPe rely heavily on proper223

categorization of RNA sequences into binding and non-binding for training, this may indicate a higher robustness of224

RBPNet due to its training approach, which does not rely on upstream peak calling or labeling of RNA sequences. Both225

RBPNet and DeepRiPe AP values across RBPs range between 0.00032 and 0.2518 and .00038 and 0.0774, respectively,226

with RBPNet significantly outperforming DeepRiPe (average AP of 0.086 vs. 0.012, respectively). The generally227

low AP values of both methods is due to AP being sensitive to class imbalance, with the random AP baseline being228

equivalent to the fraction of positive samples in the dataset. Here, hold-out transcripts have an average PureCLIP CL229

site fraction of 0.0014 across RBPs, given that transcripts are expected to harbor orders of magnitude more non-CL230

than CL sites. Thus, while having low AP, RBPNet and DeepRiPe outperform the random baseline by a large margin.231

Overall, these results show that RBPNet is a powerful discriminator of PureCLIP CL and non-CL positions across the232

transcriptome, outperforming state-of-the-art classifiers.233

RBPNet mixing coefficient captures relative eCLIP and SMInput signal abundance234

RBPNet models the total eCLIP signal as a mixture of protein-specific target and control signal, weighted by a mixing235

coefficient which determines the fraction of target signal in the total signal (Methods). In order to evaluate whether236

the mixing coefficient captures the fraction of target and control signals properly, we inspected mixing coefficients of237

high-and low-affinity ENCODE narrow peaks [54]. To this end, for each RBP, we obtained ENCODE narrow peaks and238

ordered them decreasingly with respect to their log2 fold-change (logFC) of eCLIP signal over the SMInput. Peaks in239

the top and bottom deciles were then selected and extended up-and down-stream from their 5’ end, which generally240

corresponds to the crosslink site, to yield 300nt windows. Finally, RBPNet predictions were performed for each window241

and mixing coefficients were obtained. Figure 2e shows the distribution of mixing coefficients on top and bottom decile242

ENCODE narrow peaks. Indeed, top decile peaks receive on average significantly higher mixing coefficients compared243

to bottom decile peaks (p < 2.2× 10−16), suggesting that the RBPNet mixing coefficient can separate high-affinity244

from low-affinity sites, where the latter contains a higher proportion of background signal.245

RBPNet generalizes to iCLIP and miCLIP experiments246

RBPNet may be trained on any genomic sequence with a corresponding nucleotide-wise count signal. To demonstrate247

that RBPNet generalizes to other CLIP-based protocols, we trained RBPNet on data derived from miCLIP and iCLIP248

experiments.249

miCLIP enables in vivo identification of m6a RNA modifications at single-nucleotide resolution by incubating and250

subsequently crosslinking extracted RNA with a m6a-specific antibody [36]. After digestion of the covalently bound251

antibody, reverse transcription often truncates at a remaining polypeptide at the crosslink site, with pileups of truncation252

events yielding an m6a count signal across the transcriptome. miCLIP data from HEK293 and mESC cells was gathered253

from Kortel et al. [30] and processed similar to eCLIP data (Methods), before selecting candidate sites for training254

and evaluation (Methods). Subsequently, RBPNet models were trained on both cell lines using a similar architecture255

and hyperparameters as in eCLIP RBPNet models (Methods). While the mESC miCLIP experiment was paired with a256

knockout (KO) control experiment, no control experiment was available for HEK293. We therefore trained RBPNet257

on HEK293 miCLIP data without target and control modeling, that is, RBPNet was tasked to predict a single track258

describing the distribution of total miCLIP counts in the HEK293 cell line. RBPNet (total track) showed high signal259

correlation on miCLIP counts in both cell lines (Figure 3a), reaching PCCs of 0.51 and 0.48 for HEK293 and mESC,260

respectively. To evaluate the ability of RBPNet to recover miCLIP single-nucleotide peaks, we again performed261

peak calling with PureCLIP (Methods), yielding a total of 2, 011, 704 and 278, 311 for HEK293 and mESC miCLIP,262

respectively. We hypothesize that the significantly higher number of PureCLIP CL sites in HEK293 may be due to a263

lack of control signal, which in context of mESC may lead to a large number of candidate CL sites being discarded.264

While the KO control is used for PureCLIP background normalization for the mESC cell line, no control is used for peak265

calling on the HEK293 cell line, as this was not available. Due to the lack of controls, PureCLIP yields a significantly266

higher number of CL sites in HEK293 compared to mESC, where a high portion of them may correspond to false267

positives or noise. Similar to PureCLIP analysis in eCLIP, we then performed whole-transcript inference of miCLIP268

signal shape on genes of the hold-out set. Figure 3b and 3c show the ROC curves for HEK293 and mESC, respectively.269

RBPNet performs well in terms of auROC on both cell lines, with an average auROC of 0.89 for HEK293 and 0.88 for270

the mESC cell line. In contrast, RBPNet achieves an AP scores of 0.1 and 0.043 for HEK293 and mESC, respectively,271
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with AP performance naturally increasing together with the fraction of positions harboring PureCLIP CL sites. This is272

illustrated in Figure 3d, which shows the distribution of AP scores across transcripts grouped into quartiles based on273

their CL fraction. We consequently observe a lower AP score for mESC compared to the HEK293 cell line as a result of274

the lower number of PureCLIP CL sites in mESC. Figure 3e and 3e shows example RBPNet predictions (total track) on275

two human genes (ENSG00000142937.11 and ENSG00000161016.15, respectively) from the hold-out chromosomes276

using the HEK293 RBPNet model. Interestingly, RBPNet predictions (as well as observed signal) predominantly occur277

in coding regions (CDS) and 5’/3’ untranslated regions (UTRs), while being only slightly present in introns, which is in278

line with previous study reporting that m6A methylation mainly those genomic regions [26, 38].279

We next evaluated the performance of RBPNet on individual-nucleotide CLIP (iCLIP) data [29]. Compared to eCLIP, it280

makes use of extra circularization and linearization steps, which allow all cross-linked cDNA fragments to be amplified281

and sequenced, and a quality control step to assess specificity of pulled-down protein-RNA complexes. To this end, we282

gathered iCLIP data from Hallegger et al. [18] and Haberman et al. [15] for TDP43 and PTBP1 proteins, respectively,283

which was processed as described in Section 5.1. As no paired control experiment was available for either RBP, we284

again trained RBPNet by omitting modeling of target and control signal and instead tasked RBPNet with predicting the285

total iCLIP count distribution directly. Figure 3g shows the distribution of PCCs on test set samples for the PTBP1 and286

TDP43 models. RBPNet reaches an average PCC of 0.46 for TDP43 and 0.320 for PTBP1. Notably, RBPNet reaches a287

comparable PCC of 0.366 on the PTBP1 eCLIP dataset, which may suggest that the fraction of PTBP1 signal (and thus288

RNA-binding) explained by RNA sequence is comparable in the eCLIP and iCLIP datasets. This demonstrates the289

capability of RBPNet to achieve high predictive performance of the RBP-RNA interaction signal shape, independently290

of the protocol used to generate the data the model is trained on. In order to qualitatively assess the ability of the291

RBPNet-TDP-43 model to predict signal shapes on full length transcript when trained on iCLIP data, we manually292

investigated the prediction profile on the hold-out transcript with the highest absolute counts. Figure 3h shows TDP-43293

RBPNet predictions and observed iCLIP counts for ENSG00000278249.1 (SCARNA2), a scaRNA associated with294

DNA repair pathway regulation that has been previously described to be interacting with TDP43 [23, 4]. Indeed, the295

profile predicted by RBPNet strikingly reflects the observed signal.296

Sequence attribution maps capture RBP binding motifs297

Recognition of target RNAs by RBPs is in part driven by local sequence features, also known as binding motifs.298

The identification of RBP binding motifs is crucial for understanding RBP target recognition and the regulatory299

grammar present in RNA sequences. While deep learning models were long regarded as black boxes, recent feature300

attribution methods, such as Integrated Gradients (IG) [50], allow for the identification of input features that contributed301

significantly to the observed model prediction. In the context of RBPNet, these methods "attribute" a given prediction302

to nucleotides in the input RNA sequence by assigning a score to each position. Nucleotides that were primarily303

responsible for the observed crosslink count distribution, such as those residing in binding motifs, receive a higher304

score compared to nucleotides that did not contribute towards protein-RNA crosslinking. IG attribution maps may be305

computed with respect to any of the three output track, i.e. control, target and total. Attributions of the target track are306

expected to highlight nucleotides that contributed significantly towards protein-specific crosslinking, while attribution307

of the control track are expected to explain the unspecific background and bias signals3.308

Figure 4a shows examples of IG attribution maps, computed with respect to control and target tracks for test-set samples309

using eCLIP RBPNet models for RBFOX2, HNRNPK, TIA1 and QKI, alongside PWMs of consensus motifs reported310

in literature, obtained from the RBPmap database [43]. The corresponding predicted control and target signals are311

shown above the attribution maps (in red and green, respectively). Target track IG attribution maps show the presence312

of highly predictive sub-sequences that correspond to known binding motifs for each of the shown RBPs. For instance,313

IGs of HNRNPC show the characteristic U-motif, while three distinct canonical ACUAAC motifs can be seen in the314

IGs of QKI. In contrast, control track attribution maps do not show the presence of clear binding motifs, with a general315

attribution score enrichment at G and C nucleotides. We next performed a global quantitative assessment of how well316

RBPNet attribution maps can recover known binding motifs across RBPs in the ENCODE eCLIP database. To this end,317

we selected the top 5, 000 ENCODE narrow peaks for all ENCODE eCLIP experiments with trained RBPNet models318

and computed IG attribution maps with respect to target, control and total tracks for each RBP. For each attribution map,319

we extracted 5-mers with highest sum IG scores (Methods). Extracted 5mers were then compared with position-weight320

matrices (PWMs) of literature motifs obtained from the RBPmap [43] database by computing the similarity between321

each 5mer and its corresponding RBPmap motif (Methods). In total, 29 out of the 103 ENCODE RBPs with RBPNet322

models were represented with at least one PWM in RBPmap, which were then selected for downstream analysis. Figure323

4b shows the distribution of average similarity scores of extracted 5mers to RBPmap PWMs across RBPs for each324

3Note that not all technical CLIP bias is manifested in the RNA sequence and thus learnable by the RBPNet model. Therefore,
only the sequence-component of the bias will be captured in control track IG maps.
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of the three RBPNet prediction tracks. 5-mers extracted from attribution maps of the target track show the highest325

RBPmap-similarity, consistent with the fact that this track represents the de-biased, protein-specific signal predictions,326

followed by the total and control tracks, respectively. Notably, on average 5-mers extracted with respect to the control327

track have the lowest similarity to known RBP PWMs, highlighting the ability of RBPNet to extract different sequence328

representation for true signal and bias, respectively. To investigate the degree of improvement that signal de-biasing329

in the target track offers over the total track for individual RBPs, Figure 4c shows the average target and total track330

RBPmap-similarity for each RBP. Interestingly, we find that while for some RBPs, the target track leads to no or only331

modest improvements of RBPmap-similarity compared to the total track, other RBPs, such as HNRNPC, PCBP2,332

RBFOX2 and TRA2A, appear to benefit strongly from the signal de-biasing of the target track. This may reflect variable333

levels of experimental bias across eCLIP datasets.334

RBPNet IG attribution maps recover in vitro binding motifs335

In vitro experiments on protein-RNA interactions, such as RNA-Bind-N-Seq and RNAcompete, offer an orthogonal336

view to validate motifs identified from in vivo data, as they do not harbor crosslinking specific biases or contamination337

of experiments with other RBPs and therefore measure intrinsic affinity of RBPs to RNA in an unperturbed environment338

[34, 45]. To examine whether modelling of the control signal as an auxiliary task can increase the specificity of predicted339

CLIP signal, we cross compared 5-mers previously obtained from RBPNet IG attribution maps of target, control and340

total tracks with 5-mers enriched in corresponding RNA-Bind-N-Seq (RBNS) or RNAcompete in vitro datasets. In341

total, we evaluated 27 eCLIP datasets in the HepG2 cell line, for which either RBNS (16 RBPs) or RNAcompete (11342

RBPs) data was also available.343

To measure the agreement between in vitro 5-mers and RBPNet 5-mers obtained in the previous section, we first344

computed the sum of IGsum scores for each unique 5-mer as a measure of importance with respect to CLIP signal shape345

prediction. We then calculated the RBPNet recall for each track by taking the fraction of the top 20 in vitro 5-mers that346

were recovered in the top 20 5-mers by RBPNet on eCLIP datasets (Methods). We found that across evaluated RBPs,347

the RBPNet target track recovered a significantly higher proportion of relevant in vitro 5-mers from eCLIP than the348

total track, suggesting that RBPNet can successfully increase the specificity of eCLIP signal (Figure 4d). As expected,349

the control track recovered the least in vitro k-mers, however, for some RBPs even the control track alone could retrieve350

high ranking in vitro motifs. This effect could be explained by a partial enrichment of RBP-specific signal in the control351

experiment, as suggested by a previous study, which evaluated the effect of using eCLIP narrow peaks in contrast to352

SMInput-agnostic peak-calling on discovery of relevant binding motifs from eCLIP data [32]. Next, we set out to assess353

whether the governing sequence features learned by RBPNet could be reliably used for motif discovery. To this end, we354

compared the RBPNet recall to positionally-enriched k-mer analysis (PEKA), a state-of-the art tool for discovery of355

enriched k-mers from individual CLIP datasets [32] and DeepRiPe. In contrast to RBPNet, PEKA models background356

from intrinsic crosslinking signal and does not use SMInput controls, therefore it provides valuable orthogonal view in357

how specificity of the motifs can be impacted by different background modelling approaches. Surprisingly, we found358

that the RBPNet target track recovered a similar proportion of relevant in vitro k-mers compared to PEKA, despite359

the fact that RBPNet was not originally designed for objective of motif discovery (Figure 4d). Lastly, we investigated360

whether a direct modeling of eCLIP signal, compared to binary labels (bound / unbound) assigned to entire RNA361

sequences, offers an advantage in the context of motif discovery. To this end, we compared RBPNet recall performance362

to DeepRiPe by extracting 5-mers from DeepRiPe attribution maps (Methods). Indeed, both RBPNet target and total363

track outperform DeepRiPe in terms of in vitro k-mer recovery (mean recall of 0.294, 0.254 and 0.222, respectively),364

suggesting that direct modeling of raw eCLIP signal improves binding motif discovery irrespectively of bias modeling.365

Further, these results indicate that enriched in vitro k-mers are strong predictors of true CLIP signal and that RBPNet366

learns to associate the presence of these k-mers with high count signal. Lower agreement of the RBPNet total track367

(compared to target track) with in vitro k-mers suggests that a fraction of the total track signal is explained by sequence368

features not present in in vitro k-mers, which likely correspond various possible technical sources of sequence biases or369

contaminant signals in CLIP [16, 32].370

Consensus motifs reveal primary and secondary motifs371

Having demonstrated that RBPNet successfully identifies predictive k-mers that coincide with in vitro datasets, we372

next constructed consensus binding motifs to concisely represent the sequence binding preference of each eCLIP373

RBP. To this end, we select 5-mers previously derived from RBPNet target track attribution maps and build consensus374

motifs by successively aligning 5-mers in the order of highest to lowest IG importance (Methods). Figure 4e shows375

consensus motifs together with the fraction of supporting 5mers for selected RBPs. Primary binding motifs identified376

with RBPNet agree with previously identified motifs reported in RBPmap (RBFOX2, QKI, TIA1, U2AF2, HNRNPC).377

Additionally, we identified novel candidate motifs for several RBPs, including AQR and CSTF2, for which no motifs378

exist in the RBPmap database. We further identify secondary consensus motifs, which may represent alternative binding379
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preferences or co-factor binding (Methods). Several RBPs, including RBFOX2, TIA1 and (to a lesser extend) HNRNPK,380

show a G-rich secondary motif (Figure 4e). We hypothesize that this may be due to co-factor binding of an RBP with381

G-motif preference or, as suggested by previous studies, may indicate contamination of eCLIP libraries with another382

RBP [32, 53]. A complete list of consensus motifs derived from RBPNet are shown in Supplementary Figure 2.383

Studying the impact of sequence variants on protein-RNA interaction with RBPNet384

RBPs are highly evolutionary conserved and have been associated with an abundance of human diseases, particularly in385

the context of degenerative disorders [42, 7]. Recently, Gebauer et al. [13] found that over 1,000 RBPs are mutated in386

context of disease, which amounts to >20% of proteins annotated with disease-associated mutations. Besides altered387

coding sequences of RBPs, nucleotide polymorphisms in their RNA targets may impact transcript regulation via loss388

of binding sites. Indeed, Park et al. [42] showed that dysregulation of RNA target sites from RBPs with a diverse set389

of functions represents is a key driver of psychiatric disorder risk. Therefore, computationally quantifying the impact390

of variants with respect to protein-RNA interaction at large scale is crucial for the prioritization of causal variants391

in context of disease. Here, we use RBPNet to score the impact of sequence variants on protein-RNA interaction392

and demonstrate that resulting impact scores yield candidate variant that may be associated with the disruption of393

protein-RNA interaction.394

Figure 5a exemplifies our variant scoring approach on rs6981405, an A-to-C transversion within the DDHD2 gene that395

disrupts QKI binding and which has been associated with schizophrenic risk [42]. As shown, in silico mutagenesis396

leads to change in predicted RBPNet target signal around the variant, with a lower signal amplitude in the alternative397

(ALT) allele compared to the reference (REF), which we quantify as the Kullback–Leibler (KL) divergence between398

REF and ALT predictions (Methods), yielding a scalar KLD impact score. Feature attribution maps (Figure 5a, bottom)399

of the REF and ALT predictions reveal that rs6981405 disrupts the well known QKI binding motif ACUAAC [17].400

The strongly negative implications of the A-to-C transversion at the last position of the binding motif is correctly401

detected by RBPNet, as is evident from the change of high-positive to high-negative attribution at the mutation site.402

To evaluate whether RBPNet assigns greater impact to SNPs within the QKI motif compared to SNPs outside the403

motif, we performed a systematic in silico perturbation analysis of each nucleotides within a 200nt window around the404

rs6981405 SNP. Figure 5b depicts the distribution of a total of 600 variant impact scores, grouped based on whether405

they reside within or outside the QKI binding motif. Indeed, the majority of non-motif perturbations lead to small406

changes in predicted signal profile and thus to small impact scores, while mutations falling within the QKI motifs lead407

to significantly larger impact scores. This demonstrates that RBPNet can successfully quantify variant impact through408

the change of its predicted signal between REF and ALT alleles.409

Investigating allele-specific binding (ASB) with RBPNet410

To further probe RBPNet’s ability to predict trustworthy variant impacts on protein-RNA interactions, we manually411

investigated experimentally identified allele specific binding events report by Yang et al. [58]. Figure 5c and 5d show412

the variant impact RBPNet profile for SNVs with the lowest associated p-value assigned by Yang et al. for AQR and413

RBFOX2, respectively. SNVs for both AQR and RBFOX2 are associated with drastic changes in their binding profiles,414

compared to the references sequences. The sequence around the SNV associated with the most significant binding event415

of RBFOX2 contains two binding motifs within a 100bp window. When predicting on the reference allele, RBPNet416

distributes the signal mass equally across the two motifs (5d). As the SNV hits one of the binding motifs, RBPNet417

in turn predicts a complete flattening of the predicted signal at that motif and a redistribution of the mass to the other418

motif. This allele-specific effect is clearly displayed both in the predicted profiles and in the attribution maps.419

A limitation of Yang et al.’s [58] approach for identifying ASB events is the ambiguity in regards to which of two420

or more neighboring SNVs is causal for the observed gain or loss of protein-RNA interaction. This is exemplified421

in Figure ??, which shows 4 ASB events of QKI within a 200nt interval. As ASB events in [58] are defined based422

on differential read counts of the REF and ALT allele, reads spanning two or more co-occurring SNVs are counted423

towards all SNVs, thus leading to "passenger" SNVs that may not be associated with gain or disruption of protein-RNA424

interactions. Indeed, a separate investigation of impact profiles of each SNVs (Figure ??) revealed that only 2 (top left /425

top right) out of 4 SNVs are associated with a substantial change in predicted signal. Interestingly, both SNVs occur in426

one of the QKI binding motifs visible in the reference attribution maps (Figure ??). The two remaining SNVs (bottom427

left / bottom right) fall outside a QKI binding motif and thus show only a negligible change of predicted RBPNet signal.428

KLD impact scores for SNVs impacting QKI motifs are considerably higher (0.28 and 0.12) compared to SNVs outside429

of motifs (0.05 and 0.02), which is in line with the strong dependence of allele specific effects of SNVs with respect to430

their distance to known motifs [58]. Together, these results suggest that variant impact analysis via RBPNet can aid in431

prioritizing causal SNVs for allele specific binding.432
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RBPNet discriminates between functional and non-functional mutations nearby splice junction433

Splicing is a complex and tightly regulated post-transcriptional processes in higher eukaryotes that requires concerted434

binding of multiple RBPs via spliceosomal complexes, with sequence variants disrupting regulatory binding motifs435

being associated with severe deleterious effects [11]. To evaluate RBPNet’s ability to score the impact of sequence436

variants on RNA-binding of splicing factors, we obtained a set of 232 splicing-associated mutations from MutSpliceDB437

[40]. Indeed, we observed greater impact scores for splicing mutations compared to their local controls for 22 out of438

40 splicing-related RBPs (Supplementary Figure 3a, Methods 5.12.1). Notably, the set of significant RBPs showed439

an over-representation of spliceosomal RBPs (15 out of 22), concordant with their higher susceptibility to be directly440

impacted by splicing mutations at splice junctions. Applying the same procedure with DeepRiPe models, only 4 models441

(out of 30) showed a significant difference in impact scores allowing discrimination between splicing mutations and442

local negative controls. This is illustrated by the distribution of scores at various relative distance from splicing junctions,443

as seen for example with the pre-mRNA processing factor 8 (PRPF8, Supplementary Figure 3b), a core protein of444

the spliceosome. While the DeepRiPe model showed the most significant discrimination between functional and445

non-functional mutations (adjusted P-value = 2.23× 10−3), we can see that the score distribution from non-functional446

mutations at very short distance (<10nt) is slightly more elevated than for mutations beyond. On the other hand, the447

RBPNet models shows a very clear discrimination even at such short distance. We confirmed the improvement of448

RBPNet over DeepRiPe for scoring variants by comparing the area under the Receiver Operating Curves from each pair449

of models (Supplementary Figure 3c), showing that RBPNet was a better classifier for 26 of the 30 models in common.450

Leveraging RBPNet to infer human RBP binding on viral RNAs451

We lastly evaluate RBPNet’s ability to infer missing eCLIP signal shape on foreign RNAs. Viruses, including SARS-452

CoV-2, extensively interact with the host’s RBPome [39, 12, 9]. As the large-scale experimental identification of human453

RBP binding on viral RNA is associated with significant monetary and labor costs, computational imputation of binding454

sites represents an attractive alternative to identify crucial host factors involved in the virus life cycle. Recently, Labeau455

et al. [33] experimentally identified binding of QKI to SARS-CoV-2 and reported that QKI-knockout cells are less456

permissive than wild-type cells.457

Here, we utilize RBPNet models trained on eCLIP datasets to predicting binding profiles of human RBPs to SARS-458

CoV-2 at single nucleotide resolution. Figure 6b shows RBPNet target track predictions for QKI, showing several459

high-scoring regions across the SARS-CoV-2 sequence. IG attribution maps at sequence windows around the top 5460

highest prediction scores revealed the presence of the QKI binding motif, suggesting that the RBPNet-QKI model461

predicts bona fide binding profiles. To further validate that RBPNet predictions on SARS-CoV-2, we obtained eCLIP462

data for CNBP from Schmidt et al. [47]. Indeed, RBPNet target track predictions correlate significantly with the463

control-normalized eCLIP signal (Figure 6a), with an PCC of 0.210. Together, this indicates that RBPNet trained on464

human eCLIP experiments may be used to extrapolate eCLIP signal shapes to non-human RNA sequences.465

RBPNet Webserver466

For ease of use, a BioLib webserver version of RBPNet is accessible at https://biolib.com/mhorlacher/RBPNet,467

enabling prediction of signal profiles and sequence attribution maps with pre-trained models used in this study on468

user-provided RNA sequences.469
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3 Discussion470

While high-throughput single-nucleotide CLIP-seq methods offer unprecedented insights into the protein-RNA inter-471

action landscape of RNA-binding proteins, they are limited to transcripts expressed in the experimental cell type at472

the time of the experiment. Therefore, researchers must rely on computational methods to impute missing binding473

information on unexpressed transcripts and or foreign RNAs from sequence. In recent years, an abundance of machine474

learning methods have been developed for the prediction of protein-RNA interaction from RNA sequence, with the most475

recent iteration of methods relying on deep neural networks to achieve high state-of-the-art performance. However,476

current classification-based methods assign predicted binding probabilities to the entire input sequence, typically in477

the order of hundreds of nucleotides, creating ambiguity with respect to the exact location of protein-RNA interaction.478

Further, the binary labels used in context of classifiers may only contain a fraction of biological information generated by479

CLIP experiments, which may hinder the learning of complex associations between RNA sequence and RBP-binding.480

The implicit common goal of protein-RNA prediction methods is a near perfect recapitulation of binding information481

offered by their in vivo experimental counterparts, which generate nucleotide-wise counts signal across the transcriptome.482

In this study, we presented a significant milestone towards this goal in the form of a novel deep learning model, RBPNet,483

which predicts the CLIP-seq signal shape from RNA sequence at single-nucleotide resolution. By training and evaluating484

RBPNet on eCLIP, miCLIP and iCLIP datasets, we demonstrated that the model is able to predict the experimental485

signal shape at high accuracy, reaching replicate-level performance and is applicable to data from different CLIP-based486

protocols. We leveraged RBPNet’s ability to processes sequences of arbitrary length at prediction time and impute signal487

shape on entire gene sequences, some of hundreds of kilo-bases in size, and showed that high-scoring positions predicted488

by RBPNet coincided with single-nucleotide peaks identified from experimental data via the PureCLIP peak caller. Due489

to their fundamentally different outputs, establishing unbiased comparisons between RBPNet and classification-based490

models is challenging, as the later assigns predictions to sequence windows rather than individual positions by design.491

To enable comparison with DeepRiPe, a state-of-the-art CNN classifier, we there generated pseudo position-wise492

scores via a sliding window approach, and showed that RBPNet significantly outperforms DeepRiPe at recapitation of493

PureCLIP crosslink sites. This demonstrates that identification of protein-RNA interactions at nucleotide-resolution can494

not be solved by current classification-based models, stressing the need for new approaches and highlights the novelty495

of RBPNet, as it is the first method that attempts to prediction protein-RNA interaction at nucleotide resolution.496

Unspecific background signal, as well as experimental biases, are an inherent issue of CLIP-based protocols and thus497

downstream analysis, as bias towards certain sequence elements confounds the learning of genuine, protein-specific498

sequence features by modeling approaches. For classification-based models, few strategies have been developed499

to prevent models from learning bias instead of true signal. For instance, Pysster [5] compiles its negative labeled500

training set for a given RBP by sampling sequences from binding regions of other RBPs, thus explicitly introducing the501

same sequence biases of the positive set into the negative set, rendering them non-discriminative for the two classes.502

Similarly, DeepRiPe performs multi-task learning for several RBPs and only trains on sequences that harbor at least one503

experimentally identified binding site, such that biases associated with CLIP peaks are present in all input sequences.504

Yan et al. [57] address the RNase T1 cleavage bias towards guanine in the context of PAR-CLIP and HITS-CLIP by505

replacing nucleotides in a short window up-and downstream of the input sequence viewpoint with uniformly drawn506

random nucleotides. In contrast to the above strategies, which exclusively rely on manual manipulation of the training507

data, RBPNet accounts for experimental bias directly as part of its architecture by modeling the control signal as an508

auxiliary task. Specifically, RBPNet learns a component which explains the difference in signal shape of the experiment509

and a paired control, the target track, which is expected to be depleted of experimental bias and instead enriched510

in protein-specific signal. As the target signal is not observed experimentally, we instead quantitatively evaluated511

the ability of RBPNet tracks to recover known RBP binding motifs and showed that the target track recovers motifs512

significantly better than the total track, with the later modeling the (possibly biased) observed signal. Orthogonal513

comparison with 5-mers derived from in vitro experiments further showed that the RBPNet target track performs514

comparable to PEKA, a state-of-the-art de novo motif discovery tool. This result is remarkable, as RBPNet is not a515

motif finder by design and the extracted motifs are derived only in retrospect via model interrogation. Both the RBPNet516

target and total tracks outperformed DeepRiPe on the task of in vitro motif recovery, which highlighted the advantage517

of learning directly on the bulk of raw experimental signal rather than a compressed representation in the form of binary518

labels, which may be associated with loss of information. The fact that RBPNet is trained on up to a million (in case of519

HNRNPC) regions enriched in CLIP-seq signal per RBP may further contribute towards its generalization power. In520

contrast, classifiers such as DeepRiPe [14] or Pysster [5] are trained on datasets the size of 10-100 thousand samples.521

We demonstrated that RBPNet models can be utilized to score the impact of sequence variants on protein-RNA522

interaction via in silico mutagenesis. For instance, we showed that RBPNet scores single-nucleotide variant within523

known binding motifs or splice junctions significantly higher than randomly selected background variants. This indicates524
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that RBPNet models learned to associated individual nucleotides with the presence or absence of CLIP-seq peaks and525

that in silico probing of the RBPNet model can improve our mechanistic understanding of protein-RNA interaction.526

Although we demonstrated the power of our approach on several tasks, including CLIP signal shape imputation,527

identification of bona fide RBP binding motifs and variant impact scoring, we believe that our results will pave the way528

for further downstream applications. A promising future application of RBPNet may be in silico peak calling for the529

translation of the predicted signal shape into binding sites - a task that is usually performed by peak calling algorithms530

in the context of experimental CLIP signal. To achieve that, an open task may be the prediction of absolute signal, i.e.531

the number of counts falling onto an input sequence rather than their distribution. While RBPNet was shown to predict532

the counts distribution across an input sequence exceptionally well, the lack of a notion of absolute signal hinders a533

direct comparison of position-wise probabilities between different RNA sequences. In other words, as RBPNet does not534

predict the absolute coverage of the CLIP signal, position-wise probabilities are not directly interpretable as RBP-RNA535

binding strength. On the other hand, this issue is not exclusive to RBPNet, with CLIP peak calling algorithms suffering536

from a similar issue due to observed position-wise crosslink counts being subject to transcript abundances. Therefore,537

many peak callers compute position-wise binding site thresholds on a transcript-to-transcript basis (Clipper4) or with538

respect to the local neighborhood (Clippy5, Paraclu6), a strategy that may be adapted for RBPNet. Nevertheless, future539

work may explore the feasibility of absolute signal prediction, for instance by incorporating transcript abundance540

coefficients as model covariates. Avsec et al. [2] demonstrate that the BPNet model may be used to unravel the motif541

syntax underlying TF cooperativity. In a similar way we envision, as future direction, the application of RBPNet to542

discover the sequence rules of RBP cooperativity, something that has been only rarely addressed by previous studies.543

However, CLIP datasets vary greatly in quality, with respect to sequencing depth, number of replicates, replicate544

consistency, signal-to-noise ratio, and presence or absence of control libraries. While the unique feature of RBPNet545

to disentangle true signal from noise can in principle enable the accurate identification of composite binding motifs546

and RBP cooperativity while mitigating the effect of confounding sequence bias, a systematic evaluation of CLIP-seq547

dataset quality will be necessary to achieve this goal.548

4https://github.com/YeoLab/clipper
5https://github.com/ulelab/clippy
6https://gitlab.com/mcfrith/paraclu
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4 Conclusion549

We presented RBPNet, a sequence-to-signal model that predict the distribution of crosslinking events across an input550

RNA sequence at single-nucleotide resolution. Training and evaluation of RBPNet on 103 eCLIP datasets showed551

high performance of RBPNet in terms of signal shape correlation, while evaluation on miCLIP and iCLIP datasets552

demonstrated the models generalization to other CLIP-based protocols. We utilized RBPNet’s ability to handle variable-553

length input sequence to perform inference on whole-transcript and showed that predicted high-probability positions554

coincide with PureCLIP peaks, outperforming state-of-the-art classifiers. To account for experimental biases, we555

additionally modeled the signal distribution of paired control experiments and derived a de-biased component, the556

RBPNet target track, which is enriched in protein-specific signal. We showed that feature importance analysis of557

the de-biased RBPNet target yielded informative sub-sequences which recall in vitro motifs at levels comparable to558

state-of-the-art motif detectors. Finally, we demonstrated RBPNet’s ability to score the impact of SNVs on protein-RNA559

interaction, which enables prioritization disease-associated variants that disrupt regulatory RNA sequence by causing560

gain or disruption of RBP binding sites. RBPNet represents a significant milestone towards full in silico imputation561

of protein-RNA interaction, while model interpretation suggest that learning on the raw CLIP signal captures more562

experimental variants, improving our mechanistic understand of protein-RNA interaction.563
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5 Methods564

5.1 Data and Preprocessing565

ENCODE eCLIP566

A total of 103 enhanced CLIP (eCLIP) datasets across 103 RBPs from the HepG2 cell line, were obtained from the567

ENCODE database [[53]]. Each dataset consists of an eCLIP experiment with two replicates and one size-matched568

input (SMInput) control experiment, which omits the protein-specific immunoprecipitation step and is thus enriched569

in unspecific background signal. For each eCLIP and SMInput experiment, aligned R2 reads, (i.e. reads who’s start570

positions likely correspond to the position immediately downs-stream of the RBP cross-linking site) were extracted571

from the experiment BAM file via SAMtools [[35]]. Next, reads obtained from the both eCLIP replicates were merged572

and 5’ read-start coverage for both plus and minus strands was computed via BEDtools [[44]].573

miCLIP574

m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation (miCLIP) datasets for HEK293T and575

mESC cells were obtained from Kortel et al. [30], comprising 4 and 2 replicates, respectively. In addition, miCLIP576

datasets for the mESC cell line are paired with 2 replicates of a METTL3 KO control experiment. For all datasets,577

bigWig files of crosslink count signals were directly obtained from the Gene Expression Omnibus (GEO) at the578

accession number GSE163500. Note that bigWig files of reads without C-to-T transitions were selected, as these reads579

represent read-through events and would result in unspecific truncation count signal. Lastly, replicates of each dataset580

were merged by summing of the position-wise crosslink counts.581

iCLIP582

Individual-nucleotide CLIP (iCLIP) datasets for TDP43 and PTBP1, each with two replicates and without control583

experiments, were obtained from Hallegger et al. [18] and Haberman et al. [15], respectively. Replicates were584

downloaded from the Sequence Read Archive (SRA) with accession codes ERS10930255 and ERS10930256 for TDP43585

and ERR1588764 and ERR1588765 for PTBP1, and processed as described in [56]. The source code for the processing586

pipeline is available at https://github.com/ulelab/ncawareclip.587

5.2 Selecting Candidate Sites for Training588

In order to speed up convergence of RBPNet, it is important to restrict model training to regions with significant589

crosslink count signal. In the context of BPNet [2], the authors therefore performed peak calling on ChIP-nexus data to590

select a set of regions highly enriched in count signal. However, recent work by Toneyan et al. [51] suggests that peak591

callers select sites too conservatively, which may result in under-fitting of sequence-to-signal models.592

To train RBPNet on ENCODE eCLIP datasets, we select a large set of candidate sites as follows. Given the set of genes593

retrieved from the GENCODE (version 40) [10], a sliding window of size 100 is shifted over each gene (stride = 1)594

and the total number of counts within each window, as well as the highest positional count is obtained. Next, a p-value595

is computed for each window via a Poisson test by comparing the observed window counts to the expected counts,596

given the gene-level crosslink counts and the gene-length. At each step, windows with a p-value < 0.01, a minimum597

window count of N = 8 and a minimum count height (i.e. maximum position-wise count within the window) of598

H = 2 are recorded as candidates and the sliding window is shifted forward by 50 nucleotides. This avoids clusters599

of redundant candidate sites within transcript regions. Finally, selected 100nt windows are extended symmetrically600

up-and down-stream to a final length of 300nt. Note that since RNA is a stranded molecule, counts are obtained for601

each gene in a strand-specific manner.602

For miCLIP datasets, similar parameters together with GENCODE vM23 for the mESC cell line where used. For iCLIP603

datasets, the minimum window threshold was reduced to N = 4, due to a lower sequencing depth.604

5.3 RBPNet Architecture605

The body model architecture of RBPNet was inspired by BPNet [2]. RBPNet takes as input a 300nt RNA sequence,606

which is one-hot encoded by mapping the bases A, C, G and U to binary vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and607

[0, 0, 0, 1], respectively. The 300× 4 dimensional input is then fed into a 1D convolution layer with 128 filters of size608

12, followed by 9 residual blocks. Each residual block consists of (1) a 1D dilated convolution layer with 128 filters609

of size 6 and exponentially increasing dilation factor, (2) a batch normalization layer, (3) a ReLU activation and (4)610

a dropout layer with a dropout rate of 0.25, respectively. The output of the last residual block (hereafter referred to611
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as ’bottleneck’ layer) then serves as input to one or more output heads, where each output head corresponds to one612

of the modeling tasks, for instance the prediction of eCLIP signal and (optionally) SMInput shape. This is outlined613

schematically in Figure 1b. Each output head consist of a transposed 1D convolutional layer with a single filter of size614

20, mapping the bottleneck feature map to a 300-dimensional output vector, which corresponds to the position-wise615

probabilities of the count distribution within the input window. Notably, as in BPNet [2], same-padding and no pooling616

is used across all convolution operations in order to conserve the one-to-one correspondence of input sequence positions,617

feature maps and outputs.618

5.4 RBPNet Training619

Prior to model training, candidate sites obtained in 5.2 were split chromosome-wise into validation (chr2, chr9, chr16),620

hold-out (chr1, chr8, chr15) and train (all other autosomes) sets for both human and mouse cell lines. RBPNet is trained621

using the Adam optimizer [[28]] and an initial learning rate (LR) of 0.004. Training is performed for a maximum of 50622

epochs with an early-stopping criteria such that training terminates prematurely if the validation loss did not decrease623

within the last 10 epochs. In addition, a LR schedulers is used such that the LR is halved each time the validation loss624

did not improve within the last 6 epochs.625

5.5 RBPNet Loss626

The output vector phpred of each track h (e.g. eCLIP or SMInput) is used to parameterize a multinomial distribution of627

read-start counts. For a given training instance, the loss is then computed as the negative log-likelihood of the observed628

(true) counts chobs, given the total counts nh
obs in the input region and the probability vector phpred. That is, the model’s629

loss Lh on a task h is defined as630

Lh = L(phpred, c
h
obs, n

h
obs) = − log pmult.(c

h
obs | phpred, nh

obs) (1)

The total loss L is then obtained by taking the sum over all task-specific losses.631

5.6 RBPNet Bias Correction632

Experimental bias can lead to unspecific eCLIP signal, severely impacting the downstream binding preference analysis.633

Therefore, CLIP-seq experiments are usually paired with a control experiment to measure the abundance of background634

signal at each locus. Assuming that a single read-start count is observed either due to true protein-specific (target)635

signal or experimental bias (control), RBPNet models the total CLIP-seq signal as an additive multinomial mixture of636

the target and bias distributions. That is,637

ptotal = π × ptarget + (1− π)× pcontrol , (2)

where ptotal is the probability vector of the total (e.g. eCLIP) signal, while pcontrol and ptarget are the probability638

vectors of the control and (unobserved) target signal, respectively. Further, π/(1− π) is the relative intensity of the639

target over the bias signal, given by a mixing coefficient π. Note that π, ptarget and pcontrol are learned directly from640

sequence for each RBP. To ensure that pcontrol properly approximates the control signal distribution over the input641

sequence, a combined loss on the total and control tracks is defined as642

L = LCLIP (ptotal, cCLIP , nCLIP ) + LCtrl(pcontrol, cCtrl, nCtrl) , (3)

such that pcontrol is penalized to match the distribution of counts in the control experiment. Once the RBPNet model is643

trained we can obtain an approximation of the bias-free signal component as ptarget. A graphical outline of a RBPNet644

forward pass with bias correction via an additive mixture of target and control signal is shown in Supplementary Figure645

1.646

5.7 Estimating the Additive Mixing Coefficient647

The contribution of target and bias signal towards the total signal is expected to be dependent on the input sequence. For648

instance, in the presence of multiple RBP binding motifs, the majority of counts may be observed due to protein-specific649

crosslinking, while under absence of clear binding motifs, crosslinking biases may dominate. RBPNet therefore650

estimates the multinomial mixing coefficient π from the input sequence. Given the feature map of the bottleneck layer651

(Section 5.3), filter-wise global average pooling is performed along the sequence axis. The resulting 128-dimensional652
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representation of the sequence is then fed into a 1-unit dense layer with linear activation to predict the logit of the653

mixing coefficient.654

5.8 Disentangling Target and Control Signals655

Given equation 2 together with the total number of counts N , we can disentangle the eCLIP signal into the expect656

control and target counts:657

Etarget = π × ptarget ×N (4)
658

Econtrol = (1− π)× pcontrol ×N (5)

5.9 Sequence Importance Scores659

To identify RNA sequence features that contributed significantly to the predicted signal distribution, we compute660

integrated gradients (IG) attribution scores [[50]] of input sequence with respect to the output probability vector p for661

each track. This way, we obtain separate attribution maps for predicted total, target and control signals.662

By default, the IG attribution method assumes a classification-based setting, where gradients are computed with663

respect to the output probability of a target class of interest. For instance in the context of classification-based models,664

attributions may be computed with respect to a single output neuron describing the binding probability of the target665

RBP to the input RNA. Here, the resulting feature importance values quantify how much each feature contributed666

towards the target class. For instance, DeepRiPe employs IG to identify nucleotides that were contributed towards667

predicting an input sequence as "bound" for a target RBP. In contrast to classification-based methods, RBPNet predicts668

a 1D profile for each RBP and input sequence. Computing IG attribution maps with respect to only a single position in669

the output track may draw an incomplete picture of nucleotide-wise contributions towards the predicted signal footprint.670

We therefore introduce a generalization of IG from scalar to 1D profile outputs.671

Given an observed input x and a baseline input x′, the IG score of an input feature xi is defined as672

IGi(x) := (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi
dα (6)

where F is a scalar function. In the simplest case of binary classification, where the deep neural network f has a scalar673

output, F = f . In the case of multi-class classification, F is usually defined as F (x) =
∑

i piyi, where p = f(x) is674

the multi-class probability vector and y the true label vector with yi ∈ 0, 1, such that IG scores of x are obtained with675

respect to its true class. A natural extension of F to count data is given by676

F (x) =
∑
i

pici (7)

where p is the multinomial probability vector and c is the vector of true counts, with the desirable effect that predictions677

at positions with high counts will dominate the input gradients. The extension of F in (8) has two major drawbacks.678

First, it requires true counts c for a given sequence to compute attribution scores and second, it might up-weight679

positions with high counts that are due to experimental bias. We thus reformulate F as680

F (x) =
∑
i

pi × stop_grad(pi) (8)

where stop_grad(x) stops gradients flow and treats x as a constant.681

In other words, instead of computing gradients with respect to the scalar of a single output neuron, we compute gradients682

of the RNA sequence nucleotides with respect to the sum of the output profile, weighted by a constant version of itself.683

The weighting ensures that output positions with high probability contribute more towards the nucleotide-wise feature684

importance scores than low-probability positions.685

Note that the proposed generalization of Integrated Gradients to output probability vectors is in analogy to Avsec et al.’s686

generalization of DeepLIFT [48] scores, described in [2].687

By computing gradients with respect to ptarget (rather than ptotal), we explicitly remove contributions of the sequence688

towards experimental bias and thus focus solely nucleotides that contribute towards the protein-specific crosslinking689

signal. In general, attribution scores of the total, target and control tracks may be disentangled via690
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Ftotal = Ftarget + Fcontrol = [π ×
∑
i

cip
target
i ] + [(1− π)×

∑
i

cip
control
i ]. (9)

5.10 Performance Evaluation691

5.10.1 Pearson Correlation Performance692

Given the set of 300nt sequences in the hold-out test set, Pearson correlation coefficients (PCC) between RBPNet693

predictions and the observed crosslink counts, merged between both replicates, were computed. For each eCLIP694

experiment, the final PCC performance metric is obtained by taking the mean PCC across all test-set sequences.695

5.10.2 Comparison with PureCLIP Crosslink Sites696

PureCLIP is a single-nucleotide peak caller that identifies significant crosslink (CL) sites by fitting a Hidden Markov697

Model over the CLIP count signal. To further validate profile predictions made by RBPNet, we investigated whether698

scores at positions within PureCLIP CL sites are significantly higher than scores outside of CL sites. To this end, we699

performed PureCLIP CL site ’peak’ calling on all ENCODE eCLIP and miCLIP experiments using default parameters.700

As suggested by Krakau et al. [31], replicate BAM files were merged to enable the use of signal information across all701

replicates during peak calling. For ENCODE eCLIP and the mESC miCLIP experiment, PureCLIP was additionally702

provided BAM files of the control experiment to refine the set of CL sites based on significant enrichment over the703

control. This was omitted for the HEK miCLIP experiment, as no paired control experiment was available.704

For each dataset, transcripts on the hold-out chromosomes (5.4) were intersected with PureCLIP CL sites and only705

transcripts harboring at least one CL sites were retained, ensuring that the transcript was expressed in the given706

experiment. Next, whole-transcript predictions were performed with RBPNet, yielding a probability vector of CL707

enrichment summing up to 1 for each retained transcripts. To measure how well RBPNet predictions discriminate708

between CL and non-CL sites, the area under the ROC curve (auROC) and the average precision (AP) scores were709

computed for each transcript. The auROC score may be a more adequate measure of the discriminative power of710

RBPNet than AP, as the baseline of the AP score is subject to the imbalance of CL and non-CL sites, which are different711

for each transcript. Further, the auROC is closely related to the Wilcoxon statistic and represents probability of ranking712

a randomly chosen CL sites above a randomly chosen non-CL site within each transcript, thus directly measuring713

the discriminative power of the model. Note that within-transcript evaluation is necessary because the position-wise714

RBPNet scores are subject to transcript length as well as the propensity of RBP binding within the transcript. The715

finally scalar performance metric for each experiment is then obtained by taking the mean auROC and AP scores across716

all transcripts.717

We additionally evaluated RBPNet against DeepRiPe, a state-of-the-art deep learning model for prediction of protein-718

RNA interaction, on ENCODE eCLIP datasets. To this end, trained DeepRiPe models for 70 ENCODE HepG2 cell719

line were obtained from Ghanbari et al. [14]. As DeepRiPe is a classification-based model, the predicted binding720

probability score is assigned to an entire input regions. To make RBPNet and DeepRiPe comparable on the task of721

separate PureCLIP CL sites from non-CL sites, we obtained pseudo single-nucleotide resolution scores for DeepRiPe722

by applying same padding to the transcript sequence, before shifting a sliding window of 150nt (DeepRiPe input size)723

across the sequence and assigning the prediction score to the center position of the current window.724

5.11 Motif Discovery and Evaluation725

5.11.1 RBPmap Motif Evaluation726

To quantitatively evaluate the ability of RBPNet to recover known RBP binding motifs in its sequence attribution maps,727

we compare high-attribution sub-sequences with known binding motifs in the form of position-weight matrices (PWMs)728

reported in literature. To this end, we first gathered the PWMs of 29 RBPs with both ENCODE eCLIP experiments and729

reported literature motifs from the RBPmap database [43]. Next, for each eCLIP experiment, the top 5000 ENCODE730

narrow peaks were selected and profile predictions were performed on a 300nt window around the 5’ end of the peak,731

as this positions has previously been reported to harbor the CL site [8]. After computing attribution maps with respect to732

the RBPNet total, target and control tracks, the 5-mer with highest sum of attribution (IGsum) was extracted for each733

sequence and track. The similarity of each 5-mer to the reference PWM(s) of the RBP was then computed as the mean734

of the position-wise Jensen–Shannon divergence (JSD) to base 2, a symmetric version of the KL divergence within the735

bounds [0, 1], where 1 indicates perfect similarity. To account for cases where 5-mers represent truncated motifs or736

match the reference PWM at a different position offset (i.e. shifted up-or down-stream), we slide each 5-mer over its737

reference PWM, with a required overlap fraction of 3nt. At each shift, the JSD is computed and the final similarity of738
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the 5-mer and the PWM is taken as the maximum similarity over all shift. In cases in which more than one motif PWM739

is reported for a given RBP in the RBPmap database, similarity computation is performed with respect to all PWMs and740

the final similarity score is taken as the maximum similarity between the 5-mer and all PWMs of that RBP.741

5.11.2 In Vitro Motif Evaluation742

In vitro data on protein-RNA interaction was obtained in the form of k-mer z-scores for RNA-Bind-n-Seq (RBNS)743

and RNAcompete experiments from Dominquez et al. [8] and Ray et al. [46], respectively. For RBNS, 5mer744

enrichment scores (R scores) for 78 RBPs were obtained from the ENCODE resource, using accession numbers listed745

in [8]. For each RBP, the R scores for the concentration with the highest enrichment were converted to z-scores,746

by calculating their mean and standard deviation. RNAcompete 7-mer z-scores for 80 RBPs were obtained from747

Ray et al. [46]. In cases where both RNA-Bind-N-Seq and RNAcompete were available for a particular protein, we748

prioritized RBNS for downstream analysis, as RBNS z-scores were readily available for 5-mers, whereas RNAcompete749

required transformation from 7-mer to 5-mer scores. The conversion of 7-mer scores to 5-mer scores was performed by750

calculating the mean score across all 7-mers that contain a given 5-mer. 7-mers which contain a particular 5-mer more751

than once were considered as many times as the number of occurrences of the contained 5-mer. For illustration, when752

calculating the arithmetic mean of z-scores for a 5-mer ‘UUUUU’, the 7-mer ‘UUUUUUG’ would be considered twice753

(‘[UUUUU]UG’, ‘U[UUUUU]G’). In vitro 5-mers of each RBP were then sorted in a descending order based on their754

enrichment scores and ranked from most (ranked 1st) to least enriched (ranked last).755

For evaluation of RBPNet with in vitro 5-mers, 5-mers with highest IGsum were extracted from RBPNet attribution756

maps of the top 5, 000 ENCODE narrow peaks for each track, as described in 5.11.1. Further, DeepRiPe ENCODE757

models were obtained from [14] and unique 5-mer counts were obtained in a similar manner by first computing IG758

attribution maps on a 150nt input window around ENCODE narrow peaks and subsequently selecting 5-mers of759

highest IGsum for each narrow peak sequence (Methods 5.11.1). For each unique RBPNet and DeepRiPe 5-mer, a760

relevance score was then computed by taking the sum of IGsum scores. RBPNet and DeepRiPe 5-mers were then761

sorted decreasingly with respect to their relevance score. Lastly, we obtained 5-mer enrichment scores calculated with762

PEKA7 (v0.1.6), a motif discovery tool, for all ENCODE eCLIP datasets from [32] (Reference Additional File 5). We763

used PEKA-scores that were produced with Clippy peaks [56] to rank the k-mers from most to least enriched. As764

DeepRiPe models were only available for 70 out of 103 ENCODE HepG2 RBPs, and only 27 of those had orthogonal765

in vitro data available, the evaluation of recall was therefore restricted to those proteins. Out of 27 eCLIP datasets, 16766

were compared to RBNS and 11 were compared to RNAcompete for recall analysis. Finally, an in vitro recall score767

was computed for each RBP and method by taking the proportion of top 20 5-mers from the corresponding RBNS768

or RNAcompete dataset that were recovered among the top 20 5-mers in eCLIP, as ranked by the RBPNet tracks,769

DeepRipe and PEKA.770

5.11.3 Consensus Motif Construction771

Representative consensus motifs for each eCLIP library were constructed as follows. Given the set of k-mers obtained772

in Section 5.11.1, k-mers were first sorted by their IGsum score in descending order. Iterating from the top of the list,773

the first k-mer is used to seed an initial motif alignment, with consecutive k-mers being aligned (without gaps) to the774

seed k-mer by sliding the given k-mer over the seed alignment and requiring a minimum overlap of 3nt. If no alignment775

with at least 3 matches is found, the k-mer is considered non-alignable and is instead used to seed a new motif alignment.776

Consecutive k-mers are aligned to seed alignments in the order of their creation and, if no sufficient alignment is found,777

are used to seed further motifs alignments on-the-fly. Subsequently, consensus motifs are constructed for each alignment778

by computing the position-wise nucleotide frequencies within alignments. Consensus motifs can then be prioritized779

based on the number of supporting k-mers in the underlying alignment. The motif finding procedure was implemented780

as part of the following Git repository: https://github.com/mhorlacher/metamotif781

5.12 Variant Impact Scoring782

The predicted distribution of counts by RBPNet is solely driven by the input RNA sequence and thus one expects that783

single-nucleotide variants (SNVs) that fall within crucial sequence feature, such as binding motifs, will have a profound784

impact on the predicted signal footprint. Therefore, to approximate the impact of a SNV on RBP binding, we quantify785

the change of the distribution of counts of the alternative allele compared to the reference. To this end, we define the786

change of count distribution with respect to a given SNV as the KL divergence of the prediction on the SNV-associated787

allele from the prediction on the reference allele. The variant impact score KLDSNV is thus defined as788

7https://github.com/ulelab/peka
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KLDSNV = KLD(pREF , pALT ) . (10)

5.12.1 Variant impact scoring of splicing mutations789

40 out of 103 RBPs with trained RBPNet-eCLIP models were manually annotated as related to splicing, following790

the annotations from Nostrand et al. [55] and the HGNC spliceosomal complex groups from the HGNC database791

[52]. Of these, 21 were further annotated as directly involved in the spliceosome. Next, a set of 260 experimentally792

validated splicing-related mutations was obtained from MutSpliceDB [40]. After excluding mutations with a distance793

of more than 10nt from splicing junctions (defined as the first two and last two positions from intronic regions in human794

coding genes of GENCODE V40 [10]), a set of 232 mutations was retained. For negative controls, we retrieved 6, 087795

mutations from gnomAD v2.1.1 ([24]) located within 100nt up-or down-stream of the retained splicing mutations.796

Control mutations which intersected with the set of splicing-associated mutations were filtered out. Subsequently,797

RBPNet impact scoring (5.12) was performed on all mutations. For each RBP, a one-sided Wilcoxon ranked sum test798

was performed to evaluate the enrichment of high-impact splicing-associated mutations over control mutations. P-values799

were corrected for multiple testing via Benjamini-Hochberg correction, and significance was tested for α = 0.05. The800

same procedure was applied for 30 of the 70 DeepRiPe models found in common with the 40 RBPNet models, taking801

the models trained from ENCODE HepG2 using both sequence and genomic annotations. Here, the impact score was802

calculated as the absolute difference in prediction score for a given RBP between the alternative and the reference allele.803

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.16.508290doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.16.508290


TOWARDS IN-SILICO CLIP-SEQ: PREDICTING PROTEIN-RNA INTERACTION VIA SEQUENCE-TO-SIGNAL
LEARNING

6 Declarations804

Ethics approval and consent to participate805

Not applicable.806

Consent for publication807

Not applicable.808

Availability of data and materials809

Code for RBPNet training, evaluation, feature importance analysis and variant impact scoring is available at https:810

//github.com/mhorlacher/rbpnet. Code for consensus motif construction is available at https://github.com/811

mhorlacher/metamotif. Code in both repositories is available under the MIT license.812

All data processed in this study was obtained exclusively from public sources. CLIP-seq data was obtained from813

ENCODE [53] (eCLIP), Kortel et al. [30] (miCLIP) and Hallegger et al. [18] and Haberman et al. [15] (iCLIP).814

In vitro data on protein-RNA interaction was obtained from Dominquez et al. [8] (RNA-Bind-n-Seq) and Ray et al.815

[46] (RNAcompete). Splicing-related mutations were obtained from MutSpliceDB [40], while further mutations were816

obtained from gnomAD [24]. Information on allele-specific binding events was taken from Yang et al. [58].817

Competing interests818

The authors declare no competing interests.819

Funding820

This work was supported by the Helmholtz Association under the joint research school "Munich School for Data Science821

(MUDS)" to M.H., N.W., J.G. and A.M., the Deutsche Forschungsgemeinschaft (SFB/TR501 84 TP C01) to A.M. and822

L.M. and (SFB/Transregio TRR267) to J.G.; O.W.’s work was funded in part by the Novo Nordisk Foundation through823

the Center for Basic Machine Learning Research in Life Science (NNF20OC0062606). O.W. further acknowledges824

support from the Pioneer Centre for AI, DNRF grant number P1; K.K.’s and J.U.’s work was funded by the European825

Union’s Horizon 2020 research and innovation programme (835300-RNPdynamics). K.K. and J.U. further acknowledge826

support from The Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001110), the827

UK Medical Research Council (FC001110), and the Wellcome Trust (FC001110).828

Authors’ contributions829

M.H. and A.M. conceived the project. M.H. collected and processed the datasets, conceptualized and implemented the830

RBPNet model with help from O.W.; N.W. and L.M. performed analysis of allele-specific binding events and splice-site831

mutations, respectively, with help from M.H.; K.K. performed binding motif recall analysis on in vitro binding data.832

N.G. helped processing datasets and training RBPNet models. O.W. and A.M. supervised and guided the project, with833

inputs from M.S., J.U. and J.G.; M.H. wrote the manuscript with help from K.K., N.W., A.M. and L.M. and inputs from834

O.W., J.G. and J.U.; All authors reviewed and approved the final manuscript.835

Acknowledgements836

Not applicable.837

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.16.508290doi: bioRxiv preprint 

https://github.com/mhorlacher/rbpnet
https://github.com/mhorlacher/rbpnet
https://github.com/mhorlacher/rbpnet
https://github.com/mhorlacher/metamotif
https://github.com/mhorlacher/metamotif
https://github.com/mhorlacher/metamotif
https://doi.org/10.1101/2022.09.16.508290


TOWARDS IN-SILICO CLIP-SEQ: PREDICTING PROTEIN-RNA INTERACTION VIA SEQUENCE-TO-SIGNAL
LEARNING

References838

[1] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence specificities of dna-and839

rna-binding proteins by deep learning. Nature biotechnology, 33(8):831–838, 2015.840

[2] Ž. Avsec, M. Weilert, A. Shrikumar, S. Krueger, A. Alexandari, K. Dalal, R. Fropf, C. McAnany, J. Gagneur,841

A. Kundaje, et al. Base-resolution models of transcription-factor binding reveal soft motif syntax. Nature Genetics,842

53(3):354–366, 2021.843

[3] T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li, and W. S. Noble. Meme844

suite: tools for motif discovery and searching. Nucleic acids research, 37(suppl_2):W202–W208, 2009.845

[4] S. Bergstrand, E. M. O’Brien, C. Coucoravas, D. Hrossova, D. Peirasmaki, S. Schmidli, S. Dhanjal, C. Pederiva,846

L. Siggens, O. Mortusewicz, et al. Small cajal body-associated rna 2 (scarna2) regulates dna repair pathway847

choice by inhibiting dna-pk. Nature communications, 13(1):1–18, 2022.848

[5] S. Budach and A. Marsico. Pysster: classification of biological sequences by learning sequence and structure849

motifs with convolutional neural networks. Bioinformatics, 34(17):3035–3037, 2018.850

[6] X. Chen, Y. Liu, C. Xu, L. Ba, Z. Liu, X. Li, J. Huang, E. Simpson, H. Gao, D. Cao, et al. Qki is a critical pre-mrna851

alternative splicing regulator of cardiac myofibrillogenesis and contractile function. Nature communications,852

12(1):1–18, 2021.853

[7] L. De Conti, M. Baralle, and E. Buratti. Neurodegeneration and rna-binding proteins. Wiley Interdisciplinary854

Reviews: RNA, 8(2):e1394, 2017.855

[8] D. Dominguez, P. Freese, M. S. Alexis, A. Su, M. Hochman, T. Palden, C. Bazile, N. J. Lambert, E. L. Van Nos-856

trand, G. A. Pratt, et al. Sequence, structure, and context preferences of human rna binding proteins. Molecular857

cell, 70(5):854–867, 2018.858

[9] R. A. Flynn, J. A. Belk, Y. Qi, Y. Yasumoto, J. Wei, M. M. Alfajaro, Q. Shi, M. R. Mumbach, A. Limaye,859

P. C. DeWeirdt, et al. Discovery and functional interrogation of sars-cov-2 rna-host protein interactions. Cell,860

184(9):2394–2411, 2021.861

[10] A. Frankish, M. Diekhans, I. Jungreis, J. Lagarde, J. E. Loveland, J. M. Mudge, C. Sisu, J. C. Wright, J. Armstrong,862

I. Barnes, et al. Gencode 2021. Nucleic acids research, 49(D1):D916–D923, 2021.863

[11] A. M. Fredericks, K. J. Cygan, B. A. Brown, and W. G. Fairbrother. RNA-Binding Proteins: Splicing Factors and864

Disease. Biomolecules, 5(2):893–909, May 2015.865

[12] M. Garcia-Moreno, A. I. Järvelin, and A. Castello. Unconventional rna-binding proteins step into the virus–host866

battlefront. Wiley Interdisciplinary Reviews: RNA, 9(6):e1498, 2018.867

[13] F. Gebauer, T. Schwarzl, J. Valcárcel, and M. W. Hentze. Rna-binding proteins in human genetic disease. Nature868

Reviews Genetics, 22(3):185–198, 2021.869

[14] M. Ghanbari and U. Ohler. Deep neural networks for interpreting rna-binding protein target preferences. Genome870

research, 30(2):214–226, 2020.871

[15] N. Haberman, I. Huppertz, J. Attig, J. König, Z. Wang, C. Hauer, M. W. Hentze, A. E. Kulozik, H. Le Hir, T. Curk,872

et al. Insights into the design and interpretation of iclip experiments. Genome biology, 18(1):1–21, 2017.873

[16] M. Hafner, M. Katsantoni, T. Köster, J. Marks, J. Mukherjee, D. Staiger, J. Ule, and M. Zavolan. Clip and874

complementary methods. Nature Reviews Methods Primers, 1(1):1–23, 2021.875

[17] M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser, P. Berninger, A. Rothballer, M. Ascano Jr, A.-C.876

Jungkamp, M. Munschauer, et al. Transcriptome-wide identification of rna-binding protein and microrna target877

sites by par-clip. Cell, 141(1):129–141, 2010.878

[18] M. Hallegger, A. M. Chakrabarti, F. C. Lee, B. L. Lee, A. G. Amalietti, H. M. Odeh, K. E. Copley, J. D. Rubien,879

B. Portz, K. Kuret, et al. Tdp-43 condensation properties specify its rna-binding and regulatory repertoire. Cell,880

184(18):4680–4696, 2021.881

[19] D. Heller, R. Krestel, U. Ohler, M. Vingron, and A. Marsico. sshmm: extracting intuitive sequence-structure882

motifs from high-throughput rna-binding protein data. Nucleic acids research, 2017.883

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.16.508290doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.16.508290


TOWARDS IN-SILICO CLIP-SEQ: PREDICTING PROTEIN-RNA INTERACTION VIA SEQUENCE-TO-SIGNAL
LEARNING

[20] M. W. Hentze, A. Castello, T. Schwarzl, and T. Preiss. A brave new world of rna-binding proteins. Nature reviews884

Molecular cell biology, 19(5):327–341, 2018.885

[21] M. Horlacher, S. Oleshko, Y. Hu, M. Ghanbari, E. E. Vergara, N. Mueller, U. Ohler, L. Moyon, and A. Marsico.886

Computational mapping of the human-sars-cov-2 protein-rna interactome. bioRxiv, 2021.887

[22] I. Huppertz, J. Attig, A. D’Ambrogio, L. E. Easton, C. R. Sibley, Y. Sugimoto, M. Tajnik, J. König, and J. Ule.888

iclip: protein–rna interactions at nucleotide resolution. Methods, 65(3):274–287, 2014.889

[23] K. Izumikawa, Y. Nobe, H. Ishikawa, Y. Yamauchi, M. Taoka, K. Sato, H. Nakayama, R. J. Simpson, T. Isobe,890

and N. Takahashi. Tdp-43 regulates site-specific 2-o-methylation of u1 and u2 snrnas via controlling the cajal891

body localization of a subset of c/d scarnas. Nucleic acids research, 47(5):2487–2505, 2019.892

[24] K. J. Karczewski, L. C. Francioli, G. Tiao, B. B. Cummings, J. Alföldi, Q. Wang, R. L. Collins, K. M. Laricchia,893

A. Ganna, D. P. Birnbaum, et al. The mutational constraint spectrum quantified from variation in 141,456 humans.894

Nature, 581(7809):434–443, 2020.895

[25] H. Kazan, D. Ray, E. T. Chan, T. R. Hughes, and Q. Morris. Rnacontext: a new method for learning the sequence896

and structure binding preferences of rna-binding proteins. PLoS computational biology, 6(7):e1000832, 2010.897

[26] S. Ke, A. Pandya-Jones, Y. Saito, J. J. Fak, C. B. Vågbø, S. Geula, J. H. Hanna, D. L. Black, J. E. Darnell, and898

R. B. Darnell. m6a mrna modifications are deposited in nascent pre-mrna and are not required for splicing but do899

specify cytoplasmic turnover. Genes & development, 31(10):990–1006, 2017.900

[27] D. R. Kelley, Y. A. Reshef, M. Bileschi, D. Belanger, C. Y. McLean, and J. Snoek. Sequential regulatory activity901

prediction across chromosomes with convolutional neural networks. Genome research, 28(5):739–750, 2018.902

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.903

[29] J. König, K. Zarnack, G. Rot, T. Curk, M. Kayikci, B. Zupan, D. J. Turner, N. M. Luscombe, and J. Ule. iclip904

reveals the function of hnrnp particles in splicing at individual nucleotide resolution. Nature structural & molecular905

biology, 17(7):909–915, 2010.906

[30] N. Körtel, C. Rücklé, Y. Zhou, A. Busch, P. Hoch-Kraft, F. R. Sutandy, J. Haase, M. Pradhan, M. Musheev,907

D. Ostareck, et al. Deep and accurate detection of m6a rna modifications using miclip2 and m6aboost machine908

learning. Nucleic acids research, 49(16):e92–e92, 2021.909

[31] S. Krakau, H. Richard, and A. Marsico. Pureclip: capturing target-specific protein–rna interaction footprints from910

single-nucleotide clip-seq data. Genome biology, 18(1):1–17, 2017.911

[32] K. Kuret, A. G. Amalietti, D. M. Jones, C. Capitanchik, and J. Ule. Positional motif analysis reveals the extent of912

specificity of protein-rna interactions observed by clip. Genome Biology, 23(1):1–34, 2022.913

[33] A. Labeau, L. Fery-Simonian, A. Lefevre-Utile, M. Pourcelot, L. Bonnet-Madin, V. Soumelis, V. Lotteau, P.-914

O. Vidalain, A. Amara, and L. Meertens. Characterization and functional interrogation of the sars-cov-2 rna915

interactome. Cell reports, 39(4):110744, 2022.916

[34] N. Lambert, A. Robertson, M. Jangi, S. McGeary, P. A. Sharp, and C. B. Burge. Rna bind-n-seq: quantitative917

assessment of the sequence and structural binding specificity of rna binding proteins. Molecular cell, 54(5):887–918

900, 2014.919

[35] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin. The920

sequence alignment/map format and samtools. Bioinformatics, 25(16):2078–2079, 2009.921

[36] B. Linder, A. V. Grozhik, A. O. Olarerin-George, C. Meydan, C. E. Mason, and S. R. Jaffrey. Single-nucleotide-922

resolution mapping of m6a and m6am throughout the transcriptome. Nature methods, 12(8):767–772, 2015.923

[37] D. Maticzka, S. J. Lange, F. Costa, and R. Backofen. Graphprot: modeling binding preferences of rna-binding924

proteins. Genome biology, 15(1):1–18, 2014.925

[38] K. D. Meyer. Dart-seq: an antibody-free method for global m6a detection. Nature methods, 16(12):1275–1280,926

2019.927

[39] J. M. Molleston and S. Cherry. Attacked from all sides: Rna decay in antiviral defense. Viruses, 9(1):2, 2017.928

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.16.508290doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.16.508290


TOWARDS IN-SILICO CLIP-SEQ: PREDICTING PROTEIN-RNA INTERACTION VIA SEQUENCE-TO-SIGNAL
LEARNING

[40] A. Palmisano, S. Vural, Y. Zhao, and D. Sonkin. MutSpliceDB: A database of splice sites variants929

with RNA-seq based evidence on effects on splicing. Human Mutation, 42(4):342–345, 2021. _eprint:930

https://onlinelibrary.wiley.com/doi/pdf/10.1002/humu.24185.931

[41] X. Pan, P. Rijnbeek, J. Yan, and H.-B. Shen. Prediction of rna-protein sequence and structure binding preferences932

using deep convolutional and recurrent neural networks. BMC genomics, 19(1):1–11, 2018.933

[42] C. Y. Park, J. Zhou, A. K. Wong, K. M. Chen, C. L. Theesfeld, R. B. Darnell, and O. G. Troyanskaya. Genome-934

wide landscape of rna-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk.935

Nature genetics, 53(2):166–173, 2021.936

[43] I. Paz, I. Kosti, M. Ares Jr, M. Cline, and Y. Mandel-Gutfreund. Rbpmap: a web server for mapping binding sites937

of rna-binding proteins. Nucleic acids research, 42(W1):W361–W367, 2014.938

[44] A. R. Quinlan and I. M. Hall. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics,939

26(6):841–842, 2010.940

[45] D. Ray, H. Kazan, E. T. Chan, L. P. Castillo, S. Chaudhry, S. Talukder, B. J. Blencowe, Q. Morris, and T. R.941

Hughes. Rapid and systematic analysis of the rna recognition specificities of rna-binding proteins. Nature942

biotechnology, 27(7):667–670, 2009.943

[46] D. Ray, H. Kazan, K. B. Cook, M. T. Weirauch, H. S. Najafabadi, X. Li, S. Gueroussov, M. Albu, H. Zheng,944

A. Yang, et al. A compendium of rna-binding motifs for decoding gene regulation. Nature, 499(7457):172–177,945

2013.946

[47] N. Schmidt, C. A. Lareau, H. Keshishian, S. Ganskih, C. Schneider, T. Hennig, R. Melanson, S. Werner, Y. Wei,947

M. Zimmer, et al. The sars-cov-2 rna–protein interactome in infected human cells. Nature microbiology,948

6(3):339–353, 2021.949

[48] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through propagating activation950

differences. In International conference on machine learning, pages 3145–3153. PMLR, 2017.951

[49] Y. Sugimoto, J. König, S. Hussain, B. Zupan, T. Curk, M. Frye, and J. Ule. Analysis of clip and iclip methods for952

nucleotide-resolution studies of protein-rna interactions. Genome biology, 13(8):1–13, 2012.953

[50] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International Conference on954

Machine Learning, pages 3319–3328. PMLR, 2017.955

[51] S. Toneyan, Z. Tang, and P. K. Koo. Evaluating deep learning for predicting epigenomic profiles. BioRxiv, 2022.956

[52] S. Tweedie, B. Braschi, K. Gray, T. E. M. Jones, R. Seal, B. Yates, and E. A. Bruford. Genenames.org: the HGNC957

and VGNC resources in 2021. Nucleic Acids Research, 49(D1):D939–D946, Jan. 2021.958

[53] E. L. Van Nostrand, P. Freese, G. A. Pratt, X. Wang, X. Wei, R. Xiao, S. M. Blue, J.-Y. Chen, N. A. Cody,959

D. Dominguez, et al. A large-scale binding and functional map of human rna-binding proteins. Nature,960

583(7818):711–719, 2020.961

[54] E. L. Van Nostrand, G. A. Pratt, A. A. Shishkin, C. Gelboin-Burkhart, M. Y. Fang, B. Sundararaman, S. M. Blue,962

T. B. Nguyen, C. Surka, K. Elkins, et al. Robust transcriptome-wide discovery of rna-binding protein binding sites963

with enhanced clip (eclip). Nature methods, 13(6):508–514, 2016.964

[55] E. L. Van Nostrand, G. A. Pratt, B. A. Yee, E. C. Wheeler, S. M. Blue, J. Mueller, S. S. Park, K. E. Garcia,965

C. Gelboin-Burkhart, T. B. Nguyen, I. Rabano, R. Stanton, B. Sundararaman, R. Wang, X.-D. Fu, B. R. Graveley,966

and G. W. Yeo. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding967

proteins. Genome Biology, 21(1):90, Apr. 2020.968

[56] R. A. Varier, T. Sideri, C. Capitanchik, Z. Manova, E. Calvani, A. Rossi, R. Edupuganti, I. Ensinck, V. W. Chan,969

H. Patel, et al. m6a reader pho92 is recruited co-transcriptionally and couples translation efficacy to mrna decay to970

promote meiotic fitness in yeast. bioRxiv, 2022.971

[57] Z. Yan, W. L. Hamilton, and M. Blanchette. Graph neural representational learning of rna secondary structures for972

predicting rna-protein interactions. Bioinformatics, 36(Supplement_1):i276–i284, 2020.973

[58] E.-W. Yang, J. H. Bahn, E. Y.-H. Hsiao, B. X. Tan, Y. Sun, T. Fu, B. Zhou, E. L. Van Nostrand, G. A. Pratt,974

P. Freese, et al. Allele-specific binding of rna-binding proteins reveals functional genetic variants in the rna.975

Nature communications, 10(1):1–15, 2019.976

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.16.508290doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.16.508290


TOWARDS IN-SILICO CLIP-SEQ: PREDICTING PROTEIN-RNA INTERACTION VIA SEQUENCE-TO-SIGNAL
LEARNING

Figures977

eCLIP: 
 103 RBPs

Sequence input

.

.

.

A
T
G
A
G
C

T

RBPNet

Total

Target
Control

Extract 
motifs

DisentangleSequence

AAA AAA

Train RBPNet (for each RBP)

Application

C
o
n
tr

o
l

S
ig

n
a
l

True shape

Predicted

C
o
n
tr

o
l

S
ig

n
a
l

(a)

.  .  . 

Dilated
Convolution

Batch
Normalization

ReLU
Activation DropoutConvolution

A
U
G
A
G
C
A
G
C

Output HeadResidual BlocksInput

(b)

0

2

4

6

C
o
u
n
ts

chr8:123325765-123325966:(-)

0 25 50 75 100 125 150 175 200
Position

True Signal [eCLIP]

True Signal [SMInput]

Pred. Signal [eCLIP]

Pred. Signal [SMInput]

Pred. Signal [Target]

(c)

Figure 1: RBPNet overview. A Schematic outline of data preparation, RBPNet training and downstream applications. B
RBPNet model architecture. The one-hot encoded RNA input sequence is first passed through a 1D convolutional layer,
followed by several residual blocks, each consisting of a dilated convolution, batch normalization, ReLU and dropout,
respectively. Probability vectors of the target and control tracks are predicted from the output of the last residual block
via a transposed convolutional layer while the total track is given by an additive mixture of target and control tracks.
Given the predictions, a loss is computed by taking the sum of the negative log-likelihoods of the observed total and
control counts. C Example prediction of an RBPNet model trained on eCLIP data of QKI showing observed counts
(top) and predicted count distributions for the total (blue), control (red) and target (green) tracks. Integrated gradients
feature attribution maps with respect to each predict track are shown below.
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Figure 2: RBPNet prediction performance on ENCODE eCLIP datasets. A RBPNet predictions (total track) on the
highest-count hold-out samples for TIA1, QKI and U2AF2. B Pearson correlation coefficient (PCC) of RBPNet
predictions (total track) with observed eCLIP crosslink counts on hold-out samples vs. PCC of observed counts between
the two eCLIP replicates. C, D Mean auROC and AP of RBPNet (target track) and DeepRiPe predictions with respect
to crosslink and non-crosslink positions called by PureCLIP across transcripts from hold-out chromosomes, respectively.
As pre-trained DeepRiPe models are available only for 70 (out of 103) ENCODE HepG2 RBPs, performance comparison
is shown only for those RBPs. E Distribution of RBPNet mixing coefficients of the top and bottom decile ENCODE
narrow peaks, sorted by eCLIP signal fold-change over the SMInput. High-affinity ENCODE narrow peaks show
on average higher mixing coefficients compared to low-affinity peaks. F, G Example RBPNet (target track) whole-
transcript predictions on ENSG00000173207.12 and ENSG00000137955.15, together with observed eCLIP counts and
called PureCLIP peaks, for QKI and HNRNPC, respectively.
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Figure 3: Evaluation of RBPNet on iCLIP and miCLIP data. As in contrast to mESC, no control signal is used for
m6a peak calling on HEK data, we consequently used RBPNet target and total track predictions for auROC and
AP computation for mESC and HEK, respectively. A RBPNet PCC performance on hold-out samples of miCLIP
experiments in HEK293 and mESC cell lines. B, C ROC performance of RBPNet whole-transcript predictions with
respect to crosslink and non-crosslink positions called by PureCLIP for HEK293 and mESC cell lines, respectively. D
AP performance on HEK293 and mESC in across transcripts for different PureCLIP crosslink site frequency quartiles.
E, F Example RBPNet-HEK293 miCLIP predictions on ENSG00000142937.11 and ENSG00000161016.15. Notably,
both predicted signal shape and observed miCLIP signal occurs predominantly in CDS and UTR regions. G Test set
PCC performance on iCLIP experiments for PTBP1 and TDP43. H Predicted RBPNet signal shape for SCARNA2
(ENSG00000278249.1).
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Figure 4: RBPNet feature attribution maps and binding motif discovery. A Example integrated gradient attribution
maps with respect to the target track for RBFOX2, HNRNPK, TIA1 and QKI with corresponding motifs taken from
the RBPmap database. B Distributions of similarity scores between 5-mers extracted from RBPNet attribution maps
and PWMs of motifs reported in RBPmap for control, target and total. C Average RBPmap PWM similarity across
RBPs for 5-mers extracted from target and total track attributions. While similarities of the target track on par or
higher compared to the total track for the vast majority of RBPs, the improvement is more pronounced for some RBPs.
D Recall of the top 20 in vitro 5-mers recovered by the top 20 5-mers extracted from attribution maps of RBPNet
control, target and total tracks as well as DeepRiPe and the PEKA motif finder. RBPNet target track and PEKA show
comparable performance, outperforming DeepRiPe and the RBPNet total track. E Consensus motifs constructed from
extracted 5-mers of the RBPNet target track. Consensus motifs with highest (primary) and second highest (secondary)
k-mer support are shown. The corresponding k-mer support is shown as a fraction of the total number of extracted
5-mers next to the consensus motif logos.
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Figure 5: RBPNet variant impact prediction. A Impact of the rs6981405 variant on the predicted RBPNet target signal.
Reference (blue) and alternative (red) signal is shown in a 200nt window around the variant position. The corresponding
feature importance maps for reference and alternative sequence are shown below. A C-to-A transversion at the 5’
end of the QKI binding motif leads to a drastic change of the predicted signal compared to the reference signal. B
Comparison of impact scores of a systematic in silico mutagenesis of each position towards each of the 3 alternative
bases within in a 200nt sequence window around rs6981405. Note that mutating a nucleotide within the motif leads
to a significantly higher variant impact score than outside the motif. The red star indicates the score of the observed
rs6981405 variant. For scoring variants we used KL-divergence between the reference and alternative profile. C, D
Example impact predictions of the most significant allele-specific binding (ASB) events identified by [58] for AQR and
RBFOX2. E Variant impact predictions for the QKI model in a region harboring 4 distinct SNVs associated with ASB.
The top plot shows the reference sequence with the corresponding attribution map. The location of the SNVs within the
sequence is highlighted with red bars. The 4 SNVs are displayed separately, showing a comparison of the predicted
profile with the reference (top) together with the attribution maps of the reference and the alternative allele (bottom).
The location of the variant is highlighted with a dashed grey line in the attribution map of the alternative allele. The
grey boxes represent the margins of the KLD scoring window centered around the variant. RBPNet predicts notable
allele specific effects for only 2 out of the 4 candidate SNVs, which coincide with QKI binding motifs. These SNVs are
associated with a loss of the binding motif in the attribution map and a change in the predicted signal.
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Figure 6: Predicting SARS-CoV-2 binding with RBPNet. The top shows target track predictions using a model trained
on CNBP eCLIP data, together with the normalized observed signal taken from Schmidt et al. [47]. Shown below are
predictions from a RBPNet-QKI model trained on ENCODE eCLIP data, as well as IG attribution maps around the
top-5 positions with highest predicted probability.
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Supplementary Text978

Variance of replicates979

Assume that x and y are repeated measurements with (unknown) mean m and independent noise with variance v. We
have an estimate of the mean m̂. We can calculate the expected squared derivation of the two replicates:

E[(x− y)2] = E[(x−m− (y −m))2] = 2v − 2E[(x−m)(y −m)] = 2v ,

where the cross term disappears because the noise is assumed to be independent on the two replicates.980

We can also calculate the squared difference between the estimate and a replicate:

E[(x− m̂)2] = v + (m− m̂)2.

This results follows from the same type of reasoning as above. From these two results we can see that if our estimator is
equal to the true mean: m̂ = m then:

E[(x− y)2] = 2E[(x− m̂)2].

It follows that as the estimated mean m̂ approaches the true mean, the squared derivation of the two replicates exceeds981

the squared derivation of a replicate and m̂ by v.982
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Supplementary Figures983

Sequence

´
(a)

Supplementary Figure 1: RBPNet forward pass (with bias correction). The feature representation of the input RNA
sequence (parameterized by wbody) is used to compute the count distribution of the target (ptarget) and control (pcontrol)
tracks. The count distribution of the total track is then given by an additive mixture of target and control tracks, as well a
mixing coefficient π ∈ [0, 1]. Given the observed counts of the CLIP and control experiment, losses are computed using
the total and control tracks, respectively. The total loss is then given by the sum of the total and control track losses.
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Supplementary Figure 2: Consensus motifs with highest and second-highest 5-mer support for all 103 ENCODE HepG2
eCLIP experiments.
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Supplementary Figure 3: Scoring of 232 splicing mutations from MutSpliceDB along with 6,087 control mutations
from gnomAD taken in their vicinity, using 40 splicing-related RBPNet models. A Boxplots of RBPNet impact scores
from splicing mutations and local controls per RBP. The 40 RBPs are ordered by their adjusted (Benjamini/Hochberg)
P-values from Wilcoxon Signed Rank tests. Title in bold: RBPs with significant P-values at α = 0.05 (22/40); orange
font color indicates the spliceosomal RBPs. B Impact score distribution for splice mutations (red boxplot) and gnomAD
control mutations (grey boxplots) per absolute, relative-distance bin, with impact scores obtained from RBPNet and
DeepRiPe models for the spliceosomal RBP PRPF8 (being the most significant model from DeepRiPe following the
Wilcoxon Signed Rank tests). C Scatterplot of area under the Receiver Operating Curve (auROC) calculated from
RBPNet models (y) and DeepRiPe models (x). All 30 RBPs annotated as splicing-related in common are depicted, with
spliceosomal RBPs in orange. Four RBPs are specifically highlighted for being the only models showing significant
P-values from the Wilcoxon signed rank tests applied on DeepRiPe models, and their adjusted P-values are reported
(along the ajusted P-values for RBPNet.)
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Supplementary Tables984

Supplementary Table 1: AP and auROC performance of RBPNet (target track) on 103 ENCODE eCLIP experiments
from the HepG2 cell line.

RBP_CELL AP auROC
1 AGGF1_HepG2 0.02 0.83
2 AKAP1_HepG2 0.05 0.88
3 AQR_HepG2 0.15 0.83
4 BCCIP_HepG2 0.08 0.95
5 BCLAF1_HepG2 0.10 0.94
6 BUD13_HepG2 0.09 0.92
7 CDC40_HepG2 0.05 0.87
8 CSTF2_HepG2 0.12 0.93
9 CSTF2T_HepG2 0.07 0.94

10 DDX3X_HepG2 0.09 0.95
11 DDX52_HepG2 0.09 0.87
12 DDX55_HepG2 0.07 0.89
13 DDX59_HepG2 0.05 0.87
14 DDX6_HepG2 0.00 0.89
15 DGCR8_HepG2 0.08 0.82
16 DHX30_HepG2 0.04 0.87
17 DKC1_HepG2 0.11 0.74
18 DROSHA_HepG2 0.04 0.86
19 EFTUD2_HepG2 0.04 0.84
20 EIF3D_HepG2 0.05 0.91
21 EIF3H_HepG2 0.04 0.92
22 EXOSC5_HepG2 0.01 0.64
23 FAM120A_HepG2 0.08 0.94
24 FASTKD2_HepG2 0.06 0.90
25 FKBP4_HepG2 0.17 0.92
26 FTO_HepG2 0.04 0.83
27 FUBP3_HepG2 0.10 0.93
28 FUS_HepG2 0.07 0.90
29 FXR2_HepG2 0.05 0.96
30 G3BP1_HepG2 0.03 0.90
31 GRSF1_HepG2 0.02 0.79
32 GRWD1_HepG2 0.10 0.95
33 GTF2F1_HepG2 0.10 0.90
34 HLTF_HepG2 0.04 0.89
35 HNRNPA1_HepG2 0.11 0.93
36 HNRNPC_HepG2 0.23 0.98
37 HNRNPK_HepG2 0.16 0.98
38 HNRNPL_HepG2 0.16 0.98
39 HNRNPM_HepG2 0.09 0.97
40 HNRNPU_HepG2 0.05 0.90
41 HNRNPUL1_HepG2 0.05 0.83
42 IGF2BP1_HepG2 0.07 0.94
43 IGF2BP3_HepG2 0.04 0.93
44 ILF3_HepG2 0.04 0.91
45 KHSRP_HepG2 0.07 0.89
46 LARP4_HepG2 0.07 0.88
47 LARP7_HepG2 0.20 0.79
48 LIN28B_HepG2 0.04 0.91
49 LSM11_HepG2 0.04 0.87
50 MATR3_HepG2 0.08 0.97
51 NCBP2_HepG2 0.09 0.91
52 NIP7_HepG2 0.09 0.84

RBP_CELL AP auROC
53 NKRF_HepG2 0.05 0.89
54 NOL12_HepG2 0.15 0.81
55 NOLC1_HepG2 0.18 0.76
56 PABPN1_HepG2 0.05 0.89
57 PCBP1_HepG2 0.09 0.87
58 PCBP2_HepG2 0.14 0.97
59 POLR2G_HepG2 0.09 0.97
60 PPIG_HepG2 0.11 0.96
61 PRPF4_HepG2 0.11 0.95
62 PRPF8_HepG2 0.22 0.97
63 PTBP1_HepG2 0.25 0.93
64 QKI_HepG2 0.17 0.96
65 RBFOX2_HepG2 0.11 0.96
66 RBM15_HepG2 0.08 0.91
67 RBM22_HepG2 0.10 0.93
68 RBM5_HepG2 0.07 0.84
69 RPS3_HepG2 0.12 0.95
70 SAFB_HepG2 0.09 0.90
71 SDAD1_HepG2 0.08 0.68
72 SF3A3_HepG2 0.12 0.91
73 SF3B4_HepG2 0.12 0.96
74 SFPQ_HepG2 0.04 0.88
75 SLTM_HepG2 0.05 0.92
76 SMNDC1_HepG2 0.19 0.82
77 SND1_HepG2 0.12 0.96
78 SRSF1_HepG2 0.12 0.97
79 SRSF7_HepG2 0.10 0.93
80 SRSF9_HepG2 0.15 0.94
81 SSB_HepG2 0.01 0.58
82 STAU2_HepG2 0.07 0.91
83 SUB1_HepG2 0.04 0.88
84 SUGP2_HepG2 0.06 0.91
85 SUPV3L1_HepG2 0.09 0.74
86 TAF15_HepG2 0.07 0.89
87 TBRG4_HepG2 0.00 0.70
88 TIA1_HepG2 0.08 0.93
89 TIAL1_HepG2 0.10 0.95
90 TRA2A_HepG2 0.12 0.77
91 TROVE2_HepG2 0.10 0.86
92 U2AF1_HepG2 0.12 0.95
93 U2AF2_HepG2 0.16 0.98
94 UCHL5_HepG2 0.09 0.93
95 UPF1_HepG2 0.04 0.89
96 UTP18_HepG2 0.08 0.74
97 WDR43_HepG2 0.09 0.74
98 XPO5_HepG2 0.01 0.82
99 XRCC6_HepG2 0.04 0.88

100 XRN2_HepG2 0.09 0.92
101 YBX3_HepG2 0.02 0.82
102 ZC3H11A_HepG2 0.06 0.88
103 ZNF800_HepG2 0.09 0.95
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