Increasingly divergent responses to infection in mice suggest B cell evolution is not constrained by germline-encoded specificities

Marcos C. Vieira¹*, Anna-Karin E. Palm², Christopher T. Stamper³,⁴, Micah E. Tepora², Khoa D. Nguyen⁵, Tho D. Pham⁵, Scott D. Boyd⁵, Patrick C. Wilson²,⁶, Sarah Cobey¹*

¹Department of Ecology and Evolution, University of Chicago, Chicago, USA; ²Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, USA; ³Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; ⁴Committee on Immunology, University of Chicago, Chicago, USA; ⁵Department of Pathology, Stanford University School of Medicine, Stanford, USA; ⁶Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York City, USA

Abstract Antibodies result from the competition of B cell lineages evolving under selection for improved antigen recognition, a process known as affinity maturation. High-affinity antibodies to pathogens such as HIV, influenza, and SARS-CoV-2 are frequently reported to arise from B cells whose receptors, the precursors to antibodies, are encoded by particular immunoglobulin alleles. This raises the possibility that the presence of particular germline alleles in the B cell repertoire is a major determinant of the quality of the antibody response. Alternatively, initial differences in germline alleles’ propensities to form high-affinity receptors might be overcome by chance events during affinity maturation. We first show how this can happen in simulations: even when fitness differences between germline alleles lead to similar allele usage across individuals early on, allele usage becomes increasingly dissimilar over time. We next find that mice experimentally infected with influenza virus demonstrate the same pattern of divergence in the weeks following infection. We investigated whether affinity maturation might nonetheless strongly select for particular amino acid motifs across diverse genetic backgrounds, but we found no evidence of convergence to similar CDR3 sequences or amino acid substitutions. These results suggest germline-encoded specificities might enable fast recognition of specific antigens early in the response, but diverse evolutionary routes to high affinity limit the genetic predictability of responses to infection and vaccination in the long term.

Introduction Antibodies owe their diversity and potency to evolution on two timescales. B cell receptors, the precursors of secreted antibodies, are encoded by immunoglobulin genes that have diversified over hundreds of millions of years (Marchalonis et al., 1998; Flajnik, 2002; Das et al., 2008). Within individuals’ lifetimes, these genes recombine to produce B cells with unique receptors (Hozumi
and Tonegawa, 1976; Brack et al., 1978; Jackson et al., 2013). The result is a diverse repertoire of naive (antigen-inexperienced) B cells collectively capable of binding virtually any antigen. Once activated, naive B cells expand into lineages that compete with each other for access to antigen. These lineages can acquire somatic mutations that improve binding, a process known as affinity maturation (Eisen and Siskind, 1964; Jacob et al., 1991; Victora and Nussenzweig, 2012). The sizes of the lineages, the sites they target, and their affinities for those sites shape the antibody repertoire’s breadth and protectiveness.

Throughout this process, affinity for antigen—the biggest component of B cell fitness—is determined by the amino acid sequence of the B cell receptor. B cell fitness thus depends on the identities of the recombined germline immunoglobulin genes that encode the receptor and on subsequent somatic mutations. Affinity maturation can vastly improve binding (Liao et al., 2013; McCarthy et al., 2019), yet high affinity for particular epitopes can be “hardcoded” on individual germline alleles from the start (West et al., 2012; Pappas et al., 2014; Yeung et al., 2016; Sangesland et al., 2019; 2020; Yuan et al., 2020; Voss et al., 2021). For instance, some antibodies bind to epitopes via germline-encoded motifs in loops known as complementarity-determining regions (CDRs). CDRs 1 and 2 are encoded solely by the V (variable) allele, whereas CDR3 spans the junction of the V allele with joining (J) and, in the case of the heavy chain, diversity (D) alleles. Because they do not arise directly from recombination, CDRs 1 and 2 are presumably less affected by epistasis than CDR3 and suggest how some germline V alleles could be reliably selected to respond to particular antigens. A germline-encoded specificity might have arisen as an evolutionary spandrel, a byproduct of immunoglobulin gene diversification in vertebrates, and then been selected (Gould and Lewontin, 1979; Sangesland and Lingwood, 2021; Pennell et al., 2023). For instance, germline alleles with innately high affinity for bacterial antigens might be favored if they protect against commonly encountered pathogens and commensals via broad classes of epitopes shared by these organisms (Yeung et al., 2016; Collins and Jackson, 2018; Sangesland et al., 2020).

How much the development of high antibody titers to an antigen depends on the availability of germline alleles already specific to that antigen, or with greater potential to adapt to that antigen, is unclear (Pennell et al., 2023). More broadly, it is unclear how many evolutionary paths and solutions there are to similar phenotypes, i.e., individuals with high antibody titers. The existence of few paths would appear as consistent selection of the same germline alleles into the response across individuals and selection for specific CDR3 sequences and somatic mutations during affinity maturation. Past studies conflict on how “convergent” antibody responses are. In some cases, only a few germline alleles are represented in the response (e.g., Crews et al., 1981; Cumano and Rajewsky 1985, 1986; Guthmiller et al., 2021, 2022), suggesting that germline-encoded specificities determine the outcome of B cell competition. In other cases, most germline alleles are used (e.g., Di Niro et al. 2015; Kuraoka et al. 2016; Nielsen et al. 2020; Robbiani et al. 2020; Sakharkar et al. 2021), only some of which appear significantly overrepresented, suggesting weaker selection for specific germline alleles and more solutions. Those studies vary not only in the complexity of the antigen and the type of B cell studied but also in the amount of time since the exposure and thus the extent of affinity maturation. Understanding the role of germline genetic variation in the response to an antigen might help explain individual variation in responses to infection and vaccination and inform the feasibility of some vaccination strategies.

Using computational models and experiments, we show that selection for specific germline V gene alleles peaks early in the B cell response to influenza infection and then decreases as mutations accumulate. In simulations, chance mutations and competition in finite populations tend to produce increasingly contingent patterns of allele usage during affinity maturation. Mice infected with influenza show similar patterns. These results suggest that selection for germline-encoded specificities in the long-term evolution of jawed vertebrates might be driven by the fitness benefits of responding rapidly to common pathogens. The lack of consistency in germline allele usage or specific mutations later in the response suggests no pronounced differences in the adaptability of different immunoglobulin genes or naive B cell repertoires to a complex antigen such as influenza.
Germline-encoded advantages

Naive B cells

Heavy chain V allele

Individual 1

Individual 2

Frequency in the response

Frequency in the naive repertoire

Chance events in B cell competition and evolution

Which naive B cells get recruited when

Timing, order and effect of mutations in different lineages

Demographic stochasticity and genetic drift

Figure 1. Schematic of factors controlling germline allele frequencies in the B cell response to a particular antigen. Three heavy-chain V alleles (orange, purple and green) are present at different frequencies in naive B cells. Although they have the same heavy-chain V allele, naive cells of the same color can have different alleles from the other sets in the heavy and light chains (and different insertions and deletions at the alleles’ junctions). Different combinations produce receptors with different affinities for the antigen and different propensities for adaptation during affinity maturation. If these distributions vary between heavy-chain V alleles, alleles more likely to produce receptors with high affinity or high adaptability will tend to increase in frequency relative to the naive repertoire. These deviations are expected to be consistent in individuals sharing similar sets of germline alleles at similar frequencies in the naive repertoire. However, which B cell lineages dominate the response – and what heavy-chain V alleles they happen to use – is also contingent on events that are largely unpredictable, potentially leading to uncorrelated frequency deviations in the response of different individuals.

Results

To quantify how strongly germline-encoded advantages shape the B cell repertoire, we use the ratio of a germline allele’s frequency in the population of activated (responding) B cells to its frequency in the naive repertoire. Within a single individual, this ratio reflects the overall activation and growth of B cell lineages using a particular germline allele relative to lineages using other alleles. If lineages using a particular allele have consistently higher initial affinity (or if they are more likely than others to evolve high affinity via affinity maturation), the experienced-to-naive ratio for that allele should be consistently greater than 1 in different individuals (Figure 1, top). In contrast, if growth rates are poorly predicted by the use of individual germline alleles and depend more strongly on chance events during recombination and subsequent evolution, which germline alleles successful lineages use will often vary between individuals (Figure 1, bottom). Thus, we hypothesize that a strong correlation in experienced-to-naive ratios between individuals indicates that germline-encoded differences shape the outcome of B cell evolution, whereas weak correlations would indicate the dominance of other factors.

We describe these ideas in more detail below and then evaluate them in simulations and experiments.

Why fitness distributions might vary between germline immunoglobulin alleles, and how chance events might trump those differences

Fitness differences between B cells using different germline alleles might arise from differences in initial affinity, in the propensity to adapt during affinity maturation, or both.

Germline-encoded affinity. Since affinity is a property of the entire receptor, not of its individual constituent alleles, naive B cells using a particular germline allele have a distribution of
possible affinities determined by stochastic recombination with other alleles and insertions and deletions at their junctions (the breadth of this distribution reflects the strength of epistasis between germline alleles). Within an individual, different germline alleles will likely have different affinity distributions. Naive B cells using a specific heavy-chain V allele might bind an antigen well across all combinations with other alleles via CDRs 1 and 2 (Figure 1, orange allele), whereas naive B cells using another V allele might bind uniformly poorly (Figure 1, purple allele) or have high affinity only in certain combinations (Figure 1, green allele). The affinity distribution of an allele may vary between individuals, since individuals vary in their germline immunoglobulin diversity and expression (Glanville et al. 2011; Watson et al. 2017; Collins et al. 2020).

Germline-encoded adaptability. The potential for a B cell receptor to evolve higher affinity is also a property of the entire receptor, not of individual alleles. Receptors using different alleles might have different propensities to adapt (Figure 1), for instance, if they tend to have different rates of beneficial and deleterious mutations. Variation in the expected impact of mutations occurs not only from differences in structure that might affect mutational tolerance but also because the enzymes responsible for mutating the B cell receptor target different nucleotide motifs at different rates (Rogozin and Kolchanov, 1992; Rogozin and Diaz, 2004; Yaari et al., 2013; Wei et al., 2015). Given a mutation, the relative probabilities of beneficial and deleterious impacts fundamentally arise from epistasis: mutations are more likely to change affinity or disrupt function in some backgrounds than in others (Boyer et al., 2016; Schulz et al., 2021).

The realized growth rates of B cell lineages might deviate from these germline-encoded expectations due to several sources of stochasticity:

Stochasticity in B cell activation and in the colonization of germinal centers. Because the number of naive B cells is finite and the probabilities of different VDJ recombinations vary by orders of magnitude (Elhanati et al., 2015), rare germline allele combinations with high affinity may be present in the naive repertoires of some individuals but not others. Even if present in most individuals, low-frequency, high-affinity germline-allele combinations might by chance be recruited only in some of them. Additionally, lineages that happen to arrive first in germinal centers might prevent others with higher initial affinity from establishing later, but the strength of “priority effects” in affinity maturing B cells is unclear (Chase 2003; Fukami 2015).

Stochasticity in the timing, order, and effect of mutations. Which lineages ultimately evolve the highest affinity and outcompete others depends on the timing, order, and effect of mutations in each lineage. This concept is part of clonal interference dynamics (Desai and Fisher, 2007). Epistasis can increase the impact of mutation order (Starr and Thornton, 2016).

Demographic stochasticity and genetic drift. Demographic stochasticity and genetic drift might be especially important early in the response when population sizes are small. Some lineages might go extinct purely by chance, and genetic drift might cause new mutations to fix within a lineage even if they are neutral or deleterious. The loss of newly arisen beneficial mutations due to drift is important even in large populations (Haldane 1927).

Computational model shows that chance events can overwhelm initial fitness differences

To evaluate when germline-encoded fitness differences might be overwhelmed by chance events during recombination and affinity maturation, we used a stochastic mathematical model to simulate B cell evolution and competition in germinal centers (Methods: “Model of B cell dynamics”; Table 1). Instead of quantitative predictions based on realistic parameter values, our goal was to investigate the qualitative behavior of different scenarios. The model focuses on the subset of the B
Table 1. Default parameter values used in simulations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline average naive B cell affinity</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>Baseline standard deviation of naive B cell affinity</td>
<td>σ</td>
<td>1</td>
</tr>
<tr>
<td>Expected number of lineages seeding each GC</td>
<td>I_{total}</td>
<td>200</td>
</tr>
<tr>
<td>GC carrying capacity</td>
<td>K</td>
<td>2000</td>
</tr>
<tr>
<td>Duration of GC immigration phase</td>
<td>t_{imm}</td>
<td>6 days</td>
</tr>
<tr>
<td>Maximum rate of cell division</td>
<td>μ_{max}</td>
<td>3 cell$^{-1}$day$^{-1}$</td>
</tr>
<tr>
<td>Death rate</td>
<td>δ</td>
<td>0.2 cell$^{-1}$day$^{-1}$</td>
</tr>
<tr>
<td>Standard deviation of mutation effect size</td>
<td>β</td>
<td>4</td>
</tr>
</tbody>
</table>

A) Germline V alleles are functionally identical

B) Some V alleles encode receptors with higher affinity

Figure 2. Evolution of germline allele frequencies in the B cell response simulated under two different scenarios. A) All germline alleles have identical naive affinity distributions and mutation rates. B) The same 5 alleles have higher expected affinity than the others in all individuals. For each scenario, we simulated 20 individuals with varying numbers of germinal centers. We measured germline allele frequencies across germinal centers in each individual and computed the ratio between these frequencies and the allele frequencies in the naive repertoire. We then computed the correlation in those quantities between all pairs of individuals. Each row corresponds to a different baseline mutation rate (affinity-changing mutations per B cell per division.) Points and vertical bars represent the median and the 1st and 4th quartiles, respectively. Values of parameters shared across scenarios are shown in Table 1. High-affinity alleles have naive affinity distributions with a mean increased by $s = 1.5$ relative to other alleles.

The cell response derived from germinal centers without considering extrafollicular B cell populations that expand outside of germinal centers, although reports of selection and somatic hypermutation in those populations suggest they have similar dynamics (Di Niro et al. 2015; Elsner and Shlomchik 2020). To simulate selection for affinity, B cells are stochastically sampled to immigrate or divide based on their affinity relative to other cells in the naive repertoire (in the case of immigration) or in the germinal center (in the case of division). Dividing B cells then undergo affinity-changing
mutations with some probability. To represent variation in germline-encoded affinity, B cells using
different heavy chain germline V alleles can have different naive affinity distributions. The variation
within each distribution in turn represents the effects of stochasticity in VDJ recombination
and the pairing of heavy and light chains. The model also allows different germline V alleles to
have different mutation rates, representing one aspect of variation in adaptability. We simulated
20 individuals, varying the number of germinal centers per individual and assuming no migration
occurs between germinal centers. We based simulated individuals on mice for which we empiri-
cally estimated the set of heavy chain V alleles and their frequencies in the naive repertoire. These
mice typically had about 75 heavy-chain V alleles (60-70 of which were typically shared between a
pair of mice), and allele frequencies in the naive repertoire were strongly correlated between mice
(Figure 3A-B). To simulate alleles with higher naive affinity or higher mutation rate than the others,
we chose a set of 5 alleles present in all mice with average naive frequency of 2-3%, the typical
median frequency in the naive repertoire.

We first considered the "neutral" case in which all germline alleles have the same naive affinity
distribution and the same mutation rate. In this scenario, individuals have similar allele frequencies
early in the response, as germline alleles are initially recruited in proportion to their frequency in
the naive repertoire. However, similarity between individuals decreases over time due to stochas-
ticity, with the extent of this decline depending on the number of germinal centers per individual
and the somatic hypermutation rate (Figure 2A). The higher the mutation rate, the faster each
germinat center tends to become dominated by a few large lineages with high affinity (Figure S1).
Without differences in initial affinity or adaptability between the germline alleles, the probability
that one of these lineages uses a particular allele is equal to the allele's frequency in the naive
repertoire. The smaller the number of germinal centers, the more the set of "winner alleles" rep-
resented in the dominant lineages tends to vary between individuals, causing allele frequencies to
diverge over time and experienced-to-naive ratios to remain uncorrelated (Figure 2A). In contrast,
increasing the number of germinal centers per individual increasingly allows germline alleles to be
represented in proportion to their frequencies in the naive repertoire, so allele frequencies remain
correlated between individuals throughout the response.

If some germline alleles tend to encode receptors with higher affinity than others, not only allele
frequencies but also their deviations from the naive repertoire are correlated between individuals
early in the response (Figure 2B, Figure S2). As in the neutral scenario, however, chance events
decrease this similarity over time depending on the number of germinal centers and the mutation
rate. Without somatic hypermutation, germinal centers are consistently dominated by B cell lin-
eages using high-affinity alleles (Figure S3), resulting in similar allele frequencies and experienced-
to-naive ratios between individuals throughout the response. As the rate or the effect size of so-
matic hypermutation increases, so does the opportunity for B cell lineages using low-affinity al-
leles to overcome their initial disadvantage and reach high frequencies within germinal centers
(Figure S3). In this scenario, precisely which low-affinity alleles are used by lineages that do so is a
matter of chance, since all B cells are assumed to have the same probability of acquiring beneficial
mutations irrespective of the germline V allele they use. With limited germinal centers, this set
of alleles is highly variable between individuals, leading to a decrease in both types of correlation
over time (Figure 2B).

Finally, when some germline alleles have a higher mutation rate than others, the faster mutating
B cell lineages eventually dominate germinal centers due to their propensity to adapt (Figure S4),
countering the tendency for allele frequencies to become less correlated over time and leading to
a positive correlation in experienced-to-naive ratios later in the response (Figure S5).

Decreasing similarity in the mouse response to influenza virus infection suggests
affinity maturation overcomes germline-encoded differences

We compared these simulated dynamics with the B cell response of C57BL/6 mice infected with
influenza virus once or twice and sacrificed at different times points (8, 16, 24, 40 and 56 days after
Figure 3. Immunoglobulin V gene usage in the mouse B cell response to influenza infection. (A) The number of germline immunoglobulin V alleles is shown for mice infected once or twice with a mouse-adapted H1N1 virus and sacrificed at different time points (8, 16, 24, 40 and 56 days after the primary infection, with the secondary infection on day 32). Uninfected control mice are shown in red. Each point represents a mouse. At the peak of the response, most alleles present in each mouse are represented in lymph-node germinal center (GC), plasma and memory cells, which were likely induced by the influenza infection. (B) Number of V alleles shared by pairs of mice in the naive repertoire (left) and the Pearson correlation in their frequencies for each pair (excluding mice with fewer than 100 reads in the naive repertoire; right). Each point represents a pair. (C) Pearson correlation within each mouse between V allele frequencies in influenza-induced populations and frequencies in the naive repertoire. Each point represents a mouse, and solid-line boxplots indicate the distribution in the observed data.

the primary infection, with the secondary infection on day 32; Materials and Methods: “Experimental infection of mice with an influenza A/H1N1 virus”). Because influenza viruses do not naturally infect mice, any germline-encoded specificities for influenza antigens are either evolutionary s仲rels or the product of selection to recognize molecular patterns shared between influenza and pathogens that have historically infected mice. We used RNA sequencing to estimate the frequencies of germline alleles and the relative sizes of B cell lineages in each mouse. We focused on heavy-chain sequences sampled from the mediastinal lymph node because, consistent with previous work (Sealy et al., 2003), cell sorting data indicated that lymph node B cells were induced by the influenza infection (control mice had very few germinal center, plasma or memory cells in the mediastinal lymph node; Figure S6). Early in the mouse response to influenza, lymph node populations likely consist of extrafollicular plasma cells expanding outside of germinal centers, with germinal-center derived cells arriving later (Sealy et al., 2003) and persisting for as long as six months (Yewdell et al., 2021). Most germline V alleles observed in a mouse (across all tissues and
cell types sampled) were represented in the influenza-induced lymph node populations, suggesting that most mouse V alleles can produce at least some receptors capable of binding influenza antigens (Figure 3). To compare the observed mouse responses with our simulations, we measured the correlation in germline V allele frequencies and experienced-to-naive ratios between pairs of infected mice.

As expected, influenza infection led to affinity maturation in mouse B cell lineages (Figure S7). Serum antibody titers against the infecting virus measured by ELISA rose approximately 1,000-fold between days 8 and 24 and remained high. In parallel to this rise in antibody titers, germinal center and plasma cell populations became increasingly dominated by a few lineages, suggesting that lineages varied in fitness due initial differences in affinity, differences acquired during the lineages’ subsequent evolution, or both. Lineages sampled at later time points had more high-frequency amino acid mutations within them (those present in 50% or more of the reads in a lineage). Those mutations include fixed mutations and those potentially rising to fixation via selection for affinity, and they are unlikely to have arisen from sequencing and amplification errors (which we estimate at 1.8 per thousand nucleotide bases; Materials and Methods: “B cell receptor sequencing”). These trends were visible in the lymph nodes of infected mice but not apparent in other tissues or in control mice (Figure S8), suggesting they were driven by the influenza infection. (Influenza-specific lineages may have been present in other tissues, but our data do not allow us to distinguish them from lineages elicited by other antigens.)

Consistent with the increasing role of chance observed in our simulations, plasma cells and germinal center cells were ultimately dominated by lineages using different germline V alleles in different mice, despite similar allele frequencies early in the response (Figure 4A). In both cell types, this initial similarity was likely partly due to the correlated germline frequencies in the naive repertoire (Figure 3B). In early plasma cells, it also reflected the consistent overrepresentation of specific germline alleles, suggesting that those alleles contributed to higher affinity or adaptability than did others (Figure 4A, Figure 4B). For instance, in day-8 plasma cells, IGHV14-4*01 increased in frequency relative to the naive repertoire in all 6 mice with enough data, becoming the most common V allele in 4 mice and the second most common in the other 2 (Figure 4B). In contrast, at later time points for plasma cells (Figure S9) and throughout the response for germinal center cells (Figure S10), the most common V allele was usually different in different mice, and most germline alleles were overrepresented relative to the naive repertoire in some mice but not in others. These results suggest that while germline-encoded advantages may strongly shape the early B cell response, they do not predict B cell fitness in the long run.

To further test if the effect of germline-encoded advantages was strongest early in the response, we compared the observed patterns with a null model in which a lineage’s fitness is independent of which germline V allele it uses, mimicking the equivalent-alleles scenario in our simulations. We did so by keeping the observed distribution of lineage sizes (a proxy for lineage fitness) while randomly assigning each lineage’s germline V allele based on naive repertoire frequencies. Early in the plasma cell response, germline alleles were overrepresented much more consistently between mice than expected under this null model, suggesting that the early response was strongly shaped by the advantages associated with using specific alleles (Figure S11). Later in the response, however, specific alleles were not overrepresented in different mice more often than expected if lineage fitness was independent of the germline V allele.

In contrast with germinal center and plasma cells, germline allele frequencies in memory cells remained similar between mice (Figure 4A)—and similar to naive allele frequencies within each mouse (Figure 3C)—throughout the response. Differences between memory cells and the other cell types could be expected if a high fraction of memory cells is unrelated to the influenza infection. Additionally, since activated B cells with low affinity are more likely than others to exit germinal centers and differentiate into memory cells (Viant et al., 2020), dominant lineages with high affinity for influenza antigens might contribute less to the memory cell population than they do to the germinal center and plasma cell populations. Consistent with that possibility, the increasing dominance
Figure 4. Correlation between mice in the V allele frequencies of influenza-induced populations and in the deviations of those frequencies from the naive repertoire. (A) Distribution of pairwise correlations at each time point. Each point represents a pair of mice with at least 100 reads each in the respective B cell population. We computed correlations using Pearson’s coefficient and measured frequency deviations as the ratio between a V allele’s frequency in an influenza-induced population and its frequency in the naive repertoire. (B) Frequency of the 20 most common V alleles in the lymph node plasma cells of each mouse 8 days after primary infection. Each panel represents an individual mouse. The arrows go from each allele’s frequency in the naive repertoire to its frequency in lymph node plasma cells. Each allele was labelled as significantly over- or underrepresented in each mouse if the ratio of its experienced and naive frequencies was outside a 95% confidence interval obtained by bootstrap sampling (n = 500) of experienced frequencies from the naive repertoire (preserving the observed total number of sequences in each mouse). Mouse 40-7, which was sacrificed 8 days after the secondary infection, was considered a day-8 primary-infection mouse because it showed no signs of infection after the first inoculation and had ELISA titers similar to those of day-8 infected mice.

by a few large and mutated lineages seen in germinal center and plasma cells of infected mice was not evident in their memory cells (Figure S7). Consistent deviations from the naive repertoire still occur (Figure 4A, Figure S12), as would be expected if B cell using specific alleles are more likely to be activated than others. Some cells might then differentiate into memory B cells soon after activation. For instance, IGHV14-4*01 was overrepresented relative to the naive repertoire in the memory cells of 50% or more of the mice at every time point (Figure S13).

Germline V alleles consistently overrepresented early in the response have low predicted mutability in CDRs

Our simulations suggest that correlated experienced-to-naive ratios early in the response more likely reflect germline-encoded affinity than germline-encoded adaptability (Figure 2). With sequence data alone, we cannot determine if germline V alleles overrepresented in the early mouse response generate receptors with especially high affinity for influenza antigens. We can, however, estimate potential differences in adaptability between germline alleles based on their sequences alone, using estimates of the propensity of different nucleotide motifs to undergo somatic hypermutation (although those estimates were derived from mouse light-chain rather than heavy-chain
genes; Cui et al. 2016) (Methods: "Mutability analysis of germline alleles").

Germline alleles with higher predicted mutability in the CDRs, which might give those alleles a higher rate of affinity-enhancing mutations, did not have a clear advantage (Figure S14). Neither did germline alleles with lower mutability in the structurally-important framework regions (FRs; where mutations are more likely to be deleterious than in CDRs). Instead, in day-8 plasma cells we found the opposite relationship: germline alleles tended to increase in frequency relative to the naive repertoire if they had high mutability in FRs and low mutability in CDRs. The consistently overrepresented and dominant allele IGHV14-4*01, for instance, is predicted to be one of the least mutable in CDRs 1 and 2, (Figure S14). Two other germline alleles consistently overrepresented in day-8 plasma cells, IGHV1-82*01 and IGHV1-69*01 (5 of 6 mice with enough data), have similarly low predicted mutability in CDR1, though not in CDR2. If those alleles do have a high propensity to bind influenza antigens, low mutability in CDRs 1 and 2 might reduce the chance that mutations disrupt this initial binding, potentially reinforcing the fitness advantage of B cells using those alleles.

B cell lineages sharing the same germline V allele rarely had mutations in common

While germinal center cells and plasma cells were increasingly dominated by large lineages with somatic mutations, the sheer number of mutations acquired by a B cell lineage did not predict its success (Figure S15). This observation is consistent with previous work showing that the number of mutations in the B cell receptor does not predict affinity or neutralization strength (Viant et al., 2020; Sakharkar et al., 2021; Neumeier et al., 2021). Thus, successful lineages might be those that acquire few substitutions with large effects on affinity, instead of many substitutions with smaller effects.

Most pairs of lineages with the same V allele had no high-frequency mutations in common (Figure S16). For specific cell types and specific V alleles, we found some instances of high-frequency mutations shared by multiple lineages. However, they were constrained to one or two mice, suggesting they might be an artifact of the incorrect partitioning of a single large lineage into several small ones. These results suggest that there are multiple ways to improve affinity for the same germline V allele.

Influenza antigens do not strongly select for specific CDR3 sequences

While binding can occur via the two CDRs solely encoded by the V segment, it often occurs via CDR3, which spans the junction between the segments. Thus, influenza antigens might select for receptors with specific CDR3 sequences, despite showing little selection for specific germline alleles encoding CDR1 and CDR2. To investigate this possibility, we computed the amino acid sequence and biochemical similarity of CDR3 sequences sampled from different mice and matched for the same length (Methods: "Measuring CDR3 sequence similarity"). On average, length-matched CDR3 sequences from the influenza-induced populations of different mice were no more similar than sequences sampled from their naive repertoires (Figure S17). (We found similar results when matching sequences both for length and heavy-chain V allele, suggesting the choice of V allele does not strongly constrain the sequence of CDR3.) While individuals exposed to the same pathogen often share receptors with specific CDR3 sequences (Parameswaran et al., 2013; Jackson et al., 2014; Robbiani et al., 2020; Ortega et al., 2021), our results suggest those convergent CDR3s do not make up a large fraction of the response.

Discussion

How much effective B cell responses depend on particular germline immunoglobulin genes has important consequences for adaptive immune evolution and vaccination strategies. In simulations and experiments, we find that initial germline-encoded advantages contribute to similar allele usage across individuals early in the response but can be later overcome by B cell lineages using different germline alleles in different individuals. These divergent outcomes arise because the
growth of B cell lineages also depends on factors that are largely unpredictable, such as the timing, order and effect of mutations in different lineages, genetic drift, demographic stochasticity and stochasticity in VDJ recombination. Like evolution in general (Gould, 1989; Blount et al., 2018; Xie et al., 2021; Park et al., 2022), B cell evolution thus appears increasingly subject to such “historical contingency” over time. Yet, as is often the case in other systems (Lässig et al., 2017), the resulting phenotype is remarkably robust to divergence at the genetic level: potent antibodies reliably emerge in most individuals, suggesting there are many different ways to achieve high affinity against the same pathogen.

A testable prediction suggested by those results is that germline allele usage might diverge between people following repeated exposures, such as sequential influenza infections or vaccines, or over time during chronic infections, such as HIV. This prediction depends on the extent to which responses to repeated or prolonged infections rely on the reactivation of preexisting memory cells and their reentry into germinal centers (Li et al., 2012; Andrews et al., 2015; Mesin et al., 2020; Turner et al., 2020; Hoehn et al., 2021). Divergence in germline allele frequencies might be small if the response to each exposure is dominated by lineages newly recruited from the naive repertoire. In contrast, successive bouts of evolution by recalled B cell lineages might increase the chance that they overcome germline-encoded advantages. Vaccine strategies focused on the recruitment of specific alleles (McGuire et al., 2014; Jardine et al., 2016; Bonsignori et al., 2017; Lin et al., 2020) might be hindered in their immediate goal by contingent patterns of allele usage in different people, especially if the strategy involves multiple immunizations or immunizations in people with extensive immune memory.

In addition to varying over time, the similarity of the induced B cell repertoire might also vary with the complexity of the antigen, since antigens encoding multiple epitopes present more potential specificities. Although certain amino acid motifs can make germline alleles highly polyreactive (Hwang et al., 2014; Shiroishi et al., 2018), individual alleles might be unlikely to have a consistent advantage over others across all epitopes in an antigen or all antigens in a pathogen. Thus, germline-encoded specificities might be more apparent in B cells specific for a single epitope than in the set of all B cells binding the antigen or pathogen. Some previous observations are consistent with this hypothesis. For instance, the response to happen (simple antigens with few potential epitopes) tends to be dominated by one or a few alleles (Cumano and Rajewsky, 1985, 1986), whereas the response to complex antigens can use many (Kuraoka et al., 2016). Only a handful of germline alleles are represented in monoclonal antibodies specific for narrowly defined sites on influenza hemagglutinin (Guthmiller et al., 2021, 2022), while tens of alleles are present in monoclonal antibodies that bind different sites on the major domains of the SARS-CoV-2 spike protein (Robbiani et al., 2020; Sakhrkar et al., 2021). Many germline V alleles are found in monoclonal antibodies against the IsdB protein of Staphylococcus aureus, but antibodies targeting each particular epitope tend to use only one or two of them (Yeung et al., 2016).

Understanding this variation further requires overcoming limitations of our analyses. Similarity between individuals might decay even faster in genetically diverse outbred populations than in the inbred mice we used in the experiments. Migration between germinal centers (Lee et al., 2022), which we did not investigate, might also lead to faster divergence, similar to the effect of having fewer germinal centers. Although genetic drift, demographic stochasticity and priority effects in the colonization of germinal centers were present in our model, we did not systematically explore their impacts. Understanding the importance of those processes might require longitudinal data to resolve the timing of cell arrivals in germinal centers and the lineages’ population dynamics early in the response. Complementing our sequence analysis, affinity measurements could be used to estimate the affinity distributions of naive B cells using different germline alleles, compare variation within and between those distributions, and directly test if alleles with higher-affinity distributions tend to be used by B cell lineages with high growth rates. Affinity measurements could also be used to study germline allele usage in pathogen-specific B cell lineages outside of lymph nodes, which we could not identify with sequence data alone.
Finally, if germline-encoded specificities are most consequential early in the response, long-term selection to “pre-adapt” germline genes might be linked to the benefits of responding rapidly to common and/or especially harmful pathogens. Mathematical models suggest that maintaining innate defenses against a particular pathogen becomes more advantageous the more frequently the pathogen is encountered (Mayer et al., 2016). Germline alleles specific to common pathogens or pathogenic motifs might be selected, effectively hardcoding innate defenses into the adaptive immune system (Collins and Jackson, 2018). A reliable supply of receptors against common enemies might be especially important in small and short-lived organisms, which can more quickly die of infection and have fewer naive B cells with which to cover the vast space of possible pathogens (Collins and Jackson, 2018). Reinforcing germline-encoded specificities might also be especially useful when the opportunity for adaptation is limited, as might be the case for pathogens that induce extrafollicular responses without extensive B cell evolution (although affinity maturation can occur outside of germinal centers; Di Niro et al. 2015; Elsner and Shlomchik 2020). Understanding what conditions favor similar versus contingent allele usage in the antibody repertoire may thus shed light on the long-term evolution of immunoglobulin genes.

Materials and Methods

Model of B cell dynamics

We modeled B cell evolution and competition in germinal centers using stochastic simulations based on a Gillespie algorithm. There are three types of independent events in the model: immigration of individual B cells into germinal centers, cell division and death. The total rate of events λ is given by

$$\lambda = \lambda_{\text{immigration}} + \lambda_{\text{division}} + \lambda_{\text{death}}$$ \hspace{1cm} (1)

where the terms on the right-hand side correspond to the rate of each kind of event (mutation is associated with cell division and is therefore not an independent event). The algorithm consists of drawing the time to the next event by sampling from an exponential distribution with rate λ. Once an event has occurred, we make a second draw to determine its type. The probability for each type of event in this second draw is proportional to the corresponding event-specific rate (e.g., the probability that the next event is a cell division is $\lambda_{\text{division}}/\lambda$). After determining the event type, we update event rates and draw the time to the next event, and so on, until a maximum time t_{max} is reached. For each germinal center, we record the number of cells in each B cell lineage and the V alleles used by the lineages at the end of day 1 and then every 5 days starting on day 5.

Immigration of B cells into germinal centers is restricted to an initial period with duration t_{imm}. Parameter I_{total} controls the expected number of lineages that enter each germinal center during that time (each recruited B cell is the founder of an individual lineage). Given those parameters, we let $\lambda_{\text{immigration}}$ be a linearly decreasing function over time reaching 0 at t_{imm}, with intercept and slope chosen such that I_{total} lineages are expected to enter each GC by that point ($\lambda_{\text{immigration}}$ then remains at 0 until the end of the simulation).

When immigration occurs, we randomly sample a single immigrant from a newly generated recruitment pool of 1,000 naive cells whose V alleles are drawn with replacement from the naive repertoire. For each member of the recruitment pool, we sample an affinity value based on the naive affinity distribution associated with its V allele. By default, all alleles have the same normal affinity distribution with mean and standard deviation equal to 1 (we sample from the associated truncated distribution to avoid negative values). Depending on the scenario, naive B cells using specific V alleles may have a different distribution with mean $1+s$ and the same standard deviation as above. The probability that each cell in the recruitment pool is chosen as the new immigrant is then proportional to its affinity.

The rate of cell divisions depends on the total number of cells inside the germinal center, N, and on the rate of cell division for each individual cell, $\mu(N)$:

$$\lambda_{\text{division}}(N) = N \times \mu(N)$$ \hspace{1cm} (2)
To represent competition for antigen, $\mu(N)$ decreases with N so that it equals a fixed per-cell death rate δ when the population is at carrying capacity ($N = K$):

$$\mu(N) = \mu_{\text{max}} \times \exp \left(\frac{N}{K} (\ln \delta - \ln \mu_{\text{max}}) \right)$$

(3)

Once a division event occurs, we randomly sample a B cell to divide. The probability that a B cell is chosen is proportional to its affinity. Each dividing B cell has some probability of having a mutation that changes affinity by a normally distributed amount with mean 0 and standard deviation β (affinity is set to 0 if the mutation produces a negative value). By default, all B cells have the same baseline mutation rate regardless of their germline V allele. Depending on the scenario, naive B cells using specific V alleles may have this rate multiplied by a factor γ.

Finally, with a fixed per-cell death rate, the population-level death rate is given simply by

$$\lambda_{\text{death}}(N) = N \delta$$

(4)

Experimental infection of mice with an influenza A/H1N1 virus

We infected 40 8-week-old female C57BL/6 mice weighing 20-22g (8 for each time point) intranasally with 0.5 LD$_{50}$ of a mouse-adapted pandemic H1N1 strain (A/Netherlands/602/2009) in a total of 30 μL of PBS under full anesthesia. In addition, two controls for each time point were given PBS only.

All mouse experiments were approved by The University of Chicago Institutional Animal Care and Use Committee (IACUC protocol 71981).

Tissue processing, cell sorting and nucleic acid extraction

We prepared single cell suspensions from the mediastinal lymph node, spleen and both femurs harvested at the indicated time points. B cells were first enriched from the splenocyte suspension by MACS (magnetic activated cell sorting) using the Pan B cell Isolation Kit (Miltenyi Biotec), followed by staining for FACS (fluorescence activated cell sorting). The lymph node and bone marrow cells were directly stained for FACS. Antibodies used for sorting were anti-B220 (clone RA3-6B2, Biolegend), IgD (clone 11-26c.2a, Biolegend), anti-CD4 (clone RM4-5, Biolegend), anti-CD8 (clone 53-6.7, Biolegend), anti-CD95 (clone Jo-2; BD Biosciences), anti-CD138 (clone 281-2, Biolegend), anti-F4/80 (clone BM8, Biolegend), anti-GL7 (clone GL7, BD Biosciences), anti-Sca-1 (clone D7, Biolegend), and anti-TER-119 (clone TER-119, Biolegend). Antibody stainings were preceded by adding Fc block (anti-CD16/CD32; clone 2.4G2, BD Biosciences). For sorting, the cells were first gated on size and granularity (forward and side scatter, respectively) to exclude debris, followed by doublet exclusion. We sorted naive (IgD+B220+), plasma (IgD-Sca-1hiCD138hi), memory (IgD-B220+CD95-CD38hi) and germinal center (IgD-B220+CD95+ CD38loGL-7+) cells after excluding cells expressing CD4, CD8, TER-199 or F4/80 (to exclude T cells, erythroid cells and macrophages). After spinning down cells and removing the PBS supernatant, we extracted DNA and RNA from the cell pellets using the AllPrep DNA/RNA Mini Kit (Qiagen), according to the manufacturer’s protocol. All samples were kept frozen until sequenced.

B cell receptor sequencing

We generated immunoglobulin heavy chain (IGH) DNA libraries from complementary DNA generated from 10-500 ng of total RNA using Superscript III (Invitrogen) reverse transcriptase and random hexamer primers. For PCR amplifications, we used multiplexed primers targeting the mouse framework region 1 (FR1) of IGH in combination with isotype-specific primers targeting constant region exon 1 of IgA, IgD, IgE, IgG, or IgM (Table 2). We performed separate PCR reactions for each isotype to avoid formation of inter-isotype chimeric products. We barcoded each sample with 8-mer primer-encoded sequences on both ends of the amplicons and performed PCR amplification in two steps. First, we generated amplicons using primers with the partial Illumina adapter, the sample-specific barcode and the locus-specific sequence. In the second step, we performed
another PCR to complete the Illumina adapter sequence and to ensure final products were not ampli-
482
ted to saturation. We purified pooled products by agarose gel electrophoresis and extraction.
483
We used a 600 cycle v3 kit to sequence products using an Illumina MiSeq instrument.
484
We estimated the rate at which errors were introduced during amplification and sequencing by
485
comparing the sequenced reads with the reference sequence for the corresponding isotype. Be-
486
cause the constant region does not undergo somatic hypermutation, we counted each mismatch
487
between the end of the J gene and the beginning of the conserved region primer as an error intro-
488
duced by sequencing and amplification. Based on 187,500 errors found out of 104,092,368 bases
489
analyzed, we estimated the error rate to be 1.80 mutations per thousand bases (95% binomial CI
490
1.79-1.81).

ELISA

We coated 96-well ELISA plates (Thermo Fisher Scientific) overnight at 4°C with eight hemagglutina-
492
tion units (HAU) of virus in carbonate buffer. We used horseradish peroxidase (HRP)-conjugated
493
goat anti-mouse IgG antibody (Southern Biotech) to detect binding of serum antibodies, followed
494
by development with Super Aquablue ELISA substrate (eBiosciences). We measured absorbance
495
at 405 nm on a microplate spectrophotometer (Bio-Rad). We analyzed serum samples starting at
496
a top dilution of 1:20 (PBS controls and day 8 animals) or 1:1000 (all other samples), followed by
497
2-fold dilutions in 8 (PBS controls and day 8 animals) or 16 steps. We determined the end titer as
498
the last dilution point with an OD value of > 2x the blank average OD value for each respective
499
plate.

Estimating the frequencies of V alleles and B cell lineages

We used partis v0.15.0 to partition sequences into lineages and identify the germline alleles used
502
by each lineage’s naive ancestor (accounting for variation in the set of germline alleles present in
503
each mouse; Ralph and Matsen 2016a,b, 2019). We used the fraction of reads corresponding to
504
each allele as a proxy for the frequency of that allele in each B cell population. To reduce the error
505
in frequency estimates, we excluded B cell populations with fewer than 100 reads in a mouse. Since
506
we did not barcode individual cells or RNA molecules during sequencing, the number of reads with
507
a particular sequence reflects not only the number of B cells with that sequence but also their
508
transcription levels. However, we found similar results using the number of unique sequences to
509
estimate the abundance of each lineage or allele (i.e., counting multiple identical reads from the
510
same mouse, tissue, cell type and isotype only once; Figure S18).

We measured the size of each lineage in each lymph-node B cell population as the number
513
of reads from that lineage in that population (as opposed to the number of reads in the lineage
514
across all cell types and tissues). B cell lineages were mostly confined to a single tissue and usually
515
dominated by a single cell type (Figure S19; note that the partitioning of sequences into lineages
516
was agnostic to cell type and tissue).

While we initially considered Dump-IgD+B220+ cells as naive cells, we noticed that many se-
518
quences obtained from them were extensively mutated relative to their inferred germline genes
519
and were also inferred to be part of large clonal expansions. To exclude reads originating from
520
non-naive B cells sorted as IgD+B220+, we considered a read as likely coming from a naive cell if it
521
met all of the following criteria: 1) it came from IgD+B220+ samples; 2) its isotype was IgM or IgD;
522
3) it belonged to a clone that had a single unique sequence across its reads (and the reads all came
523
from IgD+B220+ samples), and 4) that sequence had at most two nucleotide mutations in the V
524
gene region. To compute naive frequencies, we pooled sequences meeting those criteria across
525
tissues. When computing experienced-to-naive frequency ratios, we adjusted the frequencies
526
of germline alleles that were sampled in an experienced B cell population but not in naive B cells,
527
since those alleles must have been present in naive B cells even though they were not sampled. In
528
those cases, we imputed a single sequence to the allele in the naive repertoire then recalculated
529
naive allele frequencies accordingly. When computing frequency deviations from the naive reper-
toire, we excluded mice with fewer than 100 naive reads even if the corresponding experienced
population had more than 100 reads.

To test if our results were robust to uncertainty in the identification of naive B cells in our data,
we alternatively estimated V allele frequencies from naive B cells (CD138-CD19+IgD++IgM+CD23++
CD21+Pl-) sampled by Greiff et al. (2017) from the spleen of healthy C57BL/6 mice. For these data,
we processed raw paired-end reads using presto v.0.6.2. (Vander Heiden et al., 2014), then used
partis v0.15.0 to identify germline V alleles for a random sample of 20,000 sequences per mouse.
V allele frequencies (measured by the fraction of total reads assigned to each gene in each mouse)
were positively correlated between this independent dataset and the designated naive populations
from our data (mean Spearman correlation coefficient between pairs of mice from each dataset
= 0.68, interquartile range 0.60 – 0.77). We repeated the analysis of pairwise frequency-deviation
correlations over time after replacing naive frequencies in our mice with the average frequency of
each gene in the Greiff et al. (2017) dataset, preserving the number of reads in each mouse. When
calculating the average allele frequencies in the alternative data set, we artificially assigned a single
read to alleles present in our mice but absent from the alternative data set (since genes present
in the experienced cells cannot be entirely missing from the naive repertoire) and re-normalized
frequencies so they would sum to 1. Frequency deviations calculated based on this alternative
data set were similar to those estimated using our own data (Figure S20).

Identifying overrepresented germline alleles

To determine which germline alleles were consistently overrepresented in experienced B cell pop-
ulations relative to the naive repertoire, we compared the frequency deviations for each germline
allele (separately for each type of B cell) with the distribution expected if alleles were sampled
based on naive frequencies alone (maintaining the observed the number of sequences in each
mouse). For each germline allele, we then counted the number of mice with stronger deviations
from the naive repertoire than expected under this null distribution (using a 95% bootstrap confi-
dence interval).

Mutability analysis of germline alleles

To estimate the mutability of mouse germline V alleles, we used the RS5NF mutability scores
estimated by Cui et al. 2016 using non-functional mouse kappa light-chain sequences and im-
plemented in R package shazam. These scores describe the relative mutability of all possible 5-
nucleotide motifs. We estimated the mutability of each framework region (FR) and complementarity-
determining region (CDR) as the average score across motifs in the region. We then calculated an
average for all FRs weighted by the length of each FR, and similarly for CDRs. We used igblast
v1.14.0 to identify the FRs and CDRs of each germline V allele sequence identified by partis.

Measuring CDR3 sequence similarity

We compared the amino acid sequence similarity and biochemical similarity of pairs of CDR3 se-
quences sampled from different mice and matched either for length alone or both for length and
V allele. To limit the number of comparisons, we proceeded as follows. For each pair of mice, we
chose one mouse and sampled 500 sequences of the same cell type. For each sequence length
represented in this sample, we paired sequences from the first sample with randomly chosen se-
quences of the same length from the second mouse. If matching sequences both for length and
V allele, we did this second sampling separately for each combination of V allele and sequence
length present in the first sample. This procedure matches sequences while preserving the length
distribution (or the joint distribution of length and V alleles) in the first sample.

We measured amino acid sequence similarity as the proportion of sites with the same amino
acid in both sequences. Following previous work (Hershberg and Shlomchik, 2006; Saini and Her-
shberg, 2015), we measured biochemical similarity as the proportion of sites in which the amino
acids of both sequences belonged to the same category in the classification by (Chothia et al., 1998): hydrophobic (F, L, I, M, V, C, W), hydrophilic (Q, R, N, K, D, E) or neutral (S, P, T, A, Y, H, G).

Table 2. Primers for mouse heavy chain B cell receptors.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>P7-VH1-MsFR1-A</td>
<td>CCTGGGGCTTCAGTGA</td>
</tr>
<tr>
<td>P7-VH1-MsFR1-B</td>
<td>GCCTGGGACTTCAGTGA</td>
</tr>
<tr>
<td>P7-VH1-MsFR1-C</td>
<td>CCTGGGGCCTCAGTGA</td>
</tr>
<tr>
<td>P7-VH1-MsFR1-D</td>
<td>GCCTGGGCTTCAGTAA</td>
</tr>
<tr>
<td>P7-VH2-MsFR1</td>
<td>CCCTCACAGAGCCTGT</td>
</tr>
<tr>
<td>P7-VH3-MsFR1</td>
<td>CTTCAAGGAGTCAGGACCT</td>
</tr>
<tr>
<td>P7-VH5-MsFR1-A</td>
<td>GTCCCCTGAAACTTCCTGTG</td>
</tr>
<tr>
<td>P7-VH5-MsFR1-B</td>
<td>GCCTGGAAGGTCCGT</td>
</tr>
<tr>
<td>P7-VH5-MsFR1-C</td>
<td>GTCCCCTGAAACTTCCTGT</td>
</tr>
<tr>
<td>P7-VH7-MsFR1</td>
<td>TTCTCTGAGACTTCCTGTG</td>
</tr>
<tr>
<td>P7-VH9-MsFR1</td>
<td>TGGAGAGACAGTCAAGATCTCC</td>
</tr>
<tr>
<td>P7-VH10-MsFR1</td>
<td>GATTTGGTGCAAGCCTAAAGG</td>
</tr>
<tr>
<td>P7-VH11-MsFR1</td>
<td>GCTTGTTGCAACCTGG</td>
</tr>
<tr>
<td>P7-VH12-MsFR1</td>
<td>TGCTGTCATCAAGCCATCA</td>
</tr>
<tr>
<td>P7-VH14-MsFR1</td>
<td>AGTCAGTTGTCTCGCA</td>
</tr>
<tr>
<td>Ms-Tim-IgM</td>
<td>GGGAAAGACATTTGGGAAGGAC</td>
</tr>
<tr>
<td>Ms-Tim-IgD</td>
<td>TGAGAGGAGGAACATGTCA</td>
</tr>
<tr>
<td>Ms-Inner-IgG1</td>
<td>GCTCGGGAATAGCCTTGAC</td>
</tr>
<tr>
<td>Ms-Inner-IgG2</td>
<td>GCTCGGGAATACCCCTTGAC</td>
</tr>
<tr>
<td>Ms-Inner-IgG2b</td>
<td>ACGTCAAGGAGTACCCCTTGAC</td>
</tr>
<tr>
<td>Ms-Inner-IgG3</td>
<td>GCTCGGGAATAGCCTTGAC</td>
</tr>
<tr>
<td>Ms-Tim-IgA</td>
<td>GTCAGTGGTGAAGTGGTG</td>
</tr>
<tr>
<td>Ms-Tim-IgEc</td>
<td>CCAGGCAGCCAGGGTCATGG</td>
</tr>
</tbody>
</table>
Table 3. PCR conditions.

<table>
<thead>
<tr>
<th>1st PCR</th>
<th>2nd PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>usual initial mix</td>
<td>MM</td>
</tr>
<tr>
<td>10x buffer</td>
<td>Q mix</td>
</tr>
<tr>
<td>MgCl2</td>
<td>f primer</td>
</tr>
<tr>
<td>2mM dNTP</td>
<td>r primer</td>
</tr>
<tr>
<td>v primer</td>
<td>template</td>
</tr>
<tr>
<td>c primer</td>
<td>H2O</td>
</tr>
<tr>
<td>template</td>
<td>usual illumina cycling</td>
</tr>
<tr>
<td>Taq</td>
<td>0.3</td>
</tr>
<tr>
<td>H2O</td>
<td>11.9</td>
</tr>
<tr>
<td>total</td>
<td>30</td>
</tr>
</tbody>
</table>

1st PCR cycle

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>94°C</td>
<td>7 min</td>
</tr>
<tr>
<td>94°C</td>
<td>30s (x 35 cycles)</td>
</tr>
<tr>
<td>56°C</td>
<td>45s</td>
</tr>
<tr>
<td>72°C</td>
<td>1.5 min</td>
</tr>
<tr>
<td>72°C</td>
<td>10 min</td>
</tr>
</tbody>
</table>

2nd PCR cycle

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>15 min</td>
</tr>
<tr>
<td>95°C</td>
<td>30s (x 12 cycles)</td>
</tr>
<tr>
<td>60°C</td>
<td>45s</td>
</tr>
<tr>
<td>72°C</td>
<td>1.5 min</td>
</tr>
<tr>
<td>72°C</td>
<td>10 min</td>
</tr>
</tbody>
</table>

Data and code availability

Code for the analyses is available at http://github.com/cobeylab/v_gene_selection. Data, intermediate files and results are available on Zenodo (https://doi.org/10.5281/zenodo.7080191) and fastq files are available on SRA [Accession number pending].

Competing interests

C.T.S. has consulted for Alvea / Telis Bioscience Inc. on the design of universal influenza vaccines. The other authors report no competing interests.

Acknowledgments

Lauren McGough and Christopher Russo made helpful comments and suggestions to a draft of the manuscript. This project has been funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under grant DP2 AI117921, CEIRS Contract No. HHSN272201400005C and CEIRR contract 75N93021C00015 to S.C., grants R01AI127877, R01AI130398, U19AI057229 to S.D.B and grants U19AI082724, U19AI109946, U19AI057266, CEIRS contract HHSN272201400005C, CEIRR contract 75N93019R00028 and CIVIC contract 75N93019C00051 to P.C.W. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIAID or the National Institutes of Health. The project was also partly supported by a Complex Systems Scholar Award from the James S. McDonnell Foundation awarded to S.C. M.C.V. was partly supported by a William Rainey Harper Dissertation Fellowship awarded by the University of Chicago. This work was completed in part with resources provided by the University of Chicago Research Computing Center.

References

Hoehn KB, Turner JS, Miller FI, Jiang R, Pybus OG, Ellebedy AH, Kleinsein SH. Human B cell lineages engaged by germinal centers following influenza vaccination are measurably evolving. Immunology; 2021.

Supplementary information

Figure S1. Increasing dominance of each germinal center by a single lineage in simulations. We simulated B cell evolution under a scenario with no differences in affinity and adaptability between germline V alleles. For each germinal center, we computed the fraction of the total germinal center population occupied by the biggest lineage. Points and vertical bars represent the median and the 1st and 4th quartiles, respectively. Parameter values are shown in Table 1.
Figure S2. Correlation in allele frequency deviations from the naive repertoire simulated in a scenario where most alleles have identical affinity distributions but five alleles have a different distribution with a higher mean. We measured frequency deviations as the ratio of an allele’s frequency across all germinal centers in an individual and its frequency in the individual’s naive repertoire. For each panel, we simulated 20 individuals, each with 15 germinal centers. We varied the rate of affinity-changing mutations per B cell per division (colors), the increment in average affinity for high-affinity alleles (s, columns) and the standard deviation (β, rows) of the effect size of mutations (which is normally distributed with mean 0). Other parameters were set to the default values in Table 1. Points and vertical bars show the median and the 1st and 4th quartiles computed across all pairs of individuals at each time point.
Combined frequency of high-affinity alleles within germinal centers in simulations. Columns show the distribution across germinal centers early (10 days) and late (50 days) in the response. Rows show different somatic hypermutation rates (affinity-changing mutations per B cell per division). For each row, we simulated 20 individuals, each with 15 germinal centers. The same five alleles in all individuals were chosen to have their average naive affinity increased by $s = 1.5$. Other parameters were set to the default values in Table 1.
Figure S4. Combined frequency of high-mutability alleles within germinal centers in simulations. Columns show the distribution across germinal centers early (10 days) and late (50 days) in the response. Rows show different baseline mutation rates (affinity-changing mutations per B cell per division). For each row, we simulated 20 individuals, each with 15 germinal centers. The same five alleles in all individuals were chosen to have their baseline mutation rate multiplied by a factor $\gamma = 6$. Other parameters were set to the default values in Table 1.
Figure S5. Evolution of germline allele frequencies in a scenario where some germline alleles have a higher mutation rate than others. We simulated 20 individuals with varying numbers of germinal centers. We measured germline allele frequencies across germinal centers in each individual and computed the ratio between these frequencies and the allele frequencies in the naive repertoire. We then computed the correlation in those quantities between all pairs of individuals. Points and vertical bars represent the median and the 1st and 4th quartiles, respectively. Each row shows a different baseline mutation rate (affinity-changing mutations per B cell per division). The same 5 high-mutation alleles have their baseline mutation rate multiplied by a factor $\gamma = 6$ in all individuals. Values for the other parameters are those in Table 1.
Figure S6. Number of cells sorted from different tissues in mice infected with influenza and in uninfected controls. Infected mice were subject to one or two infections and sacrificed at 8, 16, 24, 40 or 56 days after primary infection. Mice from the last two time points were given a second infection 32 days after the first one.
Figure S7. Evidence of increased B cell evolution and competition over time in the infected mice. (A) Serum antibody titers against the infecting strain measured by ELISA. (B) Total fraction of reads in influenza-induced populations represented by the ten largest B lineages in each mouse. The ten largest lineages were chosen based on the number of reads each lineage had in the respective cell type in the lymph node (not the total number of reads each lineage had across all tissue and cell types). (C) Fraction of lineages with at least one amino acid mutation at frequency 50% of higher in the lineage (top panel), and the average number of such high-frequency mutations per lineage within each mouse (bottom panel). Mutation frequencies in each lineage were calculated relative to the lineage's number of reads in the respective tissue and cell type combinations. For these calculations, only lineages with at least 10 reads were considered.
Figure S8. Increasing dominance by mutated clones over time is evident in lymph nodes but not in other tissues. Fraction of clones with at least one amino acid mutation at frequency 50% of higher (top panel) and the average number of such high-frequency mutations per clone (bottom panel) for different cell types and tissues. Mutation frequencies in each clone were calculated relative to the clone's number of reads in the respective tissue and cell type combinations (not the total number of reads in the clone across all subtypes and tissues). For each combination of cell type and tissue, each point corresponds to a mouse. Only clones with at least ten reads were considered.
Figure S9. Frequency of the 10 most common V alleles in lymph node plasma cells of infected mice. Each panel represents an individual mouse. The arrows go from each allele's frequency in the naive repertoire to its frequency in lymph node plasma cells. Mouse 40-7, which was sacrificed 8 days after the secondary infection, was considered a day-8 primary-infection mouse because it showed no signs of infection after the first inoculation and had ELISA titers similar to those of day-8 infected mice.
Figure S10. Frequency of the 10 most common V alleles in lymph node germinal center cells of infected mice. Each panel represents an individual mouse. The arrows go from each allele's frequency in the naive repertoire to its frequency in lymph node plasma cells. Mouse 40-7, which was sacrificed 8 days after the secondary infection, was considered a day-8 primary-infection mouse because it showed no signs of infection after the first inoculation and had ELISA titers similar to those of day-8 infected mice.
Figure S11. Between-mouse correlations compared with a null model representing the effects of chance. Each orange or purple point represents the observed correlation between single pair of mice, with boxplots summarizing the observed distributions. Red points and lines represent the median and the first and third quartiles of the distribution generated under the null model (n = 500), which maintains the observed distribution of lineage sizes but randomly assigns each lineage a germline V allele based on allele frequencies in the naive repertoire. Null distributions were pooled across replicate realizations and mouse pairs. We computed correlations using Pearson's coefficient and measured frequency deviations as the ratio between a V allele's frequency in an influenza-induced population and its frequency in the naive repertoire.
Figure S12. Frequency of the 10 most common V alleles in lymph node memory cells cells of infected mice. Each panel represents an individual mouse. The arrows go from each allele's frequency in the naive repertoire to its frequency in lymph node plasma cells. Mouse 40-7, which was sacrificed 8 days after the secondary infection, was considered a day-8 primary-infection mouse because it showed no signs of infection after the first inoculation and had ELISA titers similar to those of day-8 infected mice.
Figure S13. Frequency deviations from the naive repertoire for germline heavy-chain V alleles IGHV14-4*01, IGHV1-82*01 and IGHV1-69*01 at different time points and in different cell types. We measured frequency deviations as the ratio of the experienced-to-naive frequencies in each population. Each point represents a mouse with at least 100 sequences sampled from the corresponding experienced population and from the naive repertoire. Deviations from the naive repertoire are colored based on whether they are different from a null distribution obtained by bootstrapping experienced frequencies from the naive repertoire (n = 500 replicates) based on a 95% confidence interval test.
Figure S14. Distribution of predicted mutability across V alleles (A), and correlations between predicted mutability and their frequency deviations from the naive repertoire (B). For each framework region (FR) and complementarity-determining region (CDR), we computed the average RS5NF mutability score from Cui et al. 2016 across all 5-nucleotide motifs. In B, we computed an average across FRs weighed by the length of each FR, and similarly for CDRs. Each circle represents a mouse with at least 100 sequences each in the naive and experienced populations. Correlations were measured used Pearson's coefficient.
Figure S15. Number of high frequency mutations as a function of clone rank in lymph node germinal center cells (top) and lymph node plasma cells (bottom). Each point represents a clone. Mice from each time point (8, 16, 24, 40 and 56 days after primary infection with influenza) were pooled together in each panel. Clone rank was determined based on the number of reads each clone had in the respective population (lymph node germinal center cells or lymph node plasma cells), not the total number of reads in the clone across all cell types and tissues (the largest clone was assigned rank 1). The solid line is a locally estimated scatterplot smoothing (LOESS) spline.
Figure S16. Probability that two B cell lineages sharing the same heavy chain V allele have high-frequency mutations in common. Panels represent B cell types from the lymph node of mice infected with influenza virus (GC: germinal center cells, PC: plasma cells, mem: memory cells). High-frequency mutations were those with a frequency of 50% within the lineage (considering lineage reads in each cell type). The numbers above the bars indicate the number of lineage pairs being compared (pairs were from either the same mouse or different mice). We restricted the analysis to lineages with at least 10 reads.
Figure S17. Similarity of CDR3 sequence pairs sampled from different mice and matched for the same length (top) or the same length and the same V allele (bottom). Boxplots show the distribution across sequence pairs from all mouse pairs for each time point (separately for different cell types). Values that fall outside 1.5 times the inter-quartile range are shown as individual points.
Figure S18. Pairwise correlations between mice after collapsing identical reads from the same mouse, tissue, cell type and isotype. (A) Distribution of pairwise correlations at each time point. Each point represents a pair of mice with at least 100 reads each in the respective B cell population. We computed correlations using Pearson's coefficient and measured frequency deviations as the ratio between a V allele's frequency in an influenza-induced population and its frequency in the naive repertoire. (B) Frequency of the 20 most common V alleles in the lymph node plasma cells of each mouse 8 days after primary infection. Each panel represents an individual mouse. The arrows go from each allele's frequency in the naive repertoire to its frequency in lymph node plasma cells. Each allele was labelled as significantly over- or underrepresented in each mouse if the ratio of its experienced and naive frequencies was outside a 95% confidence interval obtained by bootstrap sampling (n = 500) of experienced frequencies from the naive repertoire (preserving the observed total number of sequences in each mouse). Mouse 40-7, which was sacrificed 8 days after the secondary infection, was considered a day-8 primary-infection mouse because it showed no signs of infection after the first inoculation and had ELISA titers similar to those of day-8 infected mice.

Figure S19. Fraction of clones (with at least 10 reads) that have 90% or more reads from a single tissue (left) or 90% or more reads from a single cell type (right). Each point represents a mouse.
Figure S20. Pairwise correlations between mice using an alternative dataset (Greiff et al., 2017) to estimate germline allele frequencies in the naive repertoire. (A) Distribution of pairwise correlations at each time point. Each point represents a pair of mice with at least 100 reads each in the respective B cell population. We computed correlations using Pearson's coefficient and measured frequency deviations as the ratio between a V allele's frequency in an influenza-induced population and its frequency in the naive repertoire. (B) Top 20 germline V alleles in lymph node plasma cells from each infected mouse on day 8. Each panel represents an individual mouse. The arrows go from each allele's frequency in the naive repertoire to its frequency in lymph node plasma cells. Each allele was labelled as significantly over- or underrepresented in each mouse if the ratio of its experienced and naive frequencies was outside a 95% confidence interval obtained by bootstrap sampling (n = 500) of experienced frequencies from the naive repertoire (preserving the observed total number of sequences in each mouse). Mouse 40-7, which was sacrificed 8 days after the secondary infection, was considered a day-8 primary-infection mouse because it showed no signs of infection after the first inoculation and had ELISA titers similar to those of day-8 infected mice.