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Abstract:
A challenge in studying viral immune escape is determining how mutations combine to escape
polyclonal antibodies, which can potentially target multiple distinct viral epitopes. Here we
introduce a biophysical model of this process that partitions the total polyclonal antibody activity
by epitope, and then quantifies how each viral mutation affects the antibody activity against
each epitope. We develop software that can use deep mutational scanning data to infer these
properties for polyclonal antibody mixtures. We validate this software using a computationally
simulated deep mutational scanning experiment, and demonstrate that it enables the prediction
of escape by arbitrary combinations of mutations. The software described in this paper is
available at https://jbloomlab.github.io/polyclonal.

Introduction

Many viruses evolve antigenically to escape polyclonal antibodies elicited by vaccination or
prior infection (Smith et al. 2004; Hensley et al. 2009; Bedford et al. 2014; Eguia et al. 2021).
Neutralization assays are the gold standard for experimentally assessing if a new viral variant
has mutations that erode antibody immunity. However, neutralization assays require generating
the actual viral variant(s) for individual testing, and can therefore only be effectively applied
retrospectively to a modest number of viral variants of interest (DeGrace et al. 2022). For this
reason, neutralization assays have difficulty keeping pace with identification of vast numbers of
emerging viral variants by genomic epidemiology (Elbe and Buckland-Merrett 2017; Rambaut et
al. 2020; Viana et al. 2022), and so it would be useful to have a method for accurately predicting
the antigenic phenotype of viral variants with arbitrary combinations of mutations.

Unfortunately, predicting how a polyclonal serum will neutralize a new viral variant
remains a challenge. Deep mutational scanning can systematically measure how large libraries
of viral protein variants affect antibody neutralization or binding (Dingens et al. 2017; Lee et al.
2019; Wu et al. 2020; Greaney et al. 2021a, 2021c). However, although such high-throughput
experimental methods can assess the effects of all single mutants to some viral proteins, the
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number of possible multiply mutated variants far exceeds the limits of these experiments.
Therefore, a variety of computational approaches have been developed that attempt to predict
escape by new viral variants. These approaches include basic transformations of deep
mutational scanning data (Greaney, Starr and Bloom 2022), models that integrate antigenic data
with phylogenetic (Neher et al. 2016) or sequence data (Sun et al. 2013; Harvey et al. 2016), and
neural networks that can be trained using deep mutational scanning data (Taft et al. 2022) or
sequence data alone (Hie et al. 2021; Thadani et al. 2022).

Here we introduce a new model of viral polyclonal antibody escape that has several
advantages over existing computational approaches. Our model is interpretable in terms of
underlying biophysical parameters, can be directly fit to experimental deep mutational scanning
data, and can predict how new viral variants will be neutralized by the polyclonal sera used to
generate the experimental data. We implement our model in a software package and validate it
on simulated experimental data. Finally, we demonstrate how the parameters of the model
provide quantitative intuition for how mutations combine to escape antibodies that target
distinct viral epitopes.

Results

The concept of antibody epitopes
Our approach is inspired by the idea that viral antigens can be partitioned into distinct epitopes.
This idea can be traced back over four decades to classic experiments on influenza, which tested
viral mutants against large panels of monoclonal antibodies (Laver et al. 1979; Yewdell, Webster
and Gerhard 1979; Webster and Laver 1980). Viral escape mutants were first selected using
individual antibodies, and then tested against other antibodies in the panel. A pattern that
emerged from these experiments was that groups of antibodies were escaped by similar viral
mutants (Fig. 1). Antibodies that share common escape mutants were inferred to recognize a
common epitope on the viral protein. For instance, in Fig. 1 antibodies 2 to 5 recognize a similar
epitope since they are escaped by many of the same viral mutants.

Based on these studies, the H3 influenza hemagglutinin was divided into five distinct
epitopes (Wiley, Wilson and Skehel 1981; Skehel et al. 1984). This type of coarse epitope map also
provided a straightforward way to conceptualize viral escape from polyclonal serum. Unlike
monoclonal antibodies, polyclonal serum can contain multiple antibodies, each recognizing
discrete epitopes. As such, any variant that fully escapes polyclonal serum would need to
escape antibodies binding at multiple epitopes.

The concept of dividing viral antigens into distinct epitopes has proven to be very useful
and continues to be applied to new viruses such as SARS-CoV-2 (Barnes et al. 2020; Piccoli et al.
2020; Cao et al. 2022). However, grouping antibodies by epitopes is a simplifying approximation,
as two antibodies targeting a similar epitope may be escaped by slightly different mutations,
and some antibodies may bind idiosyncratic regions outside or between major epitopes (Doud,
Hensley and Bloom 2017; Piccoli et al. 2020; Greaney et al. 2021b, 2021c; Starr et al. 2021a). For
instance, in Fig. 1 antibodies 6 and 12 are grouped into the same epitope even though some viral
mutants only escape one of these two antibodies. Nonetheless, the concept of epitopes provides
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a valuable way to interpret polyclonal antibody escape and forms the basis of the quantitative
approach we take here.

An epitope-based model of viral escape from multiple antibodies
Given the concept of epitopes described above, consider viral escape from multiple antibodies.
For simplicity, consider a hypothetical polyclonal mixture of just two antibodies (1 and 2) that
bind distinct epitopes on a viral antigen. The functional activities of these two antibodies in the
polyclonal mixture can differ due to antibody-intrinsic factors (e.g., binding affinity and
neutralization potency) and extrinsic factors (e.g., antibody concentration). In our hypothetical
antibody mixture, we assume antibody 1 has a higher functional activity than antibody 2.

To understand how mutations affect viral escape from this hypothetical two-antibody
mixture, consider the viral variants in Fig. 2. In the first variant, a single mutation escapes
antibody 1, while leaving antibody 2 binding intact. Since antibody 1 has a higher functional
activity, losing its contribution causes marked escape from the overall antibody mixture (Fig.
2A). However, a viral variant with a single mutation that escapes antibody 2 but leaves antibody
1 binding intact has little escape from the overall antibody mixture, since the more active
antibody 1 can still bind (Fig. 2B).

Importantly, this framework makes distinct predictions about the effects of multiple
mutations depending on whether they are in the same or different epitopes. Imagine if the viral
variant has two mutations in antibody 1’s epitope. If one of the mutations is already sufficient to
mostly escape binding by antibody 1, then the second mutation will have a largely redundant
effect (Fig. 2C). It follows that multiple escape mutations in the same epitope will have
diminishing returns—even when all antibody 1 molecules are unbound, antibody 2 can still
bind. However, the situation is very different if the viral variant gains mutations in the epitopes
of both antibody 1 and antibody 2. Since both antibodies are escaped, the polyclonal mixture
will have no activity (Fig. 2D). Note that the principles described above can be readily extended
to mixtures of antibodies that target more than two distinct epitopes.

The simple hypothetical example described above is mirrored in real-world data by
Kuzmina et al. (Kuzmina et al. 2021) on SARS-CoV-2 escape from neutralization by polyclonal
serum pooled from vaccinated individuals (Fig. 3). The K417N mutation, which is located in the
subdominant class 1 epitope (Greaney et al. 2021b) of the SARS-CoV-2 receptor binding domain
(RBD) has little effect on polyclonal antibody escape. But E484K, which is located in the
immunodominant class 2 epitope (Greaney et al. 2021b), causes a substantial drop in polyclonal
antibody neutralization. But while K417N has no effect on its own, combining K417N with
E484K causes a larger drop in neutralization than E484K alone, presumably due to escape from
two distinct groups of antibodies in the sera targeting each epitope (Fig. 3).

Biophysical modeling of polyclonal antibody escape
Here we formalize the epitope-based model of polyclonal antibody escape described above in
terms of experimental measurables and relevant biophysical quantities. First, let be the𝑝(𝑣, 𝑐)
fraction of viral variant that escapes a mixture of polyclonal antibodies at concentration . The𝑣 𝑐
quantity is an experimental measurable, for instance from a neutralization assay.𝑝(𝑣, 𝑐)
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Additionally, suppose the antibodies can bind to one of epitopes on the viral antigen. Let𝐸
be the fraction of variant v that have an unbound epitope when the antibody mixture𝑈

𝑒
(𝑣, 𝑐) 𝑒

is at concentration . Assuming antibodies bind independently without competition, we can𝑐
express as:𝑝(𝑣, 𝑐)

(1) 𝑝 (𝑣, 𝑐) =  
𝑒 = 1

𝐸

∏ 𝑈
𝑒
(𝑣, 𝑐)  

Note that relaxing the assumption that antibodies bind independently without competition to
each epitope has little effect on (see Appendix).𝑝(𝑣, 𝑐)

Next, we can define in terms of underlying biophysical properties. Again𝑈
𝑒
(𝑣, 𝑐)

assuming that there is no competition among antibodies binding to different epitopes, and
assuming that the antibody binding to a given epitope e can be described by a Hill curve with
coefficient of one, then is given by a Hill equation (Einav and Bloom 2020):𝑈

𝑒
(𝑣, 𝑐)

𝑈
𝑒
(𝑣, 𝑐) = 1

1 + 
𝑐𝑓

𝑒

𝐾
𝑑,𝑒

(𝑣)

= 1

1 + 𝑐𝑓
𝑒
𝑒𝑥𝑝

−∆𝐺
𝑒
(𝑣)

𝑅𝑇( )
(2)= 1

1 + 𝑐 𝑒𝑥𝑝 −𝜙
𝑒
(𝑣)( )

where – represents the functional activity of antibodies to epitope against variant . Note𝜙
𝑒
(𝑣) 𝑒 𝑣

that depends on both antibody-intrinsic factors (i.e., affinity as quantified by the free𝜙
𝑒
(𝑣)

energy of binding ) and extrinsic factors (i.e., relative fraction of antibodies in the mix∆𝐺
𝑒
(𝑣) 𝑓

𝑒

that bind epitope ). The overall functional activity directed to an epitope is a combination of𝑒

these intrinsic and extrinsic factors, and can be expressed as . Note𝜙
𝑒

𝑣( ) =  
∆𝐺

𝑒
(𝑣)

𝑅𝑇 − 𝑙𝑛 𝑓
𝑒( )

that is the product of the molar gas constant and the temperature, and𝑅𝑇 𝐾
𝑑,𝑒

(𝑣) =  𝑒𝑥𝑝
∆𝐺

𝑒
(𝑣)

𝑅𝑇( )
is the dissociation constant. Larger values of – indicate that antibodies that bind epitope e𝜙

𝑒
(𝑣)

have a higher functional activity against variant v.
Lastly, we can write in terms of the contributions of specific mutations. To do this,𝜙

𝑒
(𝑣)

assume that mutations have additive effects on the free energy of binding for antibodies
targeting any given epitope (Otwinowski 2018; Otwinowski, McCandlish and Plotkin 2018).𝑒
Specifically, let be the functional activity of antibodies that bind epitope on the unmutated𝑎

𝑤𝑡,𝑒
𝑒

viral antigen, with larger values of indicating stronger antibody activity targeting this𝑎
𝑤𝑡,𝑒

epitope. Let be the extent to which mutation reduces antibody binding or neutralization𝛽
𝑚,𝑒

𝑚

at epitope e, with larger values of corresponding to a larger contribution to antibody escape.𝛽
𝑚,𝑒

So, can also be written as:𝜙
𝑒
(𝑣)

(3)𝜙
𝑒
(𝑣) =  − 𝑎

𝑤𝑡,𝑒
+

𝑚 = 1

𝑀

∑ β
𝑚,𝑒

𝑏(𝑣)
𝑚
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where is one if variant has mutation and 0 otherwise, and m ranges over all M𝑏(𝑣)
𝑚

𝑣 𝑚

possible mutations. Taken together, the above equations relate the pre-mutation functional
activity of antibodies at each epitope ( ) and the antibody escape effects of individual𝑎

𝑤𝑡,𝑒

mutations at each epitope ( ) to the experimentally measured fraction of variants𝛽
𝑚,𝑒

𝑝(𝑣, 𝑐) 𝑣

that escape an antibody mixture at concentration .𝑐

Fitting biophysical models to deep mutational scanning data
We reasoned that the parameters of our biophysical model could be learned from experiments
that measure for a large number of variants, containing most possible single mutants and𝑝(𝑣, 𝑐)
a sizable number of multiple mutants (Fowler et al. 2010; Kinney et al. 2010). These rich
genotype-phenotype measurements can be obtained by viral deep mutational scanning. Briefly,
viral deep mutational scanning involves generating a large library of viral or viral protein
variants that contain single or multiple amino acid mutations, incubating this library with
antibodies or sera, and using deep sequencing to identify which variants successfully escape
binding or neutralization (Dingens et al. 2017; Lee et al. 2019; Wu et al. 2020; Greaney et al. 2021a,
2021c). Although this approach can only measure an infinitesimal fraction of all combinations of
mutations, it does measure for each mutation in many different backgrounds, which𝑝(𝑣, 𝑐)
should be sufficient for revealing the epitopes targeted by polyclonal antibody mixtures and
their associated escape mutations.

To fit our biophysical model using deep mutational scanning data, we created a Python
software package named polyclonal that uses gradient-based optimization to fit the model to a
large set of viral variants v and their corresponding experimentally measured escape values,

. This software package estimates the and parameters that best predict the𝑝(𝑣, 𝑐) 𝑎
𝑤𝑡,𝑒

𝛽
𝑚,𝑒

measured under tunable and biologically motivated constraints. We typically enforce a𝑝(𝑣, 𝑐)
sparsity constraint that encourages most values to be close to 0, as most mutations to a viral𝛽

𝑚,𝑒

antigen should not mediate antibody escape. We also usually enforce an evenness constraint, as
most mutations to a site that mediates antibody escape at a specific epitope tend to have similar
effects (or ’s). The software itself is available at https://github.com/jbloomlab/polyclonal𝛽

𝑚,𝑒

and detailed documentation is at https://jbloomlab.github.io/polyclonal. The software also
provides methods to visualize the resulting mutation-level escape values in interactive plots as
described in the documentation.

Validation with computationally simulated deep mutational scanning data
To validate the performance of our software, we simulated a hypothetical polyclonal antibody
mixture that contains antibodies targeting three major neutralizing epitopes (class 1, 2, and 3) on
the SARS-CoV-2 RBD (Fig. 4A) (Barnes et al. 2020; Greaney et al. 2021b). We assigned each
epitope a different pre-mutation functional activity ( ) based on the order of typical𝑎

𝑤𝑡,𝑒

neutralizing activities against these epitopes in actual human polyclonal serum (class 2 > class 3
> class 1) (Greaney et al. 2021b) (Fig. 4B). Next, we assigned values using prior deep𝛽

𝑚,𝑒

mutational scanning studies (Starr et al. 2021b, 2021c) that measured the effects of all single RBD
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mutations on escape from prototypical monoclonal antibodies targeting each epitope (Fig. 4C).
Specifically, we used LY-CoV016 (etesevimab) for the prototype class 1 antibody, LY-CoV555
(bamlanivimab) for class 2, and REGN10987 (imdevimab) for class 3 (Starr et al. 2021b, 2021c).
Note the site of greatest total escape (the sum of positive values at a site) is 417 for class 1,𝛽

𝑚,𝑒

484 for class 2, and 444 for class 3.
Based on this hypothetical polyclonal antibody mixture, we computationally simulated a

realistic deep mutational scanning dataset containing 30,000 RBD variants. These variants
contained an average of two amino acid mutations, with the number of mutations per variant
following a Poisson distribution (Supp. Fig. 1A). These variants also only contained mutations
at sites found to be functionally tolerated in prior deep mutational scanning, and these sites
were well-represented in the simulated dataset (Supp. Fig. 1B). We then calculated the true

for each variant using our biophysical model with the and defined above. We𝑝(𝑣, 𝑐) 𝑎
𝑤𝑡,𝑒

𝛽
𝑚,𝑒

did this for three concentrations of the hypothetical serum that represent the IC97.5, IC99.9, and
IC99.998 against the unmutated RBD (Supp. Fig. 1C). Lastly, we added gaussian noise, N(0,
0.05), into the measurements and then truncated the noisy values to be between 0 and 1𝑝(𝑣, 𝑐)
to reflect experimental errors and built in a 1% probability of adding or subtracting a mutation
from a variant to portray sequencing errors.

We found that polyclonal could successfully infer the underlying properties of our
hypothetical polyclonal antibody mixture when fit to the noisy, simulated deep mutational
scanning dataset. The predicted values were nearly identical to the true values (Fig.𝑎

𝑤𝑡,𝑒
𝑎

𝑤𝑡,𝑒

5A), suggesting that we can deconvolve the dominance hierarchy of epitopes targeted by a
polyclonal antibody mixture. Furthermore, the predicted values strongly correlated with𝛽

𝑚,𝑒

the true values (Fig. 5B, R2=0.63 for class 1, R2=0.91 for class 2, R2=0.85 for class 3),𝛽
𝑚,𝑒

indicating we can learn the effects of mutations on antibody escape at each epitope. Note the
lower correlation for the class 1 epitope can be attributed to its relative subdominance. As
shown in Fig. 2B, mutations to a subdominant epitope manifest little effect on the functional
activity of the overall antibody mixture when the immunodominant epitopes remain unaffected,
and so only have measurable effects in the subset of mutants with mutations in more dominant
epitopes. Nonetheless, our approach can still learn these subdominant effects reasonably well.
Taken together, these results demonstrate that noisy ’s measured by deep mutational𝑝(𝑣, 𝑐)
scanning can be modeled to reveal fine details of polyclonal antibody mixes: the extent to which
antibodies target specific epitopes on a viral antigen and the extent to which mutations escape
antibodies to each epitope.

We used the fit biophysical model to predict the extent to which variants that were not
seen in our experiments will escape the same polyclonal antibody mixture. To do this, we
simulated an independent deep mutational scanning dataset, grounded in the same true 𝑎

𝑤𝑡,𝑒

and values, but with a higher number of mutations (three) on average per variant (Supp.𝛽
𝑚,𝑒

Fig. 1A). We found that our fit model could predict the IC90 (the concentration required for
= 0.1) of each variant in the independent dataset with high accuracy (Fig. 5C, R2=0.98).𝑝(𝑣, 𝑐)
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Ultimately, polyclonal can be applied to make predictions over all variants with mutations that
were observed by deep mutational scanning.

Model fitting is dependent on experimental design
We next sought to clarify the experimental conditions for deep mutational scanning that lead to
accurate model fitting with polyclonal. To that end, we systematically explored the impact of
three important experimental conditions on model fitting through simulation (see Methods).

We first examined the effect of library mutation rate, an important consideration for
library design because variants containing multiple mutations are key to revealing epitopes. If a
library only contained variants with single mutations, it should not be possible to detect the
presence of subdominant epitopes, due to the phenomenon in Fig. 2B. Indeed, we found that a
library containing 30,000 variants with an average of one mutation could only infer the 𝛽

𝑚,𝑒

values for immunodominant class 2 epitope (Fig. 6A), highlighting the need for including
multiply mutated variants. On the other hand, a library containing 30,000 variants with two
mutations on average was sufficient for inferring the values at all three epitopes, but the𝛽

𝑚,𝑒

accuracy improved as the mutation rate increased (Fig. 6A), consistent with our expectation that
greater coverage of variants with multiple epitope mutations is helpful. Note that these
simulations do not capture the real-world fact that variants will be increasingly less likely to be
functional as they accumulate more mutations.

Next, we investigated the effect of library size, another important library design
consideration. If there are too few variants in the library, mutations may not be observed in
enough backgrounds to be able to deconvolve their effects on different epitopes. Above we
showed that a simulated library with 30,000 variants with three mutations on average could
accurately infer the values at all three epitopes. Therefore, we set out to determine the𝛽

𝑚,𝑒

minimum number of variants, with three mutations on average, required to accurately infer the
values at all three epitopes. We found that at least 20,000 functional variants were required𝛽

𝑚,𝑒

to accurately infer the values at each epitope (Fig. 6B). We also noticed the values of𝛽
𝑚,𝑒

𝛽
𝑚,𝑒

immunodominant epitopes can be inferred with fewer variants (Fig. 6B), consistent with the
idea that effects of mutations at subdominant epitopes can only be observed in the backgrounds
where the immunodominant epitope is already mutated.

Lastly, we explored the effect of antibody concentration, an important consideration for
deep mutational scanning selections. If the concentration is too high, all variants will be
neutralized. If the concentration is too low, there will be little measurable effect from the
mutations. To test the effect of different concentrations, we again used the simulated library
containing 30,000 variants with three mutations on average. First, we tested if data collected at a
single concentration was sufficient. We found that a single concentration of IC99.9 against the
unmutated RBD was most effective at inferring the values for each epitope, but there does𝛽

𝑚,𝑒

indeed exist a fine balance (Fig. 6C). Particularly for the subdominant class 1 epitope, the
accuracy is lower when the concentration is too low or too high. We then tested if model fitting
could be improved by including additional concentrations flanking the IC99.9, spanning the
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IC91.443 to IC99.998. Indeed, we found that the accuracy increases as the number of
concentrations measured increases (Fig. 6D), consistent with our expectation that obtaining
more data points along the binding curve is helpful for quantifying the effects of mutations.

Discussion

We have described a biophysical model of viral escape from polyclonal antibodies. Notably, this
model is composed of easily interpretable parameters that capture the interactions between
antibodies and the viral epitopes they bind. In addition, we developed a software package that
can infer these parameters using deep mutational scanning data. Using a simulated deep
mutational scanning dataset, we demonstrated that this approach can infer true parameters
from noisy experiments if the deep mutational scanning experiment is appropriately designed.

There are several limitations to our approach. Grouping antibodies by discrete epitopes
is an approximation because each antibody is unique, however, decades of experimental work
has shown that an epitope-based representation offers a useful way to interpret viral escape.
Our model also does not explicitly consider the fact that there are multiple antigens per virion,
and instead models escape as simply being the state where no antibodies bind a single idealized
antigen. Additionally, our model assumes a specific shape of antigenic epistasis: mutations have
additive effects on binding affinity at each epitope, but can manifest non-linear effects on the
overall measured phenotype (e.g., neutralization) due to both the non-linear Hill curves that
relate binding affinity to total fraction bound at an epitope and the product of these fractions
across epitopes. Note that the single-epitope version of our model is similar to the global
epistasis models that have proven so useful for interpreting some other types of deep
mutational scanning data (Otwinowski, McCandlish and Plotkin 2018; Tareen et al. 2022). Our
model also assumes that antibody binding to one epitope does not influence the affinity of
antibodies to other epitopes, and that the Hill curves have a coefficient of one. It is possible that
these assumptions could be relaxed in elaborated versions of our model. We expect that these
assumptions will hold reasonably well for viral variants with modest numbers of mutations, but
may not extrapolate accurately to variants with dozens of mutations relative to the parental
strain used for the deep mutational scanning experiment.

Despite these limitations, our model not only predicts the escape potential of viral
variants with arbitrary combinations of mutations that are observed in a simulated deep
mutational scanning library—it also clarifies how escape mutations combine to determine the
magnitude of viral escape. While this paper only considers simulated data, we envision that our
model can be applied to appropriately designed deep mutational scanning experiments to
address two main questions: (1) delineating the epitopes targeted by polyclonal serum, and (2)
predicting the antigenic properties of new variants with arbitrary combinations of mutations.
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Methods

Model fitting
Our goal is to estimate the biophysical model parameters that best predict the deep mutational scanning
escape measurements under biologically motivated constraints. We defined a loss function that is robust
to outliers:

𝐿 =  
𝑣,𝑐
∑ ℎ

δ
𝑙𝑜𝑠𝑠

𝑝(𝑣, 𝑐) −  𝑝(𝑣, 𝑐)[ ]
where is the actual antibody escape fraction for variant at concentration , is the predicted𝑝(𝑣, 𝑐) 𝑣 𝑐 𝑝(𝑣, 𝑐)
antibody escape fraction for variant at concentration , and is a scaled Pseudo-Huber function,𝑣 𝑐 ℎ

δ
𝑙𝑜𝑠𝑠

(𝑥)

defined as:

ℎ
δ

𝑙𝑜𝑠𝑠

(𝑥) =  
δ2 1 + (𝑥/δ)2−1( )

δ

where is a parameter that indicates when the loss transitions from being quadratic (L2-like) to linearδ
(L1-like). Note that the loss is mostly L2-like when , the residual, is small. However, the loss transitions𝑥
to become more L1-like when is large, making it more robust to outliers. To minimize this loss function,𝑥
we use the gradient-based L-BFGS-B method implemented in scipy.optimize.minimize.

Additionally, we implemented penalty terms to regularize the parameters to behave under
biologically motivated constraints. For detailed information on these penalties and model fitting, see:
https://jbloomlab.github.io/polyclonal/optimization.html.

Lastly, fitting the model requires specifying the number of epitopes a priori. However, it is not
possible to know the number of epitopes that are targeted by antibodies in polyclonal serum in practice.
Our approach to resolving this is similar to the “elbow method” commonly used to determine the optimal
number of clusters in k-means clustering. We start by fitting a model with one epitope and iteratively fit
models with an increasing number of epitopes. At some point, the N-th epitope becomes redundant. This
is evidenced by a highly negative value (i.e., if antibodies existed against this epitope, they are never𝑎

𝑤𝑡,𝑒

bound) and all near-zero values, indicating that the previous fit model, containing N-1 epitopes, is𝛽
𝑚,𝑒

the one that best describes the polyclonal mixture. To view how this approach was applied to the
simulated RBD example, see:
https://jbloomlab.github.io/polyclonal/specify_epitopes.html.

Experimental design simulation
We computationally simulated deep mutational scanning libraries based on the hypothetical polyclonal
antibody mixture shown in Fig. 4. All libraries contained 30,000 variants, but differed by their mutation
rate with variants containing an average of one, two, three, or four mutations. Furthermore, the number
of mutations per variant in each library followed a Poisson distribution. Variant escape was also
simulated under six concentrations in each library. These concentrations represented the IC91.443,
IC97.488, IC99.441, IC99.9, IC99.985, and IC99.998 against the unmutated RBD antigen. For more details
on how these experiments were simulated, see:
https://jbloomlab.github.io/polyclonal/simulate_RBD.html.

To make comparisons about model fitting, models were fit with identical parameters except for
the experimental variable of interest: library mutation rate, library size, and antibody concentration.

To determine the impact of library mutation rate, models were fit to simulated datasets for
libraries containing one, two, three, or four mutations on average. All datasets contained 30,000 variants
and were measured at three different concentrations.
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To determine the impact of library size, models were fit to simulated datasets containing
different-sized subsets of variants that were randomly sampled from a library containing an average of
three mutations per variant and measured at three different concentrations.

To determine the impact of antibody concentration, models were fit to simulated datasets to a
library measured at one or multiple antibody concentrations. This library contained 30,000 variants and
three mutations on average per variant.

For more information, see: https://jbloomlab.github.io/polyclonal/expt_design.html.

Code and Data Availability
Software source code, along with code and data that reproduce the figures (except Fig. 3), are available at:
https://github.com/jbloomlab/polyclonal
Code and data for reproducing the neutralization curves in Fig. 3 are available at:
https://github.com/jbloomlab/polyclonal-paper
Software documentation is available at:
https://jbloomlab.github.io/polyclonal
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Figure 1. Antibodies can be grouped into epitopes based on whether they share viral escape
mutants. Heatmap displaying classic experimental data extracted from Webster and Laver
(Webster and Laver 1980). Influenza virus mutants (a-p) were selected using individual
antibodies from a large panel of monoclonal antibodies. Each viral mutant was then tested to
see if it was neutralized (white) or escaped (red) by the other antibodies in the panel. Antibodies
were then grouped into epitopes based on their shared escape mutants.
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Figure 2. Viral escape from a hypothetical mixture of antibodies targeting two different
epitopes. A) A single mutation in the dominant (orange) epitope substantially decreases but
does not eliminate binding by the antibody mixture. B) A single mutation in the subdominant
epitope (blue) has minimal effect on binding by the overall antibody mixture since binding of
antibodies to the dominant epitope is unaffected. C) Multiple mutations in the dominant
epitope have an effect that is no greater than a single mutation in this epitope since the
remaining binding is due to antibodies targeting the subdominant epitope. D) Mutations in
both epitopes completely escape binding by the antibody mixture. For each row, the plots show
the fraction of antigens unbound by antibody as a function of antibody concentration. The left
plot shows the fraction unbound for individual epitopes, and the right shows the overall
fraction unbound. The dashed lines indicate binding to the unmutated antigen, while solid lines
indicate binding to the mutated antigen.
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Figure 3. Mutations at multiple epitopes have a synergistic effect on viral escape in real
experimental data. A) Structure of the SARS-CoV-2 RBD highlighting locations of the K417N
and E484K mutations in the class 1 and 2 epitopes, respectively. B) Neutralization of unmutated
SARS-CoV-2 spike, the K417N and E484K single mutants, and the double mutant against pooled
serum from vaccinated individuals. Note how K417N alone has little effect on neutralization,
but does cause substantial additional escape in the background of E484K. Experimental data
was taken from Kuzmina et al. (Kuzmina et al. 2021) and replotted here.
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Figure 4. A hypothetical polyclonal antibody mixture targeting the SARS-CoV-2 RBD. A)
Structures of the SARS-CoV-2 RBD in complex with key helices of ACE2. RBD sites are colored
to indicate the extent to which they mediate escape from antibodies targeting each epitope in
the hypothetical polyclonal mixture. B) Pre-mutation functional activities of antibodies (awt,e) for
each epitope in the mixture. Note the class 2 epitope is immunodominant, whereas the class 1
epitope is subdominant. C) Sum of positive mutation escape effects (βm,e) at each RBD site for
each epitope. An interactive version of a heatmap showing all βm,e values is available at
https://jbloomlab.github.io/polyclonal/visualize_RBD.html.
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Figure 5. Model validation using a computationally simulated deep mutational scanning
dataset. A) Pre-mutation functional activities of antibodies (awt,e) inferred by the fit model match
the actual awt,e for each epitope. B) Mutation escape effects (βm,e) inferred by the fit model
strongly correlate with the actual βm,e for each epitope used in the simulation. Mutation escape
effects for the immunodominant class 2 epitope are most correlated, while escape effects for the
subdominant class 1 epitope are least correlated. C) The IC90’s predicted by the fit model
strongly correlate with the actual IC90’s of an independently simulated dataset with a higher
mutation rate (three mutations on average per variant).
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Figure 6. Model fitting on simulated dataset depends on experimental design. A) Correlation
between inferred and actual mutation escape effects (βm,e) improves as the average number of
mutations per variant (assuming a Poisson distribution) in the library increases. In particular,
the subdominant epitopes (epitopes 1 and 3) can only be accurately fit in libraries with mutation
rates higher than one. B) Correlation between inferred and actual mutation escape effects (βm,e)
improves as the number of functional variants in the library increases. C) Correlation between
inferred and actual mutation escape effects (βm,e) depends on the concentration of the antibody
mixture. D) Correlation between inferred and actual mutation escape effects (βm,e) improves as
the number of antibody concentrations measured and used to fit the model increases. For details
on concentrations used, see: https://jbloomlab.github.io/polyclonal/concentration_set.html.
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Supplementary Figure 1. RBD dataset simulation details. A) Distribution of the number of
amino-acid mutations per variant in each simulated library. B) Frequency of mutations at each
site on the RBD in each simulated library. C) Distribution of antibody escape fractions, , in𝑝(𝑣, 𝑐)
each simulated library across six concentrations.
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Appendix

We have described a biophysical model that assumes a polyclonal antibody mixture can be
divided into independent groups of antibodies that bind to distinct epitopes without
competition. Here we interrogate the validity of this assumption, being cognizant of the
observation that realistic viral epitopes are often overlapping and therefore not distinct. To do
this, we draw from statistical mechanics principles to compare the antibody escape fractions
predicted by our independent epitope model and an identically formulated model that instead
assumes all epitopes are overlapping.

1. Monoclonal antibody case
Before considering the polyclonal antibody case, we first consider the case of a monoclonal
antibody that binds a viral antigen. Here, the viral protein can exist in two microstates: bound or

unbound by the antibody. The Boltzmann weight is 1 for the unbound state and for the𝑐
𝐾

𝑑

bound state, where is the antibody concentration and is the dissociation constant of𝑐 𝐾
𝑑

antibody-antigen binding. These weights can be derived using the steady-state approximation
(Einav and Bloom 2020). We can then define the partition function as:Ξ

Ξ =  
𝑖

∑ 𝑍
𝑖

= 𝑍
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

+ 𝑍
𝑏𝑜𝑢𝑛𝑑

where represents the Boltzmann weights of the microstates. Given this, the probability of a𝑍
𝑖

𝑖

viral antigen being unbound is:

𝑝
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

=  
𝑍

𝑢𝑛𝑏𝑜𝑢𝑛𝑑

Ξ = 1
1 + 𝑐

𝐾
𝑑

2. Polyclonal antibody case
For a polyclonal antibody mixture, we modify to represent the concentration of the polyclonal𝑐
antibody mixture. We assume that the polyclonal antibody mixture contains antibodies that
bind one of epitopes. As follows, the Boltzmann weight of the state where epitope is bound𝐸 𝑒

is modified to , where represents the fraction of antibodies in the mixture that target
𝑐𝑓

𝑒

𝐾
𝑑,𝑒

𝑓
𝑒

epitope , and is the dissociation constant of antibodies binding to epitope .𝑒 𝐾
𝑑,𝑒

𝑒

2.1 Two distinct epitopes
In a polyclonal antibody mixture, new microstates exist where multiple epitopes are bound by
antibodies. For example, we can consider a viral antigen that contains two distinct epitopes (1
and 2) that are targeted by polyclonal antibodies. In addition to the microstates where a single
epitope is bound, we now require an additional microstate where both epitopes are bound. The
Boltzmann weight for this new microstate is:

𝑍
12, 𝑏𝑜𝑢𝑛𝑑

=
𝑐𝑓

1

𝐾
𝑑,1

( ) 𝑐𝑓
2

𝐾
𝑑,2

( ) 
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We can then rewrite the partition function as:Ξ

Ξ =
𝑖

∑ 𝑍
𝑖

= 𝑍
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

+ 𝑍
1, 𝑏𝑜𝑢𝑛𝑑

+ 𝑍
2, 𝑏𝑜𝑢𝑛𝑑

+ 𝑍
12, 𝑏𝑜𝑢𝑛𝑑

and the probability of a viral antigen being unbound is:

𝑝
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

=
𝑍

𝑢𝑛𝑏𝑜𝑢𝑛𝑑

Ξ = 1

1 + 
𝑐𝑓

1

𝐾
𝑑,1

 +
𝑐𝑓

2

𝐾
𝑑,2

+
𝑐𝑓

1

𝐾
𝑑,1

( ) 𝑐𝑓
2

𝐾
𝑑,2

( )
= 1

1 + 
𝑐𝑓

1

𝐾
𝑑,1

 ( ) 1

1 + 
𝑐𝑓

2

𝐾
𝑑,2

 ( ) 

Note that this is the biophysical model that is described in the main text.

2.2 Two overlapping epitopes
In 2.1, the two epitopes were distinct and there was no competition amongst antibodies.
However, if the epitopes are overlapping and there is competition, then the microstate where
both epitopes are bound ( ) can no longer exist. In this case, the probability of a viral𝑍

12, 𝑏𝑜𝑢𝑛𝑑

antigen being unbound is:

𝑝
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

=
𝑍

𝑢𝑛𝑏𝑜𝑢𝑛𝑑

Ξ = 1

1 + 
𝑐𝑓

1

𝐾
𝑑,1

 +
𝑐𝑓

2

𝐾
𝑑,2

2.3 Extending beyond two epitopes
The same logic applies to viral antigens with more than two epitopes targeted by antibodies. For
example, we can write for the case of three distinct epitopes as:𝑝

𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑝
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

=
𝑍

𝑢𝑛𝑏𝑜𝑢𝑛𝑑

Ξ = 1

1 + 
𝑐𝑓

1

𝐾
𝑑,1

 +
𝑐𝑓

2

𝐾
𝑑,2

+
𝑐𝑓

3

𝐾
𝑑,3

+
𝑐𝑓

1

𝐾
𝑑,1

( ) 𝑐𝑓
2

𝐾
𝑑,2

( )+
𝑐𝑓

1

𝐾
𝑑,1

( ) 𝑐𝑓
3

𝐾
𝑑,3

( )+
𝑐𝑓

2

𝐾
𝑑,2

( ) 𝑐𝑓
3

𝐾
𝑑,3

( )+
𝑐𝑓

1

𝐾
𝑑,1

( ) 𝑐𝑓
2

𝐾
𝑑,2

( ) 𝑐𝑓
3

𝐾
𝑑,3

( )
= 1

1 + 
𝑐𝑓

1

𝐾
𝑑,1

 ( ) 1

1 + 
𝑐𝑓

2

𝐾
𝑑,2

 ( ) 1

1 + 
𝑐𝑓

3

𝐾
𝑑,3

 ( ) 

and the case of three overlapping epitopes as:

𝑝
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

=
𝑍

𝑢𝑛𝑏𝑜𝑢𝑛𝑑

Ξ = 1

1 + 
𝑐𝑓

1

𝐾
𝑑,1

 +
𝑐𝑓

2

𝐾
𝑑,2

+
𝑐𝑓

3

𝐾
𝑑,3

Overall, we found that the predicted does not differ by much between the independent𝑝
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

and overlapping epitope models under realistic ’s, ’s, and ’s. However, the predicted𝑐 𝑓 𝐾
𝑑

becomes more discordant between the two models as the number of epitopes increases,𝑝
𝑢𝑛𝑏𝑜𝑢𝑛𝑑

given the number of microstates with multiply bound epitopes increases. In practice, we only fit
models to a handful of epitopes and not all of them will overlap. As such, we maintain that the
independent epitope assumption is appropriate. To interactively explore how differs𝑝

𝑢𝑛𝑏𝑜𝑢𝑛𝑑

between the two models, see https://jbloomlab.github.io/polyclonal/partition_function.html.
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