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Abstract: Aging is the key risk factor for loss of cognitive function and neurodegeneration but 
our knowledge of molecular dynamics across the aging brain is very limited. Here we perform 25 
spatiotemporal RNA-seq of mouse brain aging, encompassing 847 samples from 15 regions 
spanning 7 ages. We identify a brain-wide gene signature representing aging in glia with spatially-
defined magnitudes. By integrating spatial and single-nuclei transcriptomics, we reveal that glia 
aging is profoundly accelerated in white matter compared to cortical areas. We further discover 
region-specific expression changes in specialized neuronal populations. Finally, we discover 30 
distinct clusters of brain regions that differentially express genes associated with 3 human 
neurodegenerative diseases, highlighting regional aging as a potential modulator of disease. Our 
findings identify molecular foci of brain aging, providing a foundation to target age-related 
cognitive decline. 
One-Sentence Summary: Cartography of gene expression changes across the central nervous 35 
system of mice identifies hotspots of accelerated brain aging. 
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Main Text: Aging is the predominant risk factor for cognitive dysfunction (1, 2) and several 

neurodegenerative disorders, including Alzheimer’s disease (AD) and Parkinson’s disease (PD) 

(3–5). It remains unclear though, how aging contributes to the development of these distinct 

diseases of the brain, given their differences in pathological hallmarks, time of onset, and, notably, 

the regions affected (4). A quantitative understanding of the dynamics of aging across the brain 5 

may provide new insight into the relationship between aging and neurodegeneration. Interestingly, 

neuroimaging studies using structural and functional magnetic resonance imaging (MRI) data 

indicate that aging impacts the brain in a region-specific manner (6, 7). However, these structural 

manifestations provide limited insight into the underlying molecular alterations occurring during 

brain aging. In contrast, changes in gene expression can be a readout of cellular deterioration and 10 

molecular processes accompanying aging, permitting quantitative comparisons of aging rates 

between tissues (8) and cell types (9). Previous studies have profiled age-related gene expression 

changes in human brain tissue, yet these microarray-based experiments capture a limited set of 

transcripts and cover usually one to four regions (10, 11) or quantify the transcriptome at low 

temporal resolution (12, 13). Expression profiling during human brain aging is particularly 15 

challenging since it can take hours to days before postmortem tissue is stabilized (13–15). 

Alternatively, expression profiling in model organisms like M. musculus enables quantitative data 

with minimal confounding factors, but comprehensive studies covering more than a few regions 

and at high temporal resolution (16–19) do  - to our knowledge - not exist.  

 20 

Results 

Spatiotemporal quantification of age-related gene expression across the mouse brain 

To obtain a deep molecular understanding of the spatiotemporal changes of the aging 

mammalian brain, we selected 15 brain regions in the mouse with critical functions in cognition, 
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whole-body metabolic control, or human disease. We punched out brain regions from coronal brain 

sections from the left and right hemisphere, including three cortical regions (motor area, visual 

area and entorhinal cortex; Mot.cor., Vis.cor and Ent.cor, respectively), anterior (dorsal) and 

posterior (ventral) hippocampus (Hipp.ant and Hipp.post., respectively), hypothalamus (Hypoth.), 

thalamus, caudate putamen (part of the striatum; Caud.put.), pons, medulla, cerebellum (Cereb.) 5 

and the olfactory bulb (Olf.bulb). We further isolated three regions that were enriched with the 

corpus callosum (Corp.cal.), choroid plexus (Chor.plx.) and the neurogenic subventricular zone 

(SVZ), (Fig. S1A). We then applied our method to 59 mice (Fig. 1A; n = 3-6 males per age; aged 

3, 12, 15, 18, 21, 26 and 28 months; n = 5 females per age; aged 3, 12, 15, 18 and 21 months; all 

C57BL/6JN strain), resulting in a total of 1,770 samples (885 samples from each hemisphere). 10 

Isolated regions from the left hemisphere were stored, while all right hemisphere regions were 

processed through a custom-built bulk RNA-seq (bulk-seq) pipeline (Fig. 1B, Methods).  We 

achieved robust tissue sampling with high RNA quality while minimizing perfusion artifacts, as 

indicated by consistent RNA yields across samples from the same region (Fig. S1B), median RNA 

integrity numbers of 9.45 out of 10 (Fig. S1C) (20), and a neglectable fraction of reads mapping 15 

to hemoglobin genes (Fig. S1D). In comparison, the UK Brain Expression Consortium, one of the 

largest collections of human brain tissue, reports average RNA integrity numbers of 3.85 for their 

tissue samples (13, 14).  

After quality control, we obtained 847 single-region transcriptomes. Visualization in 

uniform manifold approximation and projection (UMAP) space separated samples by region (Fig. 20 

1C), but not sex or age, which concurred with deterministic shared-nearest-neighbors graph 

clustering and hierarchical clustering (Fig. S2A-E). However, within individual regions, samples 

segregated transcriptionally by age. The comparatively subtle effect of aging on gene expression 
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highlights the necessity for precise isolation of brain tissue to avoid confounding cross-region 

contamination (Fig. 1D and S2A). 

To assess if the isolated regions accurately captured a given brain structure’s transcriptome, 

we analyzed the expression of region-enriched genes (‘marker genes’; Methods and data S1) in a 

publicly-available spatial transcriptomics dataset of an adult male mouse brain (21). To this end, 5 

we combined marker genes of a given region into ‘signatures’ (22) that represent its transcriptional 

fingerprint. For each signature, we calculated a score per spatial transcriptome spot, summarizing 

the expression of marker genes into a single value. Signature scores were distinctly elevated in 

areas corresponding to  the anatomical structures annotated in the Allen brain reference atlas (Fig. 

S3A) (23). Notably, the corpus callosum-derived signature demarcated fiber tracts throughout the 10 

brain, indicating that the sampled transcriptome of this region could be a proxy for white matter 

tracts in general (Fig. S3A). To assess the isolation of the SVZ, we built a signature of activated 

neural stem cells (aNSC) based on marker genes from single-cell data (24) and calculated the score 

per each region. These aNSCs are enriched in neurogenic areas at young age and their number 

declines in old individuals (24). Not only was the score elevated in the aNSC-rich olfactory bulb 15 

and SVZ region but we also found a significant decline with age, thus capturing the loss of 

neurogenesis, a known phenomenon of mouse brain aging (Fig. S3B) (24). In summary, our tissue 

isolation and bulk-seq workflow yielded high-quality transcriptomes that robustly captured a 

region’s gene expression profile across a cohort of mice. The data can be interactively explored at 

https://twc-stanford.shinyapps.io/spatiotemporal_brain_map/. 20 

 

Region identity is linked to expression dynamics during aging 

RNA-seq permits quantitative comparisons of aging rates between organs and cell types 

(8, 19) based on timing and effect size of gene expression shifts. For instance, we found substantial 
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region-dependence in the magnitude and timing of C4b expression (Fig. 1E), a complement 

component and major schizophrenia risk factor (25) that is robustly up-regulated in aged mice (26) 

and models of neurodegeneration (27). Notably, recent single-cell studies revealed that the 

composition of major cell types remains almost constant throughout the aging mouse brain (28), 

thus the expression dynamics observed in bulk are unlikely to be driven primarily by shifts in cell 5 

type abundance. Thus, we were able to use our temporally resolved data to probe the per-region 

impact of aging on gene expression over time, as this could help to identify structures with 

selective vulnerability to old age.  

We performed pairwise differential expression between 3 months and every following age 

group to determine when differentially expressed genes arise (DEGs; used from hereon to refer to 10 

genes that change with age). To focus on high-confidence expression changes that persist with 

advancing age, a gene had to pass the statistical cutoff in at least two comparisons to be classified 

as a DEG (Fig. 1E-G). The general trend across regions indicated an increase of DEGs over time 

that plateaued around 21 months (Fig. 1F,G), yet individual regions varied profoundly with respect 

to their total number of DEGs and the trajectory of DEG accumulation (Fig. 1F and data S2). For 15 

instance, the visual cortex showed a steady increase of DEGs until late age, while the transcriptome 

of the motor cortex already exhibited significant perturbation at 12 months, but there was little 

increase until a sudden jump at 21 months (Fig. 1F,G). In contrast, the transcriptome of the 

entorhinal cortex appeared largely refractory to the effects of age altogether, with only 13 

detectable DEGs in total (Fig. 1F,G). This is in line with human MRI (7) and microarray (29) 20 

studies demonstrating that the entorhinal cortex displays only mild alterations during cognitively 

normal human aging, whereas it frequently exhibits the first amyloid deposition in AD patients 

(30). Together, these results reveal that the effect size of expression shifts during brain aging are 

strikingly region- and time-dependent, highlighting the necessity for region-resolved 
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quantification and analysis. Notably, the regions with the most profound and earliest shifts in gene 

expression were the white matter-rich caudate putamen, cerebellum and corpus callosum, the latter 

showing a tenfold increase in the number of DEGs between 12 and 18 months.  

Since pairwise comparisons treat every gene and age group independently, we next 

validated these results with two independent analyses. First, we probed all genes in the genome 5 

for positive or negative correlation with age (Spearman’s rho ≥ 0.5 or ≤ -0.5, respectively; padj ≤ 

0.05; data S3), thus taking all age groups into account (Fig. 1H). Not only did the regions differ in 

the number of age-correlated genes, confirming that the effect size of age depends on the region, 

but also the corpus callosum and cerebellum were the most impacted, while the entorhinal cortex 

remained largely unaffected (Fig. 1H). As a second validation, we performed weighted gene co-10 

expression network analysis (WGCNA) (31) for each region (Methods; data S4), clustering genes 

into modules which might be driven by similar regulation during aging. We filtered for modules 

exhibiting significant association with age and found the number of modules differed between 

regions. In line with the above results, we found seven or more modules in the corpus callosum, 

cerebellum and motor cortex, whereas we detected no age-related modules in the entorhinal cortex 15 

(data S4). To gain biological insight, we performed cell type- and pathway-enrichment for each 

age-related module and compiled summarized reports for each region as a quick reference resource 

for the scientific community (https://twc-stanford.shinyapps.io/spatiotemporal_brain_map/). 

Interestingly, we discovered in 10 regions at least one module with increased expression over time 

that was enriched for microglia- and inflammation-related genes (Fig 1I,J). Consistent with these 20 

findings, we found a small, common set of differentially regulated genes, including 

neuroinflammatory markers Fcgr2b, Ctss, Cst7 (32) in modules across regions, suggesting the 

presence of a minimal group of co-regulated genes changing throughout the brain. In summary, 

we found the results of three independent analyses (pairwise tests, age-correlation and WGCNA) 
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congruent, demonstrating that the observed effects of aging on the transcriptome are region 

specific. 

 

A minimal gene set forms a common fingerprint of brain aging 

WGCNA analysis results indicated the possibility of a shared gene set that changes during 5 

aging throughout the brain. Such a minimal age-related gene signature would permit quantitative 

comparisons of the rates of change in a region’s transcriptional age. While the vast majority of 

DEGs appeared to change only in three or less regions, indicative of region-selective expression 

patterns, we found 82 genes that were differentially regulated in 10 or more regions (Fig. 2A,B; 

data S2). These were strongly enriched for up-regulated genes with immune-modulatory functions 10 

(data S5), including MHC I-mediated antigen presentation, interferon-response, cell adhesion and 

complement cascade, as well as regulators of mouse microglia activity (Fig. 2C) including Cd22 

(33), Trem2 and Tyrobp (34). Interestingly, of the only 7 down-regulated genes in this set, we 

found protein homeostasis genes Dnajb1, Hsph1  and Ahsa1, as well as collagen synthesis gene 

P4ha1, which is in line with perturbed protein quality control mechanisms as a hallmark of aging 15 

(3) (Fig. 2B). We combined these 82 genes into a common RNA aging signature to calculate their 

expression as a single ‘common aging score’ (CAS; Methods) for each mouse and region. While 

the CAS expectedly showed significant increases in every region (Fig. 2D, Fig. S4A), the shape 

and amplitude of the trajectories varied profoundly. The pace and direction with which the CAS 

changed with age is defined from here on as a region’s ‘CAS velocity’. We employed linear models 20 

to approximate these trajectories, using the slope of the linear fit as a metric to comparatively 

assess the CAS velocity across regions (Fig. 2D,E). Of note, the CAS at baseline (i.e. the offset of 

the linear fit) did not predict a region’s CAS velocity (Fig. 2F). Our analysis revealed a gradient 

of velocities across regions, with the three cortical areas and the olfactory bulb ranking last, at 
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approximately one-third of the velocity of the corpus callosum, the ‘fastest’ region (Fig. 2G). Other 

white matter-rich areas such as the caudate putamen also exhibited high velocities, while the 

hippocampus, thalamus and hypothalamus - some of the most investigated regions in mouse and 

human brain aging research (18) -  ranked slightly below average. The median CAS across all 

regions associated with the animals’ chronological age (Fig. S4B). Yet, the regions’ differing 5 

velocities resulted in increased per-animal variance, indicating that the transcriptional state of this 

gene set becomes profoundly desynchronized across the brain. This appeared to be independent of 

the regions’ anatomical location, as the fast-aging corpus callosum stretches between the slow-

aging cortical areas and hippocampus (Fig. 2H). Interestingly, when we examined the CAS 

trajectories for the interval between 3 and 21 months, we observed moderate but significant 10 

acceleration of the CAS in females compared to males (Fig. 2I, S4C,D). In particular, the 

hypothalamus exhibited the most pronounced acceleration in females (Fig. S4D), with the 

thalamus and corpus callosum indicating a similar trend. These findings are in line with human 

studies reporting more pronounced expression of immune-related genes in the hippocampus and 

cortex of aged women (29, 35). Our data could advance the understanding of several sexual-15 

dimorphisms observed in the brain, including the higher age-specific risk of dementia among 

women (36) in general, and the dynamics of reproductive aging in particular, given the 

hypothalamus’ critical role in regulating reproduction, development and metabolism  (37).  

 

Fiber tracts are foci of accelerated brain aging 20 

Bulk-seq data - even with the regional dissection conducted here - could mask 

transcriptional changes with age that occur in sub-structures of regions, such as specific layers of 

the cortex. We thus aimed to validate our CAS analysis with a fine-resolution method that would 

still capture multiple regions in the same assay. To this end, we performed spatial transcriptomics 
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(Spatial-seq) of the brain across aging, isolating coronal sections from an independent cohort of 

male mice aged 6, 18, and 21 months (Fig. 2J). Using a clustering-based approach to annotate the 

regional identity of Spatial-seq spots (Fig. S5A,B; Methods; data S6) we identified them as 

belonging to the hippocampus, cortex (motor and somatosensory area), thalamus, hypothalamus, 

striatum (including the caudate putamen), choroid plexus and white matter fiber tracts (including 5 

the corpus callosum) (Fig. 2K and S5C-F). Our data demonstrated robust capture of the same 

regions across age groups and individuals (Fig. S5G-L), thus enabling the comparison of DEGs 

found in bulk-seq with spatial-seq data (data S7). We confirmed a more pronounced regulation of 

DEGs in the white matter cluster (equivalent to the dissected corpus callosum region) compared 

to the cortex cluster (equivalent to the motor cortex region), including several of the 82 CAS genes 10 

(Fig. 2L, data S7) such as Trem2 (Fig. 2M). Calculating CAS for each Spatial-seq spot identified 

a distinct, spatially-confined increase of the score along the white matter tracts, including not only 

the corpus callosum but also other fiber tract sub-structures such as the fimbria and internal capsule 

(Fig. 2N,O). In the cortex, however, we observed only a mild increase of CAS with age. In general, 

CAS velocities calculated via bulk-seq and those calculated via spatial-seq data were well-15 

correlated (Fig. 2P), confirming vastly differing aging velocities between proximal regions in-situ.  

 

Heterogeneous velocity of CAS is encoded by glial transcripts  

We next sought to quantify the activity of the CAS genes at the single-cell level to identify 

the cell type(s) that shape the heterogeneous expression dynamics across brain regions. We chose 20 

the anterior hippocampus as a representative region given its intermediate CAS velocity (Fig. 2G), 

utilizing frozen punches from the left hemispheres of the bulk-seq cohort (Fig. 3A). Single-nuclei 

sequencing (nuc-seq) yielded all major cell types, with no evidence for a shift in cell type 

composition with age or sex. We observed the highest baseline CAS in microglia, in line with 
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several of the CAS genes being known immune-response genes (Fig. 2B,C). While the CAS 

showed a statistically significant increase in all cell types (Fig. 3B), including a mild elevation in 

several neuronal populations, the most accentuated increase was observed in microglia (Fig. 3C), 

followed by mature oligodendrocytes, brain endothelial cells (BECs), astrocytes and 

oligodendrocyte progenitor cells (OPCs). Upon closer examination of the 82 genes, it became clear 5 

how the CAS could reflect aging dynamics for several cell types beyond microglia by cell type-

specific or cell type-selective gene expression shifts (Fig. 3D), including Gfap (Astrocytes; Fig. 

S6A), C4b (Astrocytes and mature oligodendrocytes; Fig. S6B-E), Gpr17 (OPCs; Fig. S7A-E) and 

H2-Q7 (BECs; Fig. S7F). Of note, this analysis also demonstrated that aging can induce expression 

of genes that are not detected at young age. For instance, C4b was mostly expressed in astrocytes 10 

at young age, however its expression became detectable and increased foremost with age in mature 

oligodendrocytes (Fig. S6E). Similarly, expression of H2-Q7 only became detectable in BECs with 

old age (Fig. S7F). We validated our findings in an independent dataset, using publicly available 

scRNA-seq data from dissected SVZ of young and old male mice (24) (Fig. S8A). Though 

generated using a different cohort, region and method, the CAS increase was most pronounced in 15 

microglia which is consistent with our data (Fig. S8B-G). There was also a profound increase of 

CAS in aNSCs, though the very low number of cells at 28 months (less than 50 per animal) 

complicates robust calculations of CAS at this age. Thus, the region-to-region differences in CAS 

velocity are predominantly reflecting age effects in non-neuronal cell types, with microglia having 

the strongest contribution. 20 

 

Transcriptional aging of microglia is region-dependent 

We finally examined if there were varying CAS dynamics between microglia from regions 

with fast or slow CAS velocity. To this end, we analyzed scRNA-seq data from the Tabula Muris 
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consortium (Fig. 4A), where comparable numbers of microglia were collected from the freshly-

isolated cerebellum, striatum, hippocampus and cortex, which we considered sufficient 

equivalents to the cerebellum, caudate putamen (both areas with high velocity), anterior 

hippocampus (medium velocity) and motor/visual cortex (low velocity) regions (compare Fig. 

2G). Indeed, as predicted by our bulk-seq results, the CAS in aged microglia increased in all four 5 

regions significantly, though with greater magnitude in the cerebellum and striatum, followed by 

the hippocampus and cortex, respectively (Fig. 4B). The same trend was detectable on the level of 

individual CAS genes, like Trem2 (Fig. 4C). Notably, there was no detectable CAS difference 

among microglia at young age across the striatum, hippocampus and cortex, while the cerebellum-

derived microglia exhibited a slightly higher CAS at baseline. We conclude that the CAS velocities 10 

observed in bulk- and spatial-seq data are, in part, representing microglia that exhibit region-

specific magnitudes of aging. Future studies should examine if other non-neuronal cells, like 

mature oligodendrocytes or BECs, would exhibit a similar CAS heterogeneity. 

 

Neuronal transcripts encode region-specific expression patterns  15 

Given that the CAS genes represent only 1.5% of all DEGs (Fig. 2A; data S2), we 

hypothesized that the remainder could represent region-specific expression shifts. We first 

compared age-related DEGs across mouse organs to construct organ-specific signatures of aging 

(Fig. S9, Methods). The presence of gene sets with specific regulation found in functionally 

distinct organs led us to investigate whether individual brain regions exhibit a similar degree of 20 

specificity during aging. We found that the number of region-specific DEGs varies greatly (Fig. 

5A), which we utilized to build aging signatures for each region before calculating the respective 

score across all other regions (Fig. 5B,C, Fig. S10A,B). As exemplified by the specific signature 

of the caudate putamen - a region marked by intertwined gray and white matter structures - we 
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found that most region-specific scores increased with age predominantly in the region on which 

they were based (Fig. 5B-D and Fig. S10A,B). Except for the thalamus, pons and SVZ, a given 

region’s signature velocity outperformed those of all other regions. Thus, dozens to hundreds of 

genes in the brain are regulated in a region-specific or -selective manner, revealing highly 

compartmentalized effects of aging within a single organ.  5 

Notably, signature genes appeared to be functionally connected, as exemplified by the 

caudate putamen-specific signature which was enriched for down-regulated mitochondrial 

processes and up-regulated cell adhesion and lipid binding functions (Fig. 5E and data S8). To 

map out the cell types driving this region-specific signature, we analyzed nuc-seq data from the 

left hemisphere punches of the anterior hippocampus (Fig. 3A) and caudate putamen (Fig. 4F), 10 

where we captured non-neuronal cell types as well as striatum-specific D1- and D2-type medium 

spiny neurons (D1 and D2 MSNs, respectively). We were able to map several signature genes like 

Fgf16, S100a10 and Fabp4 (Fig. S10C-E) to distinct cell populations (Fig. 5G, Methods and data 

S9) suggesting that bulk tissue can indeed capture the expression dynamics of specific cell subsets. 

Similar to the cell-resolved analysis of the CAS (Fig. 3B), we calculated several region-specific 15 

signature scores for each cell type in young and old individuals. We found a distinct increase of 

the caudate putamen-specific signature in D1 and D2 MSNs which was not seen with signatures 

from other regions (Fig. 5H). For instance, expression of muscarinic acetylcholine receptor gene 

Chrm3 dropped significantly in the caudate putamen, reflecting down-regulation of this gene 

specifically in D2 MSNs (Fig. 5I,J). In comparison, dentate gyrus granule cells of the hippocampus 20 

exhibited a distinct increase of the hippocampus-specific signature (Fig. 5K), and we found granule 

cell-specific regulation of several signature genes such as axon-guidance receptor Unc5d (38) as 

well as transcription factor Onecut1 (Fig. 5L,M, Fig. S11A,B). Interestingly, Onecut2, a member 

of the same transcription factor family, exhibited selective regulation in the corpus callosum and 
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caudate putamen, namely D1 and D2 MSNs (Fig. S11C,D). Onecut transcription factors have only 

been recently investigated in the CNS as regulators of neuronal differentiation and their motif is a 

hotspot of DNA single-strand break repair in neurons (39). This may indicate that the 

transcriptome of neuronal populations could be regulated selectively through age-related activity 

of specific transcription factors.  5 

Finally, we explored whether the biological processes associated with signature genes 

could indicate differential transcriptional activity across whole pathways or organelles. We 

observed a significant down-regulation of several mitochondria-related genes in the caudate 

putamen, including several members of the electron transport chain, which could be indicative of 

impaired mitochondrial function (Fig. 5E). We identified in this region a global, gradual down-10 

regulation of all genes coding for mitochondria-related proteins (Fig. S11E), as well as a 

significant drop in scores for a corresponding mitochondrial signature in aged D2 MSNs, mature 

oligodendrocytes, and astrocytes (Fig. S11F). This was not detected in cell types from the 

hippocampus or the SVZ (Fig. S11F). This specific down-regulation of mitochondrial processes 

in aged striatum could help to explain previous observations demonstrating selective vulnerability 15 

to mitochondrial toxins and stresses in the striatum of old animals (40, 41). 

In conclusion, we discovered extensive region-specific transcriptional signatures of aging 

that are largely encoded by expression shifts in distinct neuronal subpopulations reflective of a 

region’s specialization.  

 20 

Aging results in region-specific expression changes of genes associated with human diseases  

Genome-wide association studies (GWAS) can identify candidate genes whose genetic 

makeup impacts the risk of developing a given disease. We thus wondered if mouse homologues 

of human GWAS genes implicated in neurodegenerative disorders would be differentially 
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regulated in specific regions during aging. We assembled lists of GWAS genes for AD, PD and 

multiple sclerosis (MS) (42, 43), and asked if they were significantly enriched among age-related 

DEGs of a given region (data S10). We further clustered regions that share differentially expressed 

disease-associated genes, allowing us to find anatomical ‘hubs’. Interestingly, each of the three 

disease-associated gene sets exhibited a different enrichment pattern (Fig. 6A-C) and a varying 5 

number of associated genes (Fig. 6D-F). MS genes, for instance, showed significant associations 

with DEGs from nine different regions that fell into two clusters, indicating two disparate subsets. 

One cluster consisted of several regions, including the corpus callosum and cerebellum, that up-

regulated a shared set of inflammation-related genes such as Stat3, Ly86 and Irf8, all of which 

were also part of the CAS (Fig. 6A). This raises the intriguing possibility of similarities between 10 

the pathophysiology of inflammation and demyelination associated with MS and the accelerated 

aging observed in white matter-rich areas. The visual and motor cortex regions formed the second 

cluster, exhibiting even numbers of up- and down-regulated MS genes. This supports recent 

evidence indicating transcriptional shifts (e.g. of Cbln2, Fig. 6G) in cortical areas that can occur 

far away from the actual lesions (44) and highlights the need to broadly study regional patterns of 15 

gene expression to understand the role of MS-associated genes.  

GWAS hits for AD included genes that are currently under intense mechanistic 

investigation, including Apoe, Ms4a6d, Plcg2 and Gab2 (45) (Fig. 6B,H). They were part of DEGs 

that are upregulated in a small cluster of three regions: the choroid plexus, corpus callosum, and 

pons, suggesting a different region-specific regulation of these genes as a potential modulator of 20 

disease presentation. In contrast, PD-related genes, like the neuroprotective gene Ip6k2 (46) (Fig. 

6I), were not concentrated within a cluster of regions but rather distributed across the choroid 

plexus, cerebellum, SVZ, and visual cortex with limited overlap (Fig. 6C). This pattern indicates 

a disperse regulation of disease-associated genes among the regions studied, which can add to our 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2022. ; https://doi.org/10.1101/2022.09.18.508419doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.18.508419
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 
 

understanding of how and where PD may progress. Of note, the substantia nigra, a major region 

where PD typically manifests, was not quantified in our study.   

Taken together, our data demonstrate that genetic risk factors linked to three major 

neurological and neurodegenerative diseases are affected by age in a region-selective manner. 

While we cannot predict whether the directionality of the regulation itself has a biological 5 

consequence, we consider that the region-specific differential regulation of such genes could be 

an additional factor modulating disease risk.  

 

Discussion 

We report here a comprehensive spatiotemporal map of gene expression across the mouse 10 

brain throughout the adult lifespan, consisting of 847 bulk, 16,277 spatial spot and 81,616 single-

cell transcriptomes - supported by several publicly available spatial- and scRNA-seq datasets. We 

find that aging affects regional transcriptomes with widely varying magnitude and timing, 

including the expression of risk genes for neurodegenerative disorders. Gene expression shifts 

during aging fall into two general categories: a single set of 82 genes that reflects shared aging 15 

dynamics of glia cells with spatially-defined magnitude, and a dozen gene sets with region-specific 

activity encoded in specialized neuronal subpopulations. We establish a CAS for each mouse and 

region, analyzing its trajectory and rate of change over time as a quantitative measure of a region’s 

transcriptional age. Across analyses, white matter and white matter-rich regions emerge as the 

most transcriptionally impacted areas during aging. It will be particularly interesting to explore 20 

how these changes relate to developmental patterns of myelination and brain function, and whether 

susceptibility to brain aging and dysfunction are related to developmental processes. 

 The advent of single-cell technologies and cell dissociation methods have enabled the 

exploration of an ever increasing number of cell populations in the brain (47), which in turn allows 
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for cell type-specific characterization of gene expression during aging (9). The interplay between 

cell type and regional niche during aging is, however, yet to be more deeply understood. Our 

results emphasize the importance of region identity as a profound modulator of gene expression 

dynamics in the context of aging and neurodegeneration. It will be important for future studies to 

examine if these heterogeneous expression patterns result in corresponding shifts of the proteome 5 

or downstream functional changes in neuronal activity and plasticity. While we established that a 

common aging signature increased in microglia with region-dependent effect size, we propose 

further exploration of the CAS in other non-neuronal cell types. This may help clarify if microglia 

are active drivers of the regional expression dynamics described here, or rather respond to cues 

provided by other cell type(s) in the region.  10 

Our data reveal that certain brain regions are selectively vulnerable to aging, with the white 

matter fiber tracts exhibiting a particular sensitivity. These areas are dense with myelinated axons 

and myelinating cells, forming the basis of neurotransmission across brain regions (48). The strong 

activation of immune- and inflammation-related genes, as well as differential expression of 

remyelination regulators like Gpr17 (49, 50), suggest that the homeostasis of this region is 15 

compromised at old age. This could perturb myelin sheath integrity and potentially impair axonal 

signal transmission between regions as an early event in brain aging. In line with this hypothesis, 

rejuvenation of hippocampal oligodendrogenesis in aged mice via injection of young cerebrospinal 

fluid (CSF) improves long-term memory consolidation, thus demonstrating a causal role of 

compromised myelin on cognition (51). The region-specific transcriptome atlas generated here can 20 

form a basis for testing rejuvenation strategies such as dietary interventions, plasma and CSF-

based therapeutics as well as epigenetic reprogramming to quantify their spatiotemporal impact on 

the brain at the molecular level.  
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Our findings strongly support the notion that the impacts of aging on brain function are 

region specific, potentially relating to the regional vulnerability across different diseases as well 

as the varied manifestations of neurodegeneration at the level of an individual. We demonstrate 

that key genetic risk genes are differentially expressed in a region-specific manner, thus locally 

amplifying, or attenuating their impact on disease pathways. Importantly, our findings also 5 

suggest that aging may drive dysfunction in brain regions that are not predominantly affected and 

studied by classical pathological hallmarks, highlighted by AD risk genes including Apoe, 

Ms4a6d, Plcg2 and Gab2 which are dysregulated with aging in the mouse choroid plexus, corpus 

callosum and pons with aging. The translation of these findings to humans may serve as a new 

brain cartography leading to novel treatment strategies and interventions. 10 
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Fig. 1 Brain regions exhibit distinct transcriptional patterns of aging independent of 

anatomical proximity 
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(A) Cohort overview. Whole brains were collected from male (n = 3-5, 3–28 months) and female 

(n = 5, 3–21 months) C57BL/6JN mice. (B) Study outline. 15 brain regions were isolated from 

each hemisphere of the brains collected in (A). Regions from the right hemisphere were analyzed 

using Bulk-seq. (C) UMAP representation of brain region transcriptomes (n = 847 total samples), 

based on the first 40 principal components. (D) Diffusion maps of region transcriptomes from male 5 

cerebellum, motor cortex, and olfactory bulb. Dim., dimension. (E) C4b expression in corpus 

callosum, anterior hippocampus and visual cortex. Black lines indicate averaged-smoothed gene 

expression. Differential expression relative to the 3 months group is indicated. Data are mean ± 

s.e.m. Two-sided Wald test, adjusted for multiple testing. *** p < 0.001, ** p < 0.01, * p < 0.05. 

(F) Smoothed line plot displaying the number of DEGs for pairwise comparisons, referenced to 10 

data at 3 months. Positive (negative) values represent upregulated (downregulated) genes, gray 

lines represent non-labelled regions. DEGs that reached significance in ≥ 2 pairwise comparisons 

were included. (G) Heat map of the data in (F). (H) Number of genes that significantly correlate 

with age (Spearman’s rho ≥ 0.5), colored by up- and down-regulation. (I) Networks of the most 

highly connected genes (‘eigengenes’) of three exemplary modules with significant age-15 

association identified in corpus callosum, motor cortex and thalamus. Networks display 

connections of the corresponding topological overlap above a threshold of 0.08. (J) Chord diagram 

representation of genes shared in age-associated modules across regions. Modules with significant 

enrichment of cell type markers are displayed. Modules and associated genes are listed in data S4. 

  20 
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Fig. 2 A common gene signature detects accelerated aging in white matter tracts  

(A) Bar graph indicating the number of regions in which a given DEG was detected (data S2).  (B) 

Region-wise expression changes with age (column-wise from left to right) for genes with shifts in 

at least 10 of the 15 collected regions. (C) Representative GO analysis of 82 genes with shifts in 5 

at least 10 of the 15 collected regions that make up the CAS. Lengths of bars represent negative 
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ln-transformed Padj using two-sided Fisher’s exact test. Colors indicate gene-wise log2 fold-

changes (log2(FC)) between 26 and 3 months old mice as measured in the corpus callosum. 

Numbers beside bars indicate differentially expressed genes in that GO category. The complete 

list of enriched GO terms can be found in data S5. (D) CAS trajectories in the corpus callosum, 

motor cortex, and hypothalamus. Insert indicates trajectories for male and females in the 5 

hypothalamus from 3 to 21 months. (E) CAS trajectories of all regions approximated via local 

estimate (LOESS) and linear regression, colored by region; gray lines represent non-labelled 

regions. (F) Offset and slope comparison for linear models in (E), colored by region. Linear 

regression (dashed line) and Spearman correlation coefficient are indicated. (G) Slope of linear 

regressions in (D), colored by slope. Data are mean ± 95% confidence intervals. Bolded regions 10 

are highlighted in the following panel. (H) Coronal cross-section sketch of the mouse brain, with 

regions colored according to CAS linear slopes. Corpus callosum was chosen to represent white 

matter tracts.  (I) Slope of linear regression across all brain regions from 3 to 21 months, colored 

by sex. Data are mean ± 95% confidence intervals. Two-sided Tukey’s HSD test, adjusted for 

multiple testing, *** p < 0.001, ** p < 0.01, * p < 0.05. The highest (least significant) Pval is 15 

indicated. (J) Spatial-seq experiment overview. Brain tissue was collected from an independent 

male C57BL/6J mouse cohort (n = 2 mice; 6, 18 and 21 months). (K) Representative spatial 

transcriptome data (6 months replicate #2), colored by cluster-based annotation, according to Fig 

S5. Labels represent region-level annotation according to Fig S5. Complete data description and 

abbreviations are in Fig S5. (L) Comparison of Bulk- and Spatial-seq differential expression results 20 

in white matter cluster/corpus callosum punch; cortex cluster/motor cortex punch. DEGs (Padj < 

0.05) found in both datasets are shown, with their log2-transformed expression ratios (21 rel. to 3 

months) in Bulk- and Spatial-seq data. CAS genes are highlighted. The number of overlapping 

DEGs in each quadrant is indicated in blue. (M) Spatially-resolved expression of Trem2 across 
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age. Violin plots represent expression in white matter- and cortex-associated spots, split by 

replicates. (N) Spatial representation of CAS. Spots with values ≥ 0 are shown. (O) Violin plot 

representing CAS across spatial clusters of white matter, striatum, hippocampus and cortex. Red 

line indicates linear regression fit. (P) Comparison of CAS slopes for linear models in Bulk- and 

Spatial-seq, colored by region. Linear regression (dashed line) and Spearman correlation 5 

coefficient are indicated. Corpus callosum, caudate putamen and motor cortex regions were chosen 

to represent white matter, striatum and cortex, respectively. 
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Fig. 3 Aging in glia and endothelial cells is the major contributor to CAS increase 

(A) Nuc-seq experiment overview. Nuc-seq of left-hemisphere regions of the anterior 

hippocampus from the same mice used for bulk RNA-seq (n = 2 males, n = 2 females; 3, and 21 5 

months). UMAP representation of all nuclei populations (n = 36,339 cells). (B) Violin plot 

representing CAS across hippocampal cell types. Points indicate nuclei-wise expression levels, 

and the violin indicates average distribution of expression split by age. P values calculated with 

two-tailed t-test on per-replicate median of CAS, adjusted for multiple testing. *** p < 0.001, ** 

p < 0.01, * p < 0.05 (C) CAS slope of linear regressions in (B), colored by cell type. Data are mean 10 

± 95% confidence intervals. Two-sided Tukey’s HSD test, adjusted for multiple testing, *** 

p < 0.001, ** p < 0.01, * p < 0.05. The highest (least significant) Pval is indicated.  (D) Expression 

of CAS genes Gfap, C4b, Gpr17 and H2-Q7. Quantification and statistical analysis can be found 

in Figs. S6 and S7. 
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Fig. 4 CAS analysis reveals that transcriptional aging of microglia depends on their region 

of origin. 

(A) Meta-analysis of scRNA-seq data from (19) of microglia from cerebellum, striatum, 

hippocampus and cortex. UMAP representation of all cell populations (n = 6,373 cells), colored 5 

by age. Regions are colored according to CAS slopes in Fig. 2G. (B,C) Violin plot representing 

(B)  CAS and (C) Trem2 expression across microglia from four different brain regions. Points 

indicate nuclei-wise expression levels, and the violin indicates average distribution of expression 

split by age. (MAST, Benjamini–Hochberg correction; false discovery rate (FDR) < 0.05 and 

logFC > 0.2 to be significant). *** p < 0.001, ** p < 0.01, * p < 0.05. 10 
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Fig. 5 Region-specific expression shifts are encoded by neuronal transcripts  

(A) Regional specificity of DEGs. UpSet plot showing a matrix layout of DEGs shared across and 

specific to each region. Each matrix column represents either DEGs specific to a region (single 
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circle with no vertical lines) or DEGs shared between regions, with the vertical line indicating the 

regions that share that given DEG. Top, bar graph displays the number of DEGs in each 

combination of regions. Left bottom, bar graph displays the total number of DEGs for a given 

region. Gene sets with ≥ 25 genes are shown. Unique gene sets were used to construct region-

specific aging signatures. (B) Trajectories of caudate putamen-specific aging score in the caudate 5 

putamen, anterior hippocampus and motor cortex. Linear fit is indicated as dashed lines. (C) Slope 

of linear regressions in (B), colored by slope. Data are mean ± 95% confidence intervals. Two-

sided Tukey’s HSD test, adjusted for multiple testing, *** p < 0.001, ** p < 0.01, * p < 0.05. The 

highest (least significant) Pval is indicated. (D) Region-wise score changes with age relative to 3 

months (column-wise from left to right) for region-specific signatures. Score changes are z-scaled 10 

within a row. Quantification and statistical analysis can be found in Fig S10. (E) Representative 

GO enrichment as in (Fig. 2C) for 177 DEGs unique to the caudate putamen that make up its 

specific signature. The complete list of enriched GO terms can be found in data S8. (F) Nuc-seq 

experiment overview. Nuc-seq of left-hemisphere regions of the caudate putamen from the same 

mice used for bulk RNA-seq (n = 2 males, n = 2 females; 3, and 21 months). UMAP representation 15 

of all nuclei populations (n = 45,277 cells). (G) Single-nuclei dispersion scores plotted against 

log2-transformed expression ratios between 21 and 3 months (bulk RNA-seq) for the caudate 

putamen and anterior hippocampus. The colors represent different organ types and size of the dots 

corresponds to the percentage of cells that express a given gene. Genes that make up the region-

specific score are highlighted. (H) Slope of cell type-wise changes with age for representative 20 

region-specific signatures from (D). D1 and D2 Medium spiny neuron populations (MSN) are 

highlighted, as they exhibit a distinct increase with age exclusively for the caudate putamen-

specific signature.  (I) Bulk expression across caudate putamen and anterior hippocampus for 

Chrm3. Black lines indicate averaged-smoothed gene expression. The trajectory with significant 
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age effect is highlighted. Data are mean ± s.e.m. (J) Violin plot representing Chrm3 expression 

across neuronal cell types in caudate putamen and anterior hippocampus. Points indicate nuclei-

wise expression levels, and the violin indicates average distribution of expression split by age. 

(MAST, Benjamini–Hochberg correction; false discovery rate (FDR) < 0.05 and logFC > 0.2 to be 

significant). *** p < 0.001, ** p < 0.01, * p < 0.05. (K) Slope of cell type-wise changes with age 5 

for representative region-specific signatures from (D). Granule cells are highlighted, as they 

exhibit a distinct increase with age exclusively for the anterior hippocampus-specific signature. 

(L) Same as (I) for Unc5d. (M) Same as (J) for Unc5d. 
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Fig. 6 Interplay of region and age shapes expression of disease variant homologues 

(A-C) Enrichment analysis of region-resolved DEGs for human GWAS variants for (A) MS, (B) 

AD and (C) PD. Associated genes are listed in data S10. Fold enrichment (left bars) and the relative 

composition of disease-associated DEGs with respect to their regulation (right bars) is indicated. 5 

Regions with no significant enrichment are transparent. The vertical order of regions results from 

hierarchical clustering on a pairwise Jacquard Distance matrix, so regions with overlapping DEGs 
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will cluster together. Gene overlaps with a Jaccard index ≥ 0.25 are indicated with an arc. One-

sided Fisher’s exact test with hypergeometric distribution, Benjamini–Hochberg correction. *** 

p < 0.001, ** p < 0.01, * p < 0.05. (D-F) Number of DEGs per region that are homologues of 

human GWAS variant for (D) MS, (E) AD and (F) PD. Colors group the genes into CAS DEGs, 

region-specific DEGs or other (DEG in 2 or more but less than 10 regions). (G-I) Bulk expression 5 

in selected regions for (G) Cbln2, (H) Gab2 and (I) Ip6k2. Black lines indicate averaged-smoothed 

gene expression. The trajectory with significant age effect is highlighted. Data are mean ± s.e.m. 
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