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Abstract  

Heart failure (HF) with preserved ejection fraction (HFpEF) represents a major unmet medical need owing to its 

diverse pathophysiology and lack of effective therapies. Potent synthetic, agonists (MR-356 and MR409) of 

growth hormone-releasing hormone (GHRH) improve the phenotype of models of HF with reduced ejection 

fraction (HFrEF) and in cardiorenal models of HFpEF. Endogenous GHRH exhibits a broad range of regulatory 

influences in the cardiovascular (CV) system, aging and plays a role in several cardiometabolic conditions 

including obesity and diabetes. Whether agonists of GHRH can improve the phenotype of cardiometabolic HFpEF 

remains untested and unknown.  Here we tested the hypothesis that MR-356 can mitigate/reverse the 

cardiometabolic HFpEF phenotype. C57BL6N mice received a high fat diet (HFD) plus the nitric oxide synthase 

inhibitor (L-NAME) for 9 weeks. After 5 weeks of HFD+L-NAME regimen, animals were randomized to receive 

daily injections of MR-356 or placebo during a 4-week period. Control animals received no HFD+L-NAME or 

agonist treatment. Our results showed the unique potential of MR-356 to treat several HFpEF-like features 

including cardiac hypertrophy, fibrosis, capillary rarefaction, and pulmonary congestion.  MR-356 improved 

cardiac performance by improving diastolic function,  global longitudinal strain (GLS), and exercise capacity. 

Importantly, the increased expression of cardiac pro-brain natriuretic peptide (pro-BNP), inducible nitric oxide 

synthase (iNOS) and vascular endothelial growth factor-A (VEGF-A) was restored to normal levels suggesting 

that MR-356 reduced myocardial stress associated with metabolic inflammation in HFpEF.  Thus, agonists of 

GHRH may be an effective therapeutic strategy for the treatment of cardiometabolic HFpEF phenotype. 
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Introduction 

Heart failure (HF) with preserved ejection fraction (HFpEF) is increasing in incidence and is becoming 

the leading form of HF worldwide (1, 2).  HFpEF is associated with major cardiovascular (CV) risk factors such 

as aging, hypertension, obesity, and diabetes. To address the clinical burden imposed by HFpEF, new mechanistic 

insights and treatment options are urgently needed, but are very limited, due in large part to the complex 

pathogenesis involving multiple organs (lung, kidney, and skeletal muscle). The paucity of preclinical disease 

models that fully recapitulate the diversity of HFpEF phenotypes (3-5)  is an additional challenge to conducting 

mechanistic studies that elucidate pathophysiology and provide insights for designing novel and effective 

therapeutic approaches tailored to improve cardiac performance in patients with HFpEF. 

We previously showed that agonists of GHRH of the MR series (MR-356, MR-409) are cardioprotective 

in murine (6, 7)  and porcine (8)  models of HF with reduced ejection fraction (HFrEF) and other cardiovascular 

conditions such as vascular calcification (9)  and non-ischemic cardiomyopathy (10). Recently, we demonstrated 

that GHRH-agonists have beneficial effects in cardiorenal HFpEF models:  the murine HFpEF phenotype induced 

by chronic administration of angiotensin-II (Ang-II) (11) and in a porcine chronic kidney disease (CKD)-induced 

HFpEF model (12).  

GHRH agonists exhibit a broad range of regulatory influences in the CV system, independent of their role 

in the GH-IGF-I axis (10, 13, 14), and in several cardiometabolic conditions including obesity (15) and diabetes 

(16). Administration of a GHRH-agonist to obese patients produced significant benefits, including reduced 

visceral adiposity, triglycerides, and measures of cardiovascular risk, with no changes in insulin sensitivity (15). 

Preclinical and clinical studies demonstrate the potential therapeutic benefits of GHRH-agonists for diabetes (17-

20). Therefore, we focused our investigation on determining whether MR-356 can specifically target the 

pathophysiologic mechanisms involved in a murine model of the cardiometabolic HFpEF phenotype induced by 

high fat diet (HFD) and endothelial nitric oxide synthase (NOS) inhibitor (L-NAME) (21-23).  

Results 

Average daily food and water intakes, estimated over 9-week HFD+L-NAME regimen (Table S1), were 

markedly reduced in HFpEF mice (p<0.001 and p<0.0001, respectively) compared to control (normal water and 

normal diet), consistent with previous reports (24, 25); however, no differences were observed between HFpEF-

placebo and HFpEF-MR-356 groups.  

Systemic and Cardiac Changes in HFpEF  
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The HFpEF phenotype developed following 5 weeks of HFD+L-NAME, confirmed with 

echocardiography (Fig. S1A-D). At that stage, mice exhibited impaired diastolic function as evidenced by 

prolonged isovolumetric relaxation time [IVRT] (p<0.001), increased E/A ratio (p<0.05) and E/E’ ratio 

(p<0.0001) compared to controls. Ejection fraction (EF) was preserved (p=ns). HFpEF mice also developed 

hypertension (p<0.0001) and glucose intolerance (p<0.05) (Fig. S1E-G). Together these results document 

cardiometabolic HFpEF, as previously described (23). 

GHRH-Agonist MR-356 counteracts the cardiometabolic HFpEF phenotype 

We hypothesized that GHRH-Agonist MR-356 would reverse this phenotype and after 5-weeks of HFD-

L-NAME diet mice were randomized to receive 4 weeks of daily injections of either placebo or MR-356.  Table 

S2 depicts parameters of body morphology [body weight (BW), tibia length (TL)], organ weight and lung water 

with and without normalization to body morphology  after a 9-week regimen. As expected, BW (Fig. 1A) was 

substantially increased in HFD+L-NAME-fed mice in comparison to the control group (p<0.01). As shown in 

Fig. 1B-C, treatment with MR-356 tended to reduce the HW/TL ratio (p=0.055) and lung water content (LWC, 

p=0.051) in comparison to placebo-treated mice, suggesting the attenuation of cardiac hypertrophy and pulmonary 

congestion. Systolic (SBP, p<0.0001) and diastolic (DBP, p<0.001) blood pressure was similarly increased in 

both HFpEF groups compared to control mice (Fig. 1D-E, Table S3). Intraperitoneal glucose tolerance test 

(ipGTT) revealed increased glucose levels in HFpEF-placebo mice versus control mice (p<0.05), suggesting 

impaired glucose tolerance (Fig. 1F-G).  Treatment with MR-356 eliminated the increased glucose levels 

following ipGTT in HFpEF vs. controls, except for the 15 min. time point (Fig 1G). Importantly, the cardiac 

phenotype after 9 weeks of the HFD+L-NAME regimen  did not show differences in EF (p=ns) among groups 

(Fig. 2A) but the E/E’ ratio (p<0.01, Fig. 2B), global longitudinal strain (GLS, Fig. 2C) and exercise tolerance 

(Fig. 2D), were all improved in mice treated with MR-356. Additional echocardiographic parameters are provided 

in Table S4. Representative echocardiographic images of M-mode tracings of parasternal short axis views and 

images of mitral inflow velocities by pulsed-wave Doppler and mitral annulus velocity by tissue Doppler imaging 

(TDI) are shown in Fig S2. 

Cardiovascular Hemodynamics  

Heart rate (HR) values did not differ between control and HFD+L-NAME-fed mice. Consistent with 

echocardiography, abnormal diastolic function was evident from LV pressure-volume (PV) recordings in HFpEF-
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placebo mice (Fig. 2E-F) evidenced by steeper end-diastolic pressure-volume relationship (EDPVR, p<0.05) and 

elevated end-diastolic pressure (EDP, p<0.05) in comparison to control mice. Notably, treatment with MR-356 

completely restored both diastolic parameters (p<0.05 and p<0.01, respectively vs. HFpEF-placebo group). LV 

end-systolic blood pressure (ESP), increased in HFD+L-NAME-fed mice, was not different between placebo- 

and MR-356-treated mice (Fig. 2G). Similarly, there was no difference in the slope of end-diastolic pressure-

volume relationship (ESPVR, p=ns) among the experimental groups. Additional hemodynamic parameters are 

given in Table S5. 

Cardiac Hypertrophy, Fibrosis and Capillary Density 

HFpEF is associated with cardiac hypertrophy and increased fibrosis (26). We observed that both myocardial 

cross-sectional area (CSA, Fig. 3A) and cardiac interstitial fibrosis (Fig. 3B) were markedly increased in HFpEF-

placebo mice (p<0.01) in comparison to controls whereas treatment with MR-356 completely restored these 

parameters (p<0.01). Similar to previous reports (22), capillary density (Fig. 3C) was substantially reduced in 

HFpEF-placebo mice in comparison to controls (p<0.01) whereas treatment with MR-356 attenuated capillary 

rarefaction (p<0.05 vs. HFpEF-placebo).  

Pro-BNP, iNOS and VEGF-A Expression in HFpEF  

Elevated levels of pro-BNP are a characteristic of HFpEF in humans (27). Hearts of HFpEF-placebo mice 

exhibited significantly increased pro-BNP expression (Fig. 4A, I) compared to control mice (p<0.05), while the 

level of pro-BNP was restored to normal in mice treated with MR-356 (p<0.01).  Next, we investigated the 

expression of inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor A (VEGF-A). Several 

studies demonstrate that iNOS is minimally expressed in normal hearts; however, upon stress, iNOS is activated 

and induces oxidative stress and mitochondrial dysfunction in CMs (28, 29), both of which contribute to the 

development of HFpEF observed in experimental and clinical settings (23). Elevated levels of VEGF-A are also 

associated with cardiac hypertrophy and impaired cardiac performance (30). HFpEF-placebo mice exhibited an 

upregulation of iNOS expression (Fig. 4B, J) compared to the control group (p<0.05) while no such increase was 

noted in HFpEF-MR-356 mice (p=ns). In fact, iNOS expression in the HFpEF-MR-356 group was reduced to 

control levels (p<0.05 vs. HFpEF-placebo). Similarly, expression of VEGF-A (Fig.  4C, K), markedly increased 

in the HFpEF-placebo group compared to the control group (p<0.001), was restored to normal levels by treatment 
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with MR-356 (p<0.05). The increase in myocardial CSA, indicative of cardiac hypertrophy is consistent with the 

changes in the expression of VEGFA observed here. 

Effect of GHRH-Agonist MR-356 on Regulation of Cardiomyocyte (CM) Stress Responsiveness 

We next examined the expression of inositol-requiring enzyme 1α (IRE1α) in hearts from all three groups 

of mice to evaluate the ability of MR-356 to modulate the unfolded protein response (UPR) (Fig. 4D, L). The 

IRE1α-X-box-binding protein 1(XBP1) axis, part of the UPR is a regulator of CM stress responsiveness is 

dysregulated in experimental and clinical HFpEF (23). In line with previous studies, both HFpEF groups showed 

reduced expression of phosphorylated IRE1α as compared to controls (p<0.05). MR-356 had no apparent effect 

in restoring this pathway. 

Phosphorylation of Sarcomeric Proteins  

Phosphorylation of cardiac contractile proteins, particularly, cardiac troponin I (cTnI) and myosin binding 

protein C (MyBPC) play important roles in the modulation of sarcomeric function, particularly, on cardiac 

contractility and pump function (31, 32). The phosphorylation status of cTnI at Ser43 (Fig. 4E, M) and Ser 23/24 

(Fig. 4F, N) was increased in HFpEF-placebo mice (p<0.05) whereas treatment with MR-356 appeared to reduce 

these levels, as HFpEF-MR-356 mice exhibited no significant difference compared to control levels.  

Phosphorylation of MyBPC can alter the sensitivity of the myofilaments to calcium and, thus, contribute to 

modulation of the CM stiffness. Contrary to cTnI, there was no difference in phosphorylation of MyBPC between 

the control and experimental groups (Fig. 4G, O). 

Titin Modifications in HFpEF 

The giant sarcomeric protein titin, along with collagen, is the main determinant of CM stiffness (33). Both 

short-term post-translational modifications of titin and changes in the ratio of the N2BA/N2B isoforms in the 

long-term can mediate increased CM stiffness. Consistent with previous reports (34, 35)  and our findings in the 

porcine model CKD-induced HFpEF (12), our data showed hypophosphorylation of titin as the ratio  of 

phosphorylated N2BA/N2B was markedly reduced in HFpEF-placebo mice (p<0.05) which was attenuated by 

treatment with MR-356 (Fig. 4H, P). 

Discussion 
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Our findings demonstrate that administration of the GHRH agonist, MR-356, improved most of the key 

phenotypes associated with a murine model of cardiometabolic HFpEF (22, 23).  In this study, we recapitulated 

the cardiac and systemic changes associated with the cardiometabolic HFpEF phenotype by feeding mice a HFD 

(metabolic stress) and administering a NOS inhibitor (L-NAME), which together result in an increase in body 

weight, systolic and diastolic pressure, and impaired glucose and exercise tolerance (21-23). In addition, these 

mice developed cardiac hypertrophy, fibrosis, and impaired diastolic function while EF was preserved. Diastolic 

dysfunction was supported by invasive hemodynamic measurements showing increased EDPVR and EDP which 

characterizes increased ventricular chamber stiffness (36). Notably, our findings revealed restoration towards 

normal of exercise capacity in mice treated with MR-356, consistent with recent findings in aged mice treated 

with agonist of GHRH MR-409 (37). 

 Our findings are in agreement with earlier studies showing salutary effects of GHRH-agonists in 

cardiorenal models of HFpEF (11, 12) and in reversing cardiac hypertrophy due to aortic banding (10).  The 

present findings are an important advance, addressing a crucial underpinning of HFpEF due to cardiometabolic 

derangements.   

GHRH-Agonist MR-356 Reduces Myocardial Wall Stress in HFpEF  

Several biochemical measurements, including pro-BNP and immune activation,  support the underlying 

favorable effects of GHRH-A on the myocardium.   First, GHRH-A restored elevated pro-BNP levels toward 

normal.  Pro-BNP participates in CV homeostasis through diuretic, natriuretic, vasorelaxant, anti-proliferative, 

anti-inflammatory, and anti-hypertrophic effects (38, 39), and is an effective marker of myocyte stress, correlating 

with cardiac hypertrophy and fibrosis (40). This result is supported by our hemodynamic findings demonstrating 

a beneficial effect of MR-356 treatment on the slope of EDPVR. Reduction in the pro-BNP levels was similarly 

noted in our porcine CKD-HFpEF model (12).  

Effect of GHRH-Agonist MR-356 on Inflammation 

Second, GHRH-A restored several markers of myocardial inflammation to normal.  Endothelial 

dysfunction has been proposed to link chronic systemic inflammation with myocardial dysfunction and 

remodeling in HF (41-43). Schiattarella et al. (23) suggested a role of iNOS activation and metabolic 

inflammation in HFpEF pathogenesis. VEGF-A is also produced by cardiomyocytes during inflammation, 
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mechanical stress, and cytokine stimulation (44), and elevated VEGF-A expression is often associated with poor 

prognosis and disease severity (30, 44). In line with these findings, we showed that MR-356 downregulated the 

expression of iNOS and VEGFA in the heart. VEGF-A-induced cardiac hypertrophy is associated with increased 

Akt signaling (30). Our results showed an increase in VEGF-A and pro-BNP expression in the HFpEF-placebo 

hearts but no changes in phosphorylation of Akt; however, our study was based on phosphorylation of Akt at 

threonine 308 (Thr308) and not at Ser473. Similar to a previous report (23), we observed a suppression of IRE-

1α phosphorylation in HFpEF mice although IRE-1α levels were not affected by MR-356.  

GHRH-Agonist MR-356 Reversed Cardiac Hypertrophy, Fibrosis and Capillary Rarefaction 

HFpEF-MR-356 mice showed no evidence of cardiac hypertrophy, fibrosis, and capillary rarefaction. To 

assess signaling pathways relevant to hypertrophy and fibrosis and to test the possible involvement of several 

PKG-associated downstream targets in HFD+L-NAME-induced HFpEF, we analyzed the activation of ERK 1/2 

and AKT in cardiac tissues. Surprisingly, quantitative immunoblotting showed that phosphorylated ERK 1/2 

(Thr202/203) was not altered in the HFpEF hearts while phosphorylated Akt was modestly but not significantly 

increased in HFpEF-MR-356 mice (Fig. S3).  

GHRH-Agonist MR-356 Improves Diastolic Function 

Diastolic dysfunction has been associated with reduced phosphorylation of the myofilament regulatory 

proteins. In fact, phosphorylation of cTnI is a significant factor in cardiac contraction and relaxation (31, 32); 

however, the effects of cTnI phosphorylation depend upon the combination of kinases activated, the specific sites 

phosphorylated, and the activities of protein phosphatases (31). Site-specific phosphorylation of cTnI at Ser 23/24 

by protein kinase A (PKA) or protein kinase G (PKG) is associated with reduced myofilament Ca2+ sensitivity  

and increased crossbridge cycling rate and enhanced unloaded shortening velocity, which also contribute to β-

agonist-induced lusitropy. Conversely, phosphorylation at Ser43 by protein kinase C (PKC) is associated with 

reduced maximum Ca2+-activated force and decreased crossbridge cycling rates (31, 45), which are likely to delay 

relaxation with an increased economy of contraction (31). Our results showed increased phosphorylation at 

Ser23/24 and Ser43 in the placebo mice in comparison to control mice with no changes in phosphorylation of 

MyBPC at Ser282. These results differ from our recent findings in the murine model induced by chronic 

administration of low dose of angiotensin-II (Ang-II) (11). However, the HFD-L-NAME-fed mice were subjected 

to higher stress producing conditions (including metabolic challenge and physical activity) while the Ang-II-

induced HFpEF mice received regular food and were mostly sedentary. This difference might have led to 
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hyperactivation of the sympathetic system in the HFD-L-NAME groups, which could have produced elevated 

phosphorylation background (46) mediated by PKA. Therefore, the functional significance of the multiple 

phosphorylation sites of cTnI would strongly depend on the integration of the entire myofilament phosphorylation 

background in such conditions (47).  

 

Treatment with GHRH-Agonist MR-356 Restores Titin Phosphorylation Status  

Hypophosphorylation of titin in the myocardium is considered a molecular hallmark of HFpEF (48) and 

is associated with reduced PKG activity resulting from oxidative stress which is consistent with our recent work 

showing an increased cGMP in CMs upon GHRH-MR-356 treatment in an AngII-induced HFpEF phenotype 

(12). Titin and collagen are the major determinants of myocardial stiffness (49) and titin’s contribution to 

myocardial stiffness can be modulated by isoform shift and phosphorylation status (50). We recently showed that 

a related GHRH-agonist, MR-409, improves the phosphorylation of titin isoforms in a porcine model of CKD-

induced HFpEF (12). Similarly, our data support the contribution of MR-356 in restoring the phosphorylation of 

titin isoforms and, thus, reducing myocardial stiffness in this model. Notably in our current study, we assessed 

total titin phosphorylation using ProQ Diamond staining which can detect PKA phosphorylation of the N2B but 

does not specifically detect PKC phosphorylation which requires phospho-specific antibodies (51). 

Currently, advances in therapeutic approaches to treat HFpEF are limited due mostly to poor 

understanding of the underlying mechanisms involved in the predominant HFpEF-phenotype. Given that HFpEF 

is a multifactorial disease and has heterogenous and complex clinical presentations (52), it is reasonable to assume 

that there may be multiple mechanisms involved; thus, the need for development of animal models that can mimic 

features of HFpEF-phenotypes is crucial for advancing HFpEF treatments. Notably, we reported beneficial effects 

of therapy with GHRH-agonist not only in HFrEF (6, 7, 13, 53) but also HFpEF  in small (11) and large animal 

(12) models. Importantly, the beneficial effects of agonists of GHRH occurred by preventing the onset of HF (11) 

as well as in reversing established HFpEF (11, 12). The results of the present study indicate that treatment with 

the GHRH-agonist, MR-356, can block or attenuate the majority of the key features of HFpEF such as cardiac 

hypertrophy, diastolic dysfunction, fibrosis, capillary rarefaction, and myocardial stiffness, suggesting GHRH 

agonists may be a novel approach to targeting multiple organ system derangements observed in the HFpEF. 

Strikingly, our results are supported by evidence of the GHRH’s broad range of regulatory influences in the 

cardiovascular (CV) system and in aging (37), where these compounds produce therapeutic effects in several 

cardiometabolic conditions including obesity (15) and diabetes (17, 18).  
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Accordingly, our findings reveal that GHRH-agonist therapy improves a cardiometabolic HFpEF 

phenotype suggesting that activation of GHRH receptor signaling in the heart as a potential therapeutic strategy 

for treatment of HFpEF.  The insights presented here provide support for ongoing translational development of 

this class of molecules for HFpEF. 
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Materials and Methods 

An extended version of Materials and Methods can be found in SI Appendix, Supporting Information (SI) Material 

and Methods. 

The protocol of the resent study was reviewed and approved by the University of Miami Institutional Animal 

Care and Use Committee and complies with all Federal and State guidelines concerning the use of animals in 

research and teaching as defined by The Guide for the Care and use of Laboratory Animals (54) and the ARRIVE 

Guidelines (55). Animal Welfare Assurance # A-3224-01, approved through November 30, 2023. Protocol # 21-

044 (Approval: 03/17/2021; Expiration: 03/16/2024). The University of Miami has received full accreditation 

with the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC International), site 

001069. 

Animal model. C57BL6N (Charles River Laboratories) male mice (8-weeks-old) were fed a high-fat diet (HFD, 

D12492, Research Diets, Inc) plus the nitric oxide synthase (NOS) inhibitor, Nω – nitro-L-arginine methyl ester 

(L-NAME, 0.5 g/L, Sigma Aldrich #N5751) for 9 weeks to induce HFpEF (HFD+L-NAME) (23). Five weeks 

after beginning the HFD+L-NAME regimen, mice were randomly assigned to receive daily subcutaneous 

injections (100 µl) of either vehicle (DMSO + propylene glycol, HFpEF-placebo) or GHRH-agonist MR-356 

(HFpEF-MR-356, 200 µg/Kg/day) for 4 weeks. Control animals received regular chow and water.  The timeline 

and brief description of the protocol are shown in Fig S4. 

Drugs. L-NAME (Sigma-Aldrich) was provided in the drinking water (0.5 g/L) ad-libitum. MR-356 was 

synthesized and purified in the laboratory of one of us (A.V.S.) by Ren-Zhi Cai and Wei Sha. The peptide was 

dissolved in an aqueous solution of 0.1% DMSO (Sigma) and 10% propylene glycol (Sigma) as previously 

described (7).  

Blood Pressure. Blood pressure was measured noninvasively in conscious mice using the tail-cuff BP-2000 Blood 

Pressure Analysis System™ (Visitech System, Inc). Mice were acclimated in individual restrain holders on a 

temperature-controlled platform (37⁰C), and blood pressure recordings were performed at the same time of the 

day for 3-5 consecutive days. Readings from the last session was averaged from at least 12-15 measurements.  

Intraperitoneal Glucose Tolerance Test (ipGTT). Intraperitoneal glucose tolerance tests were performed by 

injection of glucose (2 g/kg in saline) after 6-hour fasting in a quiet and stress-free environment at 5- and 9-week 

timepoints. Tail blood glucose levels (mg/dL) were measured with a glucometer (AlphaTrak II, Zoeltis) before 
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(0 min) and at 15, 30, 45, 60, and 120 minutes after glucose administration, and the area under the curve (AUC) 

was calculated. 

Exercise Tolerance Test (EET). Exercise protocol followed the American Physiological Society’s Resource 

Book for the Design of Animal Exercise Protocols guidelines (56). Mice were acclimated for 3 days to treadmill 

exercise; an exhaustion test was performed as previously reported with minor modifications (23).  

Echocardiography. Serial cardiac images were acquired using the Vevo®2100 imaging system (FUJIFILM 

VisualSonics Inc.) equipped with a high-resolution transducer (MS400) to characterize the HFpEF phenotype as 

previously described (11). Briefly, mice were anesthetized with 1-3% isoflurane and transferred to a platform 

where body temperature and heart rate (HR) were monitored throughout the examination. Two-dimensional (B-

mode) and M-mode images from the parasternal long-axis and short-axis (at the papillary muscle level), and four-

chamber apical views were acquired during the exam for cardiac morphology and function. Echocardiographic 

parameters were analyzed by standard and speckle tracking echocardiography (STE) analysis off-line using Vevo 

Lab software (version). Relative wall thickness in diastole (RWTd) was calculated by the following formula: 

RWTd=2xPWd/LVEDD while LV remodeling index (LVRI) was calculated as LV mass/LVEDD. All B-mode 

and M-mode measurements were obtained using AutoLV analysis software to minimize beat to beat variability 

and bias. Pulsed-waved Doppler and tissue Doppler measurements of the mitral valve were obtained from the 

apical four chamber view. For speckle tracking echocardiography (STE) B-mode images were obtained from the 

parasternal longitudinal axis view, three consecutive cardiac cycles were selected for analysis and semi-automated 

tracing of the endocardial and epicardial border were obtained to determine global longitudinal strain (GLS).  

Pressure-Volume (PV) Loops. Hemodynamic studies were performed using a micro-tipped pressure-volume 

catheter (SPR-839; Millar Instruments) as previously described with minor modifications (11, 57). Briefly, mice 

were induced and maintained with isoflurane, and body temperature was controlled (~37°C) during the whole 

procedure. The left internal jugular vein was exposed and cannulated with a 30-gauge needle for the 

administration of fluid support. The right carotid artery was exposed to permit the catheter to advance into the 

LV. Pressure-volume (PV) loops were recorded during steady-state and temporary inferior vena cava (ivc) 

occlusion. The ventilator was stopped momentarily (~10 s) to avoid breathing interference during measurements. 

The volumes were calibrated using volumes derived from echocardiographic measurements. All analyses were 

performed using LabChart Pro version 8.1.5 software (ADInstruments).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.18.508429doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.18.508429


 

 

13 

 

Post-mortem analysis. After hemodynamic studies, blood was withdrawn, the animals (under deep anesthesia) 

were humanely euthanized, and their tissues were harvested for further analysis. The whole heart and lungs were 

weighed, and tibia length was measured for normalization. Next, pulmonary congestion was evaluated by 

assessing the lung water content (LWC) which was calculated by subtracting lung dry weight from the lung wet 

weight measured immediately after excision. Lungs were dried (~72 hours) in an oven at 37○C (58). 

Histology. Heart sections were scanned using a whole slide digital microscopy imaging system (Olympus VS120 

Scanner, OlyVIA 2.9 software) to measure cardiomyocyte cross sectional area (CSA), cardiac fibrosis and 

capillary density as previously described with minor modifications (11). All measurements were performed using 

Image J by an investigator masked to treatment assignment. 

Western Blotting. Flash-frozen cardiac samples were homogenized using a Pyrex glass-glass homogenizer on 

liquid nitrogen and urea buffer containing: 8 M urea, 2 M thiourea, 3% SDS, 0.03% bromophenol blue and 0.05 

M Tris, pH 6.8. Glycerol (50%) with protease inhibitors ([in mmol/liter] 0.04 E64, 0.16 leupeptin, and 0.2 PMSF) 

at 60○C for 10 min was added. Samples were centrifuged at 12500 RPM for 5 minutes, aliquoted, flash frozen in 

liquid nitrogen, and stored at -80○C as previously described (11, 12). Immunoblot analysis was performed using 

antibodies listed in Table S6. Images were acquired by an Odyssey infrared imaging system (LI-COR 

Biosciences, Lincoln, NE) and then analyzed by the Image J software (NIH). Quantification of experiments are 

represented as fold change compared to control. 

Titin Analysis. For detection of titin, LV samples were solubilized and electrophoresed using 1% agarose gels as 

described previously (12). Total titin phosphorylation was analyzed using the fluorescence-based phosphoprotein 

stain ProQ diamond (Invitrogen) in comparison to the total protein stain Sypro® Ruby (Invitrogen).  

Statistical Analysis. Results are expressed as mean ± standard error of mean (SEM). All data were tested for 

Gaussian distribution using the Shapiro-Wilk test. Data between HFD+L-NAME ± GHRH-MR-356 treatment 

were compared using unpaired Student’s t-test or ANOVA followed by Tukey’s post-hoc when multiple groups 

were involved or otherwise stated. For data that were not normally distributed, we used non-parametric tests: two-

tailed Mann-Whitney U-test or Wilcoxon test while Kruskall-Wallis followed by Dunn’s multiple comparisons 

test was used to compare more than two groups. Differences in a series of time points were compared using two-

way ANOVA for repeated measurements (RM). For a given parameter, p<0.05 was considered significant. All 

data analyses and plots were generated using GraphPad Prism 9 version 9.4.0 (GraphPad Software Inc. CA, USA). 
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Symbols represent p-values of different orders of magnitude, *p<0.05, †p< 0.01, ‡p<0.001, §p<0.0001 and 

¶p<0.00001 vs. Control; and #p<0.05, ||p<0.01 vs. HFpEF-Placebo. 
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Figure Legends 

Figure 1. HFpEF phenotype after 9 weeks of HFD-L-NAME diet. (A) Body weight (BW) was substantially 

increased in HFD + L-NAME fed mice in comparison to control group. Treatment with MR-356 reduced the (B) 

heart weight (HW) to tibia length (TL) ratio (HW/TL) (p=0.055) and (C) lung water content (LWC) (p=0.051) in 

comparison to placebo-treated mice suggesting attenuation of cardiac hypertrophy and pulmonary congestion, 

respectively. (D) Systolic (SBP) and (E) diastolic (DBP) blood pressure values were substantially increased to a 

comparable extent in both HFpEF groups compared to control mice. All data are expressed as mean ± SEM. (One-

way ANOVA followed by Tukey’s multiple comparisons test, * p<0.05, † p<0.01, ‡ p<0.001, § p<0.0001 vs. 

Control (Control: n=9, HFpEF-placebo: n=10 and HFpEF-MR-356: n=10). (F) Intraperitoneal glucose tolerance 

test (ipGTT) showed increased glucose levels in HFpEF-placebo mice compared to control mice in all time points 

after glucose injection while MR-356 treated mice showed an increase in glucose levels only at 15-minutes time 

point (Two-way ANOVA followed by Tukey’s multiple comparisons test, * p<0.05, † p<0.01 vs. Control, 

n=10/group). (G) The area under the curve (AUC) of ipGTT was increased in HFpEF-placebo group, suggesting 

impaired glucose tolerance. In contrast, MR-356 did not significantly attenuate glucose levels (One-way ANOVA 

followed by Tukey’s multiple comparisons test, * p<0.05 vs. control, n=10/group). 

Figure 2. Cardiac performance and hemodynamic changes after 9 weeks of HFD+L-NAME diet. (A) 

Ejection fraction (EF) was not different among the experimental groups (p=ns);  (B) the ratio between early mitral 

inflow velocity (E) and mitral annular early diastolic velocity (E’) [E/E’] was markedly increased (absolute 

values) in HFpEF mice in comparison to control mice while treatment with MR-356 improve diastolic dysfunction 

(C) global longitudinal strain (GLS) was reduced (absolute values) revealing impaired cardiac performance. MR-

356 treatment significantly improved these parameters (One-Way ANOVA followed by a post hoc Holm-Sidak’s 

test, # p<0.05 and || p<0.01 vs. HFpEF-placebo, † p<0.01, ‡ p<0.001 and § p<0.0001 vs. Control, n=9-10). (D) 

Exercise tolerance test showed a reduced running capacity in the HFpEF-placebo mice compared to control and 

HFpEF-MR-356 mice. (One-Way ANOVA followed by a post hoc Holm-Sidak’s test, # p<0.05, † p<0.01, n=9-

10). ( E) Slope of end-diastolic pressure-volume relationship (EDPVR),  (F) LV end-diastolic pressure (EDP), 

(G) slope of end-systolic pressure-volume relationship (ESPVR), and (H) LV end-systolic pressure (ESP). E-F: 

Kruskal-Wallis test followed by Dunn’s multiple comparisons test * p<0.05 and † p<0.01 vs. Control, , # p<0.05 

and || p<0.01 vs. HFpEF-placebo, n=9-10. C-D: One-Way ANOVA with Tukey’s multiple comparisons test, * 

p<0.05, ‡ p<0.001, n=9-10. Bottom panels depict representative pressure-volume (PV) loops from control (I), 

HFpEF-placebo (J) and HFpEF-MR-356 (K) during inferior vena cava occlusion. Red dashed lines represent 
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ESPVR, and light teal dashed lines represent EDPVR. HFpEF-placebo mice show increased EDPVR and EDP 

indicating increased chamber stiffness. Notably, treatment with MR-356 restored these parameters to normal 

levels. 

Figure 3. Cardiac hypertrophy, fibrosis, and capillary density. Bar graphs showing (A) increased myocardial 

cross-sectional area (CSA), (B) increased fibrosis  and (C) capillary rarefaction in HFpEF-placebo mice in 

comparison to control and HFpEF-MR-356. One-Way ANOVA followed by Tukey’s test * p<0.05, † p<0.01 vs. 

Control, # p<0.05, || p<0.01 vs. HFpEF-placebo,  n=4-6). Representative (D) hematoxylin and eosin (scale bar: 

50 µm), (E) Masson’s trichrome (scale bar:100 µm) and (F) isolectin B4 (scale bar: 100 µm) stained sections 

from control mice (left panels), HpEF-placebo (middle panels) and HFpEF-MR-356 (right panels), 

respectively. 

Figure. 4. Changes in cardiac expression of pro-BNP, iNOS and VEGFA in HFpEF mice. Bar graphs 

showing increased expression of cardiac pro-BNP (A), iNOS (B) and VEGFA (C) expression in HFpEF-placebo 

mice in comparison to control and HFpEF-GHRH-A mice (One-way ANOVA followed by Tukey’s test * p<0.05, 

† p<0.01 vs. Control, # p<0.05, || p<0.01 vs. HFpEF-placebo, n=6). (D) Western blot quantification showing 

reduced ratio of phospho-IRE1α/IRE1α in HFpEF-placebo mice in comparison to control (One-Way ANOVA 

followed by Tukey’s multiple comparisons’ test, * p<0.05, † p<0.01 vs. Control, n=3). Western blot analysis of 

expression of (E) phosphorylation of cTnI at Ser43 (p-Ser43) (One-way ANOVA followed by Tukey’s multiple 

comparisons test, * p<0.05 vs. control, n=6) and (F) phosphorylation of cTnI at Ser23/24 (p-Ser23/24) (Kruskal-

Wallis test followed by Dunn’s multiple comparisons test, * p<0.05 vs. Control, n=6) normalized to the total cTnI 

abundance in LV homogenates. (G) Phosphorylation of myosin binding protein C (MyBPC) at Ser282 (p-Ser282) 

expression normalized to the total MyBPC abundance in LV homogenates. (H) Bar graphs show titin isoform 

expression from control (n=7), HFpEF-placebo (n=8) and HFpEF-MR-356 (n=5) mice (One-way ANOVA 

followed by Newman-Keuls’ multiple comparisons test, * p<0.05 vs. Control, # p<0.05 vs. HFpEF-placebo). 

Representative immunoblots (I-K) of pro-BNP, iNOS, VEGFA and respective loading control (GAPDH) for each 

experimental group (n=3); and (L) immunoblots of phosphorylated  IRE1α  at Ser724 and total IRE1α from heart 

samples (n=3) of each experimental group. (M & N) Phosphorylation status of cTnI (Ser43 and Ser23/24, 

respectively) and total cTnI as well as phosphorylation of MyBPC (Ser282) and total MyBPC (O). Representative 

1% agarose gel (P)  showing total titin phosphorylation using Pro-Q Diamond staining and SYPRO-RUBY 
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staining for total titin. Titin N2BA corresponds to the more compliant isoform (upper band) while N2B 

corresponds to the stiffer isoform (lower band). 
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