New Results
Interpretable machine learning with tree-based shapley additive explanations: application to metabolomics datasets for binary classification
View ORCID ProfileOlatomiwa O. Bifarin
doi: https://doi.org/10.1101/2022.09.19.508550
Olatomiwa O. Bifarin
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America

Article usage
Posted September 19, 2022.
Interpretable machine learning with tree-based shapley additive explanations: application to metabolomics datasets for binary classification
Olatomiwa O. Bifarin
bioRxiv 2022.09.19.508550; doi: https://doi.org/10.1101/2022.09.19.508550
Subject Area
Subject Areas
- Biochemistry (14129)
- Bioengineering (10798)
- Bioinformatics (34255)
- Biophysics (17620)
- Cancer Biology (14720)
- Cell Biology (20736)
- Clinical Trials (138)
- Developmental Biology (11162)
- Ecology (16474)
- Epidemiology (2067)
- Evolutionary Biology (20790)
- Genetics (13656)
- Genomics (19069)
- Immunology (14207)
- Microbiology (33084)
- Molecular Biology (13804)
- Neuroscience (72251)
- Paleontology (540)
- Pathology (2275)
- Pharmacology and Toxicology (3853)
- Physiology (6094)
- Plant Biology (12370)
- Synthetic Biology (3450)
- Systems Biology (8358)
- Zoology (1906)