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Abstract 12 

 The thermal tolerance–plasticity trade-off hypothesis states that acclimation to warmer 13 

environments increases basal thermal tolerance in ectotherms but reduces plasticity in coping 14 

with acute thermal stress characterized as heat hardening. We examined the potential trade-off 15 

between basal heat tolerance and hardening plasticity, measured as critical thermal maximum 16 

(CTmax) of a larval amphibian, Lithobates sylvaticus, in response to differing acclimation 17 

temperatures (15° and 25°C) and periods (3 or 7 days). A hardening treatment applied 2 hours 18 

before CTmax assays induced pronounced plastic hardening responses in the cool, 15°C treatment 19 

after 7 days of acclimation, compared to controls. Warm acclimated larvae at 25°C, by contrast, 20 

exhibited minor hardening responses, but significantly increased basal thermal tolerance. These 21 

results support the trade-off hypothesis and fill a knowledge gap in larval amphibian thermal 22 

plasticity. Elevated environmental temperatures induce acclimation in heat tolerance yet 23 

constrains ectotherm capacity to cope with further acute thermal stress.  24 

 25 

   26 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 20, 2022. ; https://doi.org/10.1101/2022.09.19.508599doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508599


Introduction 27 

 Environmental temperature is one of the most important abiotic drivers of organismal 28 

physiology (Angilletta Jr, 2009). As temperatures increase due to climate change, ectotherms 29 

will be under greater risk of approaching their upper thermal limit that will lead to shifts in 30 

species distributions, altered biological interactions, and reduced activity periods, all of which 31 

can result in extinction (Bellard et al., 2012; Blois et al., 2013; Cox et al., 2022; Somero, 2010). 32 

Global declines in amphibians have been linked to climate change (e.g., Blaustein et al., 2010; 33 

Campbell Grant et al., 2020; Lowe et al., 2021; Rollins-Smith, 2017), highlighting the need for 34 

continued research on how they respond to warming and thermal extremes.  35 

As thermal traits generally evolve slowly in herpetofauna (Bodensteiner et al., 2020), 36 

phenotypic plasticity is likely a primary response to climate change and increasing thermal 37 

stress. Thermal acclimation represents reversible plasticity in basal heat tolerance and develops 38 

over days to weeks of chronic exposure to altered environmental temperatures (e.g., Cupp Jr, 39 

1980; Lapwong et al., 2021b; Li et al., 2009; Rohr et al., 2018; Sgro et al., 2010). However, 40 

acclimation does not necessarily protect organisms against acute exposure to short-term heat 41 

events such as heat waves which are projected to increase in frequency (Seneviratne et al., 2021). 42 

The related heat hardening response is another form of thermal plasticity that, by contrast, 43 

develops rapidly over minutes to hours of exposure to acute heat stress (Bowler, 2005). Heat 44 

hardening is generated by exposing organisms to temperatures near or at their upper thermal 45 

limit. While hardening rapidly increases heat tolerance, these increases are transient and 46 

disappear within 36 hours (Deery et al., 2021; Maness and Hutchison, 1980; Phillips et al., 2016; 47 

Rutledge et al., 1987; but see Moyen et al., 2020), highlighting its role as a short-term protection 48 

mechanism. Therefore, plasticity in heat tolerance occurs at two different levels: basal thermal 49 

tolerance, measured as the limits of thermal performance curves (Huey and Stevenson, 1979), 50 

following an acclimation period, and hardening, which temporarily increases basal thermal 51 

tolerance following an acute heat stress.  52 

Under an ideal scenario, both high basal thermal tolerance and hardening would improve 53 

ectotherm persistence under climate change. However, there appears to be a physiological 54 

limitation such that elevated basal thermal tolerance constrains the capacity of an organism to 55 

further increase their heat tolerance. For example, Stillman (2003) found a negative relationship 56 

between basal thermal tolerance and acclimation capacity in Petrolisthes crab populations across 57 
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a latitudinal gradient. Building upon this, van Heerwaarden and Kellermann (2020) identified 58 

that this negative link was widespread across ectothermic clades and named this pattern the 59 

tolerance–plasticity trade-off hypothesis. Heat shock proteins (HSPs) may underlie the trade-off 60 

hypothesis because of the central role they play in maintaining homeostasis during extreme 61 

temperatures (Feder and Hofmann, 1999; Sørensen et al., 2003) and improving basal thermal 62 

tolerance (Bahrndorff et al., 2009; Blair and Glover, 2019; Gao et al., 2014; Krebs and Feder, 63 

1998; but see Easton et al., 1987; Jensen et al., 2010). Because HSPs are energetically expensive 64 

to produce and maintain (e.g., Hoekstra and Montooth, 2013), populations from warm 65 

environments may be ‘preadapted’ to favor relatively high constitutive HSP expression to elevate 66 

basal thermal tolerance but exhibit less flexibility in upregulation following an acute heat shock 67 

compared to cool environment populations (Gleason and Burton, 2015). Therefore, under the 68 

trade-off hypothesis, hardening may be more useful to species that are less likely to experience 69 

chronic heat stress but receive greater benefits in combating acute stress (van Heerwaarden and 70 

Kellermann, 2020; but see Sgro et al., 2010). Thus, acute upper thermal limits that are near or 71 

pushed near adapted thermal maxima restrict additional plasticity for further increased thermal 72 

tolerance through acclimation (Somero, 2010). While a meta-analysis on ectotherms by Barley et 73 

al. (2021) provided support for the trade-off hypothesis, there is mixed evidence in larval 74 

amphibians (e.g., Menke and Claussen, 1982; Simon et al., 2015; Turriago et al., 2022) 75 

suggesting a need for further exploration. 76 

The role of heat hardening in adult (Maness and Hutchison, 1980) and larval amphibians 77 

(Sherman and Levitis, 2003; Sørensen et al., 2009) is understudied. We aimed to investigate the 78 

trade-off hypothesis by testing how acclimation temperatures (low or high) and duration (short or 79 

long acclimation periods) affect interactions between heat hardening and basal thermal tolerance 80 

– estimated via critical thermal maximum (CTmax). These tests were conducted on larval wood 81 

frogs, Lithobates sylvaticus (LeConte 1825). Because larval anurans display a positive 82 

relationship between acclimation temperature and CTmax (e.g., Cupp Jr, 1980; Ruthsatz et al., 83 

2022), we predicted that longer acclimation to warmer temperatures would increase basal heat 84 

tolerance compared to those acclimated to cooler temperatures. In line with the trade-off 85 

hypothesis, we also expected the hardening effect would be most pronounced in larvae with the 86 

lowest CTmax suggesting greater acute thermal plasticity under these environments. 87 
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Materials and Methods 89 

Field Collection and Husbandry 90 

Freshly laid (< 36 hours old) wood frog egg masses were collected from wetlands in 91 

Jackson Co., IL under an Illinois Department of Natural Resources permit (HSCP 19-03). The 92 

egg masses were maintained in 60 L plastic containers with aerated, carbon-filtered water. After 93 

hatching, larvae were initially fed autoclaved algal flakes (Bug Bites Spirulina Flakes, Fluval 94 

Aquatics, Mansfield, MA, USA), followed by crushed alfalfa pellets at two weeks after hatching. 95 

Animals were fed twice weekly, and water was changed weekly. All experimental procedures 96 

were approved by the Southern Illinois University Institutional Animal Care and Use Committee 97 

(22–008).  98 

Critical Thermal Maximum Assay 99 

 After larvae reached early pro-metamorphic stages, 64 individuals were randomly 100 

selected and staged, weighed, and transferred to individual 750 mL plastic containers filled with 101 

600 mL of aged (>24 hours) aerated, carbon-filtered water. Larvae were split (N=32/treatment) 102 

into low (15°C ± 0.2) and high (25°C ± 0.3) acclimation temperatures. There were no differences 103 

in initial Gosner (1960) stage (range = 27 – 35) or mass (0.25 – 0.55 g) between these groups (P 104 

> 0.3). The larvae were further randomly split into four groups (n=8 per group) that differed in 105 

acclimation period and heat hardening treatment: 1) 3-day control, 2) 3-day hardened, 3) 7-day 106 

control, and 4) 7-day hardened. Larvae were acclimated to low or high temperatures for either 107 

three or seven days. On the last day of acclimation, the CTmax of control groups was measured. 108 

The hardened groups were heated for 10 minutes at 2–4°C below the CTmax of control groups, 109 

following the protocol of Sherman and Levitis (2003). After this heat hardening treatment, the 110 

animals were returned to their acclimation temperatures for 2 hours, after which their CTmax was 111 

measured. Sample sizes were reduced to seven for the 7-day hardened low and high temperatures 112 

groups, and the 7-day control low temperature group due to mortality.   113 

 CTmax was measured between 1000 – 1600 hrs to minimize potential diel effects on heat 114 

tolerance (Healy and Schulte, 2012; Maness and Hutchison, 1980). Larvae were staged, weighed, 115 

and then placed in individual 125 mL flasks filled with 75 mL of aged, aerated, carbon-filtered 116 

water and submerged in a hot water bath (Isotemp 220, Fischer Scientific) and given 5 minutes 117 

to acclimate prior to beginning the assay. Water temperatures increased 0.6 ± 0.01°C per minute 118 

from a starting temperature of 19.9 ± 0.2°C. Beginning at ~34°C, larvae were prodded with a 119 
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spatula every 30 seconds until they did not respond to the stimulus. At this point, a thermocouple 120 

probe (Physitemp BAT-12) was placed in the flask, water temperature was recorded which 121 

represented the larval CTmax. Flasks were then placed in a water bath at room temperature to 122 

facilitate larval recovery, and all larvae recovered ≤ 5 minutes. Upon completion of CTmax 123 

measurements, all larvae were euthanized via snap-freezing in -80°C ethanol.  124 

Statistical Analyses 125 

 We assessed how larval CTmax shifted in response to our various treatments using a 126 

general linear model. While Gosner stage recorded prior to the CTmax measurement was normally 127 

distributed, mass was log-transformed to achieve normality, and both were included as covariates 128 

in the model. Fixed effects included acclimation period (3 or 7 days), acclimation temperature 129 

(low or high), hardening treatment (control or hardened), and their interactions. Post-hoc 130 

analyses were conducted using Tukey tests. All analyses were conducted in R Studio v. 131 

2022.02.3 (https://www. Rstudio.com/) and significance values were set as α = 0.05.  132 
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Results 133 

 Across all treatments, wood frog larvae displayed a moderate degree of variation in their 134 

CTmax (range = 35.8° – 39.6°C; Table 1). Two individuals were dropped from analyses due to 135 

abnormally low CTmax values (≤ 34.9°C) in relation to their group mean. Of the main effects, 136 

only acclimation temperature (F1,49 = 6.52, P = 0.014) had a significant effect (Table 2) with 137 

those in the high acclimation temperature treatment exhibiting greater heat tolerance (Fig. 1). 138 

While neither hardening (F1,49 = 0.088, P = 0.77) nor acclimation period (F1,49 = 2.55, P = 0.12) 139 

had significant effects on CTmax, there was significant hardening by acclimation period (F1,49 = 140 

6.11, P = 0.017) and acclimation period by acclimation temperature (F1,49 = 18.71, P < 0.0001) 141 

interactions. The former was driven by a more pronounced hardening effect for day 7 142 

individuals, while the latter was the outcome of a pronounced increase in CTmax among larvae in 143 

the high acclimation treatment on day 7 (Fig. 1). Lastly, a significant three-way interaction was 144 

found for acclimation period, acclimation temperature, and hardening treatment (F1,49 = 4.47, P = 145 

0.040). Larvae in the low acclimation treatment on day 7 showed the largest hardening effect of 146 

0.9°C, which was more than double the hardening effect of any other group (Fig. 1). Larval mass 147 

and Gosner stage were unrelated to CTmax (P ≥ 0.29).   148 
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Discussion 150 

 Phenotypic plasticity of heat tolerance provides ectotherms the ability to counter the 151 

threat of overheating due to temperature extremes associated with climate change. Heat 152 

hardening, a form of thermal plasticity, represents the “first line of defense” against heat stress 153 

(Deery et al., 2021) through rapid upregulation of HSPs and/or changes to cellular structure in 154 

response to an acute thermal shock that can increase short-term heat tolerance (Bowler, 2005). 155 

However, the tolerance–plasticity trade-off hypothesis (van Heerwaarden and Kellermann, 2020) 156 

proposes that basal heat tolerance and thermal plasticity are negatively correlated; such that 157 

individuals with high CTmax have limited hardening (Gilbert and Miles, 2019). While numerous 158 

studies have demonstrated that amphibians exhibit plastic basal heat tolerance (e.g., Cupp Jr, 159 

1980; Ruthsatz et al., 2022), hardening remains understudied.  160 

 In our study, we found evidence in support of the trade-off hypothesis for larval wood 161 

frogs, although the effect was minor (Fig. 1), potentially due to low sample sizes. The group with 162 

the lowest mean CTmax (36.5°C) had the greatest hardening effect (0.9°C), while the group with 163 

the highest mean CTmax (39.0°C) had a minimal hardening effect (0.1°C). While the 0.9°C 164 

hardening effect was comparable to larval American toads (Anaxyrus americanus) and African 165 

clawed frogs (Xenopus laevis) (Sherman and Levitis, 2003), the remaining groups had a minor 166 

hardening response (≤ 0.4°C) that was similar with values for larval bullfrogs (L. catesbeianus) 167 

(Menke and Claussen, 1982). Additionally, the bullfrogs showed no evidence of the trade-off 168 

hypothesis as CTmax increased positively with acclimation temperatures while hardening effect 169 

was unchanged. Hardening effects in lizard, salamander, and fish species are variable ranging 170 

from –0.4°C (Anolis sagrei) to 2.1°C (A. carolinensis) (Deery et al., 2021; Lapwong et al., 171 

2021a; Maness and Hutchison, 1980; Phillips et al., 2016; Rutledge et al., 1987). In relation to 172 

other species, larval wood frogs acclimated to cooler conditions have a relatively strong 173 

hardening effect indicating significant plasticity in heat tolerance to improve their tolerance of 174 

overheating. This may benefit wood frogs as ephemeral pond breeding species are threatened by 175 

climate change (Blaustein et al., 2010) during the larval stage (Enriquez-Urzelai et al., 2019).  176 

 We can only speculate on the mechanism that drove the observed results, but we propose 177 

that HSPs represent an intriguing answer. This is because they are intimately tied to 178 

environmental temperature (Dalvi et al., 2012; Gu et al., 2019; Jin et al., 2019) and basal 179 

thermotolerance (Bahrndorff et al., 2009; Blair and Glover, 2019). Warm-tolerant ectotherms 180 
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often express higher constitutive levels of hsp70 relative to less-tolerant populations, but that an 181 

acute heat-stress results in greater hsp70 expression in those with lower basal thermal tolerance 182 

(Gleason and Burton, 2015; Zatsepina et al., 2000; Zatsepina et al., 2001). Zatsepina et al. (2000) 183 

proposed that this provided temperate populations the capability to rapidly and intensely 184 

synthesize HSPs after brief exposure to heat shock that was absent in low latitude populations. 185 

We propose a similar pattern in the wood frog larvae, such that higher constitutive HSP levels in 186 

warm-acclimated larvae provided increased basal heat tolerance compared to cold-acclimated 187 

larvae, yet hardened larvae from the latter group greatly upregulated HSP expression following a 188 

heat shock enhancing their hardening response. This is in line with Drosophila acclimated to 189 

cooler temperatures (Bettencourt et al., 1999), which exhibited pronounced hardening plasticity 190 

that was absent in the warm-acclimated group. Quantifying constitutive and heat-shocked hsp70 191 

mRNA of larval liver and gill tissues would offer support to this conclusion. Additionally, many 192 

ectotherms appear to have hard upper-limits to thermal tolerance after which their pejus range 193 

constraints any further plastic responses (Denny and Dowd, 2012). Thus, the warm acclimated 194 

larvae in our study could have approached their physiologically and evolutionarily determined 195 

upper limit that constrained any further plastic responses. Future tests are required to understand 196 

1) if there is a degree of plasticity to hard upper limits of thermal acclimation, 2) the cellular and 197 

physiological mechanisms underlying these limits, 3) how these mechanisms determine the 198 

trade-offs between hardening and acclimation to chronic heat stress, and 4) how these 199 

mechanistic interactions are shaped by evolution in comparative studies.   200 

Wood frog larvae with low basal heat tolerance demonstrated a large hardening effect 201 

suggesting a trade-off between the two traits. There is an inherent link between CTmax and 202 

hardening which may bias the presence of the trade-off hypothesis (van Heerwaarden and 203 

Kellermann, 2020), and Deery et al. (2021) proposed that correlative evidence of the trade-off 204 

hypothesis is a statistical artifact. However, we believe our methodology of using different 205 

individuals for CTmax and hardening removed the risks of spurious correlation and strengthened 206 

our analyses. Based on our results, we propose that larval wood frogs support the trade-off 207 

hypothesis after a relatively short acclimation period. Hardening benefits cool-acclimated 208 

populations in response to acute heat stress but plasticity in basal heat tolerance in response to 209 

prolonged warming are likely to be more beneficial in reducing overheating risk. 210 
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Table 1: Mean critical thermal maximum (CTmax) of control and hardened larval wood 372 

frogs at different acclimation temperatures and acclimation periods.  373 

Group Control (°C) Hardened (°C) 

15°C Day 3 36.8 ± 0.1 (7) 36.9 ± 0.3 (8) 

25°C Day 3 37.4 ± 0.1 (8) 37.8 ± 0.2 (7) 

15°C Day 7 36.5 ± 0.2 (7) 37.4 ± 0.2 (7) 

25°C Day 7 39.0 ± 0.1 (8) 39.1 ± 0.1 (7) 

Data are means ± standard error, with sample size in parentheses. 374 
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Table 2: Effects of body mass, Gosner stage, hardening treatment, acclimation period, and 376 

acclimation temperature on larval wood frog critical thermal maximum from a generalized 377 

linear model.  378 

Source of Variation S. S. d. f. F P 

Log-Transformed Body Mass 0.14 1 0.73 0.40 

Gosner Stage 0.22 1 1.15 0.29 

Hardening 0.017 1 0.088 0.77 

Acclimation Period 0.49 1 2.55 0.12 

Acclimation Temperature 1.25 1 6.52 0.014 

Hardening x Acclimation Period 1.17 1 6.11 0.017 

Hardening x Acclimation Temperature 0.094 1 0.49 0.49 

Acclimation Period x Acclimation Temperature 3.57 1 18.71 < 0.001 

Hardening x Acclimation Period x Acclimation Temperature 0.85 1 4.47 0.040 

Residuals 9.35 49   

Values in bold indicate significant differences, p < 0.05. 379 
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Figure Legend 381 

Figure 1: Heat tolerance of larval wood frogs across differing acclimation conditions and 382 

hardening. Larval wood frog critical thermal maximum (CTmax) exposed to two different 383 

acclimation temperatures (15° and 25°C), two different acclimation periods (3 and 7 days), and a 384 

hardening treatment (control vs. hardened). Points represent individual larvae. Center lines 385 

within boxplots represent the median and the boxes denote the interquartile range with whiskers 386 

representing 1.5x the upper or lower quartile. Letters indicate significant differences between 387 

post hoc pairwise comparisons (Tukey HSD, P < 0.05). 388 
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