- 1 Title: Heat Hardening of a Larval Amphibian is Dependent on Acclimation Period and
- 2 **Temperature**
- 3 Running Title: Hardening in a Larval Amphibian
- 4 Jason Dallas^{1,2} and Robin W. Warne¹
- ⁵ ¹Southern Illinois University, School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL,
- 6 62901-6501
- ⁷³Corresponding Author: dallasjason2@gmail.com
- 8 **Keywords:** heat hardening, CT_{max} , wood frogs, thermal acclimation, thermal plasticity
- 9 **Summary Statement:** A larval amphibian follows the trade-off hypothesis such that the group
- 10 with the highest basal heat tolerance displays the lowest hardening response and vice-versa.

12 Abstract

The thermal tolerance–plasticity trade-off hypothesis states that acclimation to warmer 13 14 environments increases basal thermal tolerance in ectotherms but reduces plasticity in coping 15 with acute thermal stress characterized as heat hardening. We examined the potential trade-off 16 between basal heat tolerance and hardening plasticity, measured as critical thermal maximum (CT_{max}) of a larval amphibian, *Lithobates sylvaticus*, in response to differing acclimation 17 temperatures (15° and 25°C) and periods (3 or 7 days). A hardening treatment applied 2 hours 18 before CT_{max} assays induced pronounced plastic hardening responses in the cool, 15°C treatment 19 20 after 7 days of acclimation, compared to controls. Warm acclimated larvae at 25°C, by contrast, exhibited minor hardening responses, but significantly increased basal thermal tolerance. These 21 22 results support the trade-off hypothesis and fill a knowledge gap in larval amphibian thermal 23 plasticity. Elevated environmental temperatures induce acclimation in heat tolerance yet constrains ectotherm capacity to cope with further acute thermal stress. 24 25

27 Introduction

28 Environmental temperature is one of the most important abiotic drivers of organismal 29 physiology (Angilletta Jr, 2009). As temperatures increase due to climate change, ectotherms will be under greater risk of approaching their upper thermal limit that will lead to shifts in 30 species distributions, altered biological interactions, and reduced activity periods, all of which 31 can result in extinction (Bellard et al., 2012; Blois et al., 2013; Cox et al., 2022; Somero, 2010). 32 33 Global declines in amphibians have been linked to climate change (e.g., Blaustein et al., 2010; Campbell Grant et al., 2020; Lowe et al., 2021; Rollins-Smith, 2017), highlighting the need for 34 35 continued research on how they respond to warming and thermal extremes.

As thermal traits generally evolve slowly in herpetofauna (Bodensteiner et al., 2020), 36 phenotypic plasticity is likely a primary response to climate change and increasing thermal 37 stress. Thermal acclimation represents reversible plasticity in basal heat tolerance and develops 38 39 over days to weeks of chronic exposure to altered environmental temperatures (e.g., Cupp Jr, 40 1980; Lapwong et al., 2021b; Li et al., 2009; Rohr et al., 2018; Sgro et al., 2010). However, 41 acclimation does not necessarily protect organisms against acute exposure to short-term heat 42 events such as heat waves which are projected to increase in frequency (Seneviratne et al., 2021). The related heat hardening response is another form of thermal plasticity that, by contrast, 43 44 develops rapidly over minutes to hours of exposure to acute heat stress (Bowler, 2005). Heat 45 hardening is generated by exposing organisms to temperatures near or at their upper thermal 46 limit. While hardening rapidly increases heat tolerance, these increases are transient and disappear within 36 hours (Deery et al., 2021; Maness and Hutchison, 1980; Phillips et al., 2016; 47 48 Rutledge et al., 1987; but see Moyen et al., 2020), highlighting its role as a short-term protection mechanism. Therefore, plasticity in heat tolerance occurs at two different levels: basal thermal 49 50 tolerance, measured as the limits of thermal performance curves (Huey and Stevenson, 1979), following an acclimation period, and hardening, which temporarily increases basal thermal 51 52 tolerance following an acute heat stress.

53 Under an ideal scenario, both high basal thermal tolerance and hardening would improve 54 ectotherm persistence under climate change. However, there appears to be a physiological 55 limitation such that elevated basal thermal tolerance constrains the capacity of an organism to 56 further increase their heat tolerance. For example, Stillman (2003) found a negative relationship 57 between basal thermal tolerance and acclimation capacity in *Petrolisthes* crab populations across 58 a latitudinal gradient. Building upon this, van Heerwaarden and Kellermann (2020) identified 59 that this negative link was widespread across ectothermic clades and named this pattern the 60 tolerance-plasticity trade-off hypothesis. Heat shock proteins (HSPs) may underlie the trade-off hypothesis because of the central role they play in maintaining homeostasis during extreme 61 temperatures (Feder and Hofmann, 1999; Sørensen et al., 2003) and improving basal thermal 62 tolerance (Bahrndorff et al., 2009; Blair and Glover, 2019; Gao et al., 2014; Krebs and Feder, 63 64 1998; but see Easton et al., 1987; Jensen et al., 2010). Because HSPs are energetically expensive to produce and maintain (e.g., Hoekstra and Montooth, 2013), populations from warm 65 environments may be 'preadapted' to favor relatively high constitutive HSP expression to elevate 66 basal thermal tolerance but exhibit less flexibility in upregulation following an acute heat shock 67 compared to cool environment populations (Gleason and Burton, 2015). Therefore, under the 68 trade-off hypothesis, hardening may be more useful to species that are less likely to experience 69 70 chronic heat stress but receive greater benefits in combating acute stress (van Heerwaarden and 71 Kellermann, 2020; but see Sgro et al., 2010). Thus, acute upper thermal limits that are near or pushed near adapted thermal maxima restrict additional plasticity for further increased thermal 72 73 tolerance through acclimation (Somero, 2010). While a meta-analysis on ectotherms by Barley et al. (2021) provided support for the trade-off hypothesis, there is mixed evidence in larval 74 amphibians (e.g., Menke and Claussen, 1982; Simon et al., 2015; Turriago et al., 2022) 75 76 suggesting a need for further exploration.

77 The role of heat hardening in adult (Maness and Hutchison, 1980) and larval amphibians (Sherman and Levitis, 2003; Sørensen et al., 2009) is understudied. We aimed to investigate the 78 trade-off hypothesis by testing how acclimation temperatures (low or high) and duration (short or 79 long acclimation periods) affect interactions between heat hardening and basal thermal tolerance 80 81 - estimated via critical thermal maximum (CT_{max}). These tests were conducted on larval wood frogs, *Lithobates sylvaticus* (LeConte 1825). Because larval anurans display a positive 82 relationship between acclimation temperature and CT_{max} (e.g., Cupp Jr, 1980; Ruthsatz et al., 83 2022), we predicted that longer acclimation to warmer temperatures would increase basal heat 84 85 tolerance compared to those acclimated to cooler temperatures. In line with the trade-off hypothesis, we also expected the hardening effect would be most pronounced in larvae with the 86 lowest CT_{max} suggesting greater acute thermal plasticity under these environments. 87

89 Materials and Methods

90 Field Collection and Husbandry

91 Freshly laid (< 36 hours old) wood frog egg masses were collected from wetlands in Jackson Co., IL under an Illinois Department of Natural Resources permit (HSCP 19-03). The 92 93 egg masses were maintained in 60 L plastic containers with aerated, carbon-filtered water. After hatching, larvae were initially fed autoclaved algal flakes (Bug Bites Spirulina Flakes, Fluval 94 95 Aquatics, Mansfield, MA, USA), followed by crushed alfalfa pellets at two weeks after hatching. Animals were fed twice weekly, and water was changed weekly. All experimental procedures 96 97 were approved by the Southern Illinois University Institutional Animal Care and Use Committee (22-008).98

99 Critical Thermal Maximum Assay

After larvae reached early pro-metamorphic stages, 64 individuals were randomly 100 selected and staged, weighed, and transferred to individual 750 mL plastic containers filled with 101 102 600 mL of aged (>24 hours) aerated, carbon-filtered water. Larvae were split (N=32/treatment) into low ($15^{\circ}C \pm 0.2$) and high ($25^{\circ}C \pm 0.3$) acclimation temperatures. There were no differences 103 in initial Gosner (1960) stage (range = 27 - 35) or mass (0.25 - 0.55 g) between these groups (P 104 > 0.3). The larvae were further randomly split into four groups (n=8 per group) that differed in 105 acclimation period and heat hardening treatment: 1) 3-day control, 2) 3-day hardened, 3) 7-day 106 107 control, and 4) 7-day hardened. Larvae were acclimated to low or high temperatures for either 108 three or seven days. On the last day of acclimation, the CT_{max} of control groups was measured. The hardened groups were heated for 10 minutes at 2–4°C below the CT_{max} of control groups, 109 110 following the protocol of Sherman and Levitis (2003). After this heat hardening treatment, the animals were returned to their acclimation temperatures for 2 hours, after which their CT_{max} was 111 112 measured. Sample sizes were reduced to seven for the 7-day hardened low and high temperatures groups, and the 7-day control low temperature group due to mortality. 113

114 CT_{max} was measured between 1000 – 1600 hrs to minimize potential diel effects on heat 115 tolerance (Healy and Schulte, 2012; Maness and Hutchison, 1980). Larvae were staged, weighed, 116 and then placed in individual 125 mL flasks filled with 75 mL of aged, aerated, carbon-filtered 117 water and submerged in a hot water bath (Isotemp 220, Fischer Scientific) and given 5 minutes 118 to acclimate prior to beginning the assay. Water temperatures increased $0.6 \pm 0.01^{\circ}$ C per minute 119 from a starting temperature of $19.9 \pm 0.2^{\circ}$ C. Beginning at ~34°C, larvae were prodded with a

- spatula every 30 seconds until they did not respond to the stimulus. At this point, a thermocouple
- 121 probe (Physitemp BAT-12) was placed in the flask, water temperature was recorded which
- 122 represented the larval CT_{max} . Flasks were then placed in a water bath at room temperature to
- facilitate larval recovery, and all larvae recovered \leq 5 minutes. Upon completion of CT_{max}
- measurements, all larvae were euthanized via snap-freezing in -80°C ethanol.
- 125 Statistical Analyses
- We assessed how larval CT_{max} shifted in response to our various treatments using a
- 127 general linear model. While Gosner stage recorded prior to the CT_{max} measurement was normally
- distributed, mass was log-transformed to achieve normality, and both were included as covariates
- in the model. Fixed effects included acclimation period (3 or 7 days), acclimation temperature
- 130 (low or high), hardening treatment (control or hardened), and their interactions. Post-hoc
- analyses were conducted using Tukey tests. All analyses were conducted in R Studio v.
- 132 2022.02.3 (https://www. Rstudio.com/) and significance values were set as $\alpha = 0.05$.

133 **Results**

Across all treatments, wood frog larvae displayed a moderate degree of variation in their 134 135 CT_{max} (range = 35.8° – 39.6°C; Table 1). Two individuals were dropped from analyses due to abnormally low CT_{max} values ($\leq 34.9^{\circ}C$) in relation to their group mean. Of the main effects, 136 137 only acclimation temperature ($F_{1.49} = 6.52$, P = 0.014) had a significant effect (Table 2) with those in the high acclimation temperature treatment exhibiting greater heat tolerance (Fig. 1). 138 139 While neither hardening ($F_{1,49} = 0.088$, P = 0.77) nor acclimation period ($F_{1,49} = 2.55$, P = 0.12) had significant effects on CT_{max} , there was significant hardening by acclimation period ($F_{1,49} =$ 140 141 6.11, P = 0.017) and acclimation period by acclimation temperature ($F_{1,49} = 18.71$, P < 0.0001) interactions. The former was driven by a more pronounced hardening effect for day 7 142 143 individuals, while the latter was the outcome of a pronounced increase in CT_{max} among larvae in the high acclimation treatment on day 7 (Fig. 1). Lastly, a significant three-way interaction was 144 found for acclimation period, acclimation temperature, and hardening treatment ($F_{1.49} = 4.47$, P =145 0.040). Larvae in the low acclimation treatment on day 7 showed the largest hardening effect of 146 0.9°C, which was more than double the hardening effect of any other group (Fig. 1). Larval mass 147 and Gosner stage were unrelated to CT_{max} (P \ge 0.29). 148

150 **Discussion**

Phenotypic plasticity of heat tolerance provides ectotherms the ability to counter the 151 152 threat of overheating due to temperature extremes associated with climate change. Heat 153 hardening, a form of thermal plasticity, represents the "first line of defense" against heat stress 154 (Deery et al., 2021) through rapid upregulation of HSPs and/or changes to cellular structure in response to an acute thermal shock that can increase short-term heat tolerance (Bowler, 2005). 155 156 However, the tolerance–plasticity trade-off hypothesis (van Heerwaarden and Kellermann, 2020) 157 proposes that basal heat tolerance and thermal plasticity are negatively correlated; such that 158 individuals with high CT_{max} have limited hardening (Gilbert and Miles, 2019). While numerous studies have demonstrated that amphibians exhibit plastic basal heat tolerance (e.g., Cupp Jr, 159 160 1980; Ruthsatz et al., 2022), hardening remains understudied.

In our study, we found evidence in support of the trade-off hypothesis for larval wood 161 frogs, although the effect was minor (Fig. 1), potentially due to low sample sizes. The group with 162 the lowest mean CT_{max} (36.5°C) had the greatest hardening effect (0.9°C), while the group with 163 the highest mean CT_{max} (39.0°C) had a minimal hardening effect (0.1°C). While the 0.9°C 164 hardening effect was comparable to larval American toads (Anaxyrus americanus) and African 165 clawed frogs (Xenopus laevis) (Sherman and Levitis, 2003), the remaining groups had a minor 166 hardening response ($\leq 0.4^{\circ}$ C) that was similar with values for larval bullfrogs (*L. catesbeianus*) 167 168 (Menke and Claussen, 1982). Additionally, the bullfrogs showed no evidence of the trade-off 169 hypothesis as CT_{max} increased positively with acclimation temperatures while hardening effect was unchanged. Hardening effects in lizard, salamander, and fish species are variable ranging 170 from -0.4°C (Anolis sagrei) to 2.1°C (A. carolinensis) (Deery et al., 2021; Lapwong et al., 171 2021a; Maness and Hutchison, 1980; Phillips et al., 2016; Rutledge et al., 1987). In relation to 172 173 other species, larval wood frogs acclimated to cooler conditions have a relatively strong hardening effect indicating significant plasticity in heat tolerance to improve their tolerance of 174 175 overheating. This may benefit wood frogs as ephemeral pond breeding species are threatened by 176 climate change (Blaustein et al., 2010) during the larval stage (Enriquez-Urzelai et al., 2019). 177 We can only speculate on the mechanism that drove the observed results, but we propose that HSPs represent an intriguing answer. This is because they are intimately tied to 178 179 environmental temperature (Dalvi et al., 2012; Gu et al., 2019; Jin et al., 2019) and basal

180 thermotolerance (Bahrndorff et al., 2009; Blair and Glover, 2019). Warm-tolerant ectotherms

181 often express higher constitutive levels of *hsp70* relative to less-tolerant populations, but that an acute heat-stress results in greater *hsp70* expression in those with lower basal thermal tolerance 182 183 (Gleason and Burton, 2015; Zatsepina et al., 2000; Zatsepina et al., 2001). Zatsepina et al. (2000) proposed that this provided temperate populations the capability to rapidly and intensely 184 synthesize HSPs after brief exposure to heat shock that was absent in low latitude populations. 185 We propose a similar pattern in the wood frog larvae, such that higher constitutive HSP levels in 186 187 warm-acclimated larvae provided increased basal heat tolerance compared to cold-acclimated larvae, yet hardened larvae from the latter group greatly upregulated HSP expression following a 188 189 heat shock enhancing their hardening response. This is in line with *Drosophila* acclimated to cooler temperatures (Bettencourt et al., 1999), which exhibited pronounced hardening plasticity 190 191 that was absent in the warm-acclimated group. Quantifying constitutive and heat-shocked hsp70 mRNA of larval liver and gill tissues would offer support to this conclusion. Additionally, many 192 193 ectotherms appear to have hard upper-limits to thermal tolerance after which their pejus range 194 constraints any further plastic responses (Denny and Dowd, 2012). Thus, the warm acclimated larvae in our study could have approached their physiologically and evolutionarily determined 195 upper limit that constrained any further plastic responses. Future tests are required to understand 196 1) if there is a degree of plasticity to hard upper limits of thermal acclimation, 2) the cellular and 197 physiological mechanisms underlying these limits, 3) how these mechanisms determine the 198 199 trade-offs between hardening and acclimation to chronic heat stress, and 4) how these 200 mechanistic interactions are shaped by evolution in comparative studies.

Wood frog larvae with low basal heat tolerance demonstrated a large hardening effect 201 suggesting a trade-off between the two traits. There is an inherent link between CT_{max} and 202 hardening which may bias the presence of the trade-off hypothesis (van Heerwaarden and 203 204 Kellermann, 2020), and Deery et al. (2021) proposed that correlative evidence of the trade-off hypothesis is a statistical artifact. However, we believe our methodology of using different 205 206 individuals for CT_{max} and hardening removed the risks of spurious correlation and strengthened 207 our analyses. Based on our results, we propose that larval wood frogs support the trade-off 208 hypothesis after a relatively short acclimation period. Hardening benefits cool-acclimated populations in response to acute heat stress but plasticity in basal heat tolerance in response to 209 210 prolonged warming are likely to be more beneficial in reducing overheating risk.

- 212 Acknowledgements We would like to thank Jared Bilak, Abigail Pratt, Matthew Walker, and
- Justin Remmers for feedback and comments on our manuscript. We would like to thank the two
- anonymous reviewers for helpful feedback on this manuscript.
- 215 **Competing Interests** The authors declare no competing or financial interests.
- 216 Author contributions Conceptualization: J.D.; Methodology: J.D.; Formal analysis: J.D.;
- 217 Investigation: J.D.; Data curation: J.D.; Writing original draft: J.D.; Writing review & editing:
- J.D., R.W.; Supervision: R.W.; Project administration: J.D.; Funding acquisition: R.W.
- **Funding** This research was funded through a Southern Illinois University Carbondale (SIUC)
- startup grant to R. W. Warne.

221	References
222	Angilletta Jr, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis:
223	Oxford University Press.
224	Bahrndorff, S., Mariën, J., Loeschcke, V. and Ellers, J. (2009). Dynamics of heat-
225	induced thermal stress resistance and Hsp 70 expression in the Springtail, Orchesella cincta.
226	Functional Ecology, 233-239.
227	Barley, J. M., Cheng, B. S., Sasaki, M., Gignoux-Wolfsohn, S., Hays, C. G., Putnam,
228	A. B., Sheth, S., Villeneuve, A. R. and Kelly, M. (2021). Limited plasticity in thermally
229	tolerant ectotherm populations: evidence for a trade-off. Proc Biol Sci 288, 20210765.
230	Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. and Courchamp, F. (2012).
231	Impacts of climate change on the future of biodiversity. Ecol Lett 15, 365-377.
232	Bettencourt, B. R., Feder, M. E. and Cavicchi, S. (1999). Experimental evolution of
233	Hsp70 expression and thermotolerance in Drosophila melanogaster. Evolution 53, 484-492.
234	Blair, S. D. and Glover, C. N. (2019). Acute exposure of larval rainbow trout
235	(Oncorhynchus mykiss) to elevated temperature limits hsp70b expression and influences future
236	thermotolerance. Hydrobiologia 836, 155-167.
237	Blaustein, A. R., Walls, S. C., Bancroft, B. A., Lawler, J. J., Searle, C. L. and
238	Gervasi, S. S. (2010). Direct and Indirect Effects of Climate Change on Amphibian Populations.
239	<i>Diversity</i> 2 , 281-313.
240	Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. and Finnegan, S. (2013). Climate
241	change and the past, present, and future of biotic interactions. Science 341, 499-504.
242	Bodensteiner, B. L., Agudelo-Cantero, G. A., Arietta, A. Z. A., Gunderson, A. R.,
243	Munoz, M. M., Refsnider, J. M. and Gangloff, E. J. (2020). Thermal adaptation revisited:
244	How conserved are thermal traits of reptiles and amphibians? J Exp Zool A Ecol Integr Physiol.
245	Bowler, K. (2005). Acclimation, heat shock and hardening. Journal of Thermal Biology
246	30 , 125-130.
247	Campbell Grant, E. H., Miller, D. A. W. and Muths, E. (2020). A Synthesis of
248	Evidence of Drivers of Amphibian Declines. <i>Herpetologica</i> 76.
249	Cox, N., Young, B. E., Bowles, P., Fernandez, M., Marin, J., Rapacciuolo, G., Bohm,
250	M., Brooks, T. M., Hedges, S. B., Hilton-Taylor, C. et al. (2022). A global reptile assessment
251	highlights shared conservation needs of tetrapods. Nature.

252	Cupp Jr, P. V. (1980). Thermal tolerance of five salientian amphibians during
253	development and metamorphosis. Herpetologica, 234-244.
254	Dalvi, R. S., Pal, A. K., Tiwari, L. R. and Baruah, K. (2012). Influence of acclimation
255	temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma
256	(Gunther). Fish Physiology and Biochemistry 38, 919-927.
257	Deery, S. W., Rej, J. E., Haro, D. and Gunderson, A. R. (2021). Heat hardening in a
258	pair of Anolis lizards: constraints, dynamics and ecological consequences. J Exp Biol 224.
259	Denny, M. W. and Dowd, W. W. (2012). Biophysics, environmental stochasticity, and
260	the evolution of thermal safety margins in intertidal limpets. J Exp Biol 215, 934-47.
261	Easton, D. P., Rutledge, P. S. and Spotila, J. R. (1987). Heat shock protein induction
262	and induced thermal tolerance are independent in adult salamanders. Journal of Experimental
263	<i>Zoology</i> 241 , 263-267.
264	Enriquez-Urzelai, U., Kearney, M. R., Nicieza, A. G. and Tingley, R. (2019).
265	Integrating mechanistic and correlative niche models to unravel range-limiting processes in a
266	temperate amphibian. Glob Chang Biol 25, 2633-2647.
267	Feder, M. E. and Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones,
268	and the stress response: evolutionary and ecological physiology. Annual Review of Physiology
269	61 , 243-282.
270	Gao, J., Zhang, W., Dang, W., Mou, Y., Gao, Y., Sun, B. J. and Du, W. G. (2014).
271	Heat shock protein expression enhances heat tolerance of reptile embryos. Proc Biol Sci 281,
272	20141135.
273	Gilbert, A. L. and Miles, D. B. (2019). Antagonistic Responses of Exposure to Sublethal
274	Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal
275	Performance. Am Nat 194, 344-355.
276	Gleason, L. U. and Burton, R. S. (2015). RNA-seq reveals regional differences in
277	transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol 24,
278	610-27.
279	Gosner, K. L. (1960). A Simplified Table for Staging Anuran Embryos and Larvae with
280	Notes on Identification. Herpetologica 16, 183-190.

281	Gu, L. L., Li, M. Z., Wang, G. R. and Liu, X. D. (2019). Multigenerational heat
282	acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice
283	leaf folder larvae. J Therm Biol 81, 103-109.
284	Healy, T. M. and Schulte, P. M. (2012). Factors affecting plasticity in whole-organism
285	thermal tolerance in common killifish (Fundulus heteroclitus). J Comp Physiol B 182, 49-62.
286	Hoekstra, L. A. and Montooth, K. L. (2013). Inducing extra copies of the Hsp70 gene
287	in Drosophila melanogaster increases energetic demand. BMC evolutionary biology 13, 1-11.
288	Huey, R. B. and Stevenson, R. (1979). Integrating thermal physiology and ecology of
289	ectotherms: a discussion of approaches. American Zoologist 19, 357-366.
290	Jensen, L. T., Cockerell, F. E., Kristensen, T. N., Rako, L., Loeschcke, V.,
291	McKechnie, S. W. and Hoffmann, A. A. (2010). Adult heat tolerance variation in Drosophila
292	melanogaster is not related to Hsp70 expression. J Exp Zool A Ecol Genet Physiol 313, 35-44.
293	Jin, J., Zhao, M., Wang, Y., Zhou, Z., Wan, F. and Guo, J. (2019). Induced
294	Thermotolerance and Expression of Three Key Hsp Genes (Hsp70, Hsp21, and sHsp21) and
295	Their Roles in the High Temperature Tolerance of Agasicles hygrophila. Front Physiol 10, 1593.
296	Krebs, R. A. and Feder, M. E. (1998). Hsp70 and larval thermotolerance in Drosophila
297	melanogaster: how much is enough and when is more too much? Journal of insect physiology 44,
298	1091-1101.
299	Lapwong, Y., Dejtaradol, A. and Webb, J. K. (2021a). Plasticity in thermal hardening
300	of the invasive Asian house gecko. Evolutionary Ecology.
301	Lapwong, Y., Dejtaradol, A. and Webb, J. K. (2021b). Shifts in thermal tolerance of
302	the invasive Asian house gecko (Hemidactylus frenatus) across native and introduced ranges.
303	Biological Invasions 23, 989-996.
304	Li, H., Wang, Z., Mei, W. and Ji, X. (2009). Temperature acclimation affects thermal
305	preference and tolerance in three Eremias lizards (Lacertidae). Current Zoology 55, 258-265.
306	Lowe, W. H., Martin, T. E., Skelly, D. K. and Woods, H. A. (2021). Metamorphosis in
307	an Era of Increasing Climate Variability. Trends Ecol Evol 36, 360-375.
308	Maness, J. D. and Hutchison, V. H. (1980). Acute adjustment of thermal tolerance in
309	vertebrate ectotherms following exposure to critical thermal maxima. Journal of Thermal
310	<i>Biology</i> 5 , 225-233.

311	Menke, M. E. and Claussen, D. L. (1982). Thermal acclimation and hardening in
312	tadpoles of the bullfrog, Rana catesbeiana. Journal of Thermal Biology 7, 215-219.
313	Moyen, N. E., Crane, R. L., Somero, G. N. and Denny, M. W. (2020). A single heat-
314	stress bout induces rapid and prolonged heat acclimation in the California mussel, Mytilus
315	californianus. Proc Biol Sci 287, 20202561.
316	Phillips, B. L., Muñoz, M. M., Hatcher, A., Macdonald, S. L., Llewelyn, J., Lucy, V.,
317	Moritz, C. and Grémillet, D. (2016). Heat hardening in a tropical lizard: geographic variation
318	explained by the predictability and variance in environmental temperatures. Functional Ecology
319	30 , 1161-1168.
320	Rohr, J. R., Civitello, D. J., Cohen, J. M., Roznik, E. A., Sinervo, B. and Dell, A. I.
321	(2018). The complex drivers of thermal acclimation and breadth in ectotherms. Ecol Lett 21,
322	1425-1439.
323	Rollins-Smith, L. A. (2017). Amphibian immunity-stress, disease, and climate change.
324	Developmental & Comparative Immunology 66, 111-119.
325	Ruthsatz, K., Dausmann, K. H., Peck, M. A. and Glos, J. (2022). Thermal tolerance
326	and acclimation capacity in the European common frog (Rana temporaria) change throughout
327	ontogeny. J Exp Zool A Ecol Integr Physiol.
328	Rutledge, P., Spotila, J. and Easton, D. (1987). Heat hardening in response to two types
329	of heat shock in the lungless salamanders Eurycea bislineata and Desmognathus ochrophaeus.
330	Journal of Thermal Biology 12, 235-241.
331	Seneviratne, S., Zhang, I. X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A.,
332	Ghosh, S., Iskandar, I., Kossin, J., Lewis, S. et al. (2021). Weather and Climate Extreme
333	Events in a Changing Climate. In: Climate Change 2021: The Physical Science Basis. In Climate
334	Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
335	Assessment Report of the Intergovernmental Panel on Climate Change eds. V. Masson-Delmotte
336	P. Zhai A. Pirani S. L. Connors C. Péan S. Berger N. Caud Y. Chen L. Goldfarb M. I. Gomis et
337	al.): Cambridge University Press.
338	Sgro, C. M., Overgaard, J., Kristensen, T. N., Mitchell, K. A., Cockerell, F. E. and
339	Hoffmann, A. A. (2010). A comprehensive assessment of geographic variation in heat tolerance
340	and hardening capacity in populations of Drosophila melanogaster from eastern Australia. J Evol
341	<i>Biol</i> 23 , 2484-93.

342	Sherman, E. and Levitis, D. (2003). Heat hardening as a function of developmental
343	stage in larval and juvenile Bufo americanus and Xenopus laevis. Journal of Thermal Biology
344	28 , 373-380.
345	Simon, M. N., Ribeiro, P. L. and Navas, C. A. (2015). Upper thermal tolerance
346	plasticity in tropical amphibian species from contrasting habitats: implications for warming
347	impact prediction. J Therm Biol 48, 36-44.
348	Somero, G. N. (2010). The physiology of climate change: how potentials for
349	acclimatization and genetic adaptation will determine 'winners' and 'losers'. J Exp Biol 213, 912-
350	20.
351	Sørensen, J. G., Kristensen, T. N. and Loeschcke, V. (2003). The evolutionary and
352	ecological role of heat shock proteins. Ecology Letters 6, 1025-1037.
353	Sørensen, J. G., Pekkonen, M., Lindgren, B., Loeschcke, V., Laurila, A. and Merilä,
354	J. (2009). Complex patterns of geographic variation in heat tolerance and Hsp70 expression
355	levels in the common frog Rana temporaria. Journal of Thermal Biology 34, 49-54.
356	Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change.
357	<i>Science</i> 301 , 65-65.
358	Turriago, J. L., Tejedo, M., Hoyos, J. M. and Bernal, M. H. (2022). The effect of
359	thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications
360	for vulnerability to climate warming. J Exp Zool A Ecol Integr Physiol 337, 746-759.
361	van Heerwaarden, B. and Kellermann, V. (2020). Does Plasticity Trade Off With
362	Basal Heat Tolerance? Trends Ecol Evol 35, 874-885.
363	Zatsepina, O., Ulmasov, K. A., Beresten, S., Molodtsov, V., Rybtsov, S. and
364	Evgen'Ev, M. (2000). Thermotolerant desert lizards characteristically differ in terms of heat-
365	shock system regulation. Journal of Experimental Biology 203, 1017-1025.
366	Zatsepina, O. G., Velikodvorskaia, V. V., Molodtsov, V. B., Garbuz, D., Lerman, D.
367	N., Bettencourt, B. R., Feder, M. E. and Evgenev, M. B. (2001). A Drosophila melanogaster
368	strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70
369	expression. Journal of Experimental Biology 204, 1869-1881.
370	

372 Table 1: Mean critical thermal maximum (CT_{max}) of control and hardened larval wood

Group	Control (°C)	Hardened (°C)
15°C Day 3	36.8 ± 0.1 (7)	36.9 ± 0.3 (8)
25°C Day 3	37.4 ± 0.1 (8)	37.8 ± 0.2 (7)
15°C Day 7	36.5 ± 0.2 (7)	37.4 ± 0.2 (7)
25°C Day 7	39.0 ± 0.1 (8)	39.1 ± 0.1 (7)

373 frogs at different acclimation temperatures and acclimation periods.

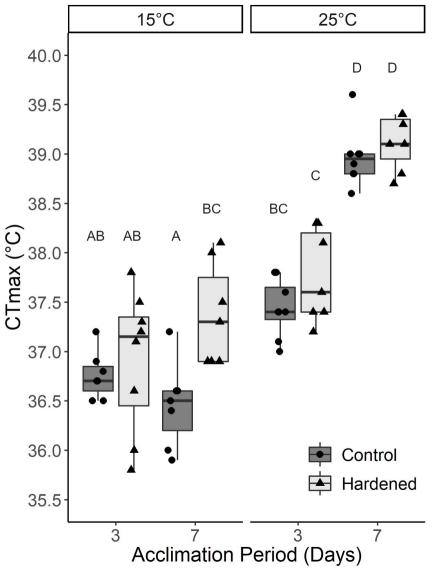
374 Data are means \pm standard error, with sample size in parentheses.

Table 2: Effects of body mass, Gosner stage, hardening treatment, acclimation period, and

acclimation temperature on larval wood frog critical thermal maximum from a generalized

378 linear model.

S. S.	d. f.	F	Р
0.14	1	0.73	0.40
0.22	1	1.15	0.29
0.017	1	0.088	0.77
0.49	1	2.55	0.12
1.25	1	6.52	0.014
1.17	1	6.11	0.017
0.094	1	0.49	0.49
3.57	1	18.71	< 0.001
0.85	1	4.47	0.040
9.35	49		
	0.14 0.22 0.017 0.49 1.25 1.17 0.094 3.57 0.85	0.14 1 0.22 1 0.017 1 0.49 1 1.25 1 1.17 1 0.094 1 3.57 1 0.85 1	0.14 1 0.73 0.22 1 1.15 0.017 1 0.088 0.49 1 2.55 1.25 1 6.52 1.17 1 6.11 0.094 1 0.49 3.57 1 18.71 0.85 1 4.47


379 Values in bold indicate significant differences, p < 0.05.

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.19.508599; this version posted September 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

381 Figure Legend

382 Figure 1: Heat tolerance of larval wood frogs across differing acclimation conditions and

- hardening. Larval wood frog critical thermal maximum (CT_{max}) exposed to two different
- acclimation temperatures (15° and 25°C), two different acclimation periods (3 and 7 days), and a
- hardening treatment (control vs. hardened). Points represent individual larvae. Center lines
- within boxplots represent the median and the boxes denote the interquartile range with whiskers
- representing 1.5x the upper or lower quartile. Letters indicate significant differences between
- post hoc pairwise comparisons (Tukey HSD, P < 0.05).

