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 2 

Abstract 22 

Animals are able to detect the nutritional content of sugar independently of taste. 23 

When given a choice between nutritive sugar and nonnutritive sugar, animals develop 24 

a preference for nutritive sugar over nonnutritive sugar during a period of food 25 

deprivation1-5. To quantify behavioral features during an episode of licking nutritive 26 

versus nonnutritive sugar, we implemented a multi-vision, deep learning-based 3D 27 

pose estimation system, termed the AI Vision Analysis for Three-dimensional Action 28 

in Real-Time (AVATAR)6. Using this method, we found that mice exhibit significantly 29 

different approach behavioral responses toward nutritive sugar versus nonnutritive 30 

sugar even before licking a sugar solution. Notably, the behavioral sequences during 31 

approach toward nutritive versus nonnutritive sugar became significantly different over 32 

time. These results suggest that the nutritional value of sugar not only promotes its 33 

consumption, but also elicits distinct repertoires of feeding behavior in deprived mice. 34 

 35 
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Introduction 37 

Animals innately prefer nutritive sugar over nonnutritive sugar or can learn to develop 38 

this preference over time1,3,7. Given that sweet-blind mice prefer nutritive over 39 

nonnutritive sugars, this preference is independent of taste input8-10. It is unclear, 40 

however, whether an increase in the consumption of a nutritive sugar over a 41 

nonnutritive one is a behavioral response that can be quantified and analyzed in detail. 42 

Mice may superficially appear to approach nutritive sugars differently than they 43 

approach nonnutritive sugars, but the details of their behavioral repertoires spurred by 44 

metabolic needs may be different. Indeed, superficially similar behaviors could be 45 

distinguished by analyzing the behavior itself using precise behavioral quantification 46 

methods11,12. 47 

Innately motivated behaviors, including the consumption of nutritive sugars 48 

during a period of food deprivation, are classically composed of three main phases: 49 

appetitive, consummatory, and satiety phases13,14. It is well known that animals display 50 

significantly different sequences of behavior during each phase, each often requiring 51 

a massive amount of behavioral annotation. Recent advances in computer vision 52 

machine learning have led to an efficient and precise way to extract the postures of a 53 

behaving animal from each image at a high spatial and temporal resolution15-17. In 54 

studies of the motor system, for example, a deep learning tool with a higher resolution 55 

has been used to analyze the role of the motor cortex18,19. Recently, the pose 56 

estimation model was used to analyze complex social behaviors of mice that include 57 

mating and fighting11,17. The mounting behavior of a male mouse, for example, varies 58 

with the sex of the encountered mouse. A male mouse may mount both male and 59 

female mice, but the sequence of his mounting behavior is distinct enough for a 60 

machine-learning-based classifier to distinguish between mounting followed by attack 61 

versus mating11. It is unknown, however, whether mice exhibit distinct appetitive-62 

related behaviors in response to the nutritional value of food.  63 

In this study, we applied a deep learning-based 3D pose estimation system, 64 

the AI Vision Analysis for Three-dimensional Action in Real-Time (AVATAR) system 65 

to use the coordination of 9 body points to quantify and analyze animal behaviors6 66 

while they develop a preference for nutritive sucrose over nonnutritive sucralose. We 67 

found that fasted mice not only consumed considerable amounts of sucrose solution, 68 
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but exhibited significantly different approach behavioral repertoires toward sucrose 69 

solution within 30 minutes of the first exposure. Using a deep learning-based system 70 

combined with a conventional measurement of food consumption, we were able to 71 

shed light on how nutritive food is selected over equally palatable, yet nonnutritive food 72 

by fasted mice and create a precise and large-scale behavioral dataset.  73 

 74 

Results 75 

Mice develop a preference for nutritive sugar over nonnutritive sugar when 76 

fasted.  77 

Previous studies using Drosophila revealed that flies develop a preference for nutritive 78 

sugar depending on their energy status. Fasted flies select nutritive sugars over non-79 

nutritive sugars within 5 minutes, whereas sated flies do not necessarily demonstrate 80 

a preference for nutritive sugar 4,5. It is unknown, however, whether mice that had not 81 

been previously exposed to nutritive or nonnutritive sugars exhibit the starvation-82 

induced preference for nutritive sugars. To investigate this matter, we first established 83 

a behavioral assay to measure the starvation-induced preference for nutritive sugars. 84 

To determine whether mice can detect and prioritize the nutritional content of sugar 85 

over its sweet content without conditioning, we designed a two-choice assay in which 86 

naïve mice (i.e., mice that had not been exposed to a plain sucrose or sucralose 87 

solution) were given a choice between a bottle containing a 100-mM sucrose solution 88 

and a bottle containing an equally sweet 0.5-mM nonnutritive sucralose solution under 89 

fasted conditions. 90 

Overnight fasted mice were presented with the two bottles and their 91 

consumption was measured using a custom-made lickometer. Within 30 minutes, 92 

fasted mice consumed more of the sucrose solution than the sucralose solution 93 

(Figure 1B). We also observed that fasted mice rapidly developed a preference for 94 

sucrose within 10 minutes (Figure 1B, black arrow). The inter-bout interval was 95 

shorter while licking the sucrose solution compared to the sucralose solution (Figure 96 

1E). These results suggest that fasted and unconditioned mice rapidly develop a 97 

preference for sucrose over sucralose. 98 

 99 

 100 
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Fasted mice exhibit significantly different behaviors toward nutritive sucrose 101 

versus nonnutritive sucralose.  102 

We next used a machine-learning-based method to quantify and classify changes in 103 

the sequence of behaviors as they developed a preference for sucrose. Our analysis 104 

of licking behavioral patterns revealed that the number of licking bouts for sucrose 105 

increased rapidly while the duration of licking bouts decreased (Figures 1F and 1G), 106 

suggesting an increase in preference for sucrose during the appetitive phase13,20. We 107 

hypothesized that the behavioral changes during the appetitive phase may coincide 108 

with the development of sucrose preference.  109 

 We therefore sought to track and record distinctive features of the appetitive 110 

behavior toward sucrose versus sucralose by using a deep learning-based 3D pose-111 

estimation algorithm (AVATAR)6. To do so, we constructed a system to measure and 112 

quantify behavior sequences during the two-choice assay. We first devised the two-113 

bottle choice task chamber and lickometer, in which two licking spouts on the bottle 114 

are exposed on a glass wall in the chamber. The behaviors of mice were recorded 115 

from five different directions in the AVTAR multi-vision studio (Figure 1H). Licking 116 

events and 5 multi-vision collage images were temporally synchronized. We then 117 

collected the coordination of body pose (27 arrays; 9 body-points x 3 axes) at each 118 

video frame using the AVATAR posenet that was trained for approximately 20 frames 119 

with the two-bottles (Figure 1H). We next generated a 3D action skeleton, which is 120 

illustrated in the AVATAR web stimulator (Figure 1I), to visualize and analyze the 121 

dynamic action sequences and cumulative licking events.  122 

To analyze the behavioral sequences selectively during the phase of approach 123 

behavior, we collected the coordination of body pose for approximately 3.3 seconds 124 

(100 frames with 30 FPS; 2700 vectors x the number of licks) before each licking bout. 125 

Several binary classification algorithms (Naive Bayes, SVM with Gaussian Kernel, and 126 

logistic regression classifiers)21 were used to evaluate the behavior sequence data 127 

and allow us to discriminate between the approach behaviors for sucrose versus 128 

sucralose (Figure 2B). We found that the performance of the Naive Bayes and 129 

Gaussian SVM classifiers was significantly higher than by chance (Naive Bayes: 130 

75.7%, SVM Gaussian: 81.2%) (Figures 2B-2D). Remarkably, both classifiers 131 

showed higher classification accuracy when the behavior sequences extracted from 132 

the late period of the same experiment were used (Figure 2E). This suggested that 133 
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the approach behavior toward sucrose is qualitatively distinct from the behavior toward 134 

sucralose over time.   135 

To determine how the approach behavior toward sucrose versus sucralose 136 

changed over a period of 30 minutes, we embedded the detected body postures during 137 

approach to each sugar into a 3D space by using a t-distributed stochastic neighbor 138 

(t-SNE) for visualization. In the 3 dimensional t-SNE space, we found that the body 139 

postures during the approach behavior were distributed separately (Figure 2F). 140 

Furthermore, we observed that the difference in behavioral response between the two 141 

approach behaviors substantially increased over time (Figure 2F). This is consistent 142 

with the improvement of binary classifier’s performance trained with the approach 143 

behavior during the late period of the two-choice assay (Figure 2E). Unsupervised k-144 

means clustering on the t-SNE embedding further revealed that the approach behavior 145 

was clustered into 4 types (Figure 2G). Clusters 3 and 4 mainly represented the 146 

approach behavior specific for sucrose (Figure 2I). To identify any similarities among 147 

the 4 clusters, we applied the hierarchical clustering method, which consisted of an 148 

unweighted pair group method with arithmetic mean (UPGMA), and plotted a 149 

dendrogram (Figure 2H). Notably, Clusters 3 and 4 had the greatest similarities in the 150 

approach behavior during the late period of the two-choice assay (Figures 2F-2H). 151 

These results indicated that an approach behavior toward nutritive sugar was 152 

significantly different from another approach behavior toward nonnutritive sugar. 153 

We further explored the features of the sucrose-specific approach behavior. 154 

To display representative behavioral sequences in each cluster, we reconstructed the 155 

representative approach behavior of each cluster using a centroid of the k-means 156 

clustering into a 3D posture (Figure 2J). Interestingly, the representative behavior of 157 

Cluster 3, which largely comprised the approach behavior toward sucrose, consisted 158 

of initially selecting the opposite bottle and then switching to the sucrose bottle (Figure 159 

2J left bottom). The representative behavior of Cluster 4, another sucrose-approach 160 

cluster, consisted of the mice directly raising their head to the sucrose bottle from the 161 

bottom of the chamber, rather than approaching from the top (Figure 2J right bottom). 162 

Inferred from the qualitative differences in the approach behavior, segregated neural 163 

circuits may be activated in order to trigger distinct feeding behaviors toward sucrose 164 

versus sucralose, as suggested in the previous studies2,3. 165 

 166 
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Discussion 167 

In our attempt to identify differences in the approach behavior of fasted mice toward 168 

nutritive sugar versus nonnutritive sugar, we found that fasted mice can rapidly 169 

recognize and select nutritive sucrose over nonnutritive sucralose without conditioning. 170 

Using the deep-learning 3D pose estimation model and the machine learning based-171 

classifiers, we identified a significant difference during the approach behavior toward 172 

sucrose versus sucralose. Notably, the difference developed within 30 minutes of 173 

exposure. Furthermore, among two distinct types of the approach behavior revealed 174 

by unsupervised clustering, the sucrose-specific approach behavior became prevalent 175 

over time. 176 

Researchers have traditionally measured the amounts of consumed food or 177 

water to determine feeding or drinking behaviors22,23. In this study, we combined these 178 

conventional measurements with the quantification of mice behaviors using machine-179 

learning approaches, including 3D pose estimation, supervised learning algorithms for 180 

classifications, and dimensionality reduction. These methods allowed us to evaluate 181 

the behavior of mice during the appetitive phase with precision and revealed that 182 

fasted mice exhibit qualitatively different approach behavior according to their 183 

metabolic needs. It would be interesting further to elucidate how two distinct approach 184 

responses for sucrose and sucralose are controlled by different neural circuits.  185 

Recent advances in the deep learning-based pose estimation have introduced 186 

a new way of analyzing detailed behavioral responses24-30. Instead of providing a 187 

subjective analysis, it can automatically quantify animal behaviors at a high resolution 188 

to produce a large and highly accurate dataset11,30. In this study, we used the recently 189 

developed AVATAR, which facilitated the creation of an accurate 3D pose estimation 190 

of mice during the two-choice assay6. This allowed us to overcome the limitation of the 191 

2D pose estimation model with a single camera view. The multiple directions of 192 

recording used in our method permitted the detection of each body posture with 193 

precision despite potential occlusion by the spout of bottles.  194 

For future studies, we plan to use this method to quantify and analyze other 195 

goal-directed behaviors, including eating, lever pressing, or nose poking, to further 196 

understand the dynamics of these behaviors and gain insight into neural substrates 197 

that are tuned to these behaviors. Furthermore, the two-bottle choice paradigm 198 

adopted in the AVATAR studio would be applicable for providing quantifiable 199 
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behavioral scoring of affective behaviors caused by neurological disorders – 200 

depression, anhedonia and post-traumatic stress disorder (PTSD) in rodent models. 201 

 202 

 203 
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 9 

Methods 222 

Animals. For wild-type experiments, male C57BL/6J (Jackson Laboratories stock 223 

#000664) adult mice (8-16 weeks of age) were used. All mice were single housed 224 

under a 12 h light/dark cycle and ad libitum access to food and water All animal 225 

experiments were performed according to protocols approved by KAIST IACUC 226 

following the National Institutes of Health guidelines for the Care and Use of 227 

Laboratory Animals. 228 

 229 

Short-term two-bottle preference test  230 

For three days, single-housed naive mice were acclimated to two bottles with drinking 231 

spouts in their home cage. Mice were habituated in a behavior apparatus (20 x 20 x 232 

20 cm) with two spouts connected to a custom-designed lickometer (Arduino UNO) 233 

before testing. Mice were trained to lick from bottles with spouts by restricting their 234 

access to water for 20 hours and then introducing them to the cage for two days of 235 

habituation. With no side bias for each sipper - less than a 25% preference index - and 236 

at least 200 licks within thirty minutes, these acclimation sessions were considered 237 

successful. They are then placed in a home cage for one day and fed ad libitum with 238 

water and food. Mice were housed in a new bedding cage and deprived of food for 18-239 

20 hours with free access to water for fasting conditions. Mice were acclimated in the 240 

behavior chamber box for 20 minutes before being placed into an apparatus with two 241 

bottles containing either 100 mM sucrose or 0.5 mM sucralose. All behavioral 242 

experiments were videotaped and recorded 1-2 hours after the dark cycle started. 243 

Preference index (%); percentage of the total licks for sucrose or sucralose = 244 

(LickSucrose – LickSucralose)/(LickSucrose + LickSucralose) x 100. The raw data from the 245 

lickometer was used to investigate licking dynamics using custom-designed MATLAB 246 

code. 247 

 248 

 249 

 250 
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AVATAR 3D system 251 

A specially designed multi-vision system was used to quantify the mice's 3D behavior. 252 

The vision system, which consists of four cameras on the sides and one on the bottom, 253 

can closely observe the mouse's external shape. Each camera's image data is sent to 254 

a PC for analysis and concatenation into a single image frame. AVATAR posenet 255 

analyzes these frames (3600x2000 pixel), detecting 9 body-points (nose, head, body 256 

center, anus, forelimbs, hind limbs, tail tip) of the target mouse in each area. Through 257 

the 3D reconstruction algorithm, these 2D coordinates are calculated as XYZ 258 

coordinates where the mouse was actually located. The final output data is a csv file 259 

containing a recorded frame (54000 raws; 30min) and body coordination information 260 

(27 arrays; 9 body points x 3 axes). To synchronize the behavior recording with the 261 

custom-made lickometer, a custom-made lickometer sent the specific signal on the 262 

camera’s image whenever the mice licked the bottle, and the AVATAR posenet further 263 

detected the specific signal from the camera’s image. 264 

 265 

AVATAR Web Simulator 266 

The AVATAR web simulator can visualize the pose data file (csv) quantified in the 267 

AVTAR 3D system. The 9 body-points coordination are combined into 8 vector sets 268 

that represent the actual mouse skeleton (nose-head, head-body center, body center-269 

anus, anus-tail tip, body center-left forelimb, body center-right forelimb, anus-left 270 

hindlimb, anus-right hindlimb). The webGL-based 3D visualization library is used to 271 

simulate these vector data sets. This web simulator allows researchers to observe the 272 

skeletal changes and behavior of mice. It is possible to control the time frame and 273 

pose sequence time-bin, view-point, and pose records. It also visualizes the actual 274 

bottle position and dynamically plots the lick data of each bottle consumed by the 275 

mouse using lickometer sensor data. 276 

 277 

 278 

 279 
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Analysis  280 

For the pose sequence classification, the “Classification Learner App" from the 281 

Statistics and Machine Learning Toolbox for MATLAB R2022a was used. We selected 282 

several classifiers, such as Naive Bayes, SVM with Gaussian Kernel, and logistic 283 

regression. The software allowed users to explore data, choose features, and 284 

configure validation strategies using the Classification Learner App. Confusion Matrix 285 

plots, Parallel Coordinates plots, ROC Curve plots, Scatter plots, and the classification 286 

accuracy of the model developed are all generated using this interactive classifier. 287 

Also, t-SNE clustering, k-means classification, and hierarchical clustering method 288 

(UPGMA) analysis results were solved using MATLAB.  289 

 290 

Quantification and Statistical Analysis 291 

All statistical analysis is done in MATLAB or Prism software. An unpaired or pair-wise 292 

comparison was made using a two-tailed student's t-test. Data are presented as mean 293 

± s.e.m. All statistical analyses were performed with GraphPad Prism 9.0.2. To 294 

compare two groups that present the normal distribution, unpaired two-tailed t-tests 295 

were conducted.  296 

 297 

Data and Software Availability 298 

The datasets that support the findings of this study are available from the 299 

corresponding author upon reasonable request. 300 

 301 

 302 

 303 

 304 
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Figure legends 306 

Figure 1. Mice rapidly develop a preference for nutritive sugar when fasted.  307 

(A) Left: Schematics of two-bottle choice preference for nutritive sucrose (100mM 308 

sucrose) and non-nutritive sucralose (0.5mM sucralose) in mice fasted overnight.  309 

(B) Plots for cumulative licks over 30 mins of two-choice preference assay. Orange 310 

line: sucrose, Green line: sucralose. Lines and shaded areas indicate mean +/- SEM.  311 

(C) Raster plots for lick event train for each analyzed mouse. Orange ticks: licks for 312 

sucrose, Green ticks: licks for sucralose.   313 

(D-G) Quantifications of total licks (D), interbout-interval (E), number of lick bouts, and 314 

duration of lick bout in 10-minute time bin during 30 mins of the assay (F and G). Lick 315 

bout was defined as a series of licks with an inter-lick interval of less than 1 second.  316 

(H) Schematics of a two-bottle choice paradigm in the AVATAR 3D studio. Two bottles 317 

are connected to a custom-made capacitance-based lickometer. Licking events and 5 318 

multi-vision collage images were synchronized and 27 arrays of the 3D action skeleton 319 

were collected.  320 

(I)  Screenshot of the web simulator that can visualize the dynamic 3D pose sequence 321 

and lickometer sensor data while using AVATAR. A link to the AVATAR web simulator 322 

during the two-choice preference task: Two choice.js app. 323 

  324 

Figure 2. Analysis of two-bottle choice behaviors using the AVATAR system 325 

(A) For the pose sequence data aligned to the licking events, we gained 27 arrays 326 

(x,y,z points from 9 body points) at each frame for 100 frames before the onset of 327 

licking bouts. The action skeleton array (pose sequence data) during the target time 328 

window, as one-hot vector of 2700, was used for each mouse as the final matrix data 329 

to be further analyzed.  330 
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(B) Bar graphs indicating the classification accuracy by binary classifiers with shuffled 331 

(grey) and labeled data (red); Logistic regression (Label:53.1%, Shuffle:51.1%), Naïve 332 

Bayes (Label:75.7%, Shuffle:47.8%), SVM with Gaussian kernel filter (Label:81.2%, 333 

Shuffle:49.8%). The orange dash line denotes 50% accuracy as a reference. 334 

(C) The receiver operator characteristic (ROC) curve from the SVM classifier in B. The 335 

Area Under the Curve (AUC) for the ROC curve is 0.84.  336 

(D) The confusion matrix of the SVM classification is used to evaluate the performance 337 

of the classification model for the predicted and actual classes. 338 

(E) Classification accuracy in 10-minute intervals (3 phase: 0-10 min, 10-20 min, 20-339 

30 min). Yellow line: SVM Gaussian kernel, Redline: Naive Bayes, and Blue line: 340 

Logistic regression; 0-10(min) phase: Yellow=69.4, Red=64.5, Blue=57.0; 10-20(min) 341 

phase: Yellow=75.6, Red=70.8, Blue=57.3; 20-30(min) phase: Yellow=81.2, 342 

Red=78.3, Blue=53.4. 343 

(F) Three-dimensional projection representing clusters by visualizing t-SNE for pre-344 

lick pose sequence data, labeled with each licking bottle. Orange dots: licking from 345 

sucrose. Green dots: licking from sucralose. The scale of each color saturation implies 346 

a time flag during the task (Saturation: 10~100% = Frame: 1~60000). Total cluster 347 

points consisted of 307 licking trials (sucrose: 224 points, sucralose: 83 points). 348 

(G) Three-dimensional projection representing each cluster classified by the 349 

unsupervised algorithm (K-means classification). Cluster 1: Purple, Cluster 2: Blue, 350 

Cluster 3: Green, Cluster 4: Red. 351 

(H) Dendrogram chart to illustrate the similarity and hierarchical relationship of all 307 352 

pose sequences. They are divided into 4 sub-clusters with 10.5 similarities and 353 

compared with the t-SNE cluster in G through the color box tag. Hierarchically, clusters 354 

1 and 2 are close, and clusters 3 and 4 are close. 355 

(I) Bar graphs demonstrating the licking trials of each t-SNE cluster. Cluster1 has 356 

61(63%) sucrose trials and 35(47%) sucralose trials; Cluster2: 35(50%) sucrose, 357 

35(50%) sucralose; Cluster3: 53(88%) sucrose, 7(12%) sucralose; Cluster 4: 75(93%) 358 

sucrose, 6(7%) sucralose. 359 
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(J) Representative 3D action sequence patterns from each cluster identified in G. Top 360 

left (Cluster #1): heads up toward the sipper, Top right (Cluster #2): heads down, 361 

Bottom left (Cluster #3): stretching its neck toward the sipper, Bottom right (Cluster 362 

#4): running toward a sipper. A link to the AVATAR simulator for each cluster. 363 
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