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Abstract

Natural odorant scenes are complex landscapes comprising mixtures of
volatile compounds. It was previously proposed that the Antennal Lobe cir-
cuit recovers the odorant identity in a concentration-invariant manner via
divisive normalization of Local Neurons. It remains unclear, however, how
identities of odorant components in a mixture is represented or recovered in
the fruit fly early olfactory pathway. In the current work, we take a differ-
ent approach from the traditional steady-state analyses that classify odorant
mixture encoding into configural vs. elemental schemes. Instead, we focus
on the spatio-temporal responses of the early olfactory pathway at the levels
of the Antennal Lobe and the Mushroom Body, and formulate the odorant
demixing problem as a blind source separation problem - where the identities
of each individual odorant component and their corresponding concentration
waveforms are recovered from the spatio-temporal PSTH of Olfactory Sensory
Neurons (OSNs), Projection Neurons (PNs), and Kenyon Cells (KCs) respec-
tively. Building upon previous models of the Antenna and the Antennal Lobe,
we advanced a feedback divisive normalization architecture of the Mushroom
Body Calyx circuit comprised of PN, KC and the giant Anterior Paired Lat-
eral (APL) neuron. We demonstrate that the PN-KC-APL circuit produces a
high dimensional representation of odorant mixture with robust sparsity, and
results in greater odorant demixing performance than the PN responses.
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1 Introduction

Neural systems implement sophisticated internal representations of sensory informa-
tion for performing complex computation and cognitive functions. For insects with
ecological niche emphasizing olfactory navigation, robust representation of odorant
mixture is achieved by an evolutionarily conserved neural pathway. In particular, we
focus on the first three layers of the fruit fly early olfactory pathway that is comprised
of the Antenna, the Antennal Lobe and the Calyx of the Mushroom Body as shown
in Fig.1, and sought to explore the odorant mixture processing capabilities of each
of the three layers.

It has previously been proposed that the Antenna encodes odorant identity and con-
centration waveform via multiplicative coupling [1], and the Antennal Lobe separates
the odorant identity and concentration waveform via an ON-OFF odorant objective
identity recovery processor implemented by the Local Neuron circuits [2]. However,
the discussion of odorant identity recovery in the Antennal Lobe only pertains to
mono-molecular odorants, and it remains unclear how odorant mixtures are repre-
sented in the early olfactory pathway.

In the current work, we advanced a feedback Divisive Normalization model of the
PN-KC-APL circuit consisting of biophysical neurons and synapse models. The pro-
posed PN-KC-APL circuit encodes odorant stimuli, pure and mixture alike, into
time-dependent high dimensional spatio-temporal KC responses that show robust
sparsity across time, odorant identities and concentration waveforms. Furthermore,
by formulating odorant mixture processing as a blind source separation problem
(see Fig.1), we show that the KC responses enable better identifications of odorant
components in a mixture. As opposed to the dichotomy of Elemental vs. Config-
ural encoding previously discussed in mixture processing [3, 4, 5], our focus on the
spatio-temporal responses of the OSNs, the PNs and the KCs enabled us to show
that odorant component identities can be recovered from all layers of the olfactory
pathway to varying degrees, demonstrating that all odorant representations in the
olfactory pathway are elemental.

Finally, we show that the odorant demixing capability of the KC responses depends
on the expansion-normalization circuit architecture, which leads to a high dimen-
sional Voronoi partitioning of the odorant space by the KC representation. This
geometric perspective of the KC representation of odorants shows that odorant rep-
resentation by KCs is locally robust and globally sensitive to changes in odorant
mixture compositions, and explains why odorant demixing is easier at the level of
the KCs.
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Figure 1: The early olfactory pathway with odorant mixture input, and the odorant demixing
problem at the level of Antennal Lobe (Projection Neurons) and the Calyx of the Mushroom Body
(Kenyon Cells).

2 Odorant Mixture Representations in the Early

Olfactory System

2.1 Modeling the Space of Odorant Mixtures

We extended the model of pure odorant input [1] to odorant mixture by assuming
that the odorant mixture drives the olfactory receptor in a linear weighted sum
fashion, thereby extending the synthetic odorant DB proposed in [1]:(∑

o∈O

[b]ron ·uo(t), [d]rOn

)
, (1)

where [d]rOn describes the effective dissociation rate of the mixture, which is de-
fined as the weighted mean of dissociation rates for each individual odorant-receptor
pair

[d]rOn =
∑
o∈O

uo(t)∑
l∈O ul(t)

· [d]ron .

We showed that this simple linear mixture model reproduces experimental observa-
tion of competitive binding in olfactory sensory neurons.
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2.2 Modeling the Expansion/Normalization Architecture of
the PN-KC-APL Circuit

We then introduce the feedback divisive normalization architecture of the PN-KC-
APL circuit (see Fig.2), its parameterizations and their influence on the output
Kenyon Cell responses.

Figure 2: Model of odorant mixture processing in the early olfactory system and the PN-KC-APL
circuit architecture.

First described in [6], over 150 years of studies on MB provide detailed, numerous
anatomical and physiological properties of the KC circuitry. The estimated number
of KCs is ≈ 2, 000 [7]. KCs receive excitatory inputs from projection neurons (PN) in
the antennal lobe [8, 9]. Each PN innervates one of 50 sub-neuropil structures, called
a glomerulus [10, 11, 12]. PNs connect randomly to KCs [8]. On average, each KC
is driven by 6.2 PNs with some biases [8, 9]. Note that KCs also receive input from
sensory modalities other than the olfactory system [13, 14, 15]. These additional
inputs, however, are not the focus of this work. A key feature of the PN-KC-APL
circuit is that all KCs excite a giant GABAergic anterior paired lateral (APL) neu-
ron, which reciprocally inhibits all KCs [16, 17, 18]. While detailed connectomic data
of the adult fly brain reveals additional complexity of KC-APL connection [19], the
reciprocity is observed in the larva fly brain [20]. For Simplicity, we assume a global
feedback inhibitory APL to KC connection. Regarding the physiological character-
istics of the APL neuron, its putative analog in the locust (the giant GABAergic
neuron (GGN) [21, 22]) is non-spiking, suggesting that the APL neuron is likely a
graded potential neuron [23].

Physiologically, it has been reported that the PN response is dense for both monomolec-
ular odorants and mixtures [24, 25], while the KC responses are 5 ∼ 10% sparse (only
5−10% KCs react to an odorant stimulus at a time) [26, 27, 28, 18]. This sparsity has
been attributed to the feedback inhibition from APL to KC [21, 29, 30, 26, 31, 32].
While the exact APL to KC inhibition mechanism in the Mushroom Body Calyx is
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unclear, we applied the differential Divisive Normalization Processor model proposed
in [2] to describe the PN-KC-APL interaction in the KC Dendritic Tree. Therefore,
the PN-KC-APL circuit (shown in Fig.2) is comprised of a PN-to-KC expansion
circuit and a KC-APL feedback normalization circuit.

3 Algorithms for Odorant Demixing

Assume that the PN/KC responses to pure odorants is known, the odorant demix-
ing problem seeks to evaluate the mixture processing of the olfactory pathway by
comparing the abilities to determine odorant component identities from the PN/KC
spatio-temporal mixture responses (spike rates) under the same concentration am-
plitude.

Assumption We assume that the steady state response (spike rate) to pure odor-
ants of constant concentration u is known. We denote the vector of steady state
response vectors (PSTH) to an odorant o by ro(u), o = 1, . . . , NO, for a total of
NO = 110 pure odorants. We define the dictionary of pure odorant responses as

R(u) = [r1(u), r2(u), . . . , rNO
(u)] ∈ RN×NO

+ ,

where N is the appropriate dimension of the population responses, e.g., N = 50 for
PNs and N = 2000 for KCs. While PN response is significantly less concentration
dependent than the OSN response [2], the dictionary R is parameterized by concen-
tration u to account for imperfect concentration-invariance of PN response.

Problem Definition We denote the response to an odorant mixture as x(t). The
demixing problem is formulated as: given R(u), identify the odorant components of
the mixture from x(t).

• Algorithm Minimize the Frobenius norm

min
S∈{0,1}NO×C ,H∈RC×T

+

∥X−WH∥

subject to W = R(u)S

H ≥ 0∑
j

Sji = 1, i = 1, . . . C
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where X = [x(t1),x(t2), · · · ,x(tT )] ∈ RN×T
+ is the mixture representation of

PNs or KCs sampled at different time instances T = {t1, t2, ..., tT}. We assume
that the mixture has C odorant components, and S has C columns - each
column vector is an indicator vector with only 1 non-zero entry. Therefore,
the constraint W = R(u)S restricts the columns of W to be a subset of the
columns of R(u). H is a non-negative matrix.

According to the model of the odorant space, an odorant is defined by its
identity and concentration. The identity is a time-invariant concept whereas
concentration varies over time. Therefore, the goal of the minimization above
is to factorize X into W and H, where W is time-invariant and represents the
identities of component odorants and H represents the “concentration wave-
form” of each mixture component in each row. At any single time instance,
there can be many choices to combine different identities and concentrations
together to obtain the response at that time instance, and thereby the choice is
ambiguous. The optimization problem explores the constancy of the identities
of mixture components across time to reduce this ambiguity. Thus, we are ba-
sically assuming that [X]ji, the response of neuron (PN or KC) j at time ti, can
be linearly decomposed as [X]ji = [ro1 ]j · [H]1i+[ro2 ]j · [H]2i+ · · ·+[roC ]j · [H]Ci,
where o1, o2, · · · , oC , are the C indices of columns of R(u).

• Evaluation To evaluate accuracy of demixing a binary odorant mixture, we
define a score of 1 if both components are identified correctly, 0.5 if only one
component is identified correctly and 0 if neither is identified. The score is
averaged over all pairs of mixture components.

4 Results

4.1 Expansion-Normalization Produces KC Responses with
Robust Sparsity

We showed that, by choosing parameters of the circuit in Fig.2 to enable strong APL
inhibition of KC Dendrite ( Fig.3(B)), the KC response is robustly sparse across
odorant identities (Fig.3(A)), concentrations (Fig.3(A)) and time (Fig.3(D)). We
also showed in Fig.3(C) that the sparsity level of the KC output is independent of
the number of KCs, and can be entirely controlled by changing the spiking threshold
of the KC Biophysical Spike Generator (BSG) and the number of PNs projecting
onto the same KC (PN-KC fan-in). Given the tight control over the sparsity of the
KC response, we therefore consider different PN-KC-APL circuit models that are
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parameterized by 1) the number of KCs and 2) the KC response sparsity level for
subsequent comparative evaluations of mixture processing.
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Figure 3: Parametrization of PN-KC-APL circuit enables robust sparsity of KC responses across
odorant identities, concentration and time. (A) KC sparsity across all 110 pure odorants with
known affinity values [1, 33] and concentrations spanning 4 orders of magnitudes. Blue solid curve
shows the average KC sparsity at each concentration level, light blue band around the mean value
shows +/- 1 standard error of KC sparsity level. (B) KC sparsity robustness vs. parameters of the
KC DNP model, for PN-KC-APL circuit with 1000 KCs and 7 PN-KC fanin. Each dot represents
a parametrization of the KC DNP model, and the dot is color-coded by the percentage of the KC
steady-state responses with sparsity within the 5-10% range. Note that the most robustly sparse
parametrization (top right corner, color-coded in yellow) is when κ is large, indicating strong APL
inhibition of KC Dendrite. (C) Average KC sparsity across concentration and odorant identities
compared against number of KCs, PN-KC fan-in ratio and KC BSG threshold. The average KC
sparsity is determined by the PN-KC fan-in and KC BSG threshold, and is independent of the
number of KCs as all subfigures have similar KC average sparsity for a given (PN-KC fan-in,
KC BSG threshold) pair. (D) Example I/O and KC sparsity of binary mixture input. (1st row)
Concentration waveforms of two odorant components in the mixture. (2nd row) PN spatial temporal
spike rate (normalized to between [0,1]). (3rd row) KC spatial temporal spike rate (normalized to
between [0,1]). (4th row) KC sparsity across time.

4.2 Expansion-Normalization Promotes Foreground/Background
Mixture Separation in KC Responses

Based on the methodology described in the previous section, we compared the accu-
racy of demixing using the mixture representation before and after the PN-KC-APL
circuit (Fig.1).

With a total of 110 pure odorant components, 5995 binary odorant mixtures can
be constructed. Due to computational constraints, we randomly selected 100/5995
binary mixtures, each driven at 7 different concentration levels u at 9 different mix-
ture ratios θ, resulting in a total of 6, 400 experiments for each circuit configuration.
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The same 6, 400 experiments are repeated for 4 different PN-to-KC expansion ratios
[1, 5, 10, 40] (note that the PN-to-KC expansion ratio in the 1st instar larval Mush-
room Body is ≈ 5) each parameterized to produce KC steady-state responses at 3
different sparsity levels (5 ∼ 10%, 20 ∼ 30%, 40 ∼ 50%). In total, without changing
the Antenna and Antennal Lobe circuits, 12 PN-KC-APL circuits are simulated, each
with 6, 400 different binary mixture inputs. Each of the experiment is simulated for 5
seconds (simulation time) at 0.1 millisecond temporal resolution, with concentration
waveforms having temporal supports of [0.2, 4.8] seconds. The resulting PN and KC
mixture spatio-temporal responses are sampled at 50 millisecond intervals, resulting
in 100 discretized time steps.

From each source separation result (a total of 32, 000 for PN and KC, respectively),
we compute the identification accuracy accK , accP , where accK ∈ [0, 1] is the accru-
acy of identifying odorant components from mixture KC response as defined above,
and resp. accP from PN response. Shown in Fig.4(main figure) is the average
difference in identification accuracy accK − accP , where each rectangle shows the
differences across concentration/mixture ratios (horizontal axis) and overall mixture
concentrations (vertical axis). In Fig.4(inset), the difference in identification accu-
racy is further averaged across concentrations and mixture ratios, resulting in a scalar
value for each of the 12 circuit configuration. The differences are color-coded on a
Blue(negative)-to-Red(positive) scale, with Red corresponding to higher KC identifi-
cation accuracy than PN, and vice versa. As shown in Fig.4(inset), KC outperforms
PN in identification accuracy for high expansion ratio level and with sparser KC
responses (lower sparisty level), this suggests that the odorant mixture separation
at the level of KC requires the Expansion-and-Sparsification in the PN-KC-APL cir-
cuit. In summary, our results showed that, to achieve better KC odorant demixing
performance, both a high PN-KC expansion ratio and strong APL inhibition of the
KC Dendrite (leading to low KC sparsity level) are required.
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Gãrard Coureaud. The perception of odor objects in everyday life: a review
on the processing of odor mixtures. Frontiers in Psychology, 5, jun 2014.

[4] Dan Rokni and Venkatesh N. Murthy. Analysis and synthesis in olfaction.
5(10):870–872, oct 2014.

[5] Aarti Sehdev and Paul Szyszka. Segregation of Unknown Odors From Mixtures
Based on Stimulus Onset Asynchrony in Honey Bees. Frontiers in Behavioral
Neuroscience, 13, jul 2019.
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