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Abstract. 

We describe the antipredator armor of a unique population of threespine stickleback 

(Gasterosteus aculeatus) from Narrows Pond in western Newfoundland and compare traits for 

this population to nearby populations from marine and freshwater systems. After standardizing 

for length, Narrows Pond stickleback are shallower bodied and have shorter dorsal spines than 

stickleback from the other populations. Also, though the number of armor plates for Narrows 

Pond stickleback is greater than for typical low-plate morphs, the size of the lateral plates for 

Narrows Pond stickleback is much smaller. Finally, most (nearly 75% of sampled individuals) 

Narrows Pond stickleback do not have a pelvic structure (bilateral pelvic plate, ascending 

process, and ventral spine) and the remaining individuals have greatly reduced pelvic girdle 

whereas all individuals from the other populations possessed complete pelvic structures.   
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Introduction. 

Freshwater fishes in temperate, post-glacial lakes are an excellent example of locally 

adaptive population divergence (Robinson and Wilson 1993; Foster et al. 1998; Robinson and 

Parsons 2002; Losos 2010; Arostegui and Quinn 2019). Repeated examples of adaptation to local 

environmental conditions provides an opportunity to understand the microevolutionary processes 

that produce this variation and ultimately could help understand the importance of those 

mechanisms for reproduction of new species. The repeated parallel variation exhibited by 

freshwater populations of threespine stickleback (Gasteroteus aculeatus) is particularly useful 

for understanding the roles of genetics, population history, gene flow and natural selection, 

which vary in importance among many systems (Foster et al. 1998, Losos 2010, Stuart et al. 

2017, Fang et al. 2020).  

Variation in the bony antipredator armor among freshwater populations of threespine 

stickleback has been particularly well studied. Individuals in marine populations, the ancestral 

form of all freshwater populations throughout the species’ range, possess a set of antipredator 

armor comprised of a set of lateral bony plates (30-34), a bony pelvic girdle, and dorsal and 

pelvic spines (Fig. 1). The pelvic girdle is comprised of two ventral bony plates fused along the 

fish’s midline and composed of anterior, posterior, and ascending processes (Bell 1987). The 

ascending processes often overlap 1-3 of the lateral plates, which in turn are typically partly 

overlapped by the basal plates of the dorsal spines, creating a rigid ring encircling the body 

(Reimchen 1983). The pelvic spines are anchored to the ventral portion of the pelvic girdle at the 

base of the ascending processes, and the dorsal spines are anchored to the dorsal pterigiophores 

and basal plates (Fig. 1). Freshwater populations vary in the expression of antipredator armor 

traits from those that are similar to the marine form, to those that have reduced number of armor 
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plates (typically 5-8 and lacking a caudal keel), reduced size of the pelvic girdle, and smaller 

spines, and in rare instances loss of some or all of the pelvic girdle complex (e.g. Bell and Orti 

1994; Klepaker et al. 2012).  

Pelvic girdle reduction and loss has been observed primarily in the eastern Pacific and 

northern European threespine stickleback, although it is rarely present elsewhere in other 

stickleback species (Klepaker 2013). Although pelvic reduction has been observed in eastern 

North America, it has been documented in only two nearby populations in Québec (Edge and 

Coad 1983). We found a population of threespine stickleback with pelvic girdle reduction during 

a larger survey examining variation in antipredator armor and body shape among stickleback 

from the west coast of Newfoundland (Fig. 2 for an example of stickleback from this 

population). Here, we compare antipredator armor in general, and pelvic girdle traits specifically, 

between the pelvic reduced population and other nearby freshwater and marine stickleback 

populations. 

Methods. 

We collected stickleback from Narrows Pond (the system containing the pelvic reduced 

populations) and from several nearby freshwater and marine locations during June and July 

between 2013 and 2020 (Fig. 3). The nearby freshwater populations sampled represented by 

complete (High Elevation Pond), partial (Rocky Harbour Pond), and low-plated (Bonne Bay 

Little Pond, Tilt Pond, Western Brook Pond) stickleback plate morphs (Barrett 2010).  Fish were 

collected using un-baited standard Gee-type minnow traps (1/8” and 1/4” mesh) set for between 

6 and 24 hours in nearshore locations 0.5 to 1.5 m deep. Fifty to 100 individuals were euthanized 

(over-dose of MS-222) and preserved in 10% formalin in the field. Later, we re-hydrated the 

samples in deionized water and stained them with Alizarin Red-S following methods outlined in 
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Song and Parenti (1995). Between 15 and 25 individuals from each sample were photographed 

(Cannon 5D Mark III with a 100 mm macro lens or Nikon D600 with a 90 mm macro lens) and 

we used ImageJ (Schneider et al. 2012) to measure various traits (shown in Fig.s 1 and 2).  We 

also visually assessed the combined pelvic score (Klepaker and Østbye 2008) of 100 individuals 

from each of Narrows Pond and four other populations representing a marine population and 

three freshwater populations, one with either a complete set, one with a partial set and one with a 

low set of armor plates.  

Statistical analyses were performed using the RStudio environment (version 

2021.09.2+382; RStudio Team 2020) for R (version 4.1.3; R Core Team 2022). We adjusted for 

allometric effects following the method outlined by Lleonart et al. (2000) with modifications 

described in Stuart et al. (2017). Size adjusted values for each individual across all linear traits 

were calculated using the following: 

𝑥𝑎,𝑖 = 𝑥𝑟,𝑖 ∗ (
log(𝑆𝐿)

log(𝑠𝑙𝑖)
)
𝑏

;  

where xa,i is the size adjusted trait value for individual i, xr,i is the raw trait value for 

individual i, SL is the average standard length for all individuals measured, sli is the standard 

length for individual i and b is the slope of the relationship between the log of specific trait 

against the log of standard length. The slope of the relationship was determined using linear 

regression of each log transformed trait against the log transformed standard length across all 

sampled individuals. Size-adjusted traits (ln transformed) were compared among types using 

MANOVA (Quinn and Keough 2002).  

Results. 
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The traits measured were all positively correlated with Pearson’s r ranging from 0.514 to 

0.952 for raw trait values and from 0.393 to 0.949 for size-adjusted trait values (Table 1). 

MANOVA suggests that the types vary in at least one of the traits (Pillai’s Trace omnibus F4, 856 

= 17.58. p<< 0.001; Fig. 4). All antipredator armor traits vary among the types (one-way 

ANOVA for each trait; Table 2; Fig. 4) and trait value tend to be smallest for stickleback from 

the Narrows Pond type for all traits except standard length. Fig.Fig.Fig. 

The combined pelvic score for each of the five groups is summarized in Fig. 6. Nearly 

75% of the individuals assessed from Narrows Pond had no expression of any pelvic girdle 

components. Most of the remaining roughly 25% of the individuals showed little pelvic girdle 

expression (CPS = 1 to 2), with only a few individuals scoring as high as CPS = 6). All fish from 

the other populations showed completed pelvic girdle expression (CPS = 8).   

Discussion. 

We compared the armor traits of Narrows Pond stickleback to several other nearby 

stickleback populations. Stickleback in Narrows Pond have by and large lost their entire pelvic 

girdle and have overall reduced anti-predator armor traits. Pelvic girdle loss and armor reduction 

is rare among threespine stickleback populations, but has been observed in in populations in 

western North America (British Columbia: Reimchen 1984, Alaska: Bell and Orti 1994), Europe 

(Scotland: Giles 1983; Campbell 1984, Coyle et al. 2007; Norway: Klepaker and Ostybe 2008, 

Klepaker et al. 2012; and eastern North America: Edge and Coad 1983, this study). This is the 

first population with pelvic girdle loss/reduction in Newfoundland and only the third in eastern 

North America, with the other two being within 4 km of each other. 
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Surveys that have examined pelvic reduction in threespine stickleback show variability in 

the extent of pelvic reduction in the populations where reduction occurs. For example, 97% of 

individuals sampled in Serendipity Lake, BC possessed no pelvic spines whereas only 65% of 

individuals in Rouge Lake, B.C. had no pelvic spines (Reimchen 1984). The proportion of 

individuals with pelvic reduction in each of the four Norwegian populations in Klepaker and 

Østbye (2008) ranged from 4.7% to 68% of all individuals sampled in each lake. The Scottish 

populations with pelvic reduction also appear to be mixed with individuals that have a complete 

pelvic girdle, though it is hard to estimate proportions based on the way the data was presented in 

those studies (Giles 1983; Campbell 1984). We scored 100 individuals from Narrows Pond and 

did not find a single individual with a complete pelvic girdle. We did observe 3 individuals with 

CPS = 6. However, we expect that how we scored may have been a little more liberal than other 

studies and likely our scoring is a little high especially in comparison to that of Klepaker et al. 

(2012). Regardless, it is clear that the Narrows Pond population demonstrates extreme pelvic 

reduction, and is certainly the most extreme case of pelvic reduction in the eastern North 

American stickleback lineages. 

Two factors have been hypothesized to promote armor and pelvic girdle reduction, low 

environmental calcium availability and predator absence (e.g. Bell et al. 1993, Lescak et al. 

2012; Reimchen et al. 2013). However, neither of these explanations is likely for the Narrow’s 

pond population. Brook char (Salvelinus fontinalis), a likely predator of threespine stickleback, is 

abundant in Narrows Pond. One of us (R. Scott) has observed schools of brook char numerous 

times while snorkeling and a 15 minute gill net set led to the capture of two brook char that were 

approximately 25 cm long. Also, the surficial geology surrounding Narrows Pond is dominated 

by dolostone (DeGrace 1974) which, when dissolved leads to elevated calcium availability in 
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aquatic systems (e.g. Hinder et al. 2003). Lac Croche and Lac Rond—two lakes within Québec’s 

Parc national du Lac-Témiscouata, and the only other documented populations of pelvic-reduced 

threespine stickleback in eastern N. America—also sit in a region of high-calcium geology (the 

Lac Croche and Saint-Léon formations of the Gaspé Belt) meaning calcium is very unlikely to be 

limiting (Ministére du Développement durable, Environnement et Parcs 2008). However, the 

frequency of pelvic reduction in Lac Rond fell dramatically in the decades following the 

introduction of brook trout (Edge and Coad 1983, LaCasse and Aubin-Horth 2012). This makes 

the Narrows Pond population unique in its sustained pelvic reduction despite the presence of a 

predator and abundantly available calcium. 

Unlike lateral plate morphs, for which the low-plate alleles are typically maintained at 

low frequencies in marine populations and transported between freshwater drainages via the 

marine environment (Roberts Kingman et al. 2021), pelvic reduction typically induced by de 

novo mutations in a particularly fragile region of the genome (Xie et al. 2019). Irrespective of the 

source of the mutation regulating this dramatic morphological divergence in the Narrows Pond 

population, though, the source of selection maintaining it under conditions that would typically 

select against reduced pelvises remains obscure. 

Surveys of stickleback armor show a broad range of variability among freshwater 

populations. Scott et al. (2022) found variability among 52 threespine stickleback populations 

from western Newfoundland that parallels variability observed other parts of the species’ range; 

marine populations, as elsewhere, did not vary across the sample range and freshwater 

populations varied both in armor expression and body shape. We used stickleback from eight 

populations from Scott et al. (2022) representing marine and freshwater locations. The 

freshwater locations chosen included populations that are monomorphic low, partial, or complete 
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with regard to lateral armor plate characteristics. While typical in the rest of the world, this 

variation in plate morphs appears higher in Newfoundland than in the rest of eastern Canada 

(Hagen and Moodie 1982). Narrows Pond stickleback are clearly different in all aspects of armor 

expression relative to the reference populations; Narrows Pond stickleback have a reduced pelvis 

(completely lost in most individuals sampled), and have smaller spines and lateral plates, and 

they have shallower bodies.   
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Table 1. Correlation (Pearson’s r) among the armor variables measured. Values below the diagonal are 

based on correlation among raw trait values and those above the diagonal are base on size-adjusted trait 

values. 

 

Pelvic 

girdle width 

Left 

Pectoral 

Spine 

Pelvic 

girdle 

length 

Ascending 

process 

length 

Ascending 

process 

width 

2nd dorsal 

spine 

Mean 

lateral plate 

length 

1st dorsal 

spine Body depth 

Standard 

length 

Pelvic girdle width 1.000 0.927 0.945 0.925 0.898 0.803 0.861 0.78 0.738 0.512 

Left Pectoral Spine 0.938 1.000 0.949 0.94 0.881 0.874 0.812 0.862 0.633 0.4 

Pelvic girdle length 0.951 0.952 1.000 0.932 0.88 0.822 0.826 0.801 0.671 0.443 

Ascending process length 0.931 0.945 0.934 1.000 0.922 0.795 0.796 0.788 0.653 0.393 

Ascending process width 0.907 0.897 0.889 0.930 1.000 0.766 0.783 0.757 0.699 0.478 

2nd dorsal spine 0.838 0.894 0.853 0.823 0.793 1.000 0.81 0.96 0.742 0.638 

Mean lateral plate length 0.881 0.840 0.853 0.816 0.797 0.853 1.000 0.785 0.872 0.696 

1st dorsal spine 0.818 0.887 0.836 0.820 0.784 0.967 0.83 1.000 0.725 0.605 

Body depth 0.782 0.698 0.736 0.700 0.722 0.806 0.905 0.784 1.000 0.889 

Standard length 0.621 0.534 0.579 0.514 0.559 0.736 0.788 0.700 0.933 1.000 
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Table 2. Effect size (relative to fful type) and results of one-way ANOVA (F and Bonferoni corrected p-value) comparing ln-

transformed trait values among the five stickleback types in this study.  

 

 Parameter estimate  ANOVA  

Trait fful flow fpart mful fnar   F p corrected 

standard length 3.8153058 -0.059142 -0.0962767 0.0924402 -0.1020545  11.9 << 0.001 

body depth 2.2948902 -0.077195 -0.147213 0.0786039 -0.2820819  41.0 << 0.001 

1st dorsal spine 1.5379815 -0.1998545 -0.1004132 0.0572739 -0.8098848  146.0 << 0.001 

2nd dorsal spine 1.6456716 -0.1808374 -0.0500668 0.0526708 -0.7833459  138.0 << 0.001 

ascending process length 1.9966302 -0.1047355 -0.1416682 0.0105061 -1.9966302  2503.0 << 0.001 

ascending process width 1.1085784 -0.0301651 -0.1300117 0.0699534 -1.1085784  542.0 << 0.001 

pelvic girdle length 2.4529143 -0.0934223 -0.1246807 0.0635805 -2.2777423  755.5 << 0.001 

pelic girdle width 1.5949106 -0.0008804 -0.0583767 0.1131498 -1.4851779  521.4 << 0.001 

left pelvic spine 2.2047332 -0.1128132 -0.0724911 0.0708902 -2.2047332  3077.0 << 0.001 

mean lateal plate length 1.5460312 -0.062101 -0.1385316 0.1127567 -0.8103607   94.4 << 0.001 
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Figure Captions. 

Figure 1. Line drawing of a typical full-plated threespine stickleback showing the suite of 

antipredator armor structures (ds1=1st dorsal spine; ds2=2nd dorsal spine; pt=dorsomedial 

pterigiophores; lp=lateral plate; ap=ascending process, pp=pelvic plate; ps=pelvic spine).     

Figure 2. Line drawing of a Narrow Pond stickleback (top) showing the suite of antipredator 

armor structures (ds1=1st dorsal spine; ds2=2nd dorsal spine; lp=lateral plate; 

ec=ectocorracoid; pp=pelvic plate) and examples of pelvic girdle expression (bottom). 

Pelvic girdles are arranged in increasing expression from left to right (absent to 

maximum observed expression).  

Figure 3. Map of western Newfoundland (inset) showing location of sampling sites in this study. 

Yellow symbols represent marine locations and blue symbols represent freshwater 

locations.  

Figure 4. Box plots showing median (line in box), Q1 and Q3 (bottom and top hinges   

respectively), and extremes (1.5 times the lower and upper hinges) of variables measured 

for each stickleback type sampled. Yellow symbols indicates marine locations and blue 

symbols indicate freshwater locations.  

Figure 5. Percent occurrence of combined pelvic score (CPS) for each population sampled. CPS 

was is based on the criteria described in Klepaker and Østbye (2008). 
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