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ABSTRACT  

The human leukocyte antigen (HLA) class II proteins present peptides to CD4+ T cells through an 

interaction with T cell receptors (TCRs). Thus, HLA proteins are key players in shaping immunogenicity 

and immunodominance. Nevertheless, factors governing peptide presentation by HLA-II proteins are 

still poorly understood. To address this problem, we profiled the blood transcriptome and 

immunopeptidome of 20 healthy individuals and integrated the profiles with publicly available 

immunopeptidomics datasets. In depth multi-omics analysis identified expression levels and subcellular 

locations as import sequence-independent features governing presentation. Levering this knowledge, 

we developed the Peptide Immune Annotator Multimodal (PIA-M) tool, as a novel pan multimodal 

transformer-based framework that utilises sequence-dependent along with sequence-independent 

features to model presentation by HLA-II proteins. PIA-M illustrated a consistently superior performance 

relative to existing tools across two independent test datasets (area under the curve: 0.93 vs. 0.84 and 

0.95 vs. 0.86), respectively. Besides achieving a higher predictive accuracy, PIA-M with its Rust-based 

pre-processing engine, had significantly shorter runtimes. PIA-M is freely available with a permissive 

licence as a standalone pipeline and as a webserver (https://hybridcomputing.ikmb.uni-kiel.de/pia). 

In conclusion, PIA-M enables a new state-of-the-art accuracy in predicting peptide presentation by HLA-

II proteins in vivo.  

 

INTRODUCTION 

The classical human leukocyte antigen (HLA) class II proteins are a group of glycoproteins that are 

mainly expressed on the surface of antigen presenting cells where they present peptides to CD4+ T 
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cells. The set of peptides presented by an HLA protein is referred to as the immunopeptidome (1). 

Polymorphisms in HLA-II coding genes have been genetically linked to a wide range of autoimmune 

and inflammatory diseases including inflammatory bowel disease (2), multiple sclerosis (3), rheumatoid 

arthritis (4), and celiac disease (5). Nevertheless, in most cases, potentially causative HLA-peptide 

interactions remain to be elucidated. Hence, a deeper understanding of factors governing peptide 

presentation by HLA proteins is of paramount importance to understand disease aetiology and to 

develop new therapies (1). Furthermore, the ability of HLA-II proteins to present neoantigens to CD4+ 

T cells (6) has made immunopeptidomic profiling crucial for developing novel immunotherapies (7) and 

cancer vaccines (8). 

Given their clinical utility, different methods have been utilized to characterize the set of 

peptides presented by HLA proteins, e.g. competition-based peptide binding assays (9) and peptide 

microarrays (10). Liquid chromatography-mass spectrometry (LC-MS)-based immunopeptidomics has 

emerged as the gold-standard method for characterizing the set of peptides presented by HLA proteins 

in vivo, referred to hereafter as the immunopeptidome (11). Despite the widespread popularity of the 

method, it is still expensive, low-throughput, and time-consuming, thus, computational methods have 

been developed to predict peptide-HLA interaction in silico. Arguably, statistical learning methods such 

as NetMHCIIpan (12), have become the most commonly utilized class of computational methods to 

predict the binding between peptides and HLA-II proteins. These methods depend on analysing the 

sequence of presented peptides to learn statistical properties governing presentation by HLA proteins.  

The recent rise of deep learning (DL) algorithms and frameworks coupled with the growth of 

public databases, due to the surge in MS-based immunopeptidomics (11), has fuelled the development 

of DL methods for modelling peptide-HLA-II interaction. Recently, Chen et al. (13) developed MARIA 

using a recurrent neural network based architecture, while Shao and colleagues (14) developed 

MHCnuggets employing a similar architecture. Furthermore, Cheng et al. (15) developed BERTMHC 

using a Transformer-based architecture while Graham et al. (16) developed BOTA using a convoluted 

neural network. Despite the recent breakthroughs which enabled more accurate predictions, different 

aspects remain uncharacterized, for example, the computational efficiency of different methods. For 

example, Cheng and colleagues (15) have recently released BERTMHC which is a transformer-based 

model for predicting peptide-HLA-II interaction. BERTMHC is based on TAPE (17) which is a large 

protein sequences model with twelve multi-headed attention layers each with twelve attention heads 

(15). Hence, predicting the binding between a peptide and an HLA molecule using BERTMHC, requires 

a lot of computational resources and, subsequently, are more expensive in terms of energy 

consumption and computational infrastructure requirement. Furthermore, the characterization of 

sequence-independent features that govern presentation by HLA-II proteins in vivo remains poorly 

understood. 

To address these limitations, we first generated a large dataset containing the 

immunopeptidome and the transcriptome of peripheral blood mononuclear cells (PBMCs) obtained 

from 20 healthy donors (Fig. 1A). This dataset was combined with publicly available datasets to provide 

an in-depth analysis of factors governing presentation by HLA-II proteins (Fig. 1B). We then used the 
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knowledge extracted from the analysis to develop two novel pan peptide-HLA-II prediction models: (i) 

peptide immune annotator (PIA)-S for sequence-only based predictions (Fig. 1C) and (ii) PIA-M for 

multi-modal, i.e. multi-omics, based predictions (Fig. 1E). To enable a swift integration of multimodal 

datasets, we developed the omics linking toolkit (OmLiT) which is a speed-optimized Rust library with 

a Python binder for pre-processing and preparing multi-omics data that can be used for training or 

running inferences using the PIA-M architecture (Fig. 1D). Lastly, we developed a computational 

pipeline that can be utilized to study peptide-HLA-II interaction from a variety of inputs including 

complete proteomes and genetic variation data stored in VCF files using the developed models (Fig. 

1F). Our findings illustrated an important role for sequence-independent features in shaping peptide 

presentation by HLA-II proteins. Further, our analyses illustrate the utility of deep multi-modal training 

in improving the predictive accuracy of peptide HLA-II interaction prediction models.  

MATERIAL AND METHODS 

Study design and sample collection 

Blood was collected from 27 healthy donors through the University Medical Center Schleswig-Holstein 

(UKSH) blood bank. All blood donors gave informed consent (Ethics committee UKSH Kiel, identifier 

D578/18). For each donor, PBMCs were isolated and quantified using flow cytometry and propidium 

iodide staining. All 27 donors were used for MS-immunopeptidomic profiling, the blood transcriptome 

of 25 donors was additionally profiled using RNA-Seq (Supplementary Methods). For RNA-Seq, two 

replicates each containing 1𝑥107cells were isolated per donor. For MS-immunopeptidomic profiling, at 

least two replicates each containing 1𝑥108cells were utilized. The immunopeptidomes were measured 

in two proteomics labs, first, at Kiel University referred to as center one (C1) and at Greifswald University 

referred to as center two (C2). After HLA-DR pulldown, MS-immunopeptidomic profiling and quality-

control (at least two replicates per sample), an immunopeptidomic profile for 25 samples that are 

derived from 23 donors were obtained, where three profiles were measured only at C2, 18 profiles only 

at C1, and two profiles at C1 and C2 (i.e. a total of 4 profiles) (Table S1). After selecting only profiles 

with at least two replicates, a paired dataset containing the immunopeptidome and the transcriptome of 

20 probands (Table S2) was obtained.  

Development of PIA-S architecture  

PIA-S is a transformer-based model that is used for predicting peptide-HLA-II interaction using two 

inputs: the first is the peptide sequence and the second is the HLA-II protein pseudo-sequence (18). 

Peptides are numerically encoded and are zero-padded into a fixed length array of size 21. Meanwhile, 

HLA-II pseudo-sequences as defined by NetMHCIIpan (18) are extracted and are numerically encoded 

into a fixed length array of size 34. These two arrays are then concatenated and are fed to a learned 

embedding layer which projects each amino acid, more specifically, the number corresponding to it, 

into a learnable encoding space with 32 dimensions. The output of the learned embedding is fed to a 

stack of self-attention layers each with four attention-heads (19). An average pooling layer is applied 

along the features axis of the tensor produced by self-attention blocks, reducing the rank of this tensor 
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from three to two. The produced tensor is fed to a feedforward neural network composed of a two 

multilayer perceptron and a dropout layer (20) to regularize the model and prevent overfitting. The final 

output is computed using a prediction head with a sigmoid activation function producing a presentation 

probability.  

Development of PIA-M architecture 

PIA-M is a transformer-based model for predicting peptide-HLA-II interaction using sequence-

dependent and sequence-independent features. PIA-M receives five inputs: first, the peptide sequence 

concatenated with the pseudo-sequence of the target HLA-II protein. Second, the expression level of 

the parent transcript, third, the subcellular compartment of the parent protein, fourth, the context vector 

which is a vector containing the expression of all coding genes and fifth, the distance to the nearest 

glycosylation site. PIA-M is tightly coupled to the multi-omics linking toolkit library (OmLiT) and relies 

on it for input annotation, pre-processing and encoding. Hence, the input to OmLiT is the main entry 

point to use PIA-M either for inference or for training. It is worth mentioning that OmLiT and PIA-M are 

integrated into the training pipeline and, more importantly, into the inference pipeline as discussed 

below. OmLiT takes four inputs to prepare a PIA-M-compatible input array, first, the source proteome 

(in most cases this is the human proteome which contains Uniprot accessions as keys and protein 

sequences as values). Second, a table containing HLA-II pseudo-sequences; third, the annotation table 

which contains detailed annotations of human proteins in different tissues, e.g. the expression level of 

a particular transcript in a particular protein (https://github.com/ikmb/OmLiT). Fourth, a user provided 

tuple containing peptide sequences, source tissues and HLA alleles. These four inputs are processed 

by OmLiT to produce encoded arrays that can be used for running inference on the model. PIA-M 

depends on two types of blocks to process the inputs: an attention block like PIA-S which is used for 

analysing the input sequence, and a feedforward block for analysing the omics data. The feedforward 

network is based on a stack of multilayer perceptron (MLPs) separated by a dropout layer (20) to reduce 

overfitting. Scalar values such as the parent expression level and the distance to nearest glycosylation 

sites are processed using a feedforward layer with only one neuron while high-dimensional inputs, e.g. 

the context-vector which is a vector with ~16,000 elements, are processed using multiple feedforward 

layers followed by a dropout layer. The output of the attention-blocks and the feedforward blocks are 

concatenated and fed to an output prediction head, which produces presentation probabilities. 
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Benchmarking the performance of PIA-S and PIA-M using different immunopeptidomic 
datasets 
Three datasets were used for benchmarking the performance of PIA-S and PIA-M.  

1. The first dataset (benchmarking-1) was constructed from the immunopeptidome of three samples 

that were measured in the current study, with the following HLA-DR genotypes: HLA-DRB1*03:01/ HLA-

DRB1*11:01, HLA-DRB1*11:01/HLA-DRB1*11:02 and HLA-DRB1*07:01/HLA-DRB1*09:01 

respectively. 

2. The second dataset (benchmarking-2) was obtained from Wang et al. (21) and contains the 

immunopeptidome of two HLA-DR alleles, (i) DRB5*01:01 and (ii) DRB1*15:01. These two datasets 

were measured across multiple cell lines, however, for benchmarking PIA-S and PIA-M, the set of 

peptides identified from all cell lines was used. 

3. The third dataset (benchmarking-3)  was assembled from an HLA-DP immunopeptidomic dataset 

obtained from Laghmouchi et al. (22). The dataset contained 13 different immunopeptidomic datasets 

each of which was obtained from a different HLA-DP protein. To generate peptide sequences, raw MS 

spectrometry measurements were obtained from PRIDE (23) under the accession PXD030591 and 

were subsequently processed using MHCquant (24) (Supplementary Methods) 

Performance metrics, namely, the area under the receiver operator curve (ROC AUC) and the area 

under the precision recall curve (PR AUC) were calculated using TensorFlow (25) and Scikit library (26).  

RESULTS 

Sequence-independent features shape HLA-II immunopeptidomes  

We started by characterizing the HLA-DR immunopeptidome of different healthy individuals using blood 

samples (Material and Methods). We focused on HLA-DR as it has been previously shown to be the 

dominantly expressed HLA-II gene (27) and on blood as it provides a relatively accessible tissue to 

obtain biologically-resemblant samples as opposed to cell lines. Using two biological replicates per 

sample (each utilising 1𝑥108 PBMCs), we identified on average 3,265 unique peptides and 970 unique 

proteins per sample (Fig. 2A). The identified peptides had the expected length distribution for HLA-II 

peptides with most peptides being 13- to 17-mers (Fig. S1).  

Next, we looked at the cumulative number of peptides and proteins among samples. As seen 

in Fig. 2B, the number of unique peptides continuously increases with each sample following a, more-

or-less, logarithmic growth where the number of new proteins identified plateaus after ~15 samples. 

This suggests that different samples present different peptides, nevertheless these peptides originate 

from a subset of the human proteins. In essence, this implies that different HLA-DR proteins present 

different peptides, however, these peptides originate from a smaller set of enriched proteins.  

To characterize this further, we computed the Jaccard index (defined as intersection divided by 

the union of peptides and/or proteins identified between two samples) among different independently 

collected samples at the peptide and the protein level. As seen in Fig. 2C, the samples, are more similar, 
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i.e. have a higher Jaccard index (J-index), at the protein level than at the peptide level confirming 

previous observations. Nevertheless, it worth mentioning that comparing the J-index between peptides 

and proteins is challenging because the difference in the number of unique peptides and protein per 

sample. Nonetheless, the computed scores are spread over a long range of values at the peptide level 

(J-index ∈ [0.0356,0.5186]) and at the protein level (J-index ∈ [0.2374,0.6603]). To get a better idea 

of factors governing similarity of presentation between samples, we compared the HLA-DR genotype 

of sample-pairs exhibiting a high score at the peptide-level (J-index> 0.3) and at the protein-level (J-

index > 0.5) (Table S3). As seen in the table, all similar samples share, at least, one HLA-DR allele. To 

measure the impact of shared HLA-DR background on the J-index, we calculated the correlation 

between the J-index and the number of shared alleles (two-fields resolution) at the peptide-level (Fig. 

S2A) and at the protein-level (Fig. S2B) across all unique sample-pairs. As seen in the figure, there is 

a positive and significant relationship between the number of shared HLA-II alleles and similarity at the 

immunopeptidome level. Furthermore, at the protein level, samples with completely different HLA-DR 

alleles, exhibit a relatively high level of overlap (J-index~0.3). This suggests that next to the HLA 

proteins binding preferences and peptide sequences, additional features, play a role in shaping the 

landscape of HLA-II immunopeptidomes. 

To study this further, we looked at the number of peptides per protein among all samples. As 

seen in Fig. 2D, most proteins are identified by only one peptide. Meanwhile, a small proportion of 

proteins are supported by tens to hundreds of peptides. Furthermore, by looking at the frequency of 

protein presentation among samples (Fig. 2E), we observed that ~30% of proteins are identified once, 

i.e. in only one sample, while the remaining ~70% are observed among different samples with different 

frequencies. These findings suggest that other factors beyond peptide sequence contribute to shaping 

the HLA-DR immunopeptidomic landscape. To investigate these factors, we compared the average 

expression of the presented proteins to non-presented, i.e. non-observable proteins (Supplementary 

Methods). As seen in (Fig. 3A) presented proteins have, on average, a higher expression level than 

non-presented (non-observed) proteins, confirming previous findings by Chen et al. (13). Furthermore, 

we identified a positive correlation between the frequency of protein presentation among samples and 

the parent transcript expression level (Fig. 3B). Next, we investigated the impact of the cellular 

compartment on shaping the immunopeptidomic landscape. By focusing on the proteins identified in all 

samples, we identified an enrichment in cellular compartments related to vesicles trafficking, plasma 

membrane, secreted proteins and, HLA-II proteins loading machinery using gene ontology enrichment 

analysis (Fig. 3C, Fig. S3). As seen in Fig. 3B, proteins identified in all samples exhibit, on average, 

higher expression levels relative to proteins identified in only one sample. Nevertheless, the expression 

level of these genes showed a wide range of variation, suggesting that abundance and compartment 

are also contributing to peptide presentation. These findings suggest an important role for sequence-

independent protein features, e.g. expression level which is a proxy for abundance, along with the 

cellular compartment, in modulating the set of self-proteins presented by HLA-II proteins in vivo. 

To validate these findings, we used a large immunopeptidomics dataset that was recently 

described by Reynisson et al. (28) . First, we tried to validate the pattern observed in Fig. 2E by 
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analysing the number of peptides per protein across all the studies included in the public database. As 

seen in Fig. S4A, most proteins are supported by one or few peptides with the minority supported by 

hundreds to thousands of peptides. Indeed, proteins with most peptides in our own dataset Fig. S5 are 

also highly presented, i.e., are supported by many peptides, in the public dataset (Fig. S6). Next, we 

tested the hypothesis that protein length might correlate with the number of peptides per protein (Fig. 

S4B). As seen in the figure, there was no significant correlation between protein length and peptide 

presentation (p=0.2). Then, we aimed at replicating the pattern observed in Fig. 2B by analysing the 

cumulative number of peptides and proteins among different studies (Fig. S4C). A pattern resembling 

Fig. 2B, can be observed where the number of peptides keeps growing by increasing the number of 

experiments meanwhile the number of proteins plateaus, or at least grow logarithmically, after a few 

experiments. This suggests that besides the sequence length other sequence-independent features 

such as protein abundance and availability to the HLA-II loading machinery are not only pivotal in 

shaping protein presentability, i.e. at least one peptide from the protein is presented, but also the density 

of presentation, i.e. the number of peptides per protein. 

Balancing the predictive performance and the computational efficiency of different transformer-

based models 

So far, we have focused on identifying factors governing peptide presentation in vivo. However, as 

explained above, it is experimentally infeasible to characterize the interaction between HLA-II proteins 

and the vast amount of potential peptide candidates. Hence, in silico peptide predictions models are 

needed for modelling peptide-HLA-II interaction. Given, the superior performance shown by BERTMHC 

(15), we focused only on transformer-based models.  

We started by quantifying the impact of the model complexity, specifically, the depth (number 

of layers) and the number of attention heads per layer, on the inference time of a transformer-based 

model. To do this, we created different models following PIA-S architecture (Fig. 5A; Material and 

Methods) with different number of layers and different number of attention heads per layer. We 

measured the inference runtime using a mock dataset representing one million peptide-HLA-II pairs. As 

seen in Fig. 4A, increasing the number of layers and the number of heads had a strong impact on the 

runtime, e.g. the inference time of a one-layer model with one attention head is ~5 seconds meanwhile 

the runtime of a twelve-layers model with 16 attention-heads is ~111 seconds.  

Next, we tried to quantify the impact of the model’s size on its predictive performance, i.e. the 

accuracy of predicting peptide HLA-II interaction. To this end, we used the public dataset described 

above to train different PIA-S based models with an increasing number of layers (Material and 

Methods). As seen in Fig. 4B, a model with one layer was already able to achieve an impressive 

performance with AUC ROC close to ~0.91. Increasing the number of layers also increased the 

predictive performance, which then plateaued at approximately five layers. After that, increasing the 

number of layers had only a marginal impact on improving the performance. This was independent of 

the number of training epochs (Fig. S7). Subsequently we investigated the effect of increasing the 
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training data on improving the model performance (Fig. 4C). Increasing the amount of training data 

improved the model performance, as expected.  

PIA-S achieves state-of-the-art performance on sequence only peptide HLA-II interaction 

prediction  

We trained a PIA-S architecture model with only three multi-headed attention layers each with four 

attention-heads using two datasets, first, the publicly available dataset by Reynisson et al. (28) 

(Supplementary Methods). Second, using Reynisson et al. (28) dataset and the HLA-DR 

immunopeptidome of 22 samples (obtained from 20 individuals) measured in the current study. Then, 

we benchmarked the performance of these models against an independent test dataset composed of 

the HLA-DR immunopeptidome of three samples measured in the current study (benchmarking data 

set 1, Material and Methods, Table S4). As seen in (Fig.5B & Fig.5C), PIA-S with three self-attention 

layers achieved a comparable performance to BERTMHC (15) which has 12 attention layers confirming 

previous findings where increasing the number of layers mainly increases the inference runtime while 

providing infinitesimal improvement in accuracy. 

Interestingly, transformer-based models, i.e. BERTMHC (15) and PIA-S illustrated a superior 

performance to NetMHCIIpan (12). Here, two versions of NetMHCIIpan were used, namely 4.0 and 4.1, 

the former has been recently described by Reynisson et al. (12) and is trained using the same dataset 

used for developing BERTMHC and PIA-S (P). Meanwhile, the latter is an unpublished version that was 

trained on extended datasets. As seen in (Fig.5B & Fig.5C), NetMHCIIpan 4.1 achieved a slightly 

higher performance relative to NetMHCIIpan 4.0 illustrating a marginal improvement in performance 

with increasing the data. However, the performance of the two versions was inferior to transformer-

based models, arguably showing the need for a complex neural network architecture to capture the 

complexity of large-scale immunopeptidomics datasets.  

Deep Multi Modal training enables accurate and robust identification of peptide presentation by 

HLA-II proteins  

As discussed above, different sequence-independent factors govern peptide presentation by HLA-II 

proteins in vivo, for example, the expression level of parent transcripts and the subcellular location of 

proteins. However, most publicly available predictions tools except MARIA (13) predict peptide-HLA-II 

interaction based only on peptide sequences and HLA protein pseudo-sequences. Hence, these tools 

are not modelling the impact of sequence-independent features on peptide presentation which might 

hinder the performance of these models. Also, MARIA (13) utilizes the expression level and proteolytic 

digestion along with sequence-dependent features to model peptide-HLA-II interaction.  

To characterize the impact of modelling different sequence-independent features relative to sequence 

only models, we trained different prediction models using data derived from two homozygote samples, 

namely, HLA-DRB1*04:01 and HLA-DRB1*15:01 (Material and Methods). As seen in Fig. S8, training 

the model with the four sequence-independent features: i.e. (exp +SC+Context+D2G) greatly, improve 

the performance relative to the baseline of modelling sequence-only features. 
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Next, we utilized the results to develop the peptide immune annotator multimodal (PIA-M) (Fig. 

6A) and trained it using the same dataset used for training PIA-S as described above (Supplementary 

Methods). However, a major hurdle was the efficient annotation and encoding of millions of training 

examples. To address the problem, we developed the omics linking toolkit (OmLiT) library 

(Supplementary Methods; Fig. S9). To benchmark the performance of PIA-M against publicly 

available tools, we utilized two independent publicly available datasets that were recently published and 

hence were not used for training neither of the models (Material and Methods, Benchmark dataset 

2-3, Table S5 and S6). As seen in (Fig. 6B and Fig. 6C; Benchmark dataset 2), PIA-M demonstrated 

superior performance to all sequence-only models and to MARIA (13). Interestingly, the latter (13) is 

also a multimodal model that achieved a superior performance to all sequence-only models including 

PIA-S. Thus, demonstrating the importance of modelling sequence-independent features to improve 

the modelling accuracy of peptide HLA-II interaction. Furthermore, we benchmarked the performance 

of PIA-M against sequence-only models using Benchmark dataset 3 which contain the 

immunopeptidome of 13 different HLA-DP proteins (Fig. 7). As seen in the figure, PIA-M illustrated a 

consistent superior performance across the immunopeptidome of the 13 samples (Fig. 7A) and on the 

combined dataset (Fig. 7B & Fig. 7C). Thus, confirming the superior performance of PIA-M and 

illustrating the advantage of integrating sequence-independent features. Interestingly, PIA-S has 

demonstrated a comparable performance to NetMHCIIpan 4.1 and NetMHCIIpan 4.0 on this test 

dataset, suggesting that the superior performance of transformer-based models might be specific to 

HLA-DR only. This is possibly a result of the bias in the training datasets that is mostly derived from 

HLA-DR, nevertheless, the performance of PIA-S is still comparable to NetMHCIIpan 4.1 on HLA-DP 

and superior on HLA-DR proteins.  

PIA-S and PIA-M have a superior execution speed relative to NetMHCIIpan  

Motivated by the superior performance of PIA-M on multiple independent test datasets we aimed at 

benchmarking the execution speed of PIA-S and PIA-M against NetMHCIIpan 4.0 as it is one of the 

commonly utilized tools (Supplementary methods). As seen in Fig. 8A, PIA-S and PIA-M achieved a 

significantly faster execution speed relative to NetMHCIIpan, indeed the difference in the execution 

speed widen with larger input size, illustrating the utility of PIA-S and PIA-M in large-scale screening 

applications. For example, with 131,072 peptides (217) NetMHCIIpan 4.0 utilized ~800 seconds to 

predict the interaction against a single HLA-II protein. Meanwhile, for the same input PIA-M utilized 

~220 seconds, i.e. 4 times faster, and PIA-S utilized ~70 seconds, i.e. ~10 times faster. Thus, illustrating 

not only a superior predictive performance but also a faster execution.  

Given that PIA-S and PIA-M are implemented in TensorFlow (25), they can run on different 

hardware, for example, CPUs and GPUs, hence, we benchmarked their execution time on different 

systems (Fig. 8B). As seen in the figure, for an average number of peptides (~100,000-1000,000) a 

single GPU greatly decreases the runtime, meanwhile, using multiple GPUs is associated with a slower 

execution time, given the overhead associated with copying and replicating the data and the models 

across multiple GPUs. Meanwhile, utilizing a CPU-only achieved a slower but practical runtime where 
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the interaction between 131,072 peptides and an HLA-II proteins was predicted in ~1 minutes and ~4 

minutes by PIA-S and PIA-M, respectively.  

Lastly, to enable an automatic and a swift utilization of the trained models, i.e.  PIA-M/PIA-S, 

for predicting peptide HLA-II interaction, we developed the peptide immune-annotation pipeline (PIA-P) 

(Fig. 8C). The pipeline is currently implemented as a collection of Python scripts that are connected 

using a Bash script, thus, enabling the pipeline to be utilized on any Linux-based machine with or without 

GPUs. Conceptually, the pipeline is assembled from three logical components. First, a pre-processing 

component, which processes different user input formats and generate a list of input peptides, e.g. 

using proteomes stored in a FASTA file and genetic variation data stored in VCF files or simple text 

table. Second, mixing where the names of HLA alleles are parsed and are combined with the generated 

list of peptides to provide a unified internal representation that is later used by the third component, the 

prediction engine. The latter is used to calculate the interaction between each input peptide HLA-II pairs 

using PIA-S or to annotate and encode the input with OmLiT and run predictions using PIA-M. 

 As stated above, the developed model can run swiftly without a GPU, however, with large 

input-size, using GPUs greatly improve the execution speed. Hence, to increase the accessibility of the 

models we developed a web server that runs the developed pipeline, i.e. PIA-P, using GPU-accelerated 

computational infrastructure and allow users to freely utilized all the features of the pipeline using a 

user-friendly web interface (Fig. S10). 

DISCUSSION 

Here, we tried to disentangle factors governing presentation by HLA-II proteins, and subsequently, 

model these factors using deep learning. Beyond the sequence-binding preferences of each HLA alleles, 

our analysis highlighted some sequence-independent features that contribute to presentation by HLA-

II proteins. One of these factors is the transcriptomic landscape of the cell, where highly expressed 

genes are more likely to be presented by HLA-II proteins than lowly expressed genes which confirms 

previous findings by Chen et al. (13). We also found that proteins derived from highly expressed genes 

are more likely to be presented by different individuals than proteins derived from lowly expressed 

genes. However, these results shall be interpreted with caution as we only have a partial picture of the 

presented immunopeptidome. Indeed, our ability to detect the immunopeptidome is upper bounded by 

the detection limit of the mass spectrometry. Hence, we cannot reject the hypothesis that lowly 

expressed genes might be presented at a lower level by HLA proteins in vivo which could be detected 

by more sensitive instruments. However, current data supports a positive relationship between the 

expression level and presentability by HLA-II proteins.  

Interestingly, we also detected an enrichment in extracellular, secreted and vesicle associated 

proteins in HLA-II immunopeptidomes which supports the current model for HLA-II proteins as 

presenters mainly for extracellular proteins (29). Despite the importance of sequence-independent 

features in shaping peptide presentation in vivo, most publicly available tools for predicting peptide 

HLA-II interaction, e.g. NetMHCIIpan (12), BERTMHC (15) or MHCnuggets (14) are based solely on 
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the peptide sequence which might limit the predictive performance of these methods. To address this 

problem, we developed PIA-M which predicts the presentation given sequence-dependent features, i.e. 

the peptide sequence, along with sequence independent features, e.g. the transcriptomic landscape, 

subcellular location and the glycosylation status of the protein. PIA-M achieved state-of-the-art 

performance over its sequence-only version, PIA-S, and publicly available sequence-only models. 

Annotating all input peptide sequences with sequence-independent features, such as 

expression or subcellular location is challenging from a biological and a computational perspective. 

Starting with the former, the majority of immunopeptidomics experiments has focused mainly on self 

(29) and neoepitopes (30) presentation with few notable exceptions that focused on microbial 

presentation by HLA-II proteins, e.g. Graham et al. (16) studying presentation of micro-organisms in 

mice-derived B cell lines. Thus, our understanding of sequence-independent features governing 

presentation by HLA proteins is biased toward self-peptide presentation. Hence, a more experimental 

characterization of microbial presentation by HLA-II proteins would be needed to discover and learn 

sequence-independent features governing microbial and foreign peptide presentation by HLA-II 

proteins in vivo. 

Despite the superior performance of multimodal models, they are more computationally 

demanding relative to pure sequence models not only due to the complexity of the model but also due 

to the complex pre-processing and annotation needed. Here, we mitigated this problem by first, 

offloading the computationally heavy tasks to a speed-optimized code written in Rust, i.e. OmLiT library. 

Second, through generating a database covering only human proteins. Beyond improving 

computational efficiency, the annotation database has been also restricted to humans as high-quality 

multi-omics data could be only obtained for human proteins as discussed above. 

Immunopeptidomics datasets contain only positive peptides, i.e. the binders, hence, negative 

examples have to be generated in order to train a classifier. Different methods have been used to 

generate negative peptides, e.g. through sequence shuffling (16), sampling from the human proteome 

(13) or through random sampling from uniprot (12, 15). Nevertheless, each method proposes certain 

assumptions about the nature of negative peptides and limits the kind of models that can be trained. 

For example, using sequence shuffling prevents the model from exploiting the cystine-depletion in MS-

based inferred bound peptides, i.e. the positives, (31, 32). On the other side, omics integration and 

annotation with shuffled peptides is not trivial as these peptides are not obtained or derived from a real 

biological sequence. Further, sampling negatives from uniprot assumes that only peptide sequences 

are governing presentation and does not account for sequence-independent protein features and as a 

result renders multimodal training impractical. Finally, sampling from the human proteome assumes 

that the observed set of peptides are the full immunopeptidome and all non-observed peptides are non-

presented. As shown above, the set of presented peptides is bounded by the sensitivity of the mass 

spectrometry and thus, the definition of negatives depends on the sensitivity of mass spectrometry. As 

a result, future effort shall focus on improving the sensitivity of the mass spectrometry to enable a more 

complete characterization of the immunopeptidome. 
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In conclusion, here we demonstrated an important role for sequence-independent features, e.g. 

the transcriptomic landscape of the cell and subcellular location, in shaping HLA-II immunopeptidomes. 

Further, modelling sequence dependent and independent features using deep multimodal models 

enables a more accurate prediction of in vivo presented peptides as illustrated with PIA-M. However, 

we have mainly focused on modelling and characterizing the rules governing the presentation of self-

proteins which might differ from the rules governing the presentation of microbial peptides. Hence, 

future research shall focus on disentangling sequence-independent features governing microbial 

presentation by HLA-II proteins in vivo. Furthermore, the impact of peptide presentation on 

immunogenicity, immunodominance and T cell activations remains poorly understood. Hence, 

investigating the effect of different facets of peptide presentation, for example, tissue-restricted 

presentation and T cell activation, is a promising future direction to improve our understanding of the 

immune system.  

AVAILABILITY 

The multi-omics linking toolkit (OmLiT) is an open-source library that is available under a permissive 

MIT-licence in the GitHub repository (https://github.com/ikmb/OmLiT). Meanwhile, the pipeline along 

with the pretrained models are available at (https://github.com/ikmb/PIA-inference). Finally, the web 

server for running predictions using the trained models is available at (https://hybridcomputing.ikmb.uni-

kiel.de/pia).  
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TABLE AND FIGURES LEGENDS

 
 

Figure 1: A graphical summary of the study. (A) MS-based immunopeptidomics profiling of the study participants. (B) 
Integration with public databases and identifying factors governing peptide presentation in vivo. (C) The development of PIA-
S architecture along with investigating factors governing the predictive performance and the runtime of transformer-based 
models. (D) Developing the omics linking toolkit (OmLiT) for preparing and annotating input to PIA-M. (E) The development 
of the PIA-M model and benchmarking the performance against independent test datasets. (F) The development of a pipeline 
for deploying PIA-S and PIA-M and enabling large-scale peptide HLA-II interaction characterization. This figure was created 
by with BioRender.com. 
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Figure 2: An overview of the data derived from the samples characterized in the current study. As mentioned in the 
Material and Methods, the blood HLA-DR immunopeptidome of 23 healthy probands were profiled, however, two samples 
were independently measured at centre 1 and centre 2, hence the results here summarise findings of 25 samples obtained 
from 23 probands. (A) The distribution of unique peptides and proteins per sample. (B) The cumulative number of peptides 
and proteins across all samples where grey dash-lines highlight the number of unique proteins after 5, 10, 15, and 20 samples, 
effectively, illustrating the plateauing in the number of unique proteins with an increased number of samples. (C) The 
distribution of Jaccard indices between samples computed pairwise at the peptide-level and the protein level. (D) A 
histogram of the number of peptides-per-protein. (E) The frequency of protein presentation among different samples, i.e. 
the number of samples where a particular protein was observed or presented by an HLA-DR molecule.  
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Figure 3: An overview of sequence-independent features governing peptide presentation by HLA-II proteins. (A) A 
comparison between the expression levels (in transcripts per million (TPM)) of presented proteins and proteins that were 
not observed. Not-presented proteins were generated for each sample by sampling from the set of not-observed proteins a 
subset of genes with the same cardinality, i.e. the number of genes, as the set of positive proteins. It is worth mentioning 
that Sample 14 and Sample 15 share the same transcriptomic profile as they were obtained from the same donor and 
measured at two different centres, further the expression data was obtained using the paired dataset (Material and Methods) 
hence, only 20 samples are only shown. (B) The correlation between the number of samples presenting at least one peptide 
from a particular protein and the protein’s transcript expression level as defined in the Human Protein Atlas database (33). 
The Pearson correlation coefficient was computed between the two variables identifying a significant (p=1.3𝑥10−30) but 
moderately positive relationship (r=0.19). (C) A gene ontology enrichment analysis (GOEA) for the 90 proteins presented in 
all samples focusing on the top 10 subcellular compartments. Here, the dashed grey line represents the significance threshold 
of (-𝑙𝑜𝑔10(0.05) = 1.3 after false discovery rate (FDR) correction as implemented in GOATOOLS. GOEA was conducted using 
GOATOOLS version 1.1.6 (34) and IPTK (35). 
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Figure 4: Factors shaping the predictive performance and the inference runtime of transformer-based models. (A) A 
heatmap showing the impact of the number of self-attention layers and the number of attention heads per layer on the 
runtime of the models where the runtime was averaged across ten different replicates. (B) The impact of number of attention 
layers on the predictive accuracy of transformer-based models (with 4 attention-heads) on the validation dataset.  (C) The 
impact of the amount of training data on the model performance on the validation dataset. Here, a model with three multi-
attention layers each with four attention heads was used for training the models. 
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Figure 5: The performance of PIA-S against different publicly available prediction methods. (A) The blueprint of PIA-S 
(Material and Methods) where, briefly, input peptides and pseudo-sequences are tokenized and then concatenated together. 
Next, the resulting sequence is fed to a learned embedding layer and subsequently to a stack of self-attention layers. Lastly, 
the resulting tensor in pooled through a global-average pooling and is fed to a multilayer perceptron to calculate the 
presentability score. The performance of PIA-S was benchmarked against NetMHCIIpan 4.0 (12), NetMHCIIpan 4.1 and 
BERTMHC (15) using three HLA-DR immunopeptidomics test datasets that were obtained in the current study. (B) Shows the 
receiver operating curve (ROC) along with the area under the curve (AUC(ROC)) using the predictions on the three datasets 
combined. (C) Shows the precision-recall (PR) curve along with the area under the curve (AUC(PR)) using the predictions on 
the three datasets combined. 
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Figure 5: The performance of PIA-S and PIA-M on an independent test dataset containing the immunopeptidome of two 
HLA-DR alleles, namely: HLA-DRB5*01:01 and HLA-DRB1*15:01 obtained from Wang et al. (21). (A) A description of the 
PIA-M architecture (Material and Methods) illustrating the major components, namely the OmLiT library which is used for 
preparing and annotating the input and the neural architecture of PIA-M where different omics layers are modelled and 
combined to predict peptide presentation by HLA-II proteins. (B) The receiver operating curve (ROC) of the predictions 
generated by different tools on the combined dataset of the two alleles, meanwhile (C) shows the precision-recall curve (PR) 
curve.  
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Figure 6: Benchmarking the performance of PIA-S and PIA-M against NetMHCIIpan 4.0 (12) and NetMHCIIpan 4.1 using 
peptide-elution datasets covering different HLA-DP alleles. The raw files were obtained from PRIDE (23) under the accession 
PXD030591 as provided by Laghmouchi et al. (22), subsequently, peptides were identified from each allele using MHCQuant 
(24) (Material and Methods). (A) The predictive accuracy of the four tools on elution data from proteins encoded by HLA-
DP proteins (y-axis) where accuracy was measured using the area under the receiver operating curve AUC (ROC) (x-axis). (B) 
The receiver operating curve (ROC) of the predictions of the four tools on the combined dataset of all HLA-DP alleles 
meanwhile, (C) shows precision-recall curve (PR-curve).  
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Figure 7: Comparing the execution speed of NetMHCIIpan 4.0, PIA-S and PIA-M. (A) A comparison between the run time of 
the three tools with an increasing number of input peptides averaged across different execution hardware (B) The run time 
of PIA-S and PIA-M using different hardware, namely, a CPU, a single GPU and eight GPUs with different inputs. In both A 
and B, the runtime of each input was measured across three independent replicates. (C) A schematic diagram of the 
developed webserver and the PIA-P pipeline focusing on the backend code used for parsing different inputs and scaling-up 
the execution of peptide-HLA-II interaction. The front-end focuses on parsing user inputs, e.g. validating input formats and 
the correct combination of inputs as discussed below. The pipeline expects four input categories: first using ‘input table’ 
which is a table that contains the peptide sequence along with the HLA alleles and optionally the tissue name. As the peptide 
sequence have been generated this table is fed directly to the prediction engine to estimate the interaction between peptides 
and HLA-II proteins. Second, using a FASTA file containing protein sequences, i.e. proteomes, and a list of alleles, here, the 
expected aim is to characterise the interaction between each possible k-mers peptide in the FASTA file and the protein 
product of each allele in the provided list of alleles. Here, the input proteome is first fragmented using the Fragmentor into 
fixed-length peptides through a sliding window approach. Next, the names in the list of alleles are parsed using Allele2Stand 
and are combined with the generated list of peptides to generate an input table that is subsequently fed to the prediction 
engine. The third and the fourth categories are conceptually similar to each other where the aim is to first generate sample-
specific proteomes using the reference proteome and sample specific genetic data. Genetic data are supported in two 
formats, first, variant calling format (VCF) and tab-separated files (TSV). In case  of the former, sample specific proteome 
sequences are generated using VCF2Prot (36)  meanwhile, in the latter, the Mut2Prot is used to do this task. Once sample-
specific proteins sequences have been generated they are fragmented using the Fragmentor and the generated list of 
peptides is processed as described above. Lastly, the prediction engine is composited of three main parts, first, the OmLiT 
library which is used for parsing and encoding the input. Second the trained models, namely, PIA-S and PIA-M which are used 
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for estimating the interaction between peptides and HLA-II proteins. Lastly, the TensorFlow runtime which is used for 
managing the execution of PIA-S/PIA-M on the available computational infrastructure, e.g. using GPUs. 
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