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Abstract1

The composition of the latent HIV-1 reservoir is shaped by when proviruses inte-2

grated into host genomes. These integration dates can be estimated by phylogenetic3

methods like root-to-top (RTT) regression. However, RTT does not accommodate vari-4

ation in the number of substitutions over time, uncertainty in estimating the molecular5

clock or the position of the root in the tree. To address these limitations, we im-6

plemented a Bayesian extension of RTT as an R package (bayroot), which enables7

the user to incorporate prior information about the time of infection and start of an-8

tiretroviral therapy. Taking an unrooted maximum likelihood tree as input, we use a9

Metropolis-Hastings algorithm to sample three parameters (the molecular clock, the10

location of the root, and the time associated with the root) from the posterior distribu-11

tion. Next, we apply rejection sampling to this posterior sample of model parameters12

to simulate integration dates for HIV proviral sequences. To validate this method, we13

use the R package treeswithintrees to simulate time-scaled trees relating samples of14

actively- and latently-infected T cells from a single host. We find that bayroot yields15
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significantly more accurate estimates of integration dates than conventional RTT under16

a range of model settings.17

1. Introduction18

Root-to-tip (RTT) regression is a simple method to locate the earliest point in time in a phylogenetic19

tree (i.e., rooting the tree; Huelsenbeck et al., 2002), to measure the rate of evolution (Drummond20

et al., 2003), or to reconstruct the divergence times of common ancestors. This method assumes21

the existence of a strict molecular clock, i.e., the rate at which mutations accumulate is roughly22

constant over time (Bromham and Penny, 2003). Accordingly, the number of mutations should in-23

crease linearly over time. Hence, this method is a linear regression of the evolutionary divergence24

of sequences from their common ancestor against the times when those sequences were observed.25

The primary input of RTT regression is an unrooted phylogenetic tree with branch lengths mea-26

sured in units of evolutionary time (i.e., the expected number of substitutions per site; Tajima and27

Nei, 1984), which is the standard output of maximum likelihood methods for reconstructing phy-28

logenies. The tips of the tree representing observed sequences are labelled with sampling times.29

Thus, RTT becomes an optimization over three parameters: the location of the root in the tree, the30

time associated with the root (x-intercept), and the molecular clock (slope of regression).31

RTT has a broad range of applications. Since many viruses have a very rapid rate of evolution,32

RTT can be applied to sequences collected over a number of months or years. For instance, RTT33

has recently been used to estimate the origin date and clock rate of SARS-CoV-2 within the first34

few months of the pandemic (Duchene et al., 2020). We are particularly interested in the use35

of RTT to estimate the integration dates of HIV-1 proviruses within hosts (Jones et al., 2018).36

HIV-1 converts its RNA genome into double-stranded DNA that becomes integrated into the host37

genome as part of the virus replication cycle. In some cases, this integrated provirus becomes38

reversibly dormant in a transcriptionally-inactive host cell (Siliciano and Siliciano, 2004). This39

long-lived reservoir of latently-infected cells is the primary obstacle to an effective cure for HIV-1.40

Consequently, characterizing the composition and dynamics of the latent reservoir has significant41
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implications for HIV-1 cure research (e.g., Gondim et al., 2021).42

For instance, we can estimate the molecular clock (the slope of the regression) from longitu-43

dinal samples of plasma HIV-1 RNA sequences before the start of antiretroviral therapy (ART). If44

we reconstruct a tree relating both these RNA sequences and proviral sequences from the latent45

reservoir, we can then use our clock estimate to extrapolate integration dates for the latter (Jones46

et al., 2018). This relies on the assumption that the integrated HIV-1 genome ceases to accumulate47

mutations upon integrating into the host genome. Due to its simplicity, RTT has a number of signif-48

icant limitations. It implicitly assumes that the input tree is known without error. In addition, RTT49

methods generally yield a single ‘point estimate’ of model parameters by minimizing some cost50

function (Drummond et al., 2003; To et al., 2016). Mapping proviral sequences to the regression51

line yields one and only one estimate of the integration date. However, variation in the number of52

mutations after a given amount of time is expected, even under a strict molecular clock (Langley53

and Fitch, 1974). A proviral sequence may, by chance, carry more mutations than expected given54

its actual date of integration. This can cause RTT to project a sequence’s integration date estimate55

into the future, past its time of sampling or even past the start of ART, when the infection of new56

cells should be completely suppressed.57

Here we describe a Bayesian extension of the RTT method to estimate HIV-1 integration dates.58

Adopting a Bayesian approach provides a means of quantifying our uncertainty in estimating inte-59

gration dates, as well as incorporating prior information about the time of infection and the start of60

ART. We detail our implementation of this method as an R package called bayroot, and use a simu-61

lation model of within-host population dynamics to validate bayroot in comparison to conventional62

RTT.63

2. Methods64

Regression model. We start with an unrooted tree T relating n observed sequences. A strict65

molecular clock assumes that mutations accumulate at a constant rate µ over time, such that the66

number of mutations per unit time follows a Poisson distribution. Let Yi be the number of mutations67
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in the ith observed sequence, which is determined by the location of the root in T . Since Yi is an68

integer-valued outcome, we must rescale the input tree T by multiplying its branch lengths by the69

sequence length, such that lengths are in units of the expected number of substitutions per genome.70

Let t0 be the origin time associated with the root. Let ∆ti be the time that has elapsed between the71

ith sample and the root. The log-likelihood for a set of RNA sequences {Yi,∆ti} is:72

logL(Yi,∆ti) = ∑
i

Yi log(µ∆ti)−µ∆ti− logΓ(Yi +1) (1)

where Γ(x) is the gamma function. Equation (1) is sometimes referred to as the Langley-Fitch73

model (Langley and Fitch, 1974).74

We assume a uniform prior distribution for possible locations of the root over the entire length75

of the tree. We also assume a uniform prior distribution for t0. If a seroconversion window, i.e.,76

the time interval between the last HIV seronegative visit and the first seropositive visit, is available77

for the host individual, these visit dates can be used to set lower and upper bounds for the uniform78

prior. Finally, we assume a lognormal prior distribution on the clock rate µ , which can be informed79

by previous measurements of HIV-1 substitution rates within hosts (e.g., Alizon and Fraser, 2013).80

With these prior distributions and the model likelihood, we implemented a Metropolis-Hastings81

sampling algorithm in R. A proposal function shifts the root along a branch by some distance δ ,82

selecting a branch at random if it encounters an internal node, i.e., split, as it traverses the length83

of the tree. If, however, a terminal node is encountered before the root has been shifted by distance84

δ , then the remaining distance is traveled by reflecting back from this terminus. This results in85

a symmetric proposal distribution. We also used a uniform proposal µ ′ ∼ Unif(µ − δ ,µ + δ ) for86

the clock rate, and a truncated normal proposal t ′0 ∼ N(t0,σ) for the origin time. The sampling87

algorithm returns an S3 object storing a data frame of sampled parameter values and a character88

vector of sampled trees serialized into Newick strings.89

Sampling integration dates. Given a posterior sample of parameters Y , µ and t0, we need to90

propagate this information to the distribution of integration times associated with DNA sequences91
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sampled post-ART initiation. Using Bayes’ rule, the probability of integration time t j for the jth
92

HIV-1 DNA sequence given divergence Yj is:93

P(t j|Yj) =
P(Yj|t j)P(t j)

P(Y j)
(2)

where we index by j instead of i to emphasize a shift from RNA to DNA sequences. We assume94

a uniform prior for integration times, P(t j) = (T − t0)−1, where t0 is the origin date and T is the95

time of ART initiation. Substituting equation 1 and setting s = t− t0, we solve the integral P(Y j)96

in the denominator as:97

P(Y j) =

∫ T−t0
0 (µs)Y j exp(−µs)ds

(T − t0)Γ(Yj +1)
=

γ(Yj +1,µ(T − t0))
µ(T − t0)Γ(Yj +1)

(3)

where γ(a,x) is the lower incomplete gamma function,
∫ x

0 ta−1 exp(−t)dt. Finally, substituting98

equations (1) and (3) into (2) and letting Λ = µ(T − t0), we can write:99

P(t j|Yj) =
µΛy j exp(−Λ)

γ(Yj +1,Λ)
(4)

To generate a sample of integration dates, we use a simple rejection sampling method. For a given100

posterior sample of Y j, µ and t0, we use Brent optimization to locate the maximum of Equation101

(4), initialized at the midpoint t = t0 +(T − t0)/2. This maximum was used as an upper bound for102

rejection sampling for values of t ∼ Unif(t0,T ).103

The Bayesian regression and integration date sampling methods described above were imple-104

mented in R as a package called bayroot. All source code is publicly available under the MIT105

license at https://github.com/PoonLab/bayroot.106

Simulating data. To validate the above method, we used the R package twt (‘trees within trees’,107

https://github.com/PoonLab/twt) to simulate cell population dynamics forward in time, and then108

to simulate trees by sampling lineages backwards in time to their common ancestors. This pack-109

age uses the exact stochastic simulation of discrete events (Gillespie, 1977). In brief, it calculates110

the total rate of all events (Λ), draws an exponentially distributed waiting time to the first event111
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Figure 1: A schematic diagram of the compartmental model used to simulate cell population dy-
namics. Each box represents a well-mixed population of cells sharing the same rate parameters.
We assume that only actively-infected cells release virus particles that go on to infect other, sus-
ceptible cells.

τ ∼ exp(−Λ), and then draws a uniform random number to determine which event occurs. We im-112

plemented a compartmental model of cell population dynamics (Figure 1) that can be represented113

by the following set of differential equations:114

dT
dt

=−ρT

dAS

dt
= ρkT +mLALS−λAA(t)AIAS−mALAS−µASAS

dAI

dt
= λAA(t)AIAS +mLALI−mALAI−µAI AI

dLS

dt
= r(1− k)T +mALAS−λAL(t)AILS−λLLLILS−mLALS−µLLS

dLI

dt
= λAL(t)AILS +λLLLILS +mALAI−mLALI−µLLI

(5)

This model is a simplified version of the system described by Rong and Perelson (2009). Most115

notably, our version does not model changes in the viral load. T represents a finite population116

of naive CD4+ T cells from which the populations of active (A) and resting (latent, L) cells are117
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replenished at rates kρ and (1− k)ρ , respectively, for 0 ≤ k ≤ 1. The S and I subscripts denote118

susceptible and infected subpopulations of active and latent cells. A branching event (λxy) requires119

a source cell to induce a target cell to undergo a change of state (switch compartments from x to y).120

For example, λAA represents the infection rate of a susceptible active T cell by a virus released from121

an actively infected cell. We assume that virus replication is completely blocked by the initiation122

of ART at time t∗, such that λA•(t ≥ t∗) = 0. A transition event occurs when a cell spontaneously123

migrates from compartments x to y at rate mxy. For example, mLA represents the reactivation rate124

of a latent cell. Lastly, we assume constant cell death rates µx for each compartment x.125

The simulation is initialized at time zero with user-specified population sizes of susceptible126

cells in each compartment, and a single actively infected cell, AI(0) = 1. We simulated the integer-127

valued population size trajectories {T,AS,AI,LS,LI}(t) forward in time until a stopping time of128

t = 20 simulation time units. We generated 50 replicate sets of trajectories under two different129

scenarios by exact stochastic simulation. The rate parameters were set to the following values:130

r = 0.02, k = 0.5, λAA(t < t∗) = 0.002, λAL(t < t∗) = 10−4, mAL = mLA = 0.001, µAS = 0.005,131

µAI = 0.1, and µL = 0.001. ART was initiated at t∗ = 10 time units post-infection in scenario 1,132

and at t∗ = 15 in scenario 2. For each iteration of the simulation, we calculated the rates for every133

type of event, adjusted by the respective compartment size at the current time t. For example, the134

rate of transmissions from AI to AS was set to λAA(t)AI(t)AS(t). We drew an exponential waiting135

time given the total rate of all event types:136

Λ(t) = ∑
x,y

λxy(t)Nx(t)Ny(t)+∑
x,y

mxy(t)Nx(t)

and then determined which event type occurred with probability λxy(t)Nx(t)Ny(t)/Λ(t) or mxy(t)137

Nx(t)/Λ(t). Next, we incremented or decremented the respective population sizes for compart-138

ments affected by the event type. The time, type and compartments of this event is recorded in a139

log that is later used to simulate trees. An example set of population size trajectories simulated140

using this algorithm under scenario 1 is illustrated in Figure 2.141

To generate a tree relating the sampled lineages in twt, we applied another exact stochastic sim-142
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Figure 2: Examples of twt simulation outputs for a model of cell dynamics in the latent reser-
voir. (top) Population dynamics simulated forward in time. Each line represents the population
size of a different compartment. S = susceptible, I = infected. The dashed vertical line indicates
the time of ART initiation. (bottom) A tree simulated in reverse-time, relating 10 cells sampled
from the latently-infected compartment at τ = 0, and 30 from the actively-infected compartment
at τ = 11,14,17 (scenario 1), where τ = 20− t. Triangles represent transmission events, open
circles represent transitions, and closed circles represent sampling times. Branches representing
cell lineages in a latent state (blue) are collapsed prior to simulating virus evolution.
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ulation algorithm in reverse time. For the 50 replicate sets of trajectories generated under scenario143

1, we sampled 10 HIV-1 RNA lineages at times t = 3, 6 and 9 post-infection. For trajectories gen-144

erated under scenario 2, we sampled 10 HIV-1 RNA lineages at t = 11, 13 and 15 post-infection.145

In both scenarios, we sampled 10 latently-infected cells at t = 20 post-infection, for a total of 40146

sampled lineages per replicate tree. These lineage sampling times defined the initial conditions for147

the reverse-time simulation of trees. Next, the algorithm samples events from the log generated148

in the forward-time simulation to build up a tree relating the sampled lineages. The stopping con-149

dition of the tree sampling algorithm is that the sampled lineages converge to a single common150

ancestor, which becomes the root.151

We modified twt to output a Newick serialization of this ‘transmission tree’ among cells, la-152

belling tips with sampling times. This tree included internal nodes with only one descendant153

branch, representing lineage state transitions, or transmissions to/from an unsampled lineage. In-154

ternal nodes were labelled with strings encoding the event type, node states (compartments), and155

unique identifiers for the individual cells involved. These annotations enabled us to ‘colour’ the156

branches of the tree by lineage state. The true integration dates for sampled latently-infected cells157

were recorded to a separate file. An example of a tree generated by this process is shown in Figure158

2.159

To simulate molecular evolution, we collapsed all branches corresponding to latently-infected160

cells, and used the resulting tree as input for INDELible (version 1.03; Fletcher and Yang, 2009).161

We assigned an HIV-1 env sequence at the root (Genbank accession number AY772699). This162

sequence is one of the HIV-1 subtype C references curated by the Los Alamos National Laboratory163

HIV Sequence Database (http://www.hiv.lanl.gov). We configured INDELible to use the Tamura-164

Nei (TrN) nucleotide substitution model with transition rates κ1 = 4 and κ2 = 8, and stationary165

base frequencies fA = 0.4 and fC = fG = fT = 0.2. In addition, we rescaled the tree such that the166

expected number of substitutions per nucleotide site over its entire length was 1. Finally, we used167

FastTree (version 2.1.11, compiled for double precision; Price et al., 2010) to reconstruct unrooted168

maximum likelihood trees from these simulated alignments.169
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Model validation. We ran our Bayesian sampling method on each of the 100 simulated trees for170

2×104 steps, discarding a burn-in of 2,000 steps and thinning the remaining chain down to 1,000171

steps. We set the lognormal prior distribution on clock rates to µ =−5 and σ = 2, and the uniform172

prior distribution on root dates to a minimum of one simulation time unit before the true origin,173

and a maximum of the first HIV RNA sampling time. In addition, we set the proposal parameters174

to δ = 0.01 for the root location, σ = 0.33 for the time of infection, and δ = 0.01 for the clock175

rate. In preliminary runs, we found that these settings were sufficient for replicate chain samples to176

converge to the same posterior distribution. To sample integration dates for each DNA sequence,177

we further thinned the chain down to a total of 200 samples from the posterior distribution.178

To compare our results against conventional root-to-tip regression, we censored the sampling179

times associated with tips that represented DNA sequences, and then rooted the tree using the rtt180

function in the R package ape (implementation by R. M. McCloskey; Paradis and Schliep, 2019).181

We extracted the root-to-tip distances from the resulting tree, and fit a simple linear regression182

of these distances against sampling times. Finally, we used the inverse.predict function from R183

package chemCal to extract predicted integration dates for the 200 samples from the posterior184

distribution.185

To quantify the discordance between estimated (t̂) and actual (t) integration dates, we calculated186

the root mean square error, RMSE =
√

∑
n
i=1(t̂i− ti)2/n, where n is the number of DNA sequences.187

We used a paired Wilcoxon rank-sum test to evaluate the significance of differences between the188

RMSEs obtained from bayroot and conventional RTT.189

3. Results190

To compare conventional root-to-tip regression (RTT) to our Bayesian approach (bayroot), we191

simulated the proliferation of HIV-1 among active and latent CD4+ T cells with an exact stochastic192

method. Our simulation workflow yielded a total of 100 trees reconstructed from HIV-1 RNA193

and DNA sequences. We assumed that HIV-1 RNA was sampled before the start of antiretroviral194

therapy (ART), and that HIV-1 proviral DNA was sampled from the latent reservoir in the post-195
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Figure 3: Comparison of results from bayroot and conventional root-to-tip (RTT) regression. (A)
A scatterplot of root-to-tip distance (divergence) against sampling times post infection, for a rep-
resentative example generated under scenario 1. A solid line represents the RTT regression fitted
to the RNA sequence data (open circles), which we expect to intercept the horizontal axis at t = 0.
A vertical dashed line marks the start of ART. Red points represent estimates of integration dates
from the RTT model for DNA sequences sampled at time t = 20, as indicated by horizontal red
lines. Blue points and line segments represent the median and 95% credible interval for integration
date estimates from bayroot. Cross marks indicate the actual integration dates. (B) A slopegraph
comparing the root mean square error (RMSE) of integration date estimates from RTT and bayroot
for all 50 simulations generated under scenario 1. Line segments are coloured red if the RMSE
for a given simulation was greater for bayroot, and blue otherwise. (C) and (D) A scatterplot
and slopegraph for simulations generated under scenario 2. Slopegraphs was generated using R
package ggfree (https://github.com/ArtPoon/ggfree).
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ART period (Figure 2). 50 of the trees were simulated such that HIV-1 RNA was sampled at three196

time points starting at 3 time units post-infection, at intervals of three time units (scenario 1). For197

the remaining 50 trees, HIV-1 RNA sampling was delayed to 11 time units post-infection and taken198

at narrower intervals of two time units (scenario 2).199

Figure 3 compares the estimates of HIV-1 DNA integration dates produced by RTT and (bay-200

root). Under scenario 1, both methods tended to produce similar estimates because the sampling201

conditions were favourable for fitting the molecular clock (Figure 3A). The median RMSE was202

0.947 for RTT and 0.889 time units for bayroot. On a case-by-case basis, bayroot produced signif-203

icantly more accurate estimates than RTT (paired Wilcoxon test, P = 3.55×10−4, Figure 3B). The204

overall difference between estimates was numerically small. For instance, the median difference205

in RMSE between RTT and bayroot was 0.059 (interquartile range, IQR = 0.004− 0.201) time206

units. In some cases, however, integration dates were mapped by RTT to the time period after ART207

initiation, leading to higher RMSE values (Figure 3B). Since bayroot incorporates the prior infor-208

mation that HIV-1 integration should not occur during effective ART, its estimates are constrained209

to times preceding ART initiation. Furthermore, 89.8% of the actual integration dates fell within210

the 95% credible intervals generated by bayroot.211

For scenario 2, both methods became less accurate with median RMSEs of 2.79 and 2.10 time212

units for RTT and bayroot, respectively (Figure 3D). Because the sampling times of the RNA213

sequences used to calibrate the molecular clock were closer together and more distant from the214

actual time of infection in this scenario (Figure 3C), we are less certain about all three parameters215

of the regression, i.e., the location of the root in the tree, the time associated with the root (x-216

intercept), and the clock rate (slope). Under these conditions, bayroot benefits from having prior217

information about the time of infection. For our simulations where t = 0 is the actual time, we218

constrained the time of infection variable to the interval from −1 to 3 simulation time units. (In219

practice, one could use a uniform prior bounded by the last seronegative and first seropositive220

dates for that individual.) In other words, prior information about the time of infection ‘anchors’221

the root-to-tip regression when there are insufficient data to accurately estimate the x-intercept222
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(Figure 3C). As a result, bayroot was significantly more accurate than RTT (paired Wilcoxon223

test, P = 3.82× 10−7, Figure 3D). The median difference in RMSE between RTT and bayroot224

was 0.405 (IQR 0.190− 0.807) time units — about seven times greater than scenario 1. 89.4%225

of actual integration dates fell within the 95% credible intervals from bayroot. There was no226

significant association in this outcome between scenarios (Fisher’s exact test, odds ratio = 0.5,227

P = 0.34).228

Running a chain sample for 2×104 steps in bayroot required a median of 47.3 (IQR 45.0-48.8)229

seconds in R version 4.2.0 for Linux on a single core of an AMD Ryzen ThreadRipper 1950X230

processor.231

4. Discussion232

The reconstruction of HIV-1 integration dates is a challenging problem. Cells carrying replication-233

competent provirus in the latent reservoir comprise a small fraction of resting CD4+ T cells (ap-234

proximately 0.01 to 10 per million cells; Crooks et al., 2015; Prodger et al., 2020). Sequences of235

plasma HIV-1 RNA or integrated DNA often cover only a portion of the virus genome (Laskey236

et al., 2016), making it difficult to resolve their evolutionary relationships. In addition, the devel-237

opment of phylogenetic and statistical methods for analyzing these sequence data (Ferreira et al.,238

2021) has lagged behind ongoing improvements in molecular techniques (Cho et al., 2022; Sun239

et al., 2022). Here we have described a Bayesian extension of a widely-used regression method for240

estimating HIV-1 integration dates from sequence variation in the latent reservoir (Brodin et al.,241

2016; Brooks et al., 2020; Jones et al., 2018). Our method provides a means of incorporating ad-242

ditional data about the infection — e.g., the estimated date of infection, time of ART initiation,243

and previous measures of the rate of HIV-1 evolution within hosts — as prior information. Fur-244

thermore, adopting a Bayesian approach enables us to quantify our uncertainty about parameter245

estimates by sampling from the posterior distribution. We expect this will be important for stud-246

ies where there is limited access to longitudinal plasma samples for retrospective sequencing, for247

instance.248
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Of course, our method also retains some significant limitations of conventional approaches to249

root-to-tip regression. First, we are assuming that the unrooted phylogeny relating HIV-1 RNA250

and DNA sequences is known without error. It is possible to relax this assumption by adopting251

a hierarchical approach and replicating our regression analysis on a posterior sample of unrooted252

trees that may be generated by a Bayesian phylogenetic program such as MrBayes (Ronquist and253

Huelsenbeck, 2003) or BEAST (Drummond and Rambaut, 2007). This is less efficient than sam-254

pling from the joint posterior distribution of unrooted trees, substitution model, and the RTT re-255

gression parameters. Additionally, we are assuming that the divergence of each sequence is an256

independent outcome. This convenient approximation is clearly untrue because of identity by de-257

scent: sequences that share a more recent common ancestor will have a similar root-to-tip distance258

because they have inherited the same set of mutations. It is possible to overcome this limitation259

by adapting the covariance matrix of the regression model to the phylogenetic structure of the data260

(Neher, 2018).261

Not all studies use root-to-tip regression to estimate HIV-1 integration dates. For example,262

one of the methods described by Abrahams et al. (2019) uses approximate maximum likelihood to263

reconstruct a host-specific phylogeny relating HIV-1 RNA and DNA sequences, and then locates264

the closest tip representing an RNA sequence for every tip representing a DNA sequence, which265

is assigned the sampling time of the RNA tip. Hence, the DNA sequences can only be associated266

with a finite number of integration dates. This approach benefits from extensive sampling of HIV-1267

plasma RNA over the time period spanning the start of infection to ART initiation. If the ancestral268

HIV-1 RNA sequence most closely related to an HIV-1 provirus is not represented in the tree, then269

the latter would be mapped to another branch that may be associated with a sampling time that270

does not accurately estimate of the integration date. In contrast, RTT methods directly use the271

number of mutations carried by an individual DNA sequence to estimate its integration date. The272

other sequences are used to calibrate the linear model mapping this divergence to the timeline.273
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5. Data availability274

bayroot is publicly available under the MIT license at https://github.com/PoonLab/bayroot. We275

have also provided the simulated data and R scripts used to perform the method validation and276

generate figures in this repository.277
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