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Abstract 

Accumulating evidence suggests that gut-microbiota metabolites contribute to human 

disease pathophysiology, yet the host receptors that sense these metabolites are 

largely unknown. Here, we developed a systems pharmacogenomics framework that 

integrates machine learning (ML), AlphaFold2-derived structural pharmacology, and 

multi-omics to identify disease-relevant metabolites derived from gut-microbiota with 

non-olfactory G-protein-coupled receptors (GPCRome). Specifically, we evaluated 1.68 

million metabolite-protein pairs connecting 408 human GPCRs and 516 gut metabolites 

using an Extra Trees algorithm-improved structural pharmacology strategy. Using 

genetics-derived Mendelian randomization and multi-omics (including transcriptomic 

and proteomic) analyses, we identified likely causal GPCR targets (C3AR, FPR1, 

GALR1 and TAS2R60) in Alzheimer’s disease (AD). Using three-dimensional structural 

fingerprint analysis of the metabolite-GPCR complexome, we identified over 60% of the 

allosteric pockets of orphan GPCR models for gut metabolites in the GPCRome, 

including AD-related orphan GPCRs (GPR27, GPR34, and GPR84). We additionally 

identified the potential targets (e.g., C3AR) of two AD-related metabolites (3-

hydroxybutyric acid and Indole-3-pyruvic acid) and four metabolites from AD-related 

bacterium Eubacterium rectale, and also showed that tridecylic acid is a candidate 

ligand for orphan GPR84 in AD. In summary, this study presents a systems 

pharmacogenomics approach that serves to uncover the GPCR molecular targets of gut 

microbiota in AD and likely many other human diseases if broadly applied. 
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Introduction 

Recent advances in chemogenomic and pharmacogenomic approaches have shown 

that G-protein-coupled receptors (GPCRs) mediate a significant portion of host-

microbiota interactions1,2. Indeed, broad distribution of GPCRs in the gastrointestinal 

tract and brain may underlie their importance in shaping the “gut-brain axis” and other 

aspects of host pathophysiology3,4. Of those, over 100 receptors are “pharmacologically 

dark” or “orphan” GPCRs, whose endogenous ligands are unknown and their 

physiological roles have not been well-investigated5. Several gut metabolites have been 

recognized as agonists of orphan GPCRs from functional screening1,6-9. For example, 

orphan GPR35 is activated by 5-hydroxyindoleacetic acid in neutrophil recruitment10, 

and orphan GPR84 is agonized by medium-chain fatty acids in inflammation11. 

However, accurate structures of GPCRs, especially for orphan GPCRs, are lacking. 

This limits the power to identify metabolite-GPCR regulation. Recent advances in 

computational sciences and structural biology, such as Alphafold212, offer 

unprecedented opportunities to investigate the relationship between structure and 

function, in particular for orphan GPCRs without known structures. 

        Alzheimer’s disease (AD) is a progressive neurodegenerative disorder caused by 

multiple pathophysiological factors, including both genetic and environmental 

factors13,14. Without long-term outcomes for clinical prevention strategies and disease-

modifying treatments that slow the neurodegenerative process, recent estimates predict 

that there will be more than 13.8 million people with AD living in the United States by 

205013. The environmental exposome, which is the measure of all the exposures of an 

individual across their lifetime, plays crucial roles in the etiology and progression of 
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AD15,16. Withing this domain, alterations in the gut microbiome and microbe-associated 

metabolites is increasingly regarded as an important non-heritable neural exposome 

associated with AD pathogenesis and progression17-19.  

        Growing evidence shows that patients with AD dementia or mild cognitive 

impairment have microbial dysbiosis characterized by enterotype diversity and 

abundance20,21. Recent studies have also suggested that alterations of microbiota could 

contribute to AD-related pathologies in both central and peripheral neural systems15,22. 

For example, microbiota depletion attenuates inflammation and brain pathology in the 

APP/PS1 transgenic mouse model of AD23, and aging-associated neurocognitive and 

immune decline can be ameliorated by a fecal microbiota transplant from young to aged 

mice24. Advanced metabolomic approaches have recently identified that both 

trimethylamine N-oxide25, δ-valerobetaine26  and N6-carboxymethyllysine27 are elevated 

in AD pathobiology. However, the underlying molecular mechanisms linking gut 

metabolites to human disease, including AD, remain largely unknown. This is a critical 

area of unmet need, as the identification of “gut-brain axis”28 interactions holds potential 

for fostering discovery and development of new therapeutic approaches for AD. In 

particular we are only beginning to understand how gut microbe-derived metabolites 

engage host receptor systems to shape human health and disease.                       

        In this study, we present a systems pharmacogenomics framework that uniquely 

integrates machine learning and network-based genetics approaches and multi-omics 

findings to prioritize potential therapeutic targets from GPCRome and microbiota-

derived metabolite-GPCR relationships. We systematically evaluated over 1.68 million 

metabolite-GPCR pairs using AlphaFold2-derived computational biophysical 
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approaches and machine learning models, which enabled genetics-derived Mendelian 

randomization and multi-omics (including transcriptomic and proteomic) analyses 

leading to the identification of potential druggable GPCR targets (including orphan 

GPCRs) for AD. This pharmacogenomic framework thus offers a powerful tool to 

identify gut metabolite-based therapies via targeting human GPCRs for treating AD. In 

principle, this approach could be applied productively to other human diseases if 

broadly applied. 

 

Results 

A systems pharmacogenomics framework identifies associations between gut-

microbiota metabolites and the GPCRome 

We constructed a systems pharmacogenomics framework to identify associations 

between microbiota-derived metabolites and the GPCRome using AD as a prototypical 

example. This framework entails four steps (Fig. 1a): (1) Identification of likely causal 

GPCRs in AD using Mendelian randomization analysis; (2) Prioritization of AD-

associated GPCRs from multi-omics (including AD brain transcriptomics and 

proteomics) analysis; (3) Characterization of microbial metabolites from human gut 

strains; and (4) Identification of associations between metabolites and the GPCRome 

using AlphaFold2-derived computational biophysical approaches and an Extra Trees 

model. Specifically, we re-constructed structural models of 408 non-olfactory GPCRs by 

using AlphaFold2, including 124 orphan GPCRs (Fig. 1b). We next developed an Extra 

Trees model by leveraging three-dimensional (3D) interaction features derived from 

large-scale metabolite-GPCR complexes from molecular docking experiments, followed 
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by reconstruction of the metabolite-GPCR interactome network using the Extra Trees 

model-predicted binding affinity. Finally, we investigated the mechanism-of-actions of 

several AD-relevant gut metabolites that potentially treat AD via specifically targeting 

disease-associated GPCRs. 

 

Multi-omics analysis reveals potential GPCR targets for Alzheimer’s disease 

First, we examined the likely causal relationships between the GPCRome and AD by 

using Mendelian randomization (MR) analysis. Based on 3 large genome-wide 

association studies (GWAS) in AD29-31, 274 of 409 GPCRs were covered in our MR 

analysis. Among the 274 investigated GPCRs, 7 GPCRs were determined to be 

significantly related to AD (Fig. 2a). Of those, elevated expression of adhesion GPCR 

D1 (ADGRD1), GPR27, and vasoactive intestinal peptide receptor 2 (VIPR2) are 

associated with an increased risk of AD. By contrast, elevated expression of taste 2 

receptor member 60 (TAS2R60), formyl peptide receptor 1 (FPR1), galanin receptor 1 

(GALR1), and opsin 4 (OPN4) are associated with a reduced risk of AD. Specifically, 

bitter receptor TAS2R60 is associated with a substantially reduced risk of late onset AD 

(beta MR = -0.34, 95% confidence interval [CI] = -0.48 ± 0.20, FDR = 4.60 × 10-4). 

Three of the GPCRs identified in this exercise are also orphan GPCRs: GPR27, 

adhesion receptor ADGRD1, and photoreceptor OPN4. Expression of ADGRD1 has 

been reported in immune cells, and GPR27 is specifically expressed in the brain and is 

involved in neuronal plasticity and cognition32-34. For reference, the AlphaFold2 

structural models of GPR27 and ADGRD1 are shown in Fig. 2b.         
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        We next investigated the GPCRs for association with AD by analyzing bulk and 

single-cell transcriptomic or proteomic data from brain samples. Using 88 transcriptomic 

and proteomic datasets that we had compiled previously35,36, we examined differential 

expression (DE) of 406 GPCRs between pathologic groups (e.g., AD) and control 

groups (e.g., cognitive healthy control). In total, 393 GPCRs were clustered to a circular 

phylogenetic tree based on protein sequence conservation (Fig. 2c). GPCR classes 

and the number of omics (i.e., number of datasets in which GPCRs were differentially 

expressed) are illustrated in Fig. 2c. In total, 92 GPCRs are suggested to be AD-

associated (DE in at least one dataset), of which 23 differentially expressed GPCRs are 

orphan GPCRs. We then prioritized AD-associated GPCRs based on the degree of DE 

and identified the top 10 GPCRs with DE in at least 5 datasets (Fig. 2c), including 

GPR84, CX3CR1, GPR34, CXCR4, P2RY6, C3AR, GPR183, HCAR2, ADRA2A and 

GPRC5B. Among the top 10 differentially expressed GPCRs, GPR84, GPR34, GPR183 

and GPRC5B are orphan GPCRs. Among all differentially expressed GPCRs, GPR84 is 

the strongest candidate, followed by C-X3-C motif chemokine receptor 1 (CX3CR1), C-

X-C motif chemokine receptor 4 (CXCR4) and GPR34. GPR84 has been identified as a 

target of medium-chain fatty acids via mediating neuroinflammation11. Two chemokine 

receptors, CX3CR1 and CXCR4, also function to decrease neuroinflammation and 

regulate microglial activation37,38. GPR34, another orphan GPCR, has been found to 

specifically expressed by microglia in AD39. Taken together, these genetic and multi-

omics analyses reveal potential functional roles of the GPCRome in AD pathobiology, 

particularly for orphan GPCRs, including GPR84 and GPR34. 
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Machine learning-based discovery of the gut metabolite-GPCRome  

We next sought to identify gut metabolite-GPCRome interactions by combining 

AlphaFold2 and machine learning-based docking approaches (Fig. 1b). Here, we 

collected 516 unique, structurally characterized metabolites from a high throughput gut 

metabolomics study40. To identify potential GPCRome targets, we re-constructed 3D 

structures for 408 non-olfactory GPCRs using AlphaFold2 models. We observed that 

AlphaFold2-predicted GPCR structures containing high-confidence transmembrane 

helix (TM) regions (Supplementary Fig. 1a)12. We further compared the AlphaFold2-

predicted and experimental structures deposited in Protein Data Bank (PDB) of 10 

randomly selected GPCRs (Supplementary Fig. 1b). We found that the TM root-mean-

square deviation (TM-RMSD) of selected GPCRs was less than 1Å, revealing the high-

quality of AlphaFold2-predicted GPCR models. For pair comparison, refined 

crystal/Cryo-EM structures deposited in PDB (95 GPCRs with 482 structures, termed 

PDB structures) and homology models (404 GPCRs with 1031 structures) were also 

collected from GPCRdb41. In total, PDB structures and homology models revealed 77 

identical GPCRs to 416 AlphaFold2-predicted models (408 GPCRs). Druggable pockets 

of GPCR structures (including PDB structures, AlphaFold2, and homology models) were 

characterized using Fpocket 2.042. In total, we evaluated 1,680,096 metabolite-GPCR 

pairs connecting 408 GPCRs and 516 gut metabolites through molecular docking. We 

found a high Pearson’s correlation coefficient (R) of docking scores between 77 

identical GPCRs shared in AlphaFold2 and experimental structures (R = 0.87, p < 2.2 x 

10-16) (Supplementary Fig. 2), further revealing valid structures predicted by 

AlphaFold2 for metabolite docking studies. 
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        We next developed a ML model to improve docking performance. Specifically, we 

assembled experimentally determined ligand-GPCR pairs with known binding affinity 

from GPCRdb41 and GLASS databases43. To implement the application domain of ML 

models between active GPCR ligands and gut metabolites, we focused on bioactive 

GPCR ligands having similar physiochemical properties to well-characterized human 

metabolites44 (Supplementary Fig. 3). In total, we harnessed 60,356 known ligand-

GPCR pairs connecting 155 GPCRs and 38,117 bioactive ligands with experimental 

binding affinities (inhibition constant/potency, Ki value) serving as a training set. Then, 

3D structural features from the docked ligand-GPCR complex were calculated to create 

ML models. 

        Among 11 evaluated ML algorithms, the Extra Trees Regressor model (R = 0.60) 

outperformed other ML approaches, such as Extreme Gradient Boosting (R = 0.50) and 

K neighbors (R = 0.43) (Supplementary Table 1). On an external test dataset, Extra 

Trees models (termed GPCR-ML score) also achieved similar performance (R = 0.63, p 

< 2.2 x 10-16, Fig. 3a). By contrast, the docking score of external test dataset displayed 

weak correlation with binding affinity (R = 0.0055, p = 0.69) (Supplementary Fig. 4). To 

test over-fitting, we performed 10-fold cross-validation and found consistent 

performance (Supplementary Table 2). These observations suggest that the Extra 

Trees model derived GPCR-ML score enables us to identify the potency of metabolites 

against the GPCRs. 

        To further validate the performance of ML models, we next conducted a 

benchmark study on an experimental metabolite-GPCR dataset. Previous studies have 

revealed that metabolites act as signaling molecules to activate GPCR pathways4,7. 
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Therefore, a set of 56 diverse metabolite-GPCR pairs against 34 GPCRs with agonistic 

activity (half-maximum effective concentration, pEC50 >= 6) were retrieved from 

GPCRdb together with the reported experimental data7. Of note, biological activities of 

all 46 metabolites (in 56 pairs) against GPCRs in the benchmark were determined by a 

b-Arrestin assay7. In addition to well-known GPCRs, recent understudied GPCRs, such 

as GPR1834, were also included, to improve the diversity of GPCR targets in the 

benchmark. We found that our GPCR-ML score achieved the best performance (R = 

0.3, p = 0.027) compared to traditional AutoDock-derived docking score (R = 0.03, p = 

0.82, Fig. 3b, Supplementary Fig. 5). 

        We further inspected 34 unique experimentally reported metabolite-GPCR pairs to 

evaluate the predictive performance of GPCR-ML score. We defined the top 10% of 

metabolites prioritized by GPCR-ML score as potential metabolites. As indicated in 

Supplementary Fig. 6, the hit rate at the top 10% level reaches 47.1% (16/34), revealing 

a ~5-fold hit rate compared to traditional experimental screening (9%)7. Interaction 

between the bioactive metabolite serotonin and the 5HT1F receptor was predicted with 

the strongest GPCR-ML score. The reported bioactive metabolite 7,27-

dihydroxycholesterol also rank as a strong potential metabolite pair for the orphan 

receptor GPR183, suggesting the potential power of this approach to rank metabolites 

for orphan GPCRs as well. We further evaluated the absolute error between GPCR-ML 

score and experimental binding affinity of all metabolite-GPCR pairs and found that 

82.4% of the pairs (28/34) have a small absolute error (|absolute error| <= 1) 

(Supplementary Fig. 6). Taken together, our results indicate that the GPCR-ML score 
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from the Extra Trees Regressor model offers a potential approach to identify metabolite-

GPCR interactions, including orphan GPCRs. 

 

Microbiota-derived metabolite-GPCRome interactome 

To inspect the interactions between microbiota-derived metabolites and the GPCRome, 

we predicted GPCR-ML scores of all metabolite-GPCR pairs (515 metabolites against 

369 GPCRs) (cf. Methods). Metabolites were classified into 9 classes based on 

chemical structure similarity40. Among these classes, organic acids and derivatives 

(30.1%), organoheterocyclic compounds (18.3%), and lipids and lipid-like molecules 

(14.6%) were the top three categories (Supplementary Fig. 7a). The entire GPCRome 

was classified into 13 classes based on endogenous ligand type45 (Supplementary Fig. 

7b). The largest class was found to be orphan GPCRs (33.6%), including Class A 

orphans (25.2%), Class B2 orphans (6.5%), and Class C orphans (1.9%). In addition, 

aminergic receptors composed 9.2% (34) of the 369 studied within the GPCRome. 

Aminergic receptors have been previously reported to be activated by gut commensals, 

which are microbes that reside on either the body surface or at the mucosa without 

normally harming human health6. To compare metabolite performance against each 

GPCR, the GPCR-ML scores of all metabolites were normalized to the maximum value 

(termed normalized score). For each metabolite, the mean of normalized scores across 

all GPCRs was calculated (Supplementary Fig. 8). Overall, the metabolite-GPCRome 

interaction network was divided into three groups based on hierarchical clusters of 

metabolites (Supplementary Fig. 8a): organic acid, lipid and lipid-like, and organic 

acid-benzenoids. These groups were based on their major metabolite type distribution 
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within each group. Inter-groups displayed significantly distinct normalized score profiles 

(means of normalized scores over three groups are 0.43, 0.65 and 0.23, respectively; p 

< 2.22 x 10-16, Mann-Whitney U test, Supplementary Fig. 8b). Notably, the mean of the 

normalized scores of the lipid and lipid-like group was ~1.5-fold of the organic acid 

group and ~3-fold of the organic acid-benzenoids group. These observations reveal that 

GPCRs are more likely to be regulated by lipid and lipid-like molecules in comparison to 

other types of metabolites (Supplementary Fig. 7a). 

        Next, we sought to clarify the percentage of potential metabolites (prioritized by the 

top 10% of metabolites ranked by normalized scores) by testing each type of GPCR. To 

avoid a literature bias towards well-studied GPCRs and metabolites, we evaluated the 

percentage of potential metabolites by scaling the number of GPCR pockets and 

metabolites. The distribution of potential pockets displayed a similar pattern to that of 

GPCR types (Supplementary Fig. 7b), indicating that almost all GPCR classes (except 

for ion GPCRs) preferentially interact with lipid and lipid-like molecules (average 

percentage of potential metabolites is 19.4%, Supplementary Fig. 9), whereas GPCRs 

interact with organic acids and derivatives st a relatively lower percentage (average 

percentage is 2.4%). These results are consistent with our above metabolite-GPCR 

interaction network analysis (Supplementary Fig. 8). 

        We next focused on metabolites with the strongest GPCR-ML scores. To obtain a 

comprehensive network, we included the associations of top-one ranked GPCRs for 

each metabolite. The overall connectivity of the metabolite-GPCR network contains 884 

nodes (369 GPCRs and 515 metabolites) and 884 edges (884 predicted metabolite-

GPCR pairs, Fig. 3c). Among them, 4 pairs overlapped with experimentally reported 
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metabolite-GPCR pairs (Supplementary Fig. 10, Supplementary Table 3). For 

GPCRome associations, the distributions of pairs by GPCR classes differed in 9 

metabolite types (p = 0.028, 𝑥! test). We evaluated the average number of pairs per 

GPCR. The top three GPCR types were melatonin receptors (3.5, 7/2), aminergic 

receptors (2.7, 92/34) and orphan GPCRs (2.7, 333/124) (Supplementary Fig. 11a). Of 

these, orphan GPCRs have the strongest connectivity with metabolites (333/884, 

37.7%, Supplementary Fig. 11b). In this connectivity, there are 209 pairs in which 

metabolites interact with their top-one ranked orphan GPCRs, revealing that 40.6% 

(209/515) of metabolites prefer binding to orphan GPCRs. Over the whole associations 

of orphan GPCRs, lipid and lipid-like molecules are significantly associated with orphan 

GPCRs (75/333, 22.5%, p < 1 x 10-4, Fisher's exact test). While 80.6% orphan GPCRs 

(100/124) have less than 3 pairs, ~10 orphan GPCRs are still predicted to be targeted 

by over 5 metabolites, such as GPR12 and GPR83 (Supplementary Fig. 12). Two 

other major GPCRs involved in interactions with metabolites are peptide and aminergic 

receptors (21.5% and 10.4%, respectively). Previous chemical genetic screening 

indicated that aminergic GPCRs, such as histamine receptors and dopamine receptors, 

can be activated by gut-microbiota metabolites6. Here, lipids and lipid-like molecules 

were also observed as the largest categories in terms of pairings within the GPCRome 

(234/884, 26.5%) (Fig. 3c, Supplementary Fig. 11b), despite only comprising 14.6% of 

the entire metabolite datasets (Supplementary Fig. 7a). Orphan GPCRs were also 

found preferentially associate with lipid and lipid-like molecules (75/234, 32.1%, p < 

0.05, Fisher's exact test). These results are consistent with previous studies in which 

orphan GPCRs have been identified as sensors of lipid compounds, such as short-chain 
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or medium-chain fatty acids8,11. In addition, 34 metabolite-GPCR pairs consisted of the 

metabolite with strongest GPCR-ML score and its top-one ranked GPCRs (double 

edges in one pair shown in Fig. 3c), suggesting potential involvement in GPCR-

metabolite associations. For example, the serotonergic GPCRs, 5HT2C and 5HT4R, 

have been suggested to be responsive to a variety of bacterial products7. We conclude 

that regardless of associations (whole interactions, top 10% metabolites, and top-one 

ranked metabolites/GPCRs), GPCRs preferably interact with lipid and lipid-like 

molecules, especially orphan GPCRs. 

 

Allosteric regulation of metabolites on the dark GPCRome 

To characterize the ensemble of all discernible pockets, which is known as the -

pocketome, of all metabolite-GPCR pairs, we next investigated pocket profiles in PDB 

structures, AlphaFold2-predicted, and homology models. Here, we defined orthosteric 

sites according to the endogenous ligand position and near key residues in 

experimental structures, while other pockets remote from the orthosteric site were 

regarded as the allosteric sites. In 77 identical GPCRs, the greatest occupancy of 

orthosteric sites is seen in PDB structures (61.4%), while occupancy in AlphaFold2-

predicted and homology models are comparably lower (55.59% and 56.79%, 

respectively) (Fig. 4a). On the other hand, the pocket distributions of metabolite-GPCR 

pairs exhibited distinct patterns across three structural models (Supplementary 

Fig.13), revealing that AlphaFold2 may provide diverse binding sites compared to the 

PDB structures and homology models. 
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        Since the above analysis mainly focuses on non-orphan GPCRs (98.7% of 77 

identical GPCRs, Supplementary Fig. 14), we next analyzed the pocket profiles of the 

entire GPCR dataset, including orphan GPCRs. AlphaFold2-predicted models were 

shown to have a much larger occupancy of allosteric sites (58.55%) compared to the 

PDB structures and homology models (44.81% and 40.85%) (Fig. 4b). By contrast, the 

occupancy of allosteric site in AlphaFold2-predicted models was smaller than in PDB 

structures across 77 identical GPCRs (Fig. 4a). These results indicate that gut 

metabolites interact with orphan GPCRs largely via allosteric regulation. To avoid the 

bias introduced by different number of GPCRs contained within structural models, we 

compared the pocket profiles of 99 identical orphan GPCRs shared by AlphaFold2-

predicted models and homology models. 61.63% of the pockets from AlphaFold2-

predicted models are allosteric sites, which is considerably greater than that from 

homology models (45.24%) (Fig. 4c). Altogether, these observations suggest that gut 

metabolites are more likely to engage in allosteric binding with orphan GPCRs, which is 

consistent with recent experimental findings46,47. 

        Allosteric modulators of Class C GPCRs have also been reported as potential 

candidates for treating AD48. Thus, we conducted pocket analysis of Class C orphan 

GPCRs. In total, 3,096 metabolite-GPCR pairs were investigated and classified into 9 

pocket types (Pocket A-H, Fig. 4d), which were defined by their locations. Since the 

orthosteric site of Class C receptors is located in the extracellular domain, all 9 identified 

pockets are indicated as allosteric sites. Among them, we found one potential allosteric 

pocket previously known from crystal structures of Class C GPCRs (PDB: 4OR2, 

6FFH), and 4 additional pockets that had also been reported in other GPCRs (PDB: 
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4XNV, 4MQT, 5NDZ and 5O9H). In addition, 4 untargeted allosteric sites were 

characterized from potential promising interactions. All of the above sites are in the lipid-

receptor interface (Fig. 4d). Taken together, these potential allosteric modalities may 

not only facilitate the discovery of ligands for understudied GPCRs, but also have 

important implication in identifying the interaction of disease-relevant metabolites with 

orphan GPCRs allostery. 

 

The landscape of metabolite-GPCR associations in Alzheimer’s disease 

A total of 293 pairs of AD-related GPCRs were mapped in the metabolite-GPCR 

interactome (containing 7 MR associated GPCRs and 88 multi-omics associated 

GPCRs) (Fig. 3c and Fig. 5a), accounting for 33.1% of all interactome associations 

(293/884). Among these pairs, orphan GPCRs formed the largest proportion (84/293, 

28.7%) (Fig. 5a). The top three orphan GPCRs with the greatest percentage of 

associations were GPR12, GPR83 and GPR84 (Fig. 6a, Supplementary Fig. 12). Two 

other top-ranked GPCRs were peptide (71/293, 24.2%) and aminergic receptors 

(62/293, 21.2%), respectively. With respect to associations with orphan GPCRs, lipid 

and lipid-like molecules had the greatest percentage of metabolites (20/84, 23.8%). 

These results are in line with our interaction network analysis of top-one ranked 

metabolites and GPCRs associations (Fig. 3c).  

        Furthermore, when we exclusively considered only potential AD-associated GPCR 

with multi-omics evidence (10 GPCRs with DE in more than 5 datasets) and likely 

causal GPCRs with genetic evidence (7 MR associated GPCRs), 41 associations (with 

35 metabolites) remained (Fig. 5b). Of these, more than a half (54%) were related to 
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orphan GPCRs. As expected, most of the associated metabolites (11/41, 26.8%) were 

lipids and lipid-like molecules.  

        Among the GPCRs associated with AD, two GPCRs possessed both genetic and 

transcriptomic evidence, including galanin receptor 1 (GALR1) and formyl peptide 

receptor 1 (FPR1) (Fig. 2). Both GPCRs only interacted with one metabolite (Fig. 5b). 

The metabolites paired with GALR1 and FPR1, phylloquinone and 5-phenylvaleric acid 

respectively, were lipid-like molecules. Their association network and binding modes 

are depicted in Fig. 5c. FPR1 and GALR1 are both peptide receptors that are mainly 

expressed in the brain and gastrointestinal tract. FPR1 has been found to regulate 

mucosal immune systems, and GALR1 has been associated with cognitive decline in 

AD49,50. 

        T2R60, the GPCR with the most MR evidence, interacts with two top prioritized 

metabolites, 1-oleoyl-rac-glycerol and 2,4-dihydroxybutanoic acid. Another two MR-

supporting orphan GPCRs, ADGRD1 and GPR27 were also examined (structures 

shown in Fig. 2b). ADGRD1, was found to be bound by 5 metabolites, while GPR27 

was found to be bound by only one metabolite (25-hydroxycholesterol) (Fig. 5c). Here, 

the predicted structure of ADGRD1 consists of a large N-terminus (Fig. 2b). Oleic acid, 

a top-one predicted metabolite of ADGRD1, binds to its allosteric domain. Notably, a 

previous study reported that ADGRD1 was agonized by binding to its N-terminal stalk51. 

25-hydroxycholesterol displayed the strongest GPCR-ML score for GPR27, with binding 

to an extracellular site that is different from the reported binding site32.  

      Among all investigated GPCRs, GPR84 was identified as a candidate AD target for 

it having the strongest multi-omics evidence (Fig. 2c). In addition, GPR84 also 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.20.508759doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508759
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

possessed the greatest number of pairs with top-ranked candidate metabolites (8/36, 

22.2%, Fig. 5b). Fig. 6 displays the association network and potential binding sites of 

GPR84. While only two potential pockets were characterized, one of them was revealed 

as an allosteric pocket. This allosteric pocket in the GPR84 model was observed to be 

hydrophobic, allowing it to interact with cinnamaldehyde, one of the examined 

metabolites (Fig. 6b). While each of most of the potential AD-associated GPCRs 

possesses 1-2 associations (Fig. 5b), complement receptor C3AR binds to 6 prioritized 

metabolites (Supplementary Fig. 15a). 4 out of the 6 are carboxylic acids and 

derivatives. Consistently, a few carboxylic acid compounds were reported to activate 

C3AR in vitro52. The C3AR-centered association network and binding mode of the top-

one ranked metabolite coproporphyrin III is shown in Supplementary Fig. 15b. 

Coproporphyrin III structurally binds to an allosteric pocket located at the interface of the 

lipid and receptor, and has been suggested to induce expression of pro-inflammatory 

cytokines53.  

 

Metabolite-GPCR associations in AD-associated microglia 

Because disease-associated microglia (DAM) have been previously shown to be 

pathologically associated with AD54, we further inspected the differential GPCR genes 

expressed in DAM by using single nucleus RNA-sequencing data analysis, including in 

Aβ and Tau related microglia (GSE148822)55. We found that 3 out of 7 MR recognized 

AD-associated GPCR genes (FPR1, ADGRD1 and VIPR1), and 7 out of a top 10 multi-

omics identified AD-associated GPCR genes (CX3CR1, CXCR4, C3AR1, GPRC5B, 

GPR34, GPR183, P2RY6), were differentially expressed in DAM compared to 
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homeostasis-associated microglia (HAM) (FDR < 0.05) (Fig. 5d). In addition, GPR34, 

P2RY6 and ADGRD1 were differentially expressed in both Aβ-related microglia and 

Tau-related microglia. These results indicate that the above-mentioned GPCRs may be 

involved in AD through DAM. Next, we investigated the association of these GPCRs 

with metabolites (Fig. 5e). Among metabolites paired with the DAM-associated GPCRs 

(19/35), 5 metabolites have been reported to regulate neuroinflammation in microglia, 

including adenosine 5’-monophosphate (paired with GPR34)56, androsterone (paired 

with CX3CR1)57, oleic acid (paired with AGRD1)58, phytic acid (paired with VIPR1)59 and 

serine (paired with C3AR)60. Taken together, we showed proof-of-concept of metabolite-

GPCR associations in a cell type-specific manner using AD-associated microglia as an 

example. 

 

Discovery of microbiota-derived metabolite-GPCR associations in Alzheimer’s 

disease 

A previous study revealed that the abundance of Eubacterium rectale bacteria in 

patients with AD-related amyloidosis was significantly reduced compared to control 

subjects61. Therefore, we next examined which metabolites from Eubacterium rectale is 

significantly increased by mining its metabolite profiles and analyzing their reported 

abundance40 (Supplementary Fig. 16). Four metabolites (including indolelactic acid, 2'-

deoxyuridine-5'-monophosphate, 2-(4-hydroxyphenyl)-propionic acid and 

dimethylbenzimidazole) were significantly elevated by at least four-fold (log2FC ≥2, 

relative fold change over the germ-free control) (Fig. 7a). Two of these metabolites 

(indolelactic acid and dimethylbenzimidazole) were found to be organoheterocyclic 
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compounds involved in the tryptophan metabolic pathway and neurological 

regulation62,63. Next, we explored the top 10 predicted GPCRs and mapped them to our 

MR and multi-omics analyses results. Six unique AD-associated GPCRs were identified, 

including apelin receptor (APJ), adrenoceptor Alpha 1D (ADRA1D), adrenoceptor beta 1 

(ADRB1), prokineticin receptor 1 (PKR1), adhesion GPCR B3 (AGRB3), and 

lysophosphatidic acid receptor 6 (LPAR6) (Fig. 7b). In addition, three AD-related 

GPCRs (APJ receptor, ADRA1D and LPAR6) were predicted to be the targets of 2-(4-

hydroxyphenyl)propionic acid. Notably, the APJ receptor is shared by three out of four 

metabolites and also predicted as the top-one ranked target (Fig. 7b). The APJ 

receptor-coding gene was found to be over-expressed in two human brain 

transcriptomic datasets, and have been suggested as a promising target in AD 

therapies64. Our results suggest bacterium Eubacterium rectale may shape AD in part 

by engaging the APJ receptor. 

        Growing evidence suggested that two short-chain fatty acids, 3-hydroxybutyric acid 

and indole-3-pyruvic acid reduced AD related neuropathology8,65. The MR and multi-

omics analysis of the top 10 ranked targets were next inspected (Fig. 7c). Two AD-

related GPCRs, ADRA1D and C3AR, were identified as the targets of 3-hydroxybutyric 

acid. C3AR is a well-defined immune modulator that is suggested to mediate 

neuroinflammation and Tau pathology in AD66. In our multi-omics analysis, C3AR is 

differentially expressed in 7 mouse transcriptomic datasets, including 3 microarray and 

4 bulk RNA-seq datasets. Of those, C3AR is significantly upregulated in 3 datasets 

(FDR < 0.05, AD vs health control). For example, C3AR is found to be significantly 

overexpressed in APP/PSEN1 mouse model (Log2FC = 0.81, FDR = 7.16 ´ 10-3, 4 AD 
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mice vs. 4 health control)67. In addition, microbiota-derived metabolite n-butyrate has 

been reported to regulate the gene expression of a subunit of C3AR68. Likewise, three 

multi-omics evidenced AD-related GPCRs were identified as the targets of metabolite 

indole-3-pyruvic acid, including ADRA1D (one transcriptomic evidence), adhesion 

receptor AGRA2 (one transcriptomic evidence) and APJ receptor (three transcriptomic 

evidence). We conclude that our strategies have the potential to identify the 

mechanism-of-action between metabolites and AD via specifically targeting GPCRs, 

e.g., APJ receptor and C3AR. 

        To test whether gene expression of potential AD-associated GPCRs targeted by 

above Eubacterium rectale-derived or AD-related metabolites were also altered in AD-

associated microglia, we further performed a differential expression analysis between 

DAM and homeostasis-associated microglia (HAM) (Fig. 7d). Here, we found that three 

out of six genes of predicted AD-associated GPCRs targeted by Eubacterium rectale-

derived metabolites were differentially expressed in DAM (FDR < 0.05, vs. HAM), 

including ADRB1, ADGRB3 and LPAR6. The associated metabolites are 

dimethylbenzimidazole, 2'-deoxyuridine-5'-monophosphate and 2-(4-hydroxyphenyl)-

propionic acid, respectively. Interestingly, dimethylbenzimidazole is a component of 

vitamin B12 that has been reported to suppress microglial activation69. Also, among 4 

predicted AD-associated GPCR genes of two AD-derived metabolites, C3AR1 

(encoding protein C3AR, paired with 3-hydroxybutyric acid) was differentially expressed 

in DAM, which is in line with a previous study66. Notably, 3-hydroxybutyric acid has been 

reported to alleviate neuroinflammation in AD70, and we speculate that it may modulate 

AD pathology by acting on C3AR in microglia. 
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        As potential AD-related targets were identified in our multi-omics data, we next 

asked whether we could identify potential bioactive metabolites by targeting these AD-

associated GPCRs. To this end, we sought to analyze the metabolites of the four 

GPCRs with the greatest weight of multi-omics evidence for relation to AD: GPR84, 

CX3CR1, CXCR4 and GPR34 (Fig. 2c). The top 50 metabolites (top 10%, potential 

metabolites by our definition) were prioritized by normalized scores, and the chemical 

names of the top 10 metabolites are indicated in Fig. 7e. For example, we visually 

examined the potential metabolites of GPR84 since it is the strongest AD-associated 

GPCR in multi-omics analysis. 8-hydroxyquinoline, which is 3rd ranked in metabolites 

associated with GPR84, and its derivatives have been reported to display significant 

inhibitory effects against Ab aggregation in AD71, and here this metabolite also ranked 

4th among potential metabolites of CX3C1 (Fig. 7e). Another 7th ranked potential 

metabolite, octyloctyl gallate, has been reported to markedly reduce cerebral 

amyloidosis in a mouse AD model72, and here it also ranked 6th among potential 

metabolites of CXCR4. Another important potential metabolite, phylloquinone (vitamin 

K1), ranked 9th for GPR84 and 5th for CXCR4, and is highly expressed in the 

Bacteroides genus (log2FC > 10, Supplementary Fig. 16). Notably, previous studies 

have suggested a direct association between phylloquinone and cognitive function in 

AD patients73,74. Overall, half of the potential metabolites are lipid and lipid-like 

molecules associated with GPR84 (25/50). Of those, 11 were fatty acids and 

derivatives, including two medium-chain fatty acids (suberylglycine and tridecanoic 

acid), agreeing with a previous report that medium-chain fatty acids activate GPR8411. 

The binding mode of suberylglycine with GPR84 is shown in Fig. 6b. Because 
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tridecanoic acid (Fig. 7f) has previously shown an pEC50 affinity of 5.77 in the GPR84 

b-arrestin assay11, we investigated its binding mode with GPR84 (Fig. 7f). The carboxyl 

group of tridecanoic acid forms two hydrogen bonds with residues Thr167 and Ser77, 

and its carbon chain points to a hydrophobic region that interacts with hydrophobic 

residues, such as Leu100, Phe101 and Phe170. Because our ML training dataset does 

not contain either GPR84 or tridecanoic acid, the strength of our GPCR-ML score is 

further underscored.   

        In summary, these findings suggest that potential application of our integrated 

network-based approaches to identify mechanism-of-action of AD-related metabolites 

may offer potential metabolite-based treatment approaches in AD. 

 

Discussion 

Much effort in the field has been devoted to developing therapeutics based on targeting 

disease-modifying modalities or genetic factors in AD. However, thus far over 99% of 

clinical trials have failed75, highlighting the heterogenous etiopathology and 

pathogenesis of AD. Thus, there is an urgent need to uncover potential targets from a 

chemical perspective. The microbiome, a prominent member of the environmental 

exposome, has been suggested to mediate communication between the ecosystem of 

the gut and human brain in AD pathologies17. While recent advances indicate that 

alterations of bacteria or microbiota-derived metabolites modulate neurological 

disorders76, insufficient understanding of the potential targets of microbial products 

largely limits novel therapy development and clinical translation. Notably, microbiota-

based therapeutics have been employed to treat autism spectrum disorder77, which 
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serve as a proof of principle that other novel therapies for brain health, including AD, 

may also be derived by targeting microbiota dysbiosis. In our study, we developed a 

conceptual ML-based structural systems pharmacogenomics framework based on 

cheminformatics and bioinformatics data. This has enabled us to discover potential 

targets of microbiota-derived metabolites rapidly and effectively. Here, we concentrated 

on one of the key therapeutic targets in AD, the GPCRome. We clarified the interactome 

of large-scale metabolite-GPCR pairs, providing a landscape of AD-related GPCRs with 

genetic and multi-omics evidence, as well as their metabolite interaction partners. 

Furthermore, we demonstrated that metabolites may be allosteric regulators of GPCRs 

by preferential binding to allosteric sites in AlphaFold2 models, especially lipid and lipid-

like molecules. Finally, we validated our approaches by investigating potential GPCR 

targets of bacteria-derived and AD-associated metabolites. 

        ML and artificial intelligence applications have been developed to predict the 

bioactivity of ligands binding to GPCRs78. Most computational methods are based on 1D 

or 2D features of ligands or proteins, such as multilayer perceptron (MLPs) and 

convolutional neural networks (CNNs), or machine-learning based scoring functions 

based on distance features or interatomic pairs79,80. However, these methods are 

usually limited by training set quantity and easy-overfitting issues. Recently, one scoring 

function based on 3D fingerprints representing ligand-protein physical interactions was 

reported81. Importantly, this model outperformed other reported score functions, 

suggesting the reliability of the interaction features. To construct our metabolite specific 

GPCR-ML model, three strategies were adopted: (1) We implemented a high quality of 

ligand-GPCR training set of bioactive ligand-GPCR pairs with high bioactive potency 
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(pKi >= 6); (2) We utilized a large quantity training set that are metabolite mimics. To 

mitigate the risk of this leading to unreliable data derived from property differences 

between bioactive ligand and metabolite datasets, we applied a physiochemical 

properties cutoff calculated from a large-scale metabolite dataset to improve the 

chemical similarity in training set; (3) We utilized high quality 3D features in our 

analysis. To improve the performance of docking, for example, we used high quality 

AlphaFold2 models and increased ligand sampling space in docking, since features are 

largely dependent on the docking pose. The Advanced Deep Learning based 

AlphaFold2 algorithm may provide potential reliable models for GPCRs, especially for 

unstructured orphan GPCRs. To validate the performance of AlphaFold2, we manually 

and individually inspected all structures of non-olfactory GPCR models, and observed 

that they all contained confidently predicted transmembrane helix (TM) regions12 (some 

of the models are displayed in Supplementary Fig. 1a). This substantiates the use of 

molecular docking with the AlphaFold2 models, since reported conserved pockets of 

GPCRs are mainly distributed on the TM domain82. We also randomly compared the 

structural differences of AlphaFold2 and crystal structures in 10 GPCRs 

(Supplementary Fig. 1b). The TM root-mean-square deviations (TM-RMSD) of all 

selected GPCRs are very low (less than 1 Å), pointing to the high-quality of the 

AlphaFold2-modeled GPCR structures. To avoid overfitting, we removed features with 

higher multicollinearity (threshold = 0.95). To improve the quality of the training set, 

ligand-GPCRs with lower affinities (pKi < 6) were not considered in the training set. This 

protected us from overstating the predicted scores of poor binding metabolites, and 

enabled us to focus on the ranking of metabolites rather than their scores.  
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        The quality of our predicted metabolites with GPCR-ML score is evident from two 

results. First, compared with a scoring function validated on the CASF-2016 dataset, 

GPCR-ML score has a comparable performance with X-Score83, yet lower than ∆Vina-

RF2084. The feature importance of Solvent accessible surface area (SASA) 

(Supplementary Fig. 17) is in accordance with previous reports81, while the ligand 

stability features in our calculation, including ligand RMSD and conformational energy 

differences (∆E), are not the most top features, possibly due to different ML models 

rather than datasets. Second, compared with docking score, binding affinity has a good 

correlation with GPCR-ML score on the benchmark dataset, even though our bench 

dataset is of a relatively small quantity (Fig. 3b).  

        Importantly, we identified several potential AD-related GPCRs. A few of them, such 

as CX3C1, CXCR4 and C3AR, are chemokine receptors, activation of which have been 

suggested to have an important neuroprotective role in AD, such as C3AR for 

attenuating Tau pathology85. T2R60, a bitter taste receptor, has been suggested to be 

expressed in the gastrointestinal tract86, yet its functions in neurological disorders are 

under-investigated. Previous studies suggested that TAS2R receptors could be involved 

in immune regulation87, and we thus hypothesize that T2R60 may be a proof-of-concept 

AD target by playing a role in peripheral inflammation. GPR183, another 

immunomodulatory EBI2 receptor, has been recently reported to be agonized by the 

metabolite lauroyl tryptamine derived from Eubacterium rectale88. Furthermore, HCAR2 

(GPR109A), a microglia receptor that was induced by amyloid pathology in AD89, was 

also identified as being agonized by the metabolite nicotinic acid derived from R. 

guavus7. A FDA-approved drug Niaspan was reported to activate HCAR2 to modulate 
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amyloid pathology and neuronal dystrophy in AD90. Notably, the top-ranked metabolites 

of GP183 and C3AR are both coproporphyrin III. Even though our ML model has 

improved accuracy, more metabolites need to be inspected, for example the top 50, 

rather than just those topping the list. Our findings are consistent with a previous report 

that GPCRs may play an important role in AD pathology91, including amyloid, tau, 

inflammation and neurodegeneration, pointing towards pharmacologic approaches that 

target AD-associated GPCRs and providing potential insights into the identification of 

related biomarkers. 

        GPCRs mediate diverse pathway signaling by different ligands, making it important 

to analyze their pocket landscape and illustrate their molecular pharmacology5. So far, 

how distinct metabolites structurally regulate GPCRs remains largely unknown, 

particularly for unresolved orphan GPCRs4,92. Since allosteric modulators have been 

advancing as drug candidates in treating CNS disorders that may reduce the risk of 

receptor oversensitization93, we investigated the occupancy of orthosteric and allosteric 

pockets in our metabolite-GPCR complex. Most metabolites in our dataset bind to 

allosteric pockets in AlphaFold2 orphan GPCR models (Fig. 4a-c), which is consistent 

with previous reports that metabolites may activate orphan GPCRs, serve as allosteric 

modulators, and play a role in allosteric regulation of CNS disorders4,94,95. Indeed, 

several allosteric modulators of Class A and Class C GPCRs have entered clinical trials 

for treating neurological disorders93. For example, the negative modulator of mGluR5, 

one receptor of Class C GPCRs, has shown promising effects in treating anxiety and 

Parkinson's disease in phase II trials96. 
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        Together, our findings highlight the utility of the systems pharmacogenomics 

framework and multi-omics approaches to uncover the molecular relationships between 

gut-microbiota metabolites and GPCRome targets in AD. We envision that our predicted 

communications would provide essential sights into future experimental or clinical 

validations on therapeutically regulations of gut microbiota for treating AD. 

 

Methods 

Datasets curation 

833 metabolites derived in vivo and in vitro from 178 human gut bacteria strains were 

collected from recent studies conducted by S. Han et al.40. Duplicate chemicals were 

removed based on PubChem_ID and chemical name, resulting in 516 molecules 

(Supplementary Data 1). The metabolic profiles and abundance in diverse bacteria of 

these metabolites were re-analyzed. 15,092 metabolites were assembled from SMPDB 

database97 for molecular physiochemical property calculations. 1,045,681 entries from 

GPCRdb98 and 321,881 bioactive ligand-GPCR entries from GLASS43 databases were 

collected for the ML training set. 56 reported metabolite-GPCR pairs from GPCRdb41 

and a previous study by D. A. Colosimo et al.7 were collected for the benchmark. 416 

high quality structural models of 408 known human non-olfactory GPCRs were 

assembled from AlphaFold2 Protein Structure Database12. 95 GPCRs with 482 crystal 

structures and 404 GPCRs with 1031 homology models were collected from GPCRdb 

database. The number of identical GPCRs among three models is 77. The list of 

GPCRs is available in Supplementary Data 2. 
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Molecular docking and interaction analysis 

2D structures of molecules, including metabolites were converted by using Open Babel, 

and 3D structures were generated and prepared by using LigPrep module (Schrödinger 

Inc., version 2020.1). All protein structures, including AlphaFold2-predicted, PDB 

structures and homology models, were prepared by using the Protein Preparation 

Wizard module (Schrödinger Inc, version 2020.1). Also, molecules and proteins were 

prepared by using Autodock utilities99 for docking. To identify novel pockets as much as 

possible, Fpocket suite (version 2.0)42 was utilized to characterize potential druggable 

binding sites. The druggable pocket score cutoff was set to 0.5. Because no druggable 

pockets of 39 GPCRs are identified in AlphaFold2-predicted models, the druggable 

pockets of only 369 AlphaFold2-predicted GPCRs were obtained. 625 potential pockets 

of AlphaFold2-predicted models were predicted. The number of predicted pockets in 

PDB structures and homology models are 764, 1867, respectively. Molecular docking 

was processed by AutoDock Vina (version 1.1.2)99. To improve the searching space, 

the exhaustiveness parameter was increased to 30. For each docking process, top 10 

best binding affinities were kept in our results and only the top one-ranked scoring 

conformation and docking score were considered for comparison.  

        The top-one ranked docking scores of all ligand-GPCR pairs were extracted from 

docking results. For each GPCR with multiple pockets, only the pocket with the top-one 

ranked score was considered. In total, we achieved 1,680,096 metabolite-GPCR pairs, 

including 322,500 pairs from AlphaFold2-predicted models, 394,224 pairs from PDB 

structures and 967,372 pairs from homology models. For comparison, the docking score 

was normalized and fit into 0-1 by using adjusted Min-Max normalization method:  
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑠𝑐𝑜𝑟𝑒 = 1 − (𝑆𝑐𝑜𝑟𝑒"#$%&'( − 𝑆𝑐𝑜𝑟𝑒)&')/(𝑆𝑐𝑜𝑟𝑒)*+ − 𝑆𝑐𝑜𝑟𝑒)&')……  Eq 1 

        The normalization was applied to metabolite profiles to leverage the binding affinity 

of metabolites for each GPCR. Ward’s method was chosen as the cluster method, and 

Manhattan distance was adopted. The mean of normalized scores were calculated for 

each metabolite across all GPCRs. Heatmap was built by using R (version 2021). 

Detailed Binding modes and ligand-GPCR interactome were conducted by using 

PyMOL (version 1.8.2). 

        Top 10% metabolites of each GPCR were selected based on normalized score 

and defined them as potential metabolites. For each metabolite type and GPCR class, 

the percentage of potential metabolites were calculated based on the following 

equation: 

𝑃,#-.'-&*/	).-*1#/&-. =
2!"#$%#&'(	*$#'+"(&#$

2%,*+$-	".	*$#'+"(&#$	×	2%,*+$-	".	!"/0$#
 ……  Eq 2 

Where 𝑃,#-.'-&*/	).-*1#/&-. means percentage of potential metabolites for each metabolite 

type and GPCR class, 𝑁,#-.'-&*/	).-*1#/&-. means the number of potential metabolites for 

each metabolite type and GPCR class, 𝑁'4)1.5	#6	).-*1#/&-. means the number of 

metabolites for each metabolite type, 𝑁'4)1.5	#6	,#$%.- means the number of druggable 

pocket for each GPCR class. 

 

Machine learning framework 

To improve our machine learning predict accuracy, we first calculated the 

physiochemical properties of metabolite datasets and took them as a reference to keep 

the familiar physiochemical distributions in our training dataset. Metabolites were 

assembled from the SMPDB database97 as these metabolites are associated with 
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metabolic pathways. Molecules were cleaned by several processes, including removing 

ions, metals, salts, non-parsed KEGG id or names as well as super-cyclic compounds 

or peptides. Chemical name was converted to SMILES by using opsin (version 2.6.0). 

KEGG_id was converted to INCHIKEY by website 

(http://cts.fiehnlab.ucdavis.edu/batch). INCHIKEY was converted to SMILES by using 

RDKit (version 2021.03.5). Physiochemical properties were calculated by DataWarrior 

software (version 5.2.1)100, including molecular weight, hydrogen bond acceptor (HBA), 

hydrogen bond donor (HBD), cLogP, total polar surface area (TPSA) and Number of 

rotate bond (NRotB). Herein, the threshold of these six molecular properties was set to 

90%, which was used to narrow down the training dataset.  

        Next, we assembled the bioactive ligands targeting the entire GPCR family with Ki 

values from GPCRdb (1,045,681 entries) and GLASS databases (321,881 entries). 

Duplicates, abnormal and outlier (Maximum/Minimum > 10) entries were removed. 

Here, we only considered activity data from human species and only bioactive ligand 

pairs were kept (pKi >= 6). To mimic properties of metabolites, the metabolites dataset 

cutoff was applied, leading to a total 60,356 ligand-GPCR entries in our training set. 

Molecular docking was conducted for all entries, and the detailed docking methods are 

described in the Molecular docking and interaction analysis section.  

        Then, we calculated 3D interaction features based on our docking results. All 

features of each ligand-GPCR pair employed in our development of the ML model was 

calculated by using deltaVinaXGB (https://github.com/jenniening/deltaVinaXGB)  as 

described in a previous study81. Notably, because the training dataset utilized unique 

ligand-GPCR pairs, we removed ligand dependent features. Finally, 84 features were 
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calculated, including 52 features describing ligand-interaction terms calculated from 

Vina source code, 29 features describing buried solvent accessible surface area 

(bSASA) and pharmacophore-based bSASA terms, 2 features describing ligand 

conformation stability (ligand RMSD and ∆E) during the binding process and 1 docking 

score. Docking score converted to pKvina following this formula: pKvina = 	−0.7335 ∗

Docking	Score. Finally, all features of 515 metabolites were calculated.  

        Due to data loss upon molecular docking and feature calculation, a total of 54,446 

pairs with docking score and all features, were used to construct our dataset for ML 

models. 10% dataset was chosen as validation dataset, the rest is training dataset. ML 

models were built by using PyCaret library101.  pKi value is our predicted label by using 

regression. The dataset was randomly divided into training set and test set with a ratio 

7:3, and they were preprocessed to remove multicollinearity features with a threshold of 

0.95. 10-Fold cross-validation was adopted. ML models were generated by using 

default hyper-parameters implemented in PyCaret. 11 regression ML models were 

predicted as listed on Supplementary Table 1101, including Bayesian Ridge, CatBoost, 

Elastic Net, Extreme Gradient Boosting, Extra Trees, Linear Regression, Light Gradient 

Boosting Machine, Gradient Boosting, Random Forest, Ridge Regression, K neighbors. 

Specifically, for Extra Trees model, random seed = 223, n_estimators = 100, 

min_samples_split = 2. To comparatively evaluate the ML models, Pearson’s correlation 

coefficient (R) between experimental measured binding affinity (pKi) and predicted 

affinity was adopted to assess their linear correlation in regression. The final model was 

used to predict our metabolite-GPCR pairs dataset and generate the predicted GPCR-

ML score (Supplementary Data 3). 
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Benchmark study 

Datasets of reported metabolite-GPCR for the benchmark study were collected from 

GPCRdb and high-throughput functional screening report7. To keep a high confidence 

of the dataset, only agonists determined from a b-Arrestin assay were considered. 

Further, agonists with pEC50 that are less than 6 were removed. Finally, 56 metabolite-

GPCR pairs that comprised of 34 GPCRs and 44 metabolites were processed by 

structure preparation, molecular docking, feature calculation and ML model prediction.  

 

Mendelian Randomization analysis 

We performed Mendelian Randomization (MR)102 to test the causal effect of 409 

GPCRs toward AD. Publicly available 4 cis-eQTL (Expression quantitative trait locus) 

datasets of brain cortex region were used as instrument variables source in MR 

analysis. They were downloaded from AD Knowledge Portal (Synapse ID: 

syn17015233)103 and MetaBrain104. We used two criteria to select high confidential 

instrumental variables for each GPCR: (1) FDR < 0.05 as the cutoff of effect 

instrumental variables from eQTL datasets; (2) we clumped LD (linkage disequilibrium) 

to r2 < 0.2 based on reference matrices from 1000 genome V3 by PLINK [1.9]105. We 

used 3 publicly available AD GWAS summary statistic datasets as AD outcomes, 

including 2 GWAS from late onset AD30,31 and a GWAS from the cohort with family 

history of AD29. The MR method Wald ratio estimator106 was used with one variant, 

while the inverse-variance-weighted (IVW)107,108 method was used to test the number of 

proposed variables. The MR analysis was conducted via TwoSampleMR 

(https://mrcieu.github.io/TwoSampleMR/) and Mendelian Randomization packages109 
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using the R (R 4.1.1) platform. The analyzed data is available in Supplementary Data 

4. 

 

Multi-omics analysis 

We used 88 bulk and single cell RNA-seq transcriptome or proteome datasets that we 

previously compiled35 (available from AlzGPS: https://alzgps.lerner.ccf.org/) and 

examined the differential expression of the GPCRs in these datasets. Each dataset 

compares a pathology group (e.g., AD) and control group (e.g., healthy control). 

Differential expression in one or more datasets was considered evidence for the 

GPCRs. The detailed method could be referenced our previous study35. The analyzed 

data is available in Supplementary Data 5. 

        Differential expression analyses from brain transcriptome analyses. The 

transcriptome analyses were performed based on microarray, bulk RNA-seq, and 

single-cell/nucleus (sc/sn) RNA-seq datasets. We utilized three sets of human brain 

microarray transcriptome data collected from late-stage AD and control donors. The 

original data are available from Gene Expression Omnibus database (Edgar et al., 

2002): (1) GSE29378 with 31 late-stage AD and 32 controls, (2) GSE48350 with 42 

late-stage AD and 173 controls, and (3) GSE84422 with 328 late-stage AD and 214 

controls. All results of differential expression analyses are available from the AlzGPS 

database110. We also included human brain bulk RNA-seq transcriptome data collected 

from hippocampus region of late-stage AD and control donors with three studies: (1) 4 

late-stage AD versus 4 controls111, (2) 6 late-stage AD versus 6 controls112, and (3) 20 

late-stage AD versus 10 controls113. For all differentially expressed genes (DEGs) 
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generated from sc/sn RNA-seq datasets, we applied uniform criterion with adjusted p-

value (q) < 0.05 and |log2FC| ³ 0.25. Finally, for the sake of convenience, we have 

included the complete lists of DEGs based on microarray and bulk RNA seq in 

Supplemental Data 5. 

        Differential expression analyses from brain proteomic analyses. Differential 

expression analyses of brain proteomic data were conducted based on six mouse 

model datasets: (1) 7- and 10-months ADLP mouse models (JNPL3 mouse model cross 

with 5xFAD mouse model)114, (2) 7- and 10-months 5xFAD mouse models114, (3) 12-

months 5xFAD mouse model115, and (4) 12 months hAPP mouse model115. The 

differentially expressed proteins (DEPs) for across different mouse brain are available 

from AlzGPS110. The complete lists of DEPs are provided in Supplemental Data 5. 

        Differential expression analyses of brain single-cell/nucleus RNA-

sequencing data. We utilized one set of human brain single nucleus RNA-sequencing 

data collected from 18 AD and control donors with two brain regions: occipital cortex 

(OC) and occipitotemporal cortex (OTC) which included totally 482,472 nuclei. It is 

available from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) database 

with accession number GSE148822. We performed the bioinformatics analyses 

according to the processes described in the original manuscript55. We first used 

DoubletFinder116 to remove doublets for each individual samples. After that, the rest 

analyses were implemented with Seurat (4.0.6)117, nuclei with £ 500 and ³ 2500 genes, 

and with ³ 5% mitochondrial genes were removed. Then the raw count was log-

normalized and the top 2000 most variable genes were detected by function 

FindVariableFeatures with selection.method = ‘vst’. Next, all samples were integrated by 
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functions FindIntegrationAnchors using reciprocal PCA (RPCA) and InegrateData with 

default parameters. We then scaled the data and regressed out heterogeneity related 

with mitochondrial content, sex, and number of UMIs. Principal component analysis 

(PCA) was performed with parameter npcs = 40, and clustering was performed with the 

first 13 pcs and resolution 0.15. After identifying microglia nuclei with marker genes 

(CSF1R, C3, CIITA, P2RY12 and CX3CR1) provided by the original manuscript118, we 

continued with the microglia subcluster analysis with top 1000 most highly variable 

genes detected by function FindVariableFeatures. All microglia nuclei were integrated 

again via functions FindIntegrationAnchors using canonical correlation analysis (CCA) 

with parameters dims = 1:10, and IntegrateData with default parameters. After that, data 

was scaled and regressed out ribosomal content. We then ran the subcluster partition 

with the first 10 pcs and resolution 1.3. We identified different microglia subtypes with 

the markers provided in the original manuscript118: TMEM163, CX3CR1, SOX5, and 

P2RY12 for homeostasis microglia, ITGAX, SPP1, MSR1, and MYO1E for Aβ related 

microglia, GRID2, ADGRB3, CX3CR1, and DPP10 for Tau related microglia, GPNMB, 

IL1B, CD83 and NFKB1 for inflammation microglia, HSP1A1, HSPA1B, FOS, and 

HSP90AA1 for stress microglia, and TOP2A, BRIP1, MKI67, and FANCI for proliferation 

microglia. DEGs were calculated between AD1, AD2, inflammation and homeostasis 

microglia with MAST R package119, separately. The analyzed data is available in 

Supplementary Data 6.  

 

Interactome network modeling 
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The Metabolite-GPCR interaction network was visualized using Cytoscape (version 

3.9.1). To build this network, we used several layers of our results: (1) 884 nodes, 

including 515 metabolites and 369 GPCRs with their classification; (2) 884 edges, 

includes 515 metabolite-GPCR pairs between metabolites with strongest GPCR-ML 

score and their targeted GPCR, and 369 metabolite-GPCR pairs between GPCRs and 

their top-one ranked metabolites; (3) MR and multi-omics evidence of GPCRs in AD; (4) 

Microbiota bacteria strains related to each metabolite. Metabolites were classified by 

chemical types; GPCRs were classified by ligand types (Supplementary Data 7). The 

metabolic profiles across bacteria strains were from re-analysis of previous study40 

(Supplementary Data 9).  

 

Pocket classification and analysis 

Since different GPCR classes have their unique pocket characteristics, we need to 

recognize the orthosteric or allosteric pocket for each GPCR class. To define the 

relative position of pocket, the generic residue number was adopted based on GPCRdb 

numbering scheme41.  

        For class A, the traditional orthosteric site was considered as being located in 

extracellular sites between the transmembrane helix segments. As in previous report120, 

several relatively high frequency residues are regarded as our reference residues: 2x60, 

2x63, 3x28, 3x29, 3x32, 3x33, 3x36, 3x37, 45x52, 5x40, 5x41, 5x44, 5x45, 5x47, 6x44, 

6x48, 6x51, 6x52, 6x55, 6x58, 7x30, 7x33, 7x37, 7x40, 7x41. Classified the pocket as 

an orthosteric pocket once the binding pocket possesses at least 5 residues among the 

reference residues. At first, generic numbers of reference residues are matched to 
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sequence numbers of each protein model. Then we applied the above condition to each 

pocket in each model, leading to a set of pocket types. Next, we compared every 

docking pocket of GPCR-metabolite pairs with the pocket set, and finally we could 

analyze the orthosteric pocket distributions in docking results. A pocket that is different 

from identified orthosteric pocket was regarded as an allosteric pocket. The same 

analysis was employed to class T receptors121. 

        For class B receptors, since they are peptide receptors, the orthosteric pocket 

would be much larger and more solvent accessible122. Therefore 36 complex structures 

with ligand binding to orthosteric sites of class B were investigated and residues 

involved in interactions are analyzed. Then we selected the residues with frequency of 

more than 50%, and finally 26 residues are regarded as the pocket reference residues. 

Next, we match the reference residues to each pocket and compare them in docking 

datasets. Same analysis was employed for class F receptors123. 

        Class C receptors differ from other subfamilies. They are structurally distinguished 

by a large N-terminal extracellular domain, and endogenous ligands are identified by 

binding this domain124. Since it is difficult to obtain the generic number of N-terminal 

residues, we inspected all pocket positions and differentiated among them manually. 

We then utilized them and distinguished the pockets in docking datasets.  

        In total, 625 pockets from AlphaFold2, 767 pockets from PDB and 1867 pockets 

from GPCRdb were analyzed and applied to define pocket types on all GPCR-

metabolites docking pairs. (Supplementary Data 8) 

 

GPCRome Phylogenetic tree 
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Sequences of 408 GPCRs were collected from UniProt (https://www.uniprot.org/). The 

multiple alignment sequence (MSA) information was achieved from GPCRdb. Only 

structurally conserved positions and TM1-TM7 segments were considered to construct 

the alignment file. Finally, the MSA with 393 GPCRs was used to construct the 

phylogenetic tree by utilizing Phylip (version 3.695). Furthermore, the number of 

transcriptome and proteome evidence were plotted on the outer circle. The circular tree 

was polished by using iTOL (version 6.5.2). 

 

Statistical analysis 

All statistical analyses were performed using the R package 4.1.1. 

 

Data availability 

Genome-wide association studies (GWAS), transcriptomics, and proteomics datasets 

were collected from The National Institute on Aging Genetics of Alzheimer's Disease 

Data Storage Site (NIAGADS, www.niagads.org) and The Alzheimer’s disease 

Knowledge portal (https://adknowledgeportal.synapse.org/). The data that support the 

findings of this study are available in the manuscript and its supplementary information. 

The list of studied metabolites and GPCRs are provided in Supplementary Data 1-2. 

The GPCR-ML scores of metabolites on AlphaFold2-predicted models, homology 

models and PDB models are provided in Supplementary Data 3. The target analysis of 

Mendelian Randomization (Supplementary Data 4), multi-omics (Supplementary Data 

5) and Single nucleus datasets (Supplementary Data 6) are available in 

Supplementary Data 4-6. The interactome associations of metabolites and GPCRs 
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shown in Fig. 3c are available in Supplementary Data 7. The pocket distributions of 

AlphaFold2-predicted models, homology models and PDB models are available in 

Supplementary Data 8. The re-analysis of profile of metabolites across bacterial 

strains are available in Supplementary Data 9. All data are available from the authors 

upon reasonable request. 

 

Code availability 

Codes for machine learning frameworks and other data analyses are available at 

https://github.com/ChengF-Lab/Gut-GPCRome. All other codes used in this study are 

available from the corresponding author upon reasonable request. 
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Figure Legends 

Fig. 1 | Schematic of a systems pharmacogenomics framework illustrating 

associations between gut-microbiota metabolites and GPCRome. a Schematic 

diagram illustrating associations between gut-microbiota metabolites and GPCRome in 

AD. Specifically, AD related genes, proteins, microbiota-derived metabolites datasets 

were compiled from multi-omics data including genome (purple), 

transcriptome/proteome (green), metabolome (cyan) and interactome (yellow). 

Metabolites are depicted as blue lines in the metabolome network and metabolites are 

shown in gray 3D chemical structures. GPCR structures in network are shown in yellow 

cartoon. b An overall workflow of ML-based structural pharmacology approach. 

Molecular docking was performed to generate 3D interaction features. Metabolites (gray 

sticks) derived from microbiota (blue cartoon) docked into pocket (blue funnel) of GPCR 

(cartoon cylinder); Structures of GPCR (multicolored 3D structures) were modeled by 

using AlphaFold2 based on multiple sequence alignment information; Then, diverse 3D 

interactions features, such as stability and ∆E of ligands in docking (red arrow), SASA 

(ligand mesh and protein gray surface), polar (yellow line) and hydrophobic (green line) 

interactions, were input for training ML models. The top-one GPCR ML model is 

prioritized as the Extra Trees regressor model (Tree diagram). Via comparing predicted 

GPCR-ML score in this model, we re-ranked the metabolites (yellow sticks) against 

GPCRs (gray cartoon) and selected the top-ranked metabolites for each GPCR. 

 

Fig. 2 | Multi-omics analysis reveals potential therapeutic targets for Alzheimer’s 

disease (AD) within the GPCRome. a AD associated GPCR targets suggested by 
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Mendelian randomization (MR) analysis. 4 genomic datasets (Meta, Mayo, ROSMAP 

and Metabrain) in brain cortex region were inspected. Beta value > 0 indicates elevated 

expression level of GPCRs increase the likelihood of AD; Beta value < 0 elevated 

expression level of GPCRs reduce the likelihood of AD. The unit of beta is standard-

deviation change in AD per 1-standard-deviation increase in gene 

expression.  **denotes the significant cutoff using adjusted p value (FDR) < 0.05. * 

denotes significant p value < 0.05. b Protein models of top two prioritized AD-related 

orphan GPCRs, ADGRD1 and GPR27. AlphaFold2 structure models of both are 

depicted in orange and blue cartoon with surface, respectively. c Phylogenetic tree 

showing protein targets with AD multi-omics evidence across the GPCRome. Each 

branch represents one GPCR, labeled by UniProt protein name. The GPCRome is 

classified and indicated in colors of the outer circle. The ligand types of GPCRs are 

displayed on the out rim of the diagram. The number of multi-omics evidence is 

exhibited on the outer stacked bar chart, including Transcriptome (green), Proteome 

(yellow) and others (purple). GPCRs with at least one differential expression (DE) 

evidence are shown in black text on the tree rim. The outer gray dash line indicates the 

number of DE. 3D AlphaFold2 structure models of four GPCRs (GPR84, GPR34, 

CXCR4 and CX3C1) with the greatest number of DE evidences are depicted in cartoon 

with surface. 
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Fig. 3 | Machine learning-based discovery of the interactome of the gut 

metabolite-GPCRome network. a Performance of Extra Trees model on external test 

dataset. Binding affinity and GPCR-ML-score of 5,445 unseen metabolite-GPCR pairs 

were scatter plotted by point density. Pearson’s correlation coefficient R and p value are 

labeled. b Performance of Extra Trees model on a benchmark dataset. Binding affinity 

and GPCR-ML-score of 56 reported metabolite-GPCR pairs are scattered plotted in 

color blue. Regression of data was predicted by Linear Regression function, displayed 

as red line along with SD error (gray background). Pearson’s correlation coefficient R 

and p value are labeled. c An integrated network illustrates the bacteria-derived 

metabolite-GPCRome interactome. The top-one ranked metabolite of 369 GPCRs or 

the top-one predicted GPCRs of 516 metabolites were connected by a GPCR-ML score. 

Metabolite and GPCR are depicted as rectangle or circle nodes, respectively. GPCR-

ML score (edge) was normalized by z-normalization and shown in green-orange color 

range based on size. The arrow edge means the top-one ranked GPCR target of 

metabolite, and the half-circle arrow line means the top-one ranked metabolites of 

GPCR. Hierarchical class of GPCR and chemical class of metabolites are indicated with 

different colors. The size of GPCR node is proportional to the number of MR and multi-

omics evidence, while the size of metabolite node is proportional to the number of 

bacteria strains with higher metabolite abundance (abundance with | Log2FC | >=2 was 

shown). 

 

Fig. 4 | Allosteric regulation of metabolites on dark GPCRome. a A chart showing 

the binding pocket distribution of metabolites across 77 identical GPCRs shared in 
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AlphaFold2-predicted models, PDB structures and homology models. The ratio of 

orthosteric pocket (orange) and allosteric pocket (green) are depicted. b A chart 

showing the binding pocket distribution of metabolite across all GPCRs in AlphaFold2-

predicted, PDB structures and homology models, containing 369 AlphaFold2-predicted 

models, 92 PDB structures and 404 GPCRdb models. The ratio of orthosteric and 

allosteric pocket are depicted in color orange and green, respectively. c A chart showing 

the binding pocket distribution of metabolite across 99 orphan GPCRs in AlphaFold2-

predicted and homology models. The ratio of orthosteric and allosteric pocket are 

depicted in color orange and green, respectively. d Pocket landscape of metabolite 

identified in Class C orphan GPCR models. Pockets of 3096 metabolite-GPCR pairs are 

clustered into 9 subtypes (A-I) of pocket based on their locations, and their position is 

shown on the GPCR model with multi-colored surface. Label size is proportional to the 

percentage of occupancy of metabolites. The AlphaFold2 model GRM5 is exhibited as a 

representative structure in the middle.                                                                                              

                                                                                                                                     

Fig. 5 | A landscape of microbiota-GPCR associations in Alzheimer’s disease 

(AD). a Percentage of metabolite-GPCR associations in AD. A total of 293 interaction 

pairs are classified by the ligand type of AD-related GPCRs.  b Heatmap depicting 

associations of potential AD-related GPCRs with Mendelian randomization (MR) or 

multi-omics evidence. 41 selected metabolite-GPCR pairs are depicted in brown. The 

red columns display associations with orphan GPCRs. The GPCR-ML score is 

normalized to 0-1 by adopting Min-Max normalization. c Binding modes of four AD-

related GPCRs with their top-one ranked metabolites. GALR and FPR1 are two GPCRs 
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possessing both genetic and transcriptomic evidence; ADGRD1 and GPR27 are two 

MR-suggested orphan GPCRs. The network of four GPCRs associated with metabolites 

were depicted. Metabolites paired with two non-orphan GPCRs are depicted in yellow 

sticks, while that of orphan GPCRs are shown in purple sticks, proteins are shown in 

cartoon with multi-color. Key residues around metabolites were exhibited in sticks. d 

Differentially expressed GPCRs in Aβ related microglia or tau related microglia. The 

significance of differential expressed genes were represented by -Log10FDR value and 

indicated by size of circle. FDR < 0.05, indicates significant different in disease-

associated microglia (DAM) (vs. homeostasis-associated microglia (HAM)). The number 

of multi-omics evidence are also displayed in color white-blue. e An overall landscape of 

metabolite-GPCR associations in AD and AD-associated microglia. 41 pairs between 

GPCRs (7 MR-related GPCRs and 10 muti-omics related GPCRs), and 35 metabolites 

were shown in the network. The symbol of arrow or circle are the same as depicted in 

Fig. 3. Literature reported metabolites that are involved in neuroinflammation regulation 

in microglia are indicated by an orange frame. 

 

Fig. 6 | Pocket distribution of orphan GPR84. a GPR84-centered metabolite-GPCR 

network. Symbols shared with Fig. 3. b 3D interaction network on orphan GPR84. 

Metabolite is shown in sticks with surface and protein structure of GPR84 is shown in 

gray cartoon. Detailed binding modes of 8 metabolites are exhibited on the structure of 

GPR84, including 7 metabolites with their top-one ranked GPR84 and one top-one 

ranked metabolite from GPR84 docking results. Two pockets, including one orthosteric 

pocket and one allosteric pocket, are indicated. Key residues around metabolites are 
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shown in gray sticks. The chemical name of metabolite is labeled in black. The arrow 

lines are displayed as same as the network shown in Fig. 3c. 

 

Fig. 7 | Discovery of microbiota-derived metabolite-GPCR associations in 

Alzheimer’s disease (AD). a Abundance of metabolites derived from Eubacterium 

rectale. 194 related metabolites are re-numbered, and their abundance are represented 

by using Log2FoldChange (Log2FC). The Log2FC of abundance that over than 2 are 

indicated with green circle, otherwise with red circle. The dash line means Log2FC equal 

to 2. b Bubble plot illustrating top 10 GPCR targets of metabolites derived from 

Eubacterium rectale. The size of bubble shows the number of multi-omics evidence of 

metabolite. The color range shows the docking ranks of identified GPCR according to 

the GPCR-ML-score. c Bubble plot illustrating top 10 GPCR targets of two reported AD-

related metabolites. d Differential expressed genes of AD-associated GPCRs targeted 

by Eubacterium rectale-derived or AD-related metabolites in Aβ related microglia or tau 

related microglia. Six AD-associated GPCRs targeted by 4 rectale-derived metabolites 

and 4 AD-associated GPCRs targeted by two AD-related metabolites were inspected. 

The significance of differential expressed genes (FDR < 0.05) are represented by -

Log10FDR value and indicated in size of circle. The number of multi-omics evidence 

were also displayed in color white-blue. e Heatmap depicting top 50 metabolites of 4 

best AD-related GPCRs (CX3C1, CXCR4, GPR34 and GPR84) with strongest multi-

omics evidence. The GPCR-ML score is normalized to 0-1 by adopting Max-Min 

normalization. Metabolites are hierarchically clustered (Ward’s D method) using 

Manhattan distance between the normalized GPCR-ML score across all taxonomies. 
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The name of top 10 metabolites for each GPCR were exhibited. Important metabolites 

of GPR84 were addressed with bold label. The metabolite tridecanoic acid of GPR84 

are labeled with red star. f Detailed binding mode of tridecanoic acid and orphan 

GPR84. Molecule is shown in yellow sticks and protein is shown in gray cartoon. Yellow 

dash line indicates hydrogen bond. Key residues near the binding pocket are displayed 

in cyan sticks. 
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