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SUMMARY 

Estrogen receptor positive (ER+) breast cancer is responsive to a number of targeted therapies 

used clinically. Unfortunately, the continuous application of targeted therapy often results in 

resistance. Mathematical modeling of the dynamics of cancer cell drug responses can help find 

better therapies that not only hold proliferation in check but also potentially stave off resistance. 

Toward this end, we developed a mathematical model that can simulate various mono, 

combination and alternating therapies for ER+ breast cancer cells at different doses over long 

time scales. The model is used to look for optimal drug combinations and predicts a significant 

synergism between Cdk4/6 inhibitors in combination with the anti-estrogen fulvestrant, which may 

help explain the clinical success of adding CDK4/6 inhibitors to anti-estrogen therapy. Lastly, the 

model is used to optimize an alternating treatment protocol that works as well as monotherapy 

while using less total drug dose. 

INTRODUCTION 

Metastatic breast cancer remains an incurable disease and it is estimated that 43,250 women 

and men will die from breast cancer this year (Siegel et al., 2022). The most common type of 

breast cancer, estrogen receptor positive (ER+), which is present in approximately 70% of all 

breast cancers (Özdemir et al., 2018), has targeted therapies that have dramatically improved 

long-term survival rates (Chia et al., 2010; Tremont et al., 2017; Xi et al., 2020). However, the 

continuous application of these drugs can ultimately lead to drug resistance and recurrence 

(Gururaj et el., 2006; Zhou et al.,2007; Osborne et al., 2011; Lei et al., 2019; Xi et al., 2020). The 

resistance mechanisms are varied and include epigenetic changes, gene mutation, amplification 

and deletion (Musgrove et al., 2009; Sharma et al., 2010; Tilghman et al., 2013; Ma et al., 2015; 

Herrera-Abreu et al., 2016). While targeted therapies are important methods for breast cancer 

treatment, eventually cancer cells become resistant and proliferate again, which makes the 

advantage of targeted therapies only temporary for many patients. 
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Constant application of one drug regimen over time may not be optimal, but to move beyond this 

approach requires addressing a number of critical questions such as (1) how long should a given 

therapy be applied, (2) what should the next therapy be, and (3) in any given therapy interval, 

what is the best combination of drugs to apply? These questions are difficult to answer 

experimentally, even in vitro, as long time scales are involved and there are a huge number of 

possible solutions to explore. Systematic application of an experimentally-calibrated 

mathematical model that integrates molecular cell biology and drug pharmacology can help us 

investigate better treatment regimens in terms of drug choice, combinations, dosing and 

scheduling (Lalonde et al., 2007; Visser et al., 2014; Chakrabarti et al., 2017; Zhang et al., 2017). 

In this work, we take a step towards answering these questions in a common ER+ breast cancer 

cell line, MCF7, by using a combination of mathematical modeling and experimental investigations. 

Previously, we developed a mechanistic mathematical model based on key interactions between 

ER signaling and the cell cycle (He et al., 2020). This model was calibrated using protein and 

proliferation data from 7-day time courses of MCF7 cells growing under basal conditions or 

responding to standard clinical drugs in ER+ breast cancer: (1) estrogen deprivation (–E2), a 

surrogate for an aromatase inhibitor that lowers the estradiol (E2) level by inhibiting aromatase 

(Ma et al., 2015; Seruga et al., 2019); (2) ICI 182 780 (ICI; Faslodex/fulvestrant), a proteasome-

dependent ER degrader (Wittmann et al., 2007); or (3) palbociclib, a Cdk4/6 inhibitor (Xi et al., 

2020). To address questions regarding synergies, longer time scales, and alternating treatments, 

more experimental data is required to either validate the initial model or show where extensions 

to the model are required. 

In this study, we extend the model to handle a range of doses of ICI or palbociclib and to more 

accurately predict proliferation over longer time scales and in cases where drugs are changed 

periodically. Key extensions involve the accumulation of cyclinD1 and the long-term slowdown in 

growth rate in response to continuous palbociclib treatment. We use the resulting model to explore 

synergistic drug combinations and find a combination that allows a significant reduction in overall 
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drug dose compared to monotreatment. The model is also used to optimize an alternating 

treatment intended to delay the development of resistance and finds a protocol that has the same 

proliferation as monotherapy while using a significantly lower total drug dose. 

RESULTS 

Mathematical models with many parameters and limited experimental calibration data, as is the 

case here, have many possible parameter sets that do a reasonable job of fitting the data. 

Therefore, in addition to the best-fit parameter set, we created a cohort of 199 additional 

parameter sets that increase the fitting cost less than about 25% over the optimal (see Star 

Methods). When plotting our results, we plot the best parameter set as a solid line and use 

shading to indicate the range of results from simulating the entire cohort, to give some idea of 

how much the training data constrains the simulation results. We also note that we only write that 

the model “predicts” something if the model simulation is being compared to experimental data 

on which it was not trained. In all other cases the plots show the simulations recapitulating the 

training data (see Table S1). All simulation results use the final version of the model. 

Simulating Proliferation under Constant Therapy 

Based on the effect of estrogen signaling and Cdk4/6 inhibition on the G1-S transition of the cell 

cycle (Musgrove, et al., 2009; Lynce et al., 2018), we built a mechanistic mathematical model 

using ordinary differential equations (ODEs). The biological interactions we considered are based 

on known mechanisms from the literature and are shown in Figure 1A. The details and references 

for each numbered interaction are provided in STAR Methods. To create the ODE model, we 

modified and simplified the interactions shown in Figure 1A. In particular, we used the RB1-pp 

(hyperphosphorylated form of retinoblastoma protein (RB1)) level to reflect the transcriptional 

activity of E2F and associated the RB1-pp level with proliferation. The model structure is shown 

in Figure 1B and the explanations of the modifications and simplifications are provided in STAR 

Methods. 
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Figures 1C-1K compare the model simulation results of 21 or 28-day proliferation to experimental 

results for numerous treatments. Figure 1C shows the cell proliferation in the E2 control condition 

(E2 control), which is much faster than that in other mono and combination treatment conditions. 

The E2 control experiment was stopped early, at day 11, due to confluence. In the E2 deprivation 

(–E2) condition, shown in Figure 1D, cells proliferate during the first 7 days and then essentially 

stop. This effect is captured by the model by adding the dynamics of E2 concentration to the 

model, where the E2 concentration decreases with each medium change, increasingly depriving 

the ER of its ligand (see STAR Methods and Figures S6A-B). The –E2 experiment illustrates how 

cell proliferation over longer time scales can be qualitatively different from that over short time 

scales, so a mathematical model calibrated on short time scale experiments may not be useful 

for simulations on a longer time scale, hence the necessity of long time scale experimental data. 

Figures 1E and Figure 1F show the decrease in proliferation, due to increased ER degradation, 

as the dose of ICI treatment (E2+ICI) increases from 100nM to 500nM. Figures 1G-1I show the 

decreasing proliferation, due to increased Cdk4/6 inhibition, as the dose of palbociclib treatment 

(E2+palbo) increases from 250nM, to 500nM, to 1M. After showing that the model is capable of 

simulating –E2, ICI and palbociclib monotreatments, Figures 1J and Figure 1K show the model 

simulation results for two combination treatments, –E2 plus 100nM palbociclib (–E2+palbo) and 

–E2 plus 100nM ICI (–E2+ICI). Not surprisingly, the combination treatments provide greater effect 

than either monotreatment by itself. The combination of –E2 and ICI treatments reduces supply 

of both E2 and ER, causing a larger decrease in the normalized cell number. The combination of 

–E2 and palbociclib inhibits Cdk4/6:cyclinD1 kinase activity by both reducing the cyclinD1 level 

and inactivating Cdk4/6, which also causes a larger reduction of proliferation. In addition to the 

cell number, the model can also capture the protein level changes under –E2 and E2+ICI(500nM) 

treatments, which were measured in our previous work (He et al., 2020, see Figures S1 and S2). 

Adding a New Drug to the Model 
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An advantage of a mechanistic mathematical model is that it is straightforward to add a different 

drug that affects the signaling pathway in the model without requiring extensive experimentation. 

As the model already captures the mechanism driving changes due to the Cdk4/6 inhibitor 

palbociclib, adding a different Cdk4/6 inhibitor should require only an update of the small number 

of parameter values related to Cdk4/6 inhibition. We illustrated this by incorporating one of the 

other Cdk4/6 inhibitors, abemaciclib (LY2835219), into the model. Abemaciclib is a 2-anilino-2, 4-

pyrimidine-[5-benzimidazole] derivative (Roskoski, 2016). Unlike palbociclib, it has been reported 

to be effective as a single-agent (Dickler et al., 2017; O’Brien et al., 2018; Patnaik et al., 2016). It 

can inhibit cyclinD1:Cdk4 and cyclinD1:Cdk6 kinase activities at low nanomolar concentration 

(Gebbia et al., 2020). While at higher micromolar concentrations Abemaciclib has been shown to 

attack other targets (Knudsen et al., 2017; Cousins et al., 2018; Hafner et al., 2019), we have 

focused on Cdk4/6 as the most relevant target at the concentrations we consider. 

We added the key binding parameters between abemaciclib and Cdk4/6 or Cdk4/6 complexes to 

the model. In addition to cell number, we measured c-Myc and RB1-pp, two proteins in the model 

critical to proliferation, to help calibrate the binding parameters associated with abemaciclib. 

Figures 2A and 2B show that the model can fit the experimental proliferation results for the 300nM 

and 500nM abemaciclib treatments (E2+abema), respectively. Figures 2C-2D show the protein 

level changes for c-Myc and RB1-pp in response to 500nM abemaciclib. As expected, 

abemaciclib inhibits Cdk4/6 activity and decreases the RB1-pp level, which in turn, leads to 

decreased transcription of c-Myc causing the c-Myc protein level to decrease. Because the 

mathematical model already captured the mechanism of Cdk4/6 inhibition, it was possible to add 

another inhibitor of cyclinD1:Cdk4/6 kinase activity without needing to perturb the other signaling 

pathways. 

Simulating Alternating Treatment Involving Estrogen Deprivation 

The resistance that develops to continuously applied mono or combination drug therapy 

represents a significant impediment to successful treatment and we hypothesize that an 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.20.508795doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508795
http://creativecommons.org/licenses/by-nc-nd/4.0/


alternating application of various treatments in a repeating cycle may provide a means of delaying 

or preventing resistance. Researchers have shown that cancer cell populations can display a 

transient, reversible, drug-tolerant state to protect the cell from eradication (Sharma et al., 2010; 

Smith et al., 2016). Therefore, alternating among various drugs may reverse a tolerant state to a 

given drug back to a sensitive state during the application of a different drug and thereby delay or 

prevent the development of resistance. Before testing whether alternating treatment can indeed 

delay the development of resistance, and with an eye toward using the model to design alternating 

therapies, we first show the model’s capability to simulate proliferation changes in response to 

alternating therapies. 

Figures 3A and 3B show the model simulation results and experimental measurements of two 

alternating treatments, palbociclib alternating with –E2 and palbociclib alternating with ICI. The 

duration of each treatment is 7 days and the total treatment period is 28 days. Figure 3A shows 

E2+palbo(250nM) alternating with –E2. We can see that the model simulation is consistent with 

the experiment result and the cells proliferate about 90-fold in 4 weeks. This growth increase is 

larger than we initially expected based on the monotreatment data from Figure 1G and 1D, where 

cells proliferated about 80-fold under E2+palbo(250nM) monotreatment and proliferation 

essentially stopped under –E2 after 1 week. The reason for the larger increase is the dynamics 

of the E2 concentration. The palbociclib treatment has E2 in the medium, which is absorbed by 

the cells, so when the medium is changed to the –E2 condition the cellular E2 diffuses back into 

the medium and the resulting concentration is sufficient to drive proliferation (Figure S6A). This 

palbociclib and –E2 alternating experiment confirms the necessity of incorporating E2 dynamics 

in alternating treatments involving deprivation. Figure 3B shows palbociclib(500nM) alternating 

with ICI(500nM). We can see that the model simulation is consistent with the experimental result 

and the cells proliferate about 27-fold in 4 weeks. We conclude that when alternating palbociclib 

with an endocrine treatment in cell culture, ICI is a better choice than –E2 in terms of controlling 

the proliferation. 
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After showing that the model can simulate these two alternating treatments, we check whether 

the model can predict the effects of other alternating treatments. Figures 3C and 3D show the 

model prediction and experimental measurements of the normalized cell numbers under two 

alternating treatments. The first alternating treatment shown in Figure 3C is palbociclib(750nM) 

alternating with ICI(500nM). The duration of each treatment is 7 days and the total treatment 

period is 14 days. The second alternating treatment shown in Figure 3D is palbociclib(750nM) for 

6 days, followed palbociclib(750nM) plus ICI(500nM) for 1 day, followed by ICI(500nM) for 7 days. 

The difference between the first and second alternating treatment is that the second treatment 

adds a 1 day overlap of palbociclib(750nM) plus ICI(500nM) treatments. Therefore, as shown in 

Figure 3D, the total experimental proliferation of the second alternating treatment is slightly 

smaller than the first alternating treatment due to this 1 day combination treatment which has a 

stronger inhibition effect compared with monotreatment (mean values are 3.9 and 3.5, 

respectively). The model prediction for the second alternating treatment is also smaller than the 

prediction for the first alternating treatment as well (mean values are 5.2 and 4.6, respectively). 

Modeling Palbociclib/ICI Alternating Therapy Over Longer Time Scales 

One goal of this study is to test whether an alternating treatment can indeed impact the 

development of resistance. In patients, resistance to Cdk4/6 inhibitors can occur within months 

(Shah et al., 2018; Pandey et al., 2019), compared with endocrine resistance that may take years 

to fully develop (Song et al., 2001; Chan et al., 2002; Song et al., 2005). Based on this observation, 

we decided to test whether an alternating treatment of ICI and palbociclib can affect the 

development of resistance to palbociclib. A 10 week experiment was conducted where palbociclib 

was alternated with ICI at weekly intervals. Monotreatment with palbociclib or ICI were included 

as controls. Based on the results from Figures 1C-1K and Figure 3, we chose the palbociclib and 

ICI drug doses to be 750nM as our model at that time indicated this dose would cause relatively 

low proliferation for the controls as well as the alternating treatment and enable the experiment to 

run without replating. Figure 4A shows the experimental and simulated cell proliferation results 
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for the 10 week protocol. Two major results from the experiment that required adjustments to the 

initial model were: (1) cells undergoing palbociclib monotreatment grew more slowly as time went 

on and (2) cell proliferation was much greater than expected in cells that received the alternating 

drugs, forcing a replating at week 5 to avoid confluence. 

The first 5 weeks of palbociclib monotreatment results in an 8.1-fold increase in cell number while 

the second 5 weeks results in a 4.6-fold increase (Figure S4). In order to account for this effect, 

a phenomenological variable, respropalbo (number 25 in Table 1), was added to the model to 

gradually slow down growth in response to long-term palbociclib treatment. This inhibition effect 

increases gradually when palbociclib is being applied, but decays in about a week when 

palbociclib is removed, so that the growth during a palbociclib interval of the alternating treatment 

is similar to its growth during the first week of palbociclib monotreatment (Figures S8A and S8B). 

While the difference in proliferation between mono and alternating treatments was not dramatic 

during the first two weeks, it became significant thereafter, with the alternating treatment cells 

approximately doubling every week (average 33.8-fold increase at week 5, 533.8 ≈ 2, average 

52.3-fold increase during the second 5 weeks, 552.9 ≈ 2.2). Part of the reason for this is that the 

palbociclib intervals of the alternating therapy do not experience the slowdown of the constant 

palbociclib cells to the same extent. But the other reason is that the growth during the ICI intervals 

is much greater than that of ICI monotherapy. To look for a mechanistic reason for the excessive 

proliferation, we measured the protein levels of cyclinD1, Cdk4, Cdk6, cyclinE1 and Cdk2 on days 

35 and 70 for each arm of the experiment. Palbociclib treatment in both arms significantly 

increased the expression of cyclinD1 (Figure 4E). The increase of cyclinD1 during palbociclib 

treatment may be due to different degradation rates between the cyclinD1:Cdk4/6: palbociclib 

complex (number 14 in Table 1) and the cyclinD1:Cdk4/6 (number 12 in Table 1). When 

calibrating the model, we allowed the degradation rate of cyclinD1:Cdk4/6:palbociclib to be 

smaller than the degradation rate of cyclinD1:Cdk4/6 but greater than the degradation rate of 
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cyclinD1:Cdk4/6:p21. This results in accumulation of cyclinD1 during palbociclib treatment that 

can partly explain the increase of cyclinD1 in the constant palbociclib cases at 35d and 70d, as 

well as the alternating case at 35d. 

However, we also saw that cyclinD1 experimentally increases at 70 days in the alternating 

treatment, which is just finishing an ICI interval. This increase cannot be explained by the 

decreased degradation rate of cyclinD1:Cdk4/6:palbociclib as this effect rapidly decays during the 

ICI interval (Figure S8E). In order to account for this effect, we added a phenomenological variable, 

rescyclinD1palbo (number 7 in Table 1), to the model that gradually increased cyclinD1 in 

response to long-term palbociclib treatment. The effect decreases slowly once palbociclib is 

removed (Figure S8C and S8D), so that the cyclinD1 levels during the ICI intervals of the 

alternating treatment are increased over the levels in the ICI monotreatment (Figure 4B and 4E). 

The above changes to the model enabled it to capture the proliferation under alternating therapy 

as shown in Figure. 4A. The cyclinD1 level is higher during the ICI intervals of the alternating 

treatment compared to ICI monotreatment (Figure 4B), which results in higher cyclinD1:Cdk4/6 

and RB1-pp levels (Figure 4C and 4D). This effect causes the growth after the cells are 

transitioned from palbociclib to ICI to be greater than would otherwise be expected. The rapidly 

decaying peaks of cyclinD1:Cdk4/6 and RB1-pp seen at the palbociclib to ICI transition are due 

to the sudden release of palbociclib free Cdk4/6 and its complexes after palbociclib withdrawal. 

Protein Changes at 10 Weeks 

Increased levels of the five proteins we measured, Figures 4E-4I are all associated with 

palbociclib resistance in the literature (Herrera-Abreu et al., 2016; Portman et al., 2018; Hafner et 

al., 2019; Knudsen et al., 2020; Pandey et al., 2020). In our experiment, Cdk6, cyclinE and Cdk2 

levels show no statistically significant difference among the different treatment conditions. 

Although Cdk4 does show a statistically significant increase compared to untreated cells, the up-

regulation is small (mean value of 1.4 at alternating treatment 35 days and 1.3 at palbociclib 

monotreatment at 70 days). Only cyclinD1 shows a large increase compared to untreated cells. 
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There is no significant difference in cyclinD1 level between palbociclib monotreatment and the 

alternating treatment during palbociclib intervals in Figure 4E. Moreover, in order to test whether 

the cyclinD1 gradually increases in response to long-term palbociclib treatment, as would be 

expected of a long term resistance mechanism, we measured cyclinD1 changes at 7 days and 14 

days after 750nM palbociclib treatment. Figure 4J shows that the cyclinD1 level is already 

upregulated at 7 days and there are no significant differences in cyclinD1 levels among palbociclib 

monotreatment at 7 days, 14 days, 35 days, or 70 days. The observed increases in cyclinD1 can 

be explained by a rapid response to palbociclib treatment and do not represent a long-term 

change leading to resistance. Therefore, the five quantified proteins do not indicate any difference 

in moving towards resistance to palbociclib between the mono and alternating treatments. 

Palbociclib Dose-Response Changes at 10 Weeks versus 12 months 

At the end of 10 weeks, a 7-day palbociclib dose-response assay was used to compare the 

proliferation of MCF7 cells after undergoing no treatment, monotreatment or alternating treatment. 

Figures 5A-5C show the results for three different normalizations: growth in vehicle, number of 

initial cells at t=0, and the growth rate inhibition metric, GR (Hafner et al., 2016). Figure 5A 

normalizes the proliferation of each case to its proliferation in vehicle, which is the usual method 

of normalization in biological experiments. From this plot we see that the alternating treatment 

cells are much more sensitive to palbociclib, compared with the monotreatment cells, at all doses 

of palbociclib. This would lead one to think that the alternating treatment is producing less resistant 

cells compared to monotreatment. However, when the dose-response results are normalized to t 

= 0, as shown in Figure 5B, we see that the proliferation of the palbociclib monotreatment cells is 

much less than that of the vehicle treated (E2 control). Because the proliferation is already low, 

and palbociclib does not significantly upregulate apoptosis (Roskoski 2016), the proliferation 

cannot decrease much further, making the cells appear less sensitive to palbociclib when 

normalized to vehicle. In contrast, the cells from alternating treatment have a relatively higher 

proliferation in vehicle and palbociclib can inhibit the proliferation more, which makes the cells 
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appear sensitive to palbociclib. It should be noted, however, that for all doses, the alternating 

treatment cells proliferate faster than the monotreatment cells, which makes it impossible to claim 

an advantage for alternating treatment at 10 weeks, even if by standard measures the alternation 

results in cells that are more sensitive to palbociclib. 

This problem of interpretation has been noticed previously and drove the development of a new 

metric, growth-rate inhibition (GR, see STAR Methods). If control cells undergo different numbers 

of divisions because of a difference in proliferation rate, the dose-response values will vary 

dramatically (Hafner et al., 2016). The standard dose response values are sensitive to the basal 

proliferation rate and GR accounts for this by normalizing the proliferation rate under treatment to 

the proliferation rate of the control (Hafner et al., 2016). GR is robust to variations in cell growth 

rate and quantifies the efficacy of a drug on a per-division basis, which can ensure that fast- and 

slow-dividing cells responding equally to a drug are scored equivalently (Hafner et al., 2016). 

Figure 5C shows the GR values for the palbociclib dose response and there is no significant 

difference between the mono and alternating treatments at 10 weeks. Therefore, although the 

dose response normalized to vehicle, Figure 5A, shows a difference between mono and 

alternating treatment, this effect comes from the different basal cell division rates of the mono and 

alternating treatment and obscures the true nature of the palbociclib dose response. 

To explore what happens at a longer time scale, a 12 month alternating experiment using the 

same drugs and doses was performed. The alternation took place at the end of each month when 

the cells were also replated. At the end of 12 months a dose response was performed and the 

results are shown in Figures. 5D-5F. At this time, the palbociclib monotreatment cells were 

outgrowing the alternating cells in vehicle (Figure. 5E), but the growth of each arm was more 

similar than at 10 weeks. The result is that all three normalizations show similar behavior: the 

alternating cells are significantly more sensitive to palbociclib than the palbociclib monotreatment 

cells, indicating a delay in acquiring resistance. The alternating cells are beginning to acquire 

resistance, however, as can be seen by comparison to the parental cells in Figure. 5F. So, 
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alternating therapies do show promise for delaying resistance, but better protocols are needed to 

hold down the excessive growth seen in the 10 week experiment. 

Gene Expression Changes at 10 weeks 

Lastly, we analyzed gene expression profiles to look for differences between the palbociclib mono 

and alternating treatment cells at 10 weeks. Figure 5G shows the heatmap of differentially 

expressed genes for four cases of MCF7 cells: parental cells (control), 10 weeks of palbociclib 

monotreatment, 10 weeks of alternating treatment and cells cultured for >6 months (palbo mono 

24w+) in palbociclib (500 nM). Although the alternating treatment cells clustered with the palbo 

mono 24w+ cells, the heatmap revealed distinct expression patterns for the four different 

treatments. The reason that alternating cells are in the same cluster with the palbo mono 24w+ 

cells is likely because they both have positive values of the first principal component (PC1), as 

shown by principal component analysis in Figures 5H-5K. The 2D and 3D principal component 

plots clearly show that cells under the four different treatments are separated into different groups. 

Gene Set Enrichment Analysis (GSEA) of the C3 regulatory target gene sets in the Molecular 

Signatures Database (MSigDB) is shown in Figure 5L. The first 10 most significantly different 

regulatory target gene sets are plotted. Under the alternating treatment, the most changed gene 

sets are microRNA regulated, which might be caused by prolonged ICI treatment (Rao et al., 2011; 

Zhou et al, 2018; Guo et al., 2019). Under the palbociclib monotreatment, the E2F regulated gene 

sets are the most changed. The E2F transcription factor is the central player in regulating the 

expression of genes involved in the G1 to S phase transition and the target genes in the listed 

sets include cyclinD1, cyclinE, Cdk2, Cdc25A, cyclinA, etc. (Ren et al., 2002; Stevens et al., 2003). 

In the palbo mono 24w+ cells, different gene sets are altered compared to the 10 week mono and 

alternating treatment cells, which might be related to the ongoing development of resistance such 

as BARHL1 target genes (Lim et al., 2022). 

Using Model-Generated Isobolograms to Determine Synergies 
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Cancer cells depend on a variety of molecular mechanisms for proliferation or survival, and 

therefore, drug combinations are often used to simultaneously target key molecular mechanisms 

to more effectively reduce proliferation, or help delay or overcome resistance (Narayan et al., 

2020). A key question for drug combinations is whether there is a synergism between the drugs. 

A synergistic interaction between drugs may allow significantly lower doses of the individual drugs 

when used in combination as opposed to individually. It may benefit patients by reducing toxicity 

and adverse effects. There are numerous ways to define drug synergy, but we make use of the 

isobologram as we think it gives the clearest picture of the interaction of two drugs. An 

isobologram is a graph of lines of constant effect, called isoboles, proposed by Loewe in 1953 

(Tallarida 2011). The isobologram is based on drug effect measurements made for a large 

number of different doses for the drugs, given both individually and in combination. 

The upper plot of Figure 6A illustrates an ideal sampling scheme, where each axis represents the 

dose for a specified drug. Each blue hexagon is a measurement of the effect either solely from 

drug 1, or solely from drug 2, or of the combination effect from the doses of drug 1 and drug 2 

that make up its coordinates. By drug effect, we mean the value of some measurable attribute of 

interest. It might be the percent of apoptotic cells in a culture, the cellular proliferation rate, the 

reduction in tumor size, the toxicity, or some other physiological index such as heart rate or blood 

pressure. Any measurable metric of interest can be used to defined an isobologram. After 

measuring the effect at each dosage point of the isobologram, we draw the isoboles, which are 

lines joining the points of equal measured effect. The lower plot of Figure 6A shows example 

isoboles, where the different drug doses at each point on the isoboles give the same effect. The 

isobologram simply reduces the 3-D plot of drug effect versus drug 1 and drug 2 to a 2-D contour 

plot that is easier to interpret quantitatively. The relationship between the two drugs can be defined 

from the shape of the isoboles, as illustrated in lower plot Figure 6A: 

Independence. Isoboles (1) show an independent relationship between drug 1 and drug 2. If drug 

2 has no effect the isoboles are vertical, and if drug 1 has no effect they are horizontal. 
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Antagonism. Isobole (2) illustrates an antagonistic relationship between drug 1 and drug 2. 

Combining drug 2 with drug 1 requires increasing the dose of drug 1 to have the same effect and 

vice versa. 

Additive. Isobole (3) shows an additive relationship between drug 1 and drug 2, meaning that the 

combined effect of the two drugs is consistent with their individual potencies. Put another way, if 

d is the dose of a drug and D is the dose of that drug producing the specified effect as a 

monotreatment, then an additive effect means that a change in the normalized dose of drug 1, 

d1/D1, requires an equal and opposite change in the normalized dose of drug 2, d2/D2, in order 

to preserve the specified effect. 

Super-additive: An isobole positioned below where an additive isobole would be, illustrated by 

isobole (4), is called superadditive (Huang et al., 2019). 

Sub-additive: An isobole positioned above where an additive isobole would be, illustrated by the 

isobole (5), is called subadditive (Huang et al., 2019). 

In this paper, we define a drug combination to be synergistic if it is super-additive. To obtain 

accurate isoboles, a large number of measurements are needed, as shown in Figure 6A. This 

makes the experimental determination of isoboles a challenging project. With a mathematical 

model, however, the generation of isoboles is essentially trivial, as a large number of simulations 

can easily be run and the results provided to a contour plotting program to get the isoboles. Figure 

6B-6I shows the isoboles computed by our model for cases ICI v. E2, palbociclib v. E2 (high), 

palbociclib v. E2 (low), abemaciclib v. E2 (high), abemaciclib v. E2 (low), abemaciclib v. 

palbociclib, ICI v. palbociclib and ICI v. abemaciclib, respectively. The drug effect considered in 

these isoboles is the fold-change in cell number over 17 days of treatment and the results illustrate 

a range of different interaction types. 

Figure 6B shows that the interaction between ICI and –E2 is additive. This is reasonable because 

both ICI and –E2 target the estrogen signaling pathway and decrease the E2:ER transcription 

factor level without directly influencing any other targets in the model. ICI and –E2 influence ER 
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only through binding and unbinding reactions, so the level of E2:ER will linearly decrease after 

increasing ICI or decreasing E2 (Figure S7). Therefore, the effects of ICI and –E2 as mono and 

combination treatments are the same, to linearly decrease E2:ER level. 

Figure 6C-6D shows the interaction between palbociclib and –E2 and indicates that the effect of 

palbociclib is largely independent of the concentration of E2 until the E2 concentration gets into 

the picomolar range. Figure 6D provides a zoomed in plot of the isoboles for low concentrations 

of E2 and shows that the interaction between palbociclib and deprivation is additive or slightly 

super-additive in this region. 

Figure 6E-6F shows the interaction between abemaciclib and –E2. As expected, the interaction 

between abemaciclib and –E2 is same as palbociclib with –E2, which is independent of the 

concentration of E2 until the E2 concentration gets into the picomolar range, where the interaction 

becomes additive or slightly super-additive. Figure 6G shows the interaction between abemaciclib 

and palbociclib is primarily additive. This is reasonable because abemaciclib and palbociclib both 

target the Cdk4/6 activity with a binding-unbinding reaction. 

Figure 6H shows the interaction between ICI and palbociclib and indicates a significant synergism 

between ICI and palbociclib. To test this synergy predicted by the model, an experiment was 

performed where the ICI dose was held constant at 200nM and various doses of palbociclib were 

added (0nM, 50nM, 100nM and 300nM, blue hexagon in Figure 6H). The isoboles in Figure 6H 

predict that we will see a dramatic decrease in population growth, which is borne out in the 

experimental results shown in Figure 6J. It should be emphasized that the model parameters 

were calibrated using only data from ICI and palbociclib monotreatments, not data from 

combination treatments. We believe the reason the model gives an experimentally consistent 

prediction of this significant synergism is because the structure of the model is based on the 

dominant signaling pathways of the system. In our mechanistic model, we include ICI’s effects on 

E2:ER, E2:ER’s effects on cyclinD1, and palbociclib’s effects on Cdk4/6. Therefore, the activity 
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of the cyclinD1:Cdk4/6 kinase is attacked from both the cyclinD1 and Cdk4/6 directions to create 

the synergism. This may be the reason that palbociclib in combination with endocrine therapies 

achieved substantial improvement in survival outcomes in clinical trials and quickly became the 

first-line choice of treatment for ER+ breast cancer (Xi et al., 2020). This synergy is in contrast to 

the combination of ICI and –E2, whose mechanisms both target E2:ER, and produce an additive 

but not synergistic response. Figure 6I shows the interaction between ICI and abemaciclib which 

also indicates a significant synergism. Likewise, experiments were performed to test this synergy 

predicted by the model where the ICI dose was held constant at 200nM and various doses of 

abemaciclib were added (0nM, 50nM, 100nM, blue hexagons in Figure 6I). As expected, the 

synergistic response predicted in Figure 6I is borne out in the experimental results shown in Figure 

6K. The explanation for the synergism between abemaciclib and ICI is same as for palbociclib 

and ICI. 

The ability to easily produce isoboles for various metrics, such as proliferation over a specified 

time frame, allows us to propose optimal combination therapies. For example, considering a 

combination treatment of ICI and palbociclib, we can minimize the total dose of drugs, 

[ICI]+[palbociclib], that achieves our specified objective. Other possibilities include minimizing the 

total normalized dose of the drugs or some other weighted dose, [ICI]+[palbociclib], that reflects 

preferences based on toxicity or other concerns. Since palbociclib is typically used in the clinic in 

an intermittent fashion, three weeks on and one week off, due to neutropenia concerns, we could 

limit the above optimizations to lower doses of palbociclib that allow constant application so that 

excessive proliferation during the week off is avoided. 

Alternating Treatment Predictions 

Ultimately, as mentioned above, we would like to show that the mathematical model allows us to 

propose optimal combination therapies. The experimental proliferation results in Figure 4A show 

that alternating palbociclib with ICI produces dramatically greater proliferation than the 

monotreatment. So, even if this alternation results in cells that are less resistant, it would not be 
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a viable therapeutic approach. On the other hand, continuously applied monotreatment almost 

always leads to resistance and recurrence. So we used the model to look for better options to the 

simplistic alternating treatment we used above. 

Simply trying to minimize proliferation will lead to the unhelpful answer of massive drug doses 

that would never be tolerable in any real application. Therefore, we decided to minimize the total 

drug dose over a 12 week time period, subject to the constraint that the overall fold-change be no 

greater than that of palbociclib monotreatment. Since this would likely lead to simply applying the 

best combination of palbociclib and ICI continuously, leading ultimately to resistance, we specified 

the repeating cycle to consist of 1 week of palbociclib, 1 week of a combination, 1 week of ICI, 

and 1 week of the same combination again. An optimization routine choses the drug doses in 

each week so as to minimize the total drug concentration applied over the 12 week period. The 

results are shown in Figure 7A. By design, the alternating treatment has the same fold-change as 

the monotreatment, but the optimized alternating treatment uses about 1200nM less total drug 

dose per cycle compared to the palbociclib monotreatment, 1905nM to 3080nM, and about 900nM 

less total drug dose per cycle than the ICI monotreatment, 1905nM to 2800nM. The combination 

treatment intervals not only find the synergistic sweet spot, noted above, to virtually stop growth 

and allow basal apoptosis to reduce the population, but they reduce the proliferation during the 

monotreatment intervals compared to switching directly from one monotreatment to another 

(Figures 7B-7D). This result shows that more sophisticated alternating treatments may provide 

benefits in terms of reduced drug dose while not continuously applying the same regimen, 

possibly delaying the onset of resistance. 

Discussion 

In this work, we built a mechanistic ODE model to capture the response of MCF7 cells to clinically 

used anticancer therapies for ER+ breast cancer. We used the model to recapitulate and predict 

drug treatment effects on these cells and optimize drug combinations. As the model has a 

mechanistic basis and the relevant targets were already included when creating the model for 
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palbociclib, we showed that the model can be easily extended to test the effect of one of the other 

Cdk4/6 inhibitors, abemaciclib. We also illustrated the usefulness of the model to efficiently 

investigate synergism among the different treatments included in the model. 

While much of the work in cell lines to explore the impact of therapies takes place over short time 

frames of less than a week, most clinical therapy occurs over much longer time frames of months 

and years (Serra et al., 2019; Gharib et al., 2022). The work reported here looks for insights from 

cell lines over these longer time periods. Because of the limited number of such experiments that 

can be run, trial and error approaches are not viable. We used a mathematical model of the 

system, calibrated on limited data, to guide our explorations and search for better therapy options. 

Predicting drug responses over long time periods is not simply a matter of taking a model 

calibrated on data from a week long experiment and running it for a longer period, as there are 

significant factors affecting the model that are only clearly seen over longer time periods. This 

necessitates long-term experiments to calibrate the model. One example of this is that cell 

proliferation under –E2 treatment over a long time scale behaved qualitatively different than 

proliferation over a short time scale. Another example of this is the excessive growth observed 

when ICI treatment was applied after initially treating with palbociclib. This observation and 

additional experiments led us to the fact that treatment with palbociclib increases cyclinD1, 

something we had missed earlier. The revised mathematical model allowed us to propose a 

protocol to counter this effect. 

Since our ultimate goal is to delay or prevent the onset of drug resistance, adding resistance 

mechanisms to the model is a critical requirement for future work (Wander et al., 2020; Asghar et 

al., 2022; Pandey et al., 2022, Papadimitriou et al., 2022). The cyclinD1 change mentioned above 

is a minor step in that direction, but the development of resistance is a complex, multi-faceted 

process and there are many different pathways that lead to a drug resistant state (Lloyd et al., 

2022; Watt et al., 2022). To see whether a therapeutic protocol delays the emergence of 

resistance compared to monotreatment will require experiments over time periods of many 
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months, necessitating the use of mathematical models to propose the most promising protocols 

to explore (Serra etl al., 2019; Waller et al., 2019; Llombart-Cussac et al., 2021). 

The use of alternating therapies to delay resistance is predicated on the assumption that the initial 

stages of acquiring resistance are reversible, which appears likely in many cases (Azizian et al., 

2010; Cornell et al., 2019; Formisano et al., 2019; O’Brien et.al., 2020; De Angelis et al., 2021; 

Scheidemann et al., 2021; Sobhani et al., 2021; Kharenko et al., 2022). A critical mutation, 

however, can render most targeted therapies useless and thus upend any alternating protocol 

(O’Leary et al., 2018; Dustin et al., 2019; Nayar et al., 2019; Brett et al., 2021; O’Leary et al., 2021; 

Ono et al., 2021; Raimondi et al., 2021). To limit the probability of mutation, a much greater 

reduction in proliferation than is achieved in our current experiments is necessary. Periodically 

adding a more cytotoxic drug into the protocol is probably required (Das Thakur et al., 2013; 

Labrie et al., 2022). In addition, although alternating treatment does not continuously apply a 

single drug to attack the cancer cells, our current approach using standard of care treatments for 

ER+ breast cancer is to continuously arrest cells in the G1/S phase of the cell cycle with 

antiestrogens and Cdk4/6 inhibitors (Pernas et al., 2018). Resistant cells can bypass the G1/S 

blockade and alter G2/M cell cycle proteins to survive (O’Leary et al., 2018; Pancholi et al., 2020; 

Fallah et al., 2021; Ono et al., 2021). Therefore, targeting of multiple cell cycle phases may be 

needed to avoid development of resistance to current therapies in ER+ breast cancer (Aarts et 

al., 2012; Kettner et al., 2019; Portman et al., 2020; Pandey et al., 2022). Finally, we recognize 

that work in cell lines may not directly translate to animals and humans, but hope that it may 

provide insights that can benefit work closer to the clinic. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

anti-β-Actin Santa Cruz Biotechnology #sc-47778 

anti-β-Tubulin I Sigma-Aldrich #T7816 

anti-Cdk2 Cell Signaling Technology #2546 

anti-Cdk4 Cell Signaling Technology #12790 

anti-Cdk6 Cell Signaling Technology #3136 

anti-CyclinD1 Cell Signaling Technology #2978 

anti-CyclinE (HE12) Santa Cruz Biotechnology #sc-247 

anti-c-Myc Cell Signaling Technology #5605 

anti-ERα ThermoFisher Scientific #MA5-14104 

anti-RB1 Cell Signaling Technology #9309 

anti-RB1-pp(S612) Aviva Systems Biology #OAAB16108 

Chemicals, peptides, and recombinant proteins 

phenol red-free improved minimal essential 
medium 

Life Technologies, Grand 
Island, NY 

A10488-01 

Faslodex/Fulvestrant; ICI182,780 Tocris Bioscience, Ellisville, MO S1191 

palbociclib Tocris Bioscience, Ellisville, MO S1116 
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abemaciclib Cayman Chemical #17740 

Bovine Calf Serum Charcoal Stripped (CCS) GeminiBio #100-213 

17β-estradiol (E2) Sigma-Aldrich, St. Louis, MO #E8875 

Complete Mini protease inhibitor mixture 
tablets 

Roche Applied Science 11836153001 

Apotracker Thermofisher Scientific 
Waltham, MA 

427402 

propidium iodide Thermofisher Scientific 
Waltham, MA 

P1304MP 

Critical commercial assays 

bicinchoninic acid assay Pierce 23227 

RNeasy kit Qiagen, Valencia, CA  

Affymetrix GeneChip HG-U95 arrays Affymetrix, Santa Clara, CA  

Z1 Single Coulter Counter Beckman Coulter, Miami, FL  

Experimental models: Cell lines 

MCF7 Lombardi Comprehensive 
Cancer Center, Georgetown 
University, Washington, DC 

 

 

Cell Culture and Reagents 

MCF7 cells were obtained from Tissue Culture Shared Resources at Lombardi Comprehensive 

Cancer Center, Georgetown University, Washington, DC. MCF7 cells were grown in phenol red-

free improved minimal essential medium (Life Technologies, Grand Island, NY; A10488-01) with 

10% charcoal-stripped calf serum (CCS) and supplemented with 10nM 17β-estradiol (E2). ICI 

(Faslodex/Fulvestrant; ICI182,780) and palbociclib were obtained from Tocris Bioscience 

(Ellisville, MO). MCF7 cells were authenticated by DNA fingerprinting and tested regularly for 

Mycoplasma infection. All other chemicals were purchased from Sigma-Aldrich (St. Louis, MO). 

METHOD DETAILS 

Cell Proliferation Assay 

Cells were seeded at a density of 4–5 × 104 cells/well in 60 mm plates and treated with indicated 

drugs at 24 h post plating. E2 deprivation was obtained by washing cells 24 h post-plating (t = 0) 

with phosphate-buffered saline (PBS) and adding complete medium without E2 for the indicated 

times. To measure cell number at specific time-points, cells were trypsinized, resuspended in 

PBS and counted using a Z1 Single Coulter Counter (Beckman Coulter, Miami, FL). 
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Western Blot Analysis 

For Western blot analysis, cells were lysed for 30 min on ice with lysis buffer (50 mM Tris-HCl, 

pH 7.5, containing 150 mM NaCl, 1 mM EDTA, 0.5% sodium deoxycholate, 1% IGEPAL CA-630, 

0.1% sodium dodecyl sulfate (SDS), 1 mM Na3VO4, 44 µg ml−1 phenylmethylsulfonyl fluoride) 

supplemented with Complete Mini protease inhibitor mixture tablets (Roche Applied Science). 

Total protein was quantified using the bicinchoninic acid assay (Pierce). Whole-cell lysate (20 µg) 

was resolved by SDS–polyacrylaminde gel electrophoresis. 

Apoptosis Assay 

2-5 x 105 cells were plated in 6-well plates, were treated for 72 h, and stained with Apotracker 

green and propidium iodide, respectively (Thermofisher Scientific Waltham, MA) according to the 

manufacturer’s protocol and fluorescence was measures by the Flow Cytometry Shared 

Resource at Georgetown University Medical Center. Each experiment was repeated at least three 

times. 

Microarray 

Microarray analysis was performed using four biological replicates using Affymetrix HG U133 Plus 

2.0 microarray at our Genomics and Epigenomics Shared Resources. Briefly, total RNA was 

extracted using the RNeasy kit (Qiagen, Valencia, CA, USA). RNA labeling and hybridization were 

performed according to the Affymetrix protocol for one-cycle target labeling. For each experiment, 

fragmented cDNA was hybridized in triplicates to Affymetrix GeneChip HG-U95 arrays 

(Affymetrix, Santa Clara, CA, USA). 

Dynamics of E2 Deprivation 

Removing E2 completely from cultured cells that have been growing in medium containing E2 

cannot be accomplished by simply changing to a medium containing no E2. The E2 deprivation 

procedure is conducted by exchanging the E2 medium with 5% charcoal stripped calf serum 

(CCS) and phenol-red free media (Lewis et al., 2005). The E2 level in CCS is routinely measured 

to be less than 4 pM (Lewis et al., 2005), equating to 0.2 pM in 5% CCS media. But the E2 in the 
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cell is at a significantly higher concentration than that in the medium and it can diffuse back into 

the medium and cause an increase in the E2 concentration. While the concentration of E2 might 

be low, its effect might not be negligible because a direct mitogenic effect of exogenous E2 on 

MCF7 can be initiated as low as 3 pM and maximized at 0.2 to 10nM (Furuya et al., 1989). 

Furthermore, other than estrogen receptors, there exist nonspecific bindings between estrogen 

and other elements inside the cell (Strobl et al., 1979). Therefore, MCF7 cells growing in an E2 

condition have a much higher internal concentration of E2 than that of medium due to non-specific 

binding of E2 in the cytoplasm as well as specific binding of E2 to various estrogen receptors in 

the cell. When we deprive the medium of estrogen, E2 from the cells leaches into the new medium 

and a new balance between the estrogen levels inside and outside the cell is achieved. The newly 

established E2 level that can be significant for maintaining proliferation. From the –E2 proliferation 

result shown in Figure 1D, the initial growth period is short and the cells nearly stop growing later 

on. As the medium is replaced as the experiment proceeds, the E2 level continues to drop and 

the cells stop proliferation. 

In a one-week proliferation experiment (Figure S3), we changed the medium at time zero and at 

day 3 to –E2 medium and counted the cells on day 7. In a parallel experiment, an extra medium 

change was inserted at 3 hours. The experiment was conducted with two different plating 

densities. We can see that the extra media change, which further decreases the residual E2 level, 

significantly reduces the overall MCF7 proliferation at 1 week. Not only do the changes in E2 

concentration with each successive medium change impact proliferation for long time continuous 

–E2 treatment, but these changes are also critically important when we consider alternating 

treatments. For example, if we alternate E2+palbo with –E2 treatment, after the transition from 

E2 to –E2 medium excess E2 will leach into the medium causing undesired growth. This issue 

drove us to model the E2 concentration dynamically. Thus, modeling the E2 dynamics is needed 

to capture the effect of alternating treatment. 

Dynamic Modeling of E2 Deprivation 
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After a medium change, the total number (#) of E2 molecules should be constant, so the amount 

of E2 leaving the cell should be equal to the amount of E2 entering the medium and vice versa. 

The rate of change in the number of E2 molecules in the cell caused by diffusion is: 

𝑑𝐸2#𝑐𝑒𝑙𝑙

𝑑𝑡
= −𝑘𝑑𝑖𝑓𝑓 × ([𝐸2]𝑐𝑒𝑙𝑙 − [𝐸2]𝑚𝑒𝑑𝑖𝑎) × 𝑁 × 𝑆1𝑐𝑒𝑙𝑙    (1) 

Where 𝐸2#𝑐𝑒𝑙𝑙  is the total number (#) of E2 molecules in the cells, 𝑘𝑑𝑖𝑓𝑓  is the diffusion rate across 

the cell membrane and −𝑘𝑑𝑖𝑓𝑓 × ([𝐸2]𝑐𝑒𝑙𝑙 − [𝐸2]𝑚𝑒𝑑𝑖𝑎) has units of #/(𝑚2 × 𝑡), [𝐸2]𝑐𝑒𝑙𝑙  is the E2 

concentration in the cell, [𝐸2]𝑚𝑒𝑑𝑖𝑎  is the E2 concentration in the medium, 𝑁 is the total cell 

number and 𝑆1𝑐𝑒𝑙𝑙  is the surface area of a single cell. 

Because 𝐸2#𝑐𝑒𝑙𝑙 = [𝐸2]𝑐𝑒𝑙𝑙 × 𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠, where 𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠 is the total volume of cells, which changes 

with time, equation (1) becomes: 

𝑑([𝐸2]𝑐𝑒𝑙𝑙×𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠)

𝑑𝑡
= −𝑘𝑑𝑖𝑓𝑓 × ([𝐸2]𝑐𝑒𝑙𝑙 − [𝐸2]𝑚𝑒𝑑𝑖𝑎) × 𝑁 × 𝑆1𝑐𝑒𝑙𝑙   (2) 

𝑑[𝐸2]𝑐𝑒𝑙𝑙

𝑑𝑡
× 𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠 +

𝑑𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠

𝑑𝑡
× [𝐸2]𝑐𝑒𝑙𝑙 = −𝑘𝑑𝑖𝑓𝑓 × ([𝐸2]𝑐𝑒𝑙𝑙 − [𝐸2]𝑚𝑒𝑑𝑖𝑎) × 𝑁 × 𝑆1𝑐𝑒𝑙𝑙  (3) 

𝑑[𝐸2]𝑐𝑒𝑙𝑙

𝑑𝑡
=

−𝑘𝑑𝑖𝑓𝑓×𝑆1𝑐𝑒𝑙𝑙×([𝐸2]𝑐𝑒𝑙𝑙−[𝐸2]𝑚𝑒𝑑𝑖𝑎)

𝑉𝑜𝑙1𝑐𝑒𝑙𝑙
−

𝑑𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠

𝑑𝑡
× [𝐸2]𝑐𝑒𝑙𝑙 ×

1

𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠
  (4) 

setting 𝑘𝑑𝑖𝑓𝑓
′ =

𝑘𝑑𝑖𝑓𝑓×𝑆1𝑐𝑒𝑙𝑙

𝑉𝑜𝑙1𝑐𝑒𝑙𝑙
, equation (7) becomes 

𝑑[𝐸2]𝑐𝑒𝑙𝑙

𝑑𝑡
= −𝑘𝑑𝑖𝑓𝑓

′ × ([𝐸2]𝑐𝑒𝑙𝑙 − [𝐸2]𝑚𝑒𝑑𝑖𝑎) −
𝑑𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠

𝑑𝑡
× [𝐸2]𝑐𝑒𝑙𝑙 ×

1

𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠
  (5) 

Where the first term on the right is the rate of change related to diffusion and the second term is 

the rate of change related to variations in total cell volume. To simplify the second term, note that: 

𝑑𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠

𝑑𝑡
×

1

𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠
= (

𝑑𝑁

𝑑𝑡
) × 𝑉𝑜𝑙1𝑐𝑒𝑙𝑙 ×

1

𝑉𝑜𝑙𝑐𝑒𝑙𝑙𝑠
   (16) 

So equation (10) becomes 

𝑑[𝐸2]𝑐𝑒𝑙𝑙

𝑑𝑡
= −𝑘𝑑𝑖𝑓𝑓

′ × ([𝐸2]𝑐𝑒𝑙𝑙 − [𝐸2]𝑚𝑒𝑑𝑖𝑎) −
(

𝑑𝑁

𝑑𝑡
)

𝑁
× [𝐸2]𝑐𝑒𝑙𝑙

  (18) 

If we suppose the volume of the culture media doesn’t change, since it is massive compared to 

the total cell volume, then the rate of E2 concentration changes in the media becomes 
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𝑑[𝐸2]𝑚𝑒𝑑𝑖𝑎

𝑑𝑡
=

𝑑𝐸2#𝑚𝑒𝑑𝑖𝑎

𝑑𝑡

1

𝑉𝑜𝑙𝑚𝑒𝑑𝑖𝑎
=

𝑘𝑑𝑖𝑓𝑓
′ ×𝑉𝑜𝑙1𝑐𝑒𝑙𝑙×𝑁

𝑉𝑜𝑙𝑚𝑒𝑑𝑖𝑎
× ([𝐸2]𝑐𝑒𝑙𝑙 − [𝐸2]𝑚𝑒𝑑𝑖𝑎)  (12) 

since the total number of molecules diffusing into the medium is equal to the total number of 

molecules diffusing out of the cells. 

Then equation (18) and (12) are used to model the E2 dynamics during and after the deprivation. 

In Table 1, [𝐸2]𝑐𝑒𝑙𝑙  is denoted as 𝐸2𝑐𝑒𝑙𝑙  and [𝐸2]𝑚𝑒𝑑𝑖𝑎  as 𝐸2𝑚𝑒𝑑𝑖𝑎 . Each time the medium is 

changed to –E2, the value [𝐸2]𝑚𝑒𝑑𝑖𝑎  is set to the value of 𝐸2𝑑𝑒𝑝  in Table 2. Each time the 

medium is changed to control condition, the value [𝐸2]𝑚𝑒𝑑𝑖𝑎 is set to the value of 𝐸2 in Table 2 

Mathematical Model 

Biological Signaling Diagram 

The structure of our ODE model is based on the signaling pathways of the G1-S transition since 

the drugs of interest, anti-estrogens and Cdk4/6 inhibitors, primarily affect progression through 

the G1 phase of the cell cycle (Musgrove, et al., 2009). The justification of the numbered 

interactions of the signaling pathway and drugs, shown in Figure 1A, is as follows: 

1. –E2 decreases the level of estrogen (Lewis et al., 2005); 2. E2 binds to ER and forms the 

transcription factor E2:ER (Vrtačnik, et al., 2014); 3. ICI binds to ER and forms ICI:ER, which 

increases the degradation of ER and blocks its transcriptional activity (Xi et al., 2020); 4. E2:ER 

increases transcription of c-Myc (Prall et al., 1998); 5. E2:ER increases transcription of cyclinD1 

(Prall et al., 1998); 6. E2:ER increases transcription of cyclinE (Musgrove, et al., 2009); 7. c-Myc 

inhibits transcription of p21 (Bretones et al., 2015); 8. CyclinD1 binds to Cdk4/6 and forms the 

cyclinD1:Cdk4/6 kinase (Sherr 1995); 9. CyclinE binds to Cdk2 and forms the cyclinE:Cdk2 kinase 

(Prall et al., 1998); 10. p21 binds to cyclinD1:Cdk4/6 and forms the cyclinD1:Cdk4/6:p21 complex, 

which inhibits its kinase activity (Sherr and Roberts, 1995); 11. p21 binds to cyclinE:Cdk2 and 

forms the cyclinE:Cdk2:p21 complex which inhibits its kinase activity (Musgrove et al,. 2011); 12. 

Palbociclib binds to Cdk4/6 and inactivates its activity (Wells et al., 2020); 13. Abemaciclib binds 

to Cdk4/6 and inactivates its activity (Wells et al., 2020); 14. Palbociclib binds to cyclinD1:Cdk4/6 
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and forms the cyclinD1:Cdk4/6:palbociclib complex, which inactivates its kinase activity (Well et 

al., 2020); 15. Abemaciclib binds to cyclinD1:Cdk4/6 and forms the cyclinD1:Cdk4/6:abemaciclib 

complex, which inactivates its kinase activity (Well et al., 2020); 16. p21 binds to 

cyclinD1:Cdk4/6:palbociclib and forms the cyclinD1:Cdk4/6:p21:palbociclib complex (Pack et al., 

2021); 17. p21 binds to cyclinD1:Cdk4/6:abemaciclib and forms the 

cyclinD1:Cdk4/6:p21:abemaciclib complex (Pack et al., 2021); 18. Palbociclib binds to 

cyclinD1:Cdk4/6:p21 and forms the cyclinD1:Cdk4/6:p21:palbociclib complex (Pack et al., 2021); 

19. Abemaciclib binds to cyclinD1:Cdk4/6:p21 and forms the cyclinD1:Cdk4/6:p21:abemaciclib 

complex (Pack et al., 2021); 20. CyclinD1:Cdk4/6 phosphorylates RB1 to RB1-p 

(hypophosphorylated RB1) (Prall et al., 1998); 21. CyclinE:Cdk2 phosphorylates RB1-p to RB1-

pp (hyperphosphorylated RB1) (Prall et al., 1998); 22. RB1 binds to E2F and inhibits its 

transcriptional activity (Bretones et al., 2015); 23. RB1-p binds to E2F and inhibits it transcriptional 

activity (Bretones et al., 2015); 24. E2F up-regulates RB1 expression (Yao et al., 2011); 25. E2F 

up-regulates c-Myc expression (Álvaro-Blanco et al., 2009); 26. E2F up-regulates cyclinE 

expression (Morris et al., 2000); 27. E2F drives the G1-S cell cycle transition and proliferation 

(Stevens et al., 2003); 28. Cell death. 

Treatment with Cdk4/6 inhibitors will affect the stability of Cdk4/6 complexes bound to Cdk 

Interacting Protein/Kinase Inhibitory Protein (CIP/KIP) protein inhibitors (p21). The Cdk4/6 

inhibitors can dissociate p21 selectively from Cdk4 but not Cdk6 (Pack et al., 2020). Because we 

didn’t differentiate between Cdk4 and Cdk6, we didn’t exclude the possibility of forming the 

tetramers cyclinD1:Cdk4/6:p21:palbociclib and cyclinD1:Cdk4/6:p21:abemaciclib. And the 

degradation rate of cyclinD1:Cdk4/6:p21:palbociclib and cyclinD1:Cdk4/6:p21:abemaciclib are 

assumed to be the same as the degradation rate of cyclinD1:Cdk4/6:p21 trimer. The binding 

interactions between cyclinD1, Cdk4/6, p21, palbociclib and abemaciclib can form different dimers, 

trimers and tetramers, depending on the subtypes of the Cdks and CIPs/KIPs (Guiley et al., 2019; 

Pack et al., 2020). Because both Cdk4/6:palbociclib (Cdk4/6:abemaciclib) and 
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cyclinD1:Cdk4/6:palbociclib (cyclinD1:Cdk4/6:abemaciclib) lose their kinase activity, we didn’t 

include the binding reaction between Cdk4/6:palbociclib (Cdk4/6:abemaciclib) and cyclinD1. We 

only use the binding reactions between palbociclib (abemaciclib) and cyclinD1:Cdk4/6 to form the 

cyclinD1:Cdk4/6:palbociclib (cyclinD1:Cdk4/6:abemaciclib) complex. And we didn’t include the 

inhibition potency of abemaciclib on Cdk2 and cyclinE:Cdk2 (Wells et al., 2020) since they are 

not needed to capture the abemaciclib treatment effects. For conciseness, lines with arrowheads 

representing the unbinding reactions corresponding to each binding reaction included in the 

model are not shown in Figures 1A and 1B. 

Model Structure 

Protein level changes in response to estrogen signaling and drug treatments are affected by 

thousands of interactions among proteins. Even though the interactions in Figure 1A are limited 

to the G1 phase of the cell cycle, the reactions shown are incomplete and many interactions at 

the G1-S phase transition are excluded. For example, in addition to RB1 and RB1-p, other pocket 

protein members p107 and p130 also bind to E2F and inhibit its transcriptional activity (Yao et al., 

2011). And CyclinD1:Cdk4/6 can phosphorylate p107 and p130 and increase their degradation 

(Leng et al., 2002 and Tedesco 2002). Also, E2F up-regulates the expression of itself (Yao et al., 

2011) and Cdc25A (Stevens et al., 2003), which is a protein phosphatase that removes the 

inhibitory phosphorylation on Cdk4/6 and Cdk2, positively regulating their kinase activities (Shen 

et al., 2012). It is impractical to include all possible reactions related to treatments in the biological 

mechanism. Because our goal is to build a model that can predict treatment responses over long 

time scales, we simplified the interactions shown in Figure 1A to those necessary to capture the 

effects of different treatments. The model structure we used is shown in Figure 1B and is modified 

from Figure 1A. First, we ignored interaction 26, E2F up-regulates cyclinE expression, in Figure 

1A as this simplification doesn’t affect the model simulation results. Second, we didn’t include 

Cdk2 explicitly in the model but assumed that cyclinE not bound to p21 is bound to Cdk2 and 

active. This is because of the long-held presumption that Cdks are in excess of the cyclins in the 
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cell and Cdk2 has been shown to be in excess of its cyclin partners (Arooz, et al., 2000). Last, we 

didn’t include E2F in the model but assume that the level of RB1-pp reflects the transcriptional 

activity of E2F. While E2F, as the last driver of G1-S transition, may be the best protein to govern 

the proliferation rate (Stevens et al., 2003), the situation is complicated. Considering there are six 

E2F family members, having divergent roles as transcriptional activators or inhibitors, and the 

complexity of all possible combinations of E2Fs with their partners (Cam et al., 2003), it is difficult 

to use one measured protein level to denote E2F transcriptional activity. In order to govern the 

proliferation rate by one protein level and measure its level to calibrate the model, we decide to 

use hyperphosphorylated RB1 (RB1-pp) to represent E2F transcriptional activity and govern the 

proliferation rate. The is because E2Fs as transcriptional activators are regulated principally 

through binding to RB1 (MacDonald et al., 2012) and are only released to transactivate the genes 

required for the G1-S transition when RB1 is fully inactivated after phosphorylation by 

cyclinD1:Cdk4/6 and cyclinE:Cdk2 (Bretones et al., 2015). These facts make it possible to drive 

the proliferation rate by one protein with a single specific phosphorylation site representing RB1-

pp. It has been demonstrated that RB1 exists mainly in unphosphorylated, monophosphorylated 

and hyperphosphorylated form and measuring a specific phosphorylation site on RB1 can be 

used to infer the hyperphosphorylated state of RB1 (Chung et al., 2019). Over fifteen 

phosphorylation sites are found on RB1 and we found that RB1 phosphorylated on S612 reflects 

the decreased RB1-pp level changes after treatments based on our experiment results and the 

literature (MacDonald et al., 2012). Therefore, the binding reactions 22 and 23 in Figure 1A are 

ignored and the arrows of interactions 24, 25 and 27 start from RB1-pp in Figure 1B instead of 

E2F in Figure 1A. The other numbered interactions shown in Figure 1B are the same as in Figure 

1A. 

Long term palbociclib treatment effect on proliferation and cyclinD1 

Figure S4 re-plots the 10-week palbociclib monotreatment data from Figure 4. MCF7 cells are 

treated with 750nM palbociclib for 10 weeks and the cells are re-plated at 5 weeks. The blue line 
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is the cell number from 0 to 5 weeks normalized to the initial cell number at t=0. The red line is 

the re-plated cell number from 5 to 10 weeks normalized to the initial re-plated cell number at 5 

weeks. The plot shows that the MCF7 proliferation rate significantly decreased from 5 weeks to 

10 weeks compared to 0 to 5 weeks. In order to make the model match these proliferation 

changes, we introduced another variable in the model to control proliferation under palbociclib 

treatment (respropalbo in Table 1), which will increase under palbociclib treatment and decrease 

after removal of palbociclib. The proliferation rate is divided by a Hill function of this variable and 

will decrease as palbociclib treatment time increases. Without this variable, the model’s simulation 

of proliferation rate over the entire 10 week period will be nearly constant, which would be a poor 

fit to the experiment results. So, adding the variable is necessary to make the model match the 

proliferation difference shown in the experiment. 

Figure 4E shows that the cyclinD1 level increased after mono or alternating palbociclib treatment, 

which is consistent with the literature (Cornell et al., 2019 and Pancholi et al., 2020). In order to 

allow the model to simulate the increase of cyclinD1, we introduce another variable in the model 

(rescyclinD1palbo in Table 1) which will increase under the palbociclib treatment and decrease 

after removal of palbociclib. The generation rate of cyclinD1 is added to a hill function of this 

variable and will increase with palbociclib treatment time. Adding the variable is necessary to 

make the model match the cyclinD1 increase shown in the experiment. Although the cyclinD1 

level increased after mono or alternating palbociclib treatment, the proliferation rate of the MCF7 

cells remained suppressed under treatment. In our model, the increase of cyclinD1 can not 

counterbalance the palbociclib treatment effect of decreasing the cyclinD1:Cdk4/6 level. Although 

the increase of cyclinD1 causes the cyclinD1:Cdk4/6 level to rebound after the initial sharp 

decrease following the start palbociclib treatment, its level is still lower than the level before 

palbociclib treatment and the phosphorylation of RB1 by cyclinD1:Cdk4/6 is decreased. We model 

the phosphorylation rate of RB1 by cyclinD1:Cdk4/6 as a hill function of cyclinD1:Cdk4/6 

multiplying a hill function of RB1, instead of cyclinD1:Cdk4/6 multiplying a hill function of RB1. 
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This modification allows us to better control the phosphorylation rate of RB1 by cyclinD1:Cdk4/6 

in the model to match the decreased proliferation and increased cyclinD1 level under the 

palbociclib treatments. 

Model Equations 

𝑁 = 𝑁alive + 𝑁𝑑𝑒𝑎𝑑      (19) 

(19) Total number of cells equals number of alive cells plus number of dead cells 

𝑑𝑁𝑎𝑙𝑖𝑣𝑒

𝑑𝑡
=

𝑘pro×(1+𝑘𝑝𝑟𝑜𝑝𝑝𝑅𝑏×
𝑝𝑝𝑅𝑏

𝑝𝑝𝑟𝑜𝑝𝑝𝑅𝑏2

𝑝𝑝𝑟𝑜𝑝𝑝𝑅𝑏1
𝑝𝑝𝑟𝑜𝑝𝑝𝑅𝑏2+𝑝𝑝𝑅𝑏

𝑝𝑝𝑟𝑜𝑝𝑝𝑅𝑏2
)×𝑁𝑎𝑙𝑖𝑣𝑒×(1−

𝑁

𝑘𝑐𝑎𝑟𝑟𝑦𝑖𝑛𝑔
)

1+𝑘𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜×
𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜

𝑝𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜2

𝑝𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜1
𝑝𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜2+𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜

𝑝𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜2

 (20) 

−𝑘𝑑𝑒𝑎𝑡ℎ × 𝑁𝑎𝑙𝑖𝑣𝑒     (21) 

(20) Basal proliferation, increased proliferation by 𝑝𝑝𝑅𝑏  and inhibited proliferation by 

𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜 

(21) Basal death 

𝑑𝑁𝑑𝑒𝑎𝑑

𝑑𝑡
= 𝑘𝑑𝑒𝑎𝑡ℎ × 𝑁𝑎𝑙𝑖𝑣𝑒    (22) 

−𝑘𝑙𝑦𝑠𝑖𝑠 × 𝑁𝑑𝑒𝑎𝑑     (23) 

(22) Basal death 

(23) Lysis of dead cells 

ℎ𝑖𝑙𝑙𝑓𝑢𝑛𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜 =
𝑝𝑎𝑙𝑏𝑜

𝑝𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜2

𝑝𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜1
𝑝𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜2+𝑝𝑎𝑙𝑏𝑜

𝑝𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜2
  (24) 

𝑑𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜

𝑑𝑡
= 𝑘𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜 × ℎ𝑖𝑙𝑙𝑓𝑢𝑛𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜  (25) 

−
𝑘𝑑𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜×𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜

1+ℎ𝑖𝑙𝑙𝑓𝑢𝑛𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜
    (26) 

(24) Hill function for 𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜 

(25) Generation of 𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜 by 𝑝𝑎𝑙𝑏𝑜 

(26) Degradation of 𝑟𝑒𝑠𝑝𝑟𝑜𝑝𝑎𝑙𝑏𝑜 (fast if no palbociclib, but slow if there is palbociclib to allow 

slow buildup of respropalbo) 
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𝑑𝐸2𝑚𝑒𝑑𝑖𝑎

𝑑𝑡
=

𝑘𝑑𝑖𝑓𝑓×𝑁×𝑉𝑜𝑙1𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑚𝑒𝑑𝑖𝑎
× (𝐸2𝑐𝑒𝑙𝑙 − 𝐸2𝑚𝑒𝑑𝑖𝑎)   (27) 

(27) E2 concentration changes in media 

𝑑𝐸2𝑐𝑒𝑙𝑙

𝑑𝑡
= −𝑘𝑑𝑖𝑓𝑓 × (𝐸2𝑐𝑒𝑙𝑙 − 𝐸2𝑚𝑒𝑑𝑖𝑎) −

(
𝑑𝑁𝑎𝑙𝑖𝑣𝑒

𝑑𝑡
+

𝑑𝑁𝑑𝑒𝑎𝑑
𝑑𝑡

)

𝑁
× 𝐸2𝑐𝑒𝑙𝑙   (28) 

−𝑘𝑏𝐸2𝐸𝑅 × 𝐸2𝑐𝑒𝑙𝑙 × 𝐸𝑅 + 𝑘𝑢𝑏𝐸2𝐸𝑅 × 𝐸2𝐸𝑅   (29) 

−𝑘𝑏𝑁𝑆𝐵 × 𝐸2𝑐𝑒𝑙𝑙 + 𝑘𝑢𝑏𝑁𝑆𝐵 × 𝐸2𝑁𝑆𝐵   (30) 

+𝑘𝑑E2ER × 𝐸2𝐸𝑅     (31) 

(28) E2 concentration changes in cell 

(29) Binding and unbinding between 𝐸𝑅 and 𝐸2𝑐𝑒𝑙𝑙  

(30) Binding and unbinding between non-specific binding and 𝐸2𝑐𝑒𝑙𝑙  in the cell 

(31) Degradation of 𝐸2𝐸𝑅 

𝑑𝐸𝑅

𝑑𝑡
= 𝑘ER − 𝑘𝑑𝐸𝑅 × 𝐸𝑅     (32) 

−𝑘𝑏𝐸2𝐸𝑅 × 𝐸2𝑐𝑒𝑙𝑙 × 𝐸𝑅 + 𝑘𝑢𝑏𝐸2𝐸𝑅 × 𝐸2𝐸𝑅  (33) 

−𝑘𝑏𝐼𝐶𝐼𝐸𝑅 × 𝐼𝐶𝐼 × 𝐸𝑅 + 𝑘𝑢𝑏𝐼𝐶𝐼𝐸𝑅 × 𝐼𝐶𝐼𝐸𝑅   (34) 

(32) Translation and degradation of 𝐸𝑅 

(33) Binding and unbinding between 𝐸𝑅 and 𝐸2𝑐𝑒𝑙𝑙  

(34) Binding and unbinding between 𝐸𝑅 and 𝐼𝐶𝐼 

𝑑𝐸2𝐸𝑅

𝑑𝑡
= −𝑘𝑑E2ER × 𝐸2𝐸𝑅     (35) 

+𝑘𝑏𝐸2𝐸𝑅 × 𝐸2𝑐𝑒𝑙𝑙 × 𝐸𝑅 − 𝑘𝑢𝑏𝐸2𝐸𝑅 × 𝐸2𝐸𝑅   (36) 

(35) Degradation of 𝐸2𝐸𝑅 

(36) Binding and unbinding between 𝐸𝑅 and 𝐸2𝑐𝑒𝑙𝑙  

𝑑𝐸2𝑁𝑆𝐵

𝑑𝑡
= 𝑘𝑏𝑁𝑆𝐵 × 𝐸2𝑐𝑒𝑙𝑙 − 𝑘𝑢𝑏𝑁𝑆𝐵 × 𝐸2𝑁𝑆𝐵   (37) 

(37) Binding and unbinding between non-specific binding and 𝐸2𝑐𝑒𝑙𝑙  

𝑑𝐼𝐶𝐼𝐸𝑅

𝑑𝑡
= 𝑘𝑏ICIER × 𝐼𝐶𝐼 × 𝐸𝑅 − 𝑘𝑢𝑏𝐼𝐶𝐼𝐸𝑅 × 𝐼𝐶𝐼𝐸𝑅   (38) 

−𝑘𝑑𝐼𝐶𝐼𝐸𝑅 × 𝐼𝐶𝐼𝐸𝑅     (39) 

(38) Binding and unbinding between 𝐼𝐶𝐼 and 𝐸𝑅 
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(39) Degradation of 𝐼𝐶𝐼𝐸𝑅 

𝑑𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜

𝑑𝑡
= 𝑘𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜 ×

𝑝𝑎𝑙𝑏𝑜
𝑝𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜2

𝑝𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜1
𝑝𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜2+𝑝𝑎𝑙𝑏𝑜

𝑝𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜2
 (40) 

−𝑘𝑑𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜 × 𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜    (41) 

(40) Generation of 𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜 by 𝑝𝑎𝑙𝑏𝑜 

(41) Degradation of 𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜 

𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1    (42) 

+𝑘𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 × (1 + 𝑘𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝐸2𝐸𝑅 ×
𝐸2𝐸𝑅

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝐸2𝐸𝑅2

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝐸2𝐸𝑅1
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝐸2𝐸𝑅2 +𝐸2𝐸𝑅

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝐸2𝐸𝑅2
) (43) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 × 𝑐𝑑𝑘46 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 (44) 

+𝑘𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜 ×
𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜2

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜1
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜2 +𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜2
 (45) 

(42) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 

(43) Basal translation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 and the increased translation by 𝐸2𝐸𝑅 

(44) Binding and unbinding between 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 and 𝑐𝑑𝑘46 

(45) Increased translation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 by 𝑟𝑒𝑠𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑝𝑎𝑙𝑏𝑜 

𝑑𝑐𝑑𝑘46

𝑑𝑡
= 𝑘𝑐𝑑𝑘46 − 𝑘𝑑𝑐𝑑𝑘46 × 𝑐𝑑𝑘46    (46) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 × 𝑐𝑑𝑘46 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 (47) 

−𝑘𝑏𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑑𝑘46 × 𝑝𝑎𝑙𝑏𝑜 + 𝑘𝑢𝑏𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜  (48) 

−𝑘𝑏𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 × 𝑐𝑑𝑘46 × 𝑎𝑏𝑒𝑚𝑎 + 𝑘𝑢𝑏𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 (49) 

(46) Translation and degradation of 𝑐𝑑𝑘46 

(47) Binding and unbinding between 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 and 𝑐𝑑𝑘46 

(48) Binding and unbinding between 𝑝𝑎𝑙𝑏𝑜 and 𝑐𝑑𝑘46 

(49) Binding and unbinding between 𝑎𝑏𝑒𝑚𝑎 and 𝑐𝑑𝑘46 

𝑑𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜

𝑑𝑡
= −𝑘𝑑𝑐𝑑𝑘46 × 𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜    (50) 

+𝑘𝑏𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑑𝑘46 × 𝑝𝑎𝑙𝑏𝑜 − 𝑘𝑢𝑏𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜  (51) 
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(50) Degradation of 𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 

(51) Binding and unbinding between 𝑝𝑎𝑙𝑏𝑜 and 𝑐𝑑𝑘46 

𝑑𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎

𝑑𝑡
= −𝑘𝑑𝑐𝑑𝑘46 × 𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎    (52) 

+𝑘𝑏𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 × 𝑐𝑑𝑘46 × 𝑎𝑏𝑒𝑚𝑎 − 𝑘𝑢𝑏𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 (53) 

(52) Degradation of 𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 

(53) Binding and unbinding between 𝑎𝑏𝑒𝑚𝑎 and 𝑐𝑑𝑘46 

𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46  (54) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 × 𝑐𝑑𝑘46 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 (55) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑝21 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 (56) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑝𝑎𝑙𝑏𝑜 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 

  (57) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑎𝑏𝑒𝑚𝑎 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎  (58) 

(54) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

(55) Binding and unbinding between 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1 and 𝑐𝑑𝑘46 

(56) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

(57) Binding between 𝑝𝑎𝑙𝑏𝑜 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

(58) Binding between 𝑎𝑏𝑒𝑚𝑎 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21  (59) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑝21 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 (60) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑝𝑎𝑙𝑏𝑜 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 (61) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑎𝑏𝑒𝑚𝑎 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 (62) 

(59) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 

(60) Binding and unbinding between p21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 
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(61) Binding and unbinding between 𝑝𝑎𝑙𝑏𝑜 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 

(62) Binding and unbinding between 𝑎𝑏𝑒𝑚𝑎 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 

𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜𝑎𝑏𝑒𝑚𝑎 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜  (63) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑝𝑎𝑙𝑏𝑜 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜

 (64) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑝21 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜𝑝21 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 (65) 

(63) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 

(64) Binding and unbinding between 𝑝𝑎𝑙𝑏𝑜 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

(65) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 

𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜𝑎𝑏𝑒𝑚𝑎 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎  (66) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑎𝑏𝑒𝑚𝑎 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 (67) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 × 𝑝21 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎𝑝21 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 (68) 

(66) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 

(67) Binding and unbinding between 𝑎𝑏𝑒𝑚𝑎 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

(68) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 

𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 (69) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑝𝑎𝑙𝑏𝑜 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 (70) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑝21 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜𝑝21 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 (71) 

(69) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 

(70) Binding and unbinding between 𝑝𝑎𝑙𝑏𝑜 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 

(71) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 
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𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 (72) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑎𝑏𝑒𝑚𝑎 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 (73) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 × 𝑝21 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎𝑝21 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 (74) 

(72) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 

(73) Binding and unbinding between 𝑎𝑏𝑒𝑚𝑎 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 

(74) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 

𝑑𝑐𝑀𝑦𝑐

𝑑𝑡
= −𝑘𝑑𝑐𝑀𝑦𝑐 × 𝑐𝑀𝑦𝑐     (75) 

+𝑘𝑐𝑀𝑦𝑐 × (1 + 𝑘𝑐𝑀𝑦𝑐𝐸2𝐸𝑅 ×
𝐸2𝐸𝑅

𝑝𝑐𝑀𝑦𝑐𝐸2𝐸𝑅2

𝑝𝑐𝑀𝑦𝑐𝐸2𝐸𝑅1
𝑝𝑐𝑀𝑦𝑐𝐸2𝐸𝑅2 +𝐸2𝐸𝑅

𝑝𝑐𝑀𝑦𝑐𝐸2𝐸𝑅2
  (76) 

+𝑘𝑐𝑀𝑦𝑐𝑝𝑝𝑅𝑏 ×
𝑝𝑝𝑅𝑏

𝑝𝑐𝑀𝑦𝑐𝑝𝑝𝑅𝑏2

𝑝𝑐𝑀𝑦𝑐𝑝𝑝𝑅𝑏1
𝑝𝑐𝑀𝑦𝑐𝑝𝑝𝑅𝑏2+𝑝𝑝𝑅𝑏

𝑝𝑐𝑀𝑦𝑐𝑝𝑝𝑅𝑏2
)  (77) 

(75) Degradation of 𝑐𝑀𝑦𝑐 

(76) Basal translation of 𝑐𝑀𝑦𝑐 and the increased translation by 𝐸2𝐸𝑅 

(77) Increased translation of 𝑐𝑀𝑦𝑐 by 𝑝𝑝𝑅𝑏 

𝑑𝑝21

𝑑𝑡
= 𝑘𝑝21 − 𝑘𝑑𝑝21 × 𝑝21     (78) 

+𝑘𝑝21𝑐𝑀𝑦𝑐 ×
𝑝𝑝21𝑐𝑀𝑦𝑐1

𝑝𝑝21𝑐𝑀𝑦𝑐2

𝑝𝑝21𝑐𝑀𝑦𝑐1
𝑝𝑝21𝑐𝑀𝑦𝑐2 +𝑐𝑀𝑦𝑐

𝑝𝑝21𝑐𝑀𝑦𝑐2
   (79) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 × 𝑝21 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21 (80) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 × 𝑝21 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜𝑝21 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑝𝑎𝑙𝑏𝑜 (81) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 × 𝑝21 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎𝑝21 ×

𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝21𝑎𝑏𝑒𝑚𝑎 (82) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 × 𝑝21 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21  (83) 

(78) Translation and degradation of 𝑝21 

(79) Inhibition of translation by 𝑐𝑀𝑦𝑐 
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(80) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

(81) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑝𝑎𝑙𝑏𝑜 

(82) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑎𝑏𝑒𝑚𝑎 

(83) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 

𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐸

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐸 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐸    (84) 

+𝑘𝑐𝑦𝑐𝑙𝑖𝑛𝐸 × (1 + 𝑘𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝐸2𝐸𝑅
𝐸2𝐸𝑅

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝐸2𝐸𝑅2

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝐸2𝐸𝑅1
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝐸2𝐸𝑅2 +𝐸2𝐸𝑅

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝐸2𝐸𝑅2
) (85) 

−𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 × 𝑝21 + 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21 ×  𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21  (86) 

(84) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐸  

(85) Basal translation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 and the increased translation by 𝐸2𝐸𝑅 

(86) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 

𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21

𝑑𝑡
= −𝑘𝑑𝑐𝑦𝑐𝑙𝑖𝑛𝐸 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21    (87) 

+𝑘𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 × 𝑝21 − 𝑘𝑢𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21 ×  𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21   (88) 

(87) Degradation of 𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝21 

(88) Binding and unbinding between 𝑝21 and 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 

𝑑𝑅𝑏

𝑑𝑡
= 𝑘𝑅𝑏 − 𝑘𝑑𝑅𝑏 × 𝑅𝑏     (89) 

+𝑘𝑅𝑏𝑝𝑝𝑅𝑏 ×
𝑝𝑝𝑅𝑏

𝑝𝑅𝑏𝑝𝑝𝑅𝑏2

𝑝𝑅𝑏𝑝𝑝𝑅𝑏1
𝑝𝑅𝑏𝑝𝑝𝑅𝑏2+𝑝𝑝𝑅𝑏

𝑝𝑅𝑏𝑝𝑝𝑅𝑏2
   (90) 

−𝑘𝑅𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 ×
𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘462

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘461
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘462 +𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘462
×

𝑅𝑏
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑅𝑏2

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑅𝑏1
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑅𝑏2 +𝑅𝑏

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑅𝑏2
 (91) 

+𝑘𝑝𝑅𝑏𝑑𝑒𝑝ℎ𝑜 ×
𝑝𝑅𝑏

𝑝𝑝𝑅𝑏2

𝑝𝑝𝑅𝑏1
𝑝𝑝𝑅𝑏2+𝑝𝑅𝑏

𝑝𝑝𝑅𝑏2
    (92) 

(89) Degradation and basal translation of 𝑅𝑏 

(90) Increased translation of 𝑅𝑏 by 𝑝𝑝𝑅𝑏 

(91) Phosphorylation of 𝑅𝑏 by 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

(92) Dephosphorylation of 𝑝𝑅𝑏 
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𝑑𝑝𝑅𝑏

𝑑𝑡
= −𝑘𝑑𝑝𝑅𝑏 × 𝑝𝑅𝑏     (93) 

+𝑘𝑅𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 ×
𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘462

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘461
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘462 +𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘462
×

𝑅𝑏
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑅𝑏2

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑅𝑏1
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑅𝑏2 +𝑅𝑏

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46𝑅𝑏2
 (94) 

−𝑘𝑝𝑅𝑏𝑑𝑒𝑝ℎ𝑜 ×
𝑝𝑅𝑏

𝑝𝑝𝑅𝑏2

𝑝𝑝𝑅𝑏1
𝑝𝑝𝑅𝑏2+𝑝𝑅𝑏

𝑝𝑝𝑅𝑏2
    (95) 

−𝑘𝑝𝑅𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐸 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 ×
𝑝𝑅𝑏

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝𝑅𝑏2

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝𝑅𝑏1
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝𝑅𝑏2+𝑝𝑅𝑏

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝𝑅𝑏2
  (96) 

+𝑘𝑝𝑝𝑅𝑏𝑑𝑒𝑝ℎ𝑜 ×
𝑝𝑝𝑅𝑏

𝑝𝑝𝑝𝑅𝑏2

𝑝𝑅𝐵1𝑝𝑝1
𝑝𝑝𝑝𝑅𝑏2+𝑝𝑝𝑅𝑏

𝑝𝑝𝑝𝑅𝑏2
   (97) 

(93) Degradation of 𝑝𝑅𝑏 

(94) Phosphorylation of 𝑅𝑏 by 𝑐𝑦𝑐𝑙𝑖𝑛𝐷1𝑐𝑑𝑘46 

(95) Dephosphorylation of 𝑝𝑅𝑏 

(96) Phosphorylation of 𝑝𝑅𝑏 by 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 

(97) Dephosphorylation of 𝑝𝑝𝑅𝑏 

𝑑𝑝𝑝𝑅𝑏

𝑑𝑡
= −𝑘𝑑𝑝𝑝𝑅𝑏 × 𝑝𝑝𝑅𝑏     (98) 

+𝑘𝑝𝑅𝑏𝑐𝑦𝑐𝑙𝑖𝑛𝐸 × 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 ×
𝑝𝑅𝑏

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝𝑅𝑏2

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝𝑅𝑏1
𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝𝑅𝑏2+𝑝𝑅𝑏

𝑝𝑐𝑦𝑐𝑙𝑖𝑛𝐸𝑝𝑅𝑏2
  (99) 

−𝑘𝑝𝑝𝑅𝑏𝑑𝑒𝑝ℎ𝑜 ×
𝑝𝑝𝑅𝑏

𝑝𝑝𝑝𝑅𝑏2

𝑝𝑅𝐵1𝑝𝑝1
𝑝𝑝𝑝𝑅𝑏2+𝑝𝑝𝑅𝑏

𝑝𝑝𝑝𝑅𝑏2
   (100) 

(98) Degradation of 𝑝𝑝𝑅𝑏 

(99) Phosphorylation of 𝑝𝑅𝑏 by 𝑐𝑦𝑐𝑙𝑖𝑛𝐸 

(100) Dephosphorylation of 𝑝𝑝𝑅𝑏 

Model Parameter Calibration and Model Summary 

Parameters of degradation rates (kd) for proteins were assigned according to half-lives found in 

literature (denoted as Fixed in Table 2), where kd = -log(1/2)/thalf-life. Considering that the limited 

data we collected does not warrant the increase of parameter number, which would be 

unidentifiable, we facilitated the optimization and decreased the number of parameters to be 

calibrated by fixing the unbinding parameters to 1 (denoted as Fixed in Table 2). The other 
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parameters were calibrated using the patternsearch function in MATLAB (R2021b), to minimize 

the discrepancy between the model simulation and the experimental results. The least-squares 

cost function was calculated as: 

𝑐𝑜𝑠𝑡(𝑝) = ∑ ∑
(𝑦𝑖𝑗

𝐸 (𝑡𝑗) − 𝑦𝑖𝑗(𝑡𝑗 , 𝑝))2

𝜎𝑖𝑗
2

𝑚

𝑗=1

𝑛

𝑖=1

 

where 𝑖 indexes the model variables of proteins or alive cell number under a specific treatment, 𝑗 

indexes the experimental measured times. 𝑦𝑖𝑗
𝐸 (𝑡𝑗) is the experimental measurement of the specie 

𝑖 at time 𝑗. 𝑦𝑖𝑗(𝑡𝑗 , 𝑝) is the simulation result of the variable 𝑖 at time 𝑗 using parameter vector 𝑝. 𝜎𝑖𝑗 

is the standard deviation of the experimentally measured specie 𝑖 at time 𝑗. The data, time points 

and the model variables used in fitting the experimental data are listed in Table S1. The 

parameters were tuned manually at the beginning to get the gross treatment response roughly 

consistent with the experimental results. Then the default patternsearch in MATLAB was used for 

calibration of the parameters. 

The culture media, including any drugs in the different treatments, was changed at t = 0 and every 

3 or 4 days during the treatment period, so the longest period without resupply of any drug is 4 

days. There is no data we are aware of for the half-life of the three drugs we used (ICI 182,780, 

palbociclib and abemaciclib) in in-vitro conditions. Most data are for the plasma or terminal half-

life in-vivo determined by processing in the liver or excretion through the kidneys, which are not 

applicable to our model. There is data for the in-vitro stability of these drugs in human plasma, 

which is akin to our case. ICI 182,780 shows no degradation in human plasma at room 

temperature over 7 hours (Alegete et al., 2017). Palbociclib and abemaciclib show less than 5% 

degradation in human plasma at room temperature over 3 days (Martinez-Chavez et al., 2019). 

Based on this data, we believe the drug half-life is sufficiently long so as to be ignored in our in-

vitro experiments. The drug concentrations are assumed to be constant throughout the treatment 

as a reasonable approximation. 
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The mathematical model contains 27 ordinary differential equations (ODEs) and 112 parameters 

(80 calibrated and 32 fixed), which is implemented in MATLAB. The generation, degradation, 

phosphorylation, dephosphorylation, binding and unbinding reactions are modeled by mass 

action laws and hill functions. Drug treatment effects are modeled by competitive binding to their 

targets. The ODEs are solved numerically by the ode23tb function in MATLAB. 

Parameter cohort 

To address the fact that the parameters in model may not be practically identifiable by our limited 

measured data, another 199 parameter sets that fit the data reasonably well (cost < 500) were 

identified to form a parameter cohort. All 200 parameter sets in the cohort were used for simulation 

and prediction. The resulting spread in the predictions show the degree to which the data used to 

calibrate the model parameters constrains the prediction results. The parameter cohort was 

generated by the default genetic algorithm function, ga, in the MATLAB optimization toolbox. We 

saved parameter sets found during the running of the ga function whose cost function value was 

smaller than 500. 

The coefficients of variation of the parameters and the cost function values for the parameter sets 

in the cohort are plotted in Figures S9A and S9B. The coefficient of variation plot reflects the 

spread of the parameter values in the cohort and the large values represent parameters to which 

the model has low sensitivity. A local sensitivity analysis for each parameter in the cohort with 

respect to proliferation is shown in Figure S9D. The most significant sensitivity for cell proliferation 

involves parameters #6 and #90, which are related to the basal translation of the estrogen 

receptor and the dephosphorylation of RB1-pp, respectively. These results are not surprising as 

the estrogen receptor level impacts the response to –E2 and ICI endocrine treatments and 

dephosphorylation of RB1-pp directly regulates the RB1-pp level. Figure S9C plots a histogram 

of the fitting costs that were generated by all the perturbed parameter sets used in the sensitivity 

analysis used to create Figure. S9D. The figure shows that across all the perturbations of 

parameter sets in the cohort there was not a major increase in the fitting cost. 
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Local Sensitivity Analysis 

We used local sensitivity analysis to check how sensitive the model output was to the parameter 

values. The sensitivity value for a model output and a specific parameter is the change in the 

model output relative to the change in parameter value. It can be expressed as (Zi et al., 2011 

and Nagaraja et al., 2014): 

𝑠𝑖𝑗𝑘 =
𝜕log (𝑋𝑖𝑗)

𝜕log (𝑝𝑘)
=

𝜕𝑋𝑖𝑗

𝜕𝑃𝑘

𝑝𝑘

𝑋𝑖𝑗
 

where 𝑠𝑖𝑗𝑘 is the local sensitivity value, which is the derivative of model output 𝑋𝑖𝑗  with respect to 

parameter 𝑝𝑘  multiplied by the ratio 𝑝𝑘/𝑋𝑖𝑗 . It gives the percent change in the model output 

produced by a 1%) change in a parameter. In the equation, 𝑖 indexes the alive cell number under 

a specific treatment, 𝑗  indexes the timepoints and 𝑘  indexes the parameters. 𝑠𝑖𝑗𝑘  can be 

approximated by the second order central finite difference. Therefore, each parameter is 

individually varied by 1% of its value: 

𝑠𝑖𝑗𝑘 ≈
𝑋𝑖𝑗(𝑝𝑘 + 1% × 𝑝𝑘) − 𝑋𝑖𝑗(𝑝𝑘 − 1% × 𝑝𝑘)

2% × 𝑝𝑘

𝑝𝑘

𝑋𝑖𝑗(𝑝𝑘)
=

𝑋𝑖𝑗(𝑝𝑘 + 1% × 𝑝𝑘) − 𝑋𝑖𝑗(𝑝𝑘 − 1% × 𝑝𝑘)

2% × 𝑋𝑖𝑗(𝑝𝑘)
 

The sensitivity analysis was performed on all 64 data-calibrated parameters in a parameter set, 

except the hill function powers, and all parameter sets in the cohort. The fixed parameters were 

excluded. Because we want to check whether the model output is very sensitive to certain 

parameters, the maximum values of 𝑠𝑖𝑗𝑘  across all 𝑖 and 𝑗, which is 𝑠𝑘 = max
𝑖,𝑗

|𝑠𝑖𝑗𝑘|, is used to 

represent the sensitivity value. 

Growth Rate Inhibition (GR) Metric 

The GR metric is different from traditional drug response metrics, which are highly sensitive to 

the number of cell divisions during the experiment. It compares the growth rates in the presence 

and absence of drug and is largely independent of cell division rate and assay duration (Hafner 

et al., 2016). The GR metric is calculated according to the formula: 
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𝐺𝑅(𝑐) = 2
𝑙𝑜𝑔2(𝑥(𝑐)/𝑥0)
𝑙𝑜𝑔2(𝑥𝑐𝑡𝑟𝑙/𝑥0) − 1 

The cell count under the drug treatment is normalized to the vehicle control cell count. 𝑥(𝑐) is the 

cell count in the presence of drug at concentration 𝑐. 𝑥𝑐𝑡𝑟𝑙 is the cell count for the vehicle control. 

𝑥0 is the cell count at t = 0 prior to drug treatment. The maximum value of GR is 1 (unless the 

drug increases proliferation) and the lowest value of GR is -1. GR = 0 means the drug treatment 

has a cytostatic response and a negative value means the drug treatment has a cytotoxic effect 

(Hafner et al., 2016). 

Microarray Data Analysis 

The microarray data analysis was performed by the limma R package, which provides data 

normalization and differential gene expression analysis for gene expression experiments (Ritchie 

et al., 2015). The agilent microarray data files were read by the read.maimages function. The 

backgrounds were corrected using the backgroundCorrect function and the data were normalized 

using the normalizedBetweenArrays function. Differential expression analysis was performed by 

lmfit and eBayes functions. Heatmaps of the significantly differentially expressed genes (adjusted 

p-value <= 0.05) were plotted using the heatmap.2 function in the gplots R package. Hierarchical 

clustering of columns in the heatmap is based on the default setting in the heatmap.2 function, 

which used the dist and hclust functions in the stats R package. Principal component analysis 

was performed using the prcomp function in the stats R package. The Gene Set Enrichment 

Analysis (GSEA) was performed using the clusterProfiler R package (Yu et al., 2012 and Wu et 

al., 2021) and the C3 regulatory target gene sets in the Molecular Signatures Database (MSigDB) 

provided by the msigdbr R package was used (Subramanian et al., 2005). Data preparation and 

visualizations were performed in R using the tidyverse (v1.3.1), gplots (v3.1.1), ggplot2(3.3.5), 

and plotly(4.10.0) packages 

Statistical Analysis 
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Statistical testing was carried out in MATLAB. Group comparisons were performed by the two-

sided paired t test (ttest function). For comparison of multiple groups, one-way ANOVA or two-

way ANOVA (anovan function) and Tukey’s HSD test for multiple comparisons (multcompare 

function) was used. Lower case n refers to the number of biological replicates noted in the figure 

legends. Statistical significance was considered with p values smaller than 0.05 and ns represents 

non-significant. The precise p values are noted in the figure legends with asterisks: p <0.05 (*), p 

≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****). 

Table 1. Model Variables and Initial Values 

Variable names are italicized. 

Variable name Description Initial value Half-life 

(1) E2media E2 concentration in the media 10nM - 

(2) E2cell E2 concentration in the cell 10nM - 

(3) ER Estrogen receptor α 1.97nM ~4-5h Wijayaratne 
et al., 2019. 

(4) E2ER Estrogen bound estrogen receptor α 835.19nM ~3-4h Wijayaratne 
et al., 2019 

(5) E2NSB Estrogen bound non-specific binding 6697.83nM - 

(6) ICIER ICI 182,780 bound estrogen receptor 0nM < 3-4h Wijayaratne 
et al., 2019 

(7) rescyclinD1palbo Variable induced by palbociclib increasing cyclinD1 0nM - 

(8) cyclinD1 Protein cyclinD1 0.62×10-6nM ~0.4h Alao 2007 

(9) cdk46 Protein Cdk4/6 3365.58 ~5h Gabrielli et al., 
1999 

(10) cdk46palbo Palbociclib bound Cdk4/6 0nM - 

(11) cdk46abema Abemaciclib bound Cdk4/6 0nM - 

(12) cyclinD1cdk46 CyclinD1 bound Cdk4/6 33.83nM - 

(13) cyclinD1cdk46p21 p21 bound cyclinD1:Cdk4/6 21.84nM - 

(14) cyclinD1cdk46palbo Palbociclib bound cyclinD1:Cdk4/6 0nM - 

(15) cyclinD1cdk46abema Abemaciclib bound cyclinD1:Cdk4/6 0nM - 

(16) cyclinD1cdk46p21palbo Palbociclib bound cyclinD1:Cdk46:p21 0nM - 

(17) cyclinD1cdk46p21abema Abemaciclib bound cyclinD1:Cdk46:p21 0nM - 

(18) cMyc Protein c-Myc 9.75nM ~0.3h Gregory et al., 
2000 

(19) p21 Protein p21 0.0027nM ~0.3-1h Abbas et 
al., 2009 

(20) cyclinE Protein cyclinE 0.16nM ~0.5h Singer et al., 
1993 

(21) cyclinEp21 p21 bound cyclinE 0.036nM - 

(22) Rb Retinoblastoma protein 53.01nM ~2-3h Oh et al., 
2010 
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(23) pRb Hypophosphorylated RB1 (RB1-p) 16.64nM ~2-3h Oh et al., 
2010 

(24) ppRb Hyperphosphorylated RB1 (RB1-pp) 0.49nM > 4h Oh et al., 2010 

(25) respropalbo Variable induced by palbociclib inhibiting 
proliferation 

0nM - 

(26) Nalive Alive cell number 0.93a - 

(27) Ndead Dead cell number 0.07a - 
aThe values of Nalive and Ndead are assigned according to the alive and apoptotic percentage in Figure 

S5. 

Table 2. Model Parameter Descriptions, Values and Declaration of Fixed or Calibrated 

Parameter names and model variable names are italicized. 

Parameter name Description Value Fixed/ 
Calibrated 

(1) kdiff Diffusion rate of E2 440.58/h Calibrated 

(2) kbNSB Binding rate between non-specific binding and E2 670.08/(h×nM) Calibrated 

(3) kubNSB Unbinding rate between non-specific binding and E2 1.0/h Fixed 

(4) Vol1cell Volume of MCF7 cell 8×10-5mL Fixed 

(5) Volmedia Volume of media 10mL Fixed 

(6) kER Translation rate of ER 250.75nM/h Calibrated 

(7) kdER Degradation rate of ER 0.10/h Fixed 

(8) kdE2ER Degradation rate of E2ER 0.30/h Fixed 

(9) kbE2ER Binding rate between E2cell and ER 55.13/(h×nM) Calibrated 

(10) kubE2ER Unbinding rate between E2cell and ER 1.0/h Fixed 

(11) kbICIER Binding rate between ICI and ER 0.29/(h×nM) Calibrated 

(12) kubICIER Unbinding rate between ICI and ER 1.0/h Fixed 

(13) kdICIER Degradation rate of ICIER 1.65/h Calibrated 

(14) kcyclinD1 Translation rate of cyclinD1 7.89nM/h Calibrated 

(15) kdcyclinD1 Degradation rate of cyclinD1 1.39/h Fixed 

(16) kcyclinD1E2ER Increased cyclinD1 translation by E2ER 11.54 Calibrated 

(17) pcyclinD1E2ER1 Parameter 1 of cyclinD1 increased translation by E2ER 1122.99nM Calibrated 

(18) pcyclinD1E2ER2 Parameter 2 of cyclinD1 increased translation by E2ER 4.85 Calibrated 

(19) kbcyclinD1cdk46 Binding rate between cyclinD1 and cdk46 28546.18 Calibrated 

(20) kubcyclinD1cdk46 Unbinding rate between cyclinD1 and cdk46 1.0/h Fixed 

(21) krescyclinD1palbo Generate rate of rescyclinD1palbo 0.033nM/h Calibrated 

(22) prescyclinD1palbo1 Parameter 1 of rescyclinD1palbo increased by palbo 505.73nM Calibrated 

(23) prescyclinD1palbo2 Parameter 2 of rescyclinD1palbo increased by palbo 3 Calibrated 

(24) kdrescyclinD1palbo Degradation rate of rescyclinD1palbo 0.0032/h Calibrated 

(25) kcyclinD1palbo Increase rate of cyclinD1 by rescyclinD1palbo 26.62nM/h Calibrated 

(26) pcyclinD1palbo1 Parameter 1 of cyclinD1 increased by rescyclinD1palbo 7.09nM Calibrated 

(27) pcyclinD1palbo2 Parameter 2 of cyclinD1 increased by rescyclinD1palbo 0.91 Calibrated 

(28) kcdk46 Translation rate of cdk46 414.10nM/h Calibrated 

(29) kdcdk46 Degradation rate of cdk46 0.1155/h Fixed 

(30) kbcdk46palbo Binding rate between cdk46 and palbo 69.07/(h×nM) Calibrated 
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(31) kubcdk46palbo Unbinding rate between cdk46 and palbo 1.0/h Fixed 

(32) kbcdk46abema Binding rate between cdk46 and abema 0.13/(h×nM) Calibrated 

(33) kubcdk46abema Unbinding rate between cdk46 and abema 1.0/h Fixed 

(34) kdcyclinD1cdk46 Degradation rate of cyclinD1cdk46 0.71/h Calibrated 

(35) kbcyclinD1cdk46palbo Binding rate between cyclinD1cdk46 and palbo 0.01/(h×nM) Calibrated 

(36) kubcyclinD1cdk46palbo Unbinding rate between cyclinD1cdk46 and palbo 1.0/h Fixed 

(37) kbcyclinD1cdk46abema Binding rate between cyclinD1cdk46 and abema 0.018/(h×nM) Calibrated 

(38) kubcyclinD1cdk46abema Unbinding rate between cyclinD1cdk46 and abema 1.0/h Fixed 

(39) kbcyclinD1cdk46p21 Binding rate between cyclinD1cdk46 and p21 256.7/(h×nM) Calibrated 

(40) kubcyclinD1cdk46p21 Unbinding rate between cyclinD1cdk46 and p21 1.0/h Fixed 

(41) kdcyclinD1cdk46p21 Degradation rate of cyclinD1cdk46p21 0.063/h Calibrated 

(42) kbcyclinD1cdk46p21palbo Binding rate between cyclinD1cdk46p21 and palbo 0.063/(h×nM) Calibrated 

(43) kubcyclinD1cdk46p21palbo Unbinding rate between cyclinD1cdk46p21 and palbo 1.0/h Fixed 

(44) kbcyclinD1cdk46p21abema Binding rate between cyclinD1cdk46p21 and abema 0.06/(h×nM) Calibrated 

(45) kubcyclinD1cdk46p21abema Unbinding rate between cyclinD1cdk46p21 and abema 1.0/h Fixed 

(46) kbcyclinD1cdk46palbop21 Binding rate between cyclinD1cdk46palbo and p21 0.0028/(h×nM) Calibrated 

(47) kubcyclinD1cdk46palbop21 Unbinding rate between cyclinD1cdk46palbo and p21 1.0/h Fixed 

(48) kbcyclinD1cdk46abemap21 Binding rate between cyclinD1cdk46abema and p21 0.0081/(h×nM) Calibrated 

(49) kubcyclinD1cdk46abemap21 Unbinding rate between cyclinD1cdk46abema and p21 1.0/h Fixed 

(50) kdcyclinD1cdk46palboabema Degradation rate of cyclinD1cdk46palbo and 
cyclinD1cdk46abema 

0.2/h Calibrated 

(51) kcMyc Translation rate of cMyc 3.1nM/h Calibrated 

(52) kdcMyc Degradation rate of cMyc 2.31/h Fixed 

(53) kcMycE2ER Increased translation of cMyc by E2ER 5.88 Calibrated 

(54) pcMycE2ER1 Parameter 1 of cMyc increased translation by E2ER 1066.31nM Calibrated 

(55) pcMycE2ER2 Parameter 2 of cMyc increased translation by E2ER 2.13 Calibrated 

(56) kcMycppRb Increased translation of cMyc by ppRb 4224.72 Calibrated 

(57) pcMycppRb1 Parameter 1 of cMyc increased translation by ppRb 1.46nM Calibrated 

(58) pcMycppRb2 Parameter 2 of cMyc increased translation by ppRb 6.39 Calibrated 

(59) kp21 Translation rate of p21 0.25nM/h Calibrated 

(60) kdp21 Degradation rate of p21 1.39/h Fixed 

(61) kp21cMyc Rate of p21 translation inhibited by cMyc 2.64 Calibrated 

(62) pp21cMyc1 Parameter 1 of p21 inhibited translation by cMyc 8.6nM Calibrated 

(63) pp21cMyc2 Parameter 2 of p21 inhibited translation by cMyc 1.78 Calibrated 

(64) kcyclinE Translation rate of cyclinE 0.25nM/h Calibrated 

(65) kdcyclinE Degradation rate of cyclinE 1.39/h Fixed 

(66) kcyclinEE2ER Increased translation of cyclinE by E2ER 5.31 Calibrated 

(67) pcyclinEE2ER1 Parameter 1 of cyclinE increased translation by E2ER 1206.68nM Calibrated 

(68) pcyclinEE2ER2 Parameter 2 of cyclinE increased translation by E2ER 12.3 Calibrated 

(69) kbcyclinEp21 Binding rate between cyclinE and p21 205.85/(h×nM) Calibrated 

(70) kubcyclinEp21 Unbinding rate between cyclinE and p21 1.0/h Fixed 

(71) kRb Translation rate of Rb 2.46nM/h Calibrated 

(72) kdRb Degradation rate of Rb 0.35/h Fixed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.20.508795doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508795
http://creativecommons.org/licenses/by-nc-nd/4.0/


(73) kRbppRb Increased Rb translation by ppRb 6184.66nM/h Calibrated 

(74) pRbppRb1 Parameter 1 of Rb increased translation by ppRb 1.85nM Calibrated 

(75) pRbppRb2 Parameter 2 of Rb increased translation by ppRb 4.27 Calibrated 

(76) kRbcyclinD1cdk46 Phosphorylation rate of Rb by cyclinD1cdk46 25.25/h Calibrated 

(77) kpRbdepho Dephosphorylation rate of pRb 38.38nM/h Calibrated 

(78) kdpRb Degradation rate of pRb 0.35/h Fixed 

(79) kpRbcyclinE Phosphorylation rate of pRb by cyclinE 16.69/h Calibrated 

(80) kppRbdepho Dephosphorylation rate of ppRb 251.99nM/h Calibrated 

(81) kdppRb Degradation rate of ppRb 0.05/h Fixed 

(82) pcyclinD1cdk461 Parameter 1 of cyclinD1cdk46 kinase activity 1.24nM Calibrated 

(83) pcyclinD1cdk462 Parameter 2 of cyclinD1cdk46 kinase activity 0.079 Calibrated 

(84) pcyclinD1Rb1 Parameter 1 of Rb phosphorylation by cyclinD1cdk46 0.41nM Calibrated 

(85) pcyclinD1Rb2 Parameter 2 of Rb phosphorylation by cyclinD1cdk46 0.091 Calibrated 

(86) ppRbdepho1 Parameter 1 of pRb dephosphorylation  44.22nM Calibrated 

(87) ppRbdepho2 Parameter 2 of pRb dephosphorylation 2.59 Calibrated 

(88) pcyclinEpRb1 Parameter 1 of pRb phosphorylation by cyclinE 7.44nM Calibrated 

(89) pcyclinEpRb2 Parameter 2 of pRb phosphorylation by cyclinE 6.15 Calibrated 

(90) pppRb1 Parameter 1 of ppRb dephosphorylation 10.28nM Calibrated 

(91) pppRb2 Parameter 2 of ppRb dephosphorylation 1.51 Calibrated 

(92) kpro Basal proliferation rate 0.0011 Calibrated 

(93) kproppRb Proliferation rate increased by ppRb 2682.18 Calibrated 

(94) pproppRb1 Parameter 1 of proliferation rate increased by ppRb 1.64nM Calibrated 

(95) pproppRb2 Parameter 2 of proliferation rate increased by ppRb 3.95 Calibrated 

(96) krespropalbo Generate rate of respropalbo 0.0029nM/h Calibrated 

(97) prespropalbo1 Parameter 1 of respropalbo increased by palbo 292.22nM Calibrated 

(98) prespropalbo2 Parameter 2 of respropalbo increased by palbo 2.02 Calibrated 

(99) prespropalbokd Parameter of degradation rate of respropalbo 6.83 Calibrated 

(100) kdrespropalbo Degradation rate of respropalbo 0.015/h Calibrated 

(101) kpropalbo Rate of proliferation inhibited by respropalbo 6.45 Calibrated 

(102) ppropalbo1 Parameter 1 of proliferation inhibited by respropalbo 2.37nM Calibrated 

(103) ppropalbo2 Parameter 2 of proliferation inhibited by respropalbo 0.87 Calibrated 

(104) kcarrying Carrying capacity 133.89 Calibrated 

(105) kdeath Basal death rate 0.0021/hour Calibrated 

(106) klysis Lysis rate of dead cell 0.0026 Calibrated 

(107) E2dep E2media in –E2 condition 1×10-6nM Fixed 

(108) percentagedeadt0 Percentage of dead cell at t=0 0.07 Fixed 

(109) E2 E2media in control condition 10nM  Fixed 

(110) ICI Concentration of ICI 182,780 Varies 
depending on 
treatment 
condition 

Fixed 

(111) palbo Concentration of palbociclib Varies 
depending on 
treatment 
condition 

Fixed 
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(112) abema Concentration of abemaciclib Varies 
depending on 
treatment 
condition 

Fixed 

h: hour 
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Figure 1. Signaling Diagram of the Biological Mechanism, Model Structure and Model 

Calibrations 

(A) Detailed reactions of the biological mechanism related to estrogen signaling and Cdk4/6 

inhibition. Reversible binding reactions are represented by dots on the components and an arrow 

to the complex. Three dots represent degradation of a protein or the death of a cell. Arrows 
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pointing from blank space to a protein or MCF7 cell represent production of the protein or 

proliferation of the cell. Arrows pointing from one protein to another protein represent 

phosphorylation or dephosphorylation of the protein. Lines pointing to other lines represent 

enhancement (arrow) or inhibition (blunt head) of the reactions. Treatments are colored red. The 

numbered biological mechanism consisting of the following process: 1. –E2 decreases estrogen; 

2. E2 binds to ER; 3. ICI binds to ER; 3. E2:ER increases transcription of c-Myc; 5. E2:ER 

increases transcription of cyclinD1; 6. c-Myc inhibits transcription of p21; 7. CyclinD1 binds to 

Cdk4/6; 8. CyclinE binds to Cdk2; 9. p21 binds to cyclinD1:Cdk4/6; 10. p21 binds to cyclinE:Cdk2; 

11. Palbociclib binds to Cdk4/6; 12. Abemaciclib binds to Cdk4/6; 13. Palbociclib binds to 

cyclinD1:Cdk4/6; 14. Abemaciclib binds to cyclinD1:Cdk4/6; 15. p21 binds to 

cyclinD1:Cdk4/6:palbociclib; 16. p21 binds to cyclinD1:Cdk4/6:abemaciclib; 17. Palbociclib binds 

to cyclinD1:Cdk4/6:p21; 18. Abemaciclib binds to cyclinD1:Cdk4/6:p21; 19. CyclinD1:Cdk4/6 

phosphorylates RB1; 20. CyclinE:Cdk2 phosphorylates RB1-p; 21. RB1 binds to E2F; 22. RB1-p 

binds to E2F; 23. E2F up-regulates RB1; 24. E2F up-regulates itself; 25. E2F up-regulates c-Myc; 

26 . E2F up-regulates cyclinE; 27. E2F drives the G1-S cell cycle transition and proliferation; 28. 

Cell death. (STAR Methods). 

(B) Structure of the mathematical model, a simplified version of the biological mechanism in (A).  

(C) Model calibration to experimental data (mean ± s.e., n=3) in E2 control condition. The 

experimental data are shown in red and the calibration simulation results are shown in yellow 

(solid line represents the lowest cost value simulation and the shaded regions contains the central 

98% of the cohort simulations). 

(D) Model calibration to experimental data (mean ± s.e., n=3) in –E2 condition. 

(E) Model calibration to experimental data (mean ± s.e., n=3) in E2+ICI(100nM) condition. 

(F) Model calibration to experimental data (mean ± s.e., n=3) in E2+ICI(500nM) condition. 

(G) Model calibration to experimental data (mean ± s.e., n=3) in E2+palbo(250nM) condition. 

(H) Model calibration to experimental data (mean ± s.e., n=3) in E2+palbo(500nM) condition. 
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(I) Model calibration to experimental data (mean ± s.e., n=3) in E2+palbo(1M) condition. 

(J) Model calibration to experimental data (mean ± s.e., n=3) in –E2+ICI(100nM) condition. 

(K) Model calibration to experimental data (mean ± s.e., n=3) in E2+palbo(100nM) condition. 
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Figure 2. Model Calibration Simulations Compared to Experimental Data for Abemaciclib 

Treatments 

(A) Model calibration of normalized cell number to experimental data (mean ± s.e., n=3) in 

E2+abema(300nM) condition. The experimental data are shown in red and the calibration 

simulation results are shown in yellow (solid line represents the lowest cost value simulation and 

the shaded regions contains the central 98% of the cohort simulations). 

(B) Model calibration of normalized cell number to experimental data (mean ± s.e., n=3) in 

E2+abema(500nM) condition. 

(C). Model calibration of normalized c-Myc level to experimental data (mean ± s.e., n=3) in 

E2+abema(500nM) condition. 

(D). Model calibration of normalized RB1-pp level to experimental data (mean ± s.e., n=3) in 

E2+abema(500nM) condition. 
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Figure 3. Model Calibration and Prediction Simulations of Normalized Cell Number 

Compared to Experimental Data for Alternating Treatments 

(A) Model calibration to experimental data (mean ± s.e., n=3) of E2+palbo(250nM) alternating 

with –E2 treatment. The experimental data is linked by dashed lines. The E2+palbo(250nM) 

treatment is shown in purple and the –E2 condition in blue. The calibration simulation results are 

shown in the same colors as the experimental data with the solid line representing the lowest cost 

value simulation and the shaded regions containing the central 98% of the cohort simulations. 

(B) Model calibration to experimental data (mean ± s.e., n=3) of E2+palbo(500nM) alternating 

with E2+ICI(500nM) treatment. E2+palbo(500nM) treatment is shown in purple and 

E2+ICI(500nM) in black. 
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(C) Model prediction of experimental data (mean ± s.e., n=3) for E2+palbo(750nM) alternating 

with E2+ICI(500nM). E2+palbo(750nM) treatment is shown in purple and E2+ICI(500nM) in black. 

The treatment started with E2+palbo(750nM) with 7days then altered to E2+ICI(500nM) with 

7days. 

(D) Model prediction of experimental data (mean ± s.e., n=3) for E2+palbo(750nM) altering with 

E2+palbo(750nM)+ICI(500nM) and E2+ICI(500nM) treatment. E2+palbo(750nM) condition is 

shown in purple, E2+palbo(750nM)+ICI(500nM) in brown and E2+ICI(500nM) in black. The 

treatment started with E2+palbo(750nM) for 6days, then changed to 

E2+palbo(750nM)+ICI(500nM) for 1day and then changed to E2+ICI(500nM) for 7 days. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.20.508795doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508795
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Model Simulations of Normalized Cell Number and Protein Level Changes 

Compared to Experimental Data for Long Time Mono and Alternating Treatments 
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(A) Model calibration to experimental data (mean ± s.e., n=3) for E2+palbo(750nM), 

E2+ICI(750nM), and E2+palbo(750nM) alternating with E2+ICI(750nM) treatments. The 

experimental data are linked by dashed lines. In both the mono and alternating treatments, the 

E2+palbo(750nM) condition is shown in purple and the E2+ICI(750nM) condition in black. In the 

alternating treatment, each treatment period is 7days, starting with E2+palbo(750nM). MCF7 cells 

are re-plated at 35days in the E2+palbo(750nM) mono and alternating treatments. The 

normalized cell number from 35 to 70 days is relative to the number plated at 35days. The 

calibration simulation results are shown in same color as the experimental data with the solid line 

representing the lowest cost value simulation and the shaded regions containing the central 98% 

of the cohort simulations. 

(B) Model simulation of normalized total cyclinD1 level changes in the mono and alternating 

treatments shown in (A). 

(C) Model simulation of normalized cyclinD1:Cdk4/6 level changes in the mono and alternating 

treatments shown in (A). 

(D) Model simulation of normalized RB1-pp levels changes in the mono and alternating treatments 

shown in (A). 

(E) Bar plot of model simulation for total cyclinD1 level compared to experimental data (mean ± 

s.e., n=3) in E2+palbo(750nM) and E2+palbo(750nM) alternating with E2+ICI(750nM) treatments 

shown in (A). Total cyclinD1 levels are measured at 35 days and 70 days. The simulation results 

shown in yellow are the average results from all cohort simulations. Statistical testing was 

performed by one-way ANOVA (ns: non-significant; *: p <0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p 

≤ 0.0001). 

(F) Bar plot of model simulation and experimental results (mean ± s.e., n=3) for total Cdk4 level 

changes in E2+palbo(750nM) and E2+palbo(750nM) alternating with E2+ICI(750nM) treatments 

shown in (A). 
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(G) Bar plot of model simulation and experimental results (mean ± s.e., n=3) for total Cdk6 level 

changes in E2+palbo(750nM) and E2+palbo(750nM) alternating with E2+ICI(750nM) treatments 

shown in (A). 

(H) Bar plot of model simulation and experimental results (mean ± s.e., n=3) for total cyclinE level 

changes in E2+palbo(750nM) and E2+palbo(750nM) alternating with E2+ICI(750nM) treatments 

shown in (A). 

(I) Bar plot of experimental results (mean ± s.e., n=3) for total Cdk2 level changes in 

E2+palbo(750nM) and E2+palbo(750nM) altering with E2+ICI(750nM) treatments shown in (A). 

(J) Bar plot of model calibration for total cyclinD1 level changes to experimental data (mean ± 

s.e., n=3) in E2+palbo(750nM) treatment. Total cyclinD1 levels are measured at 7days and 

14days. The statistical testing is the same as (B). The simulation results are average results from 

all the cohort simulations. 
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Figure 5. Palbociclib Dose Response and Gene Expression Profiles for Cells after Long 

Time Mono and Alternating Treatments 

(A) Palbociclib dose response normalized to vehicle on cells after 10 weeks palbociclib (750nM) 

monotreatment and alternating treatment compared to parental MCF7 cells and MCF7 cells in 10 

weeks E2 control condition. The alternating treatment is the same as Figure 4A, which is 

E2+palbo(750nM) alternating with E2+ICI(750nM). Each treatment period is 7days and starts with 

E2+palbo(750nM). The cells in all conditions are re-plated at 35days and the dose responses are 

tested at 70 days. 
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(B) Palbociclib dose response normalized to t=0, otherwise same as (A).  

(C) The GR value of palbociclib dose response, otherwise same as (A).  

(D) Palbociclib dose response normalized to vehicle for cells after 12 months palbociclib (750nM) 

monotreatment and alternating treatment compared to parental MCF7 cells. Treatments are the 

same as (A) except the alternation period is 1 month, the duration is extended to 12 months, and 

the dose responses are tested at 12 months. 

(E) Palbociclib dose response normalized to t=0, otherwise same as (D). 

(F) The GR value of palbociclib dose response, otherwise same as (D). 

(G) Heatmap of gene expression profiles for cells after 10 weeks palbociclib monotreatment, cells 

after 10 weeks alternating treatment, parental MCF7 cells and cells cultured over 6 months in 

palbociclib (500nM). The cells from palbociclib monotreatment and alternating treatment are the 

same as (A). 

(H) Principal component analysis of gene expression profiles on the same cells as (G). (PC1 vs 

PC2). 

(I) Principal component analysis of gene expression profile on the same cells as (G). (PC1 vs 

PC3). 

(J) Principal component analysis of gene expression profile on the same cells as (G). (PC2 vs 

PC3). 

(K) Principal component analysis of gene expression profile on the same cells as (G). (PC1 vs 

PC2 vs PC3). 

(L) Gene Set Enrichment Analysis (GSEA) was performed on the same cells as (G). The C3 

regulatory target gene sets in the Molecular Signatures Database (MSigDB) were used. 
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Figure 6. Model Simulation of Isobologram among Various Treatment Methods and 

Experimental Verifications 

(A) Illustration of the isobologram. Each blue hexagon represents a measurement point for mono 

or combination drug treatment effects. The lines joining the (interpolated) points of equal 

measured effect are isoboles, such as lines in the lower plot, which represent different interaction 

types: (1) Independence; (2) Antagonism; (3) Additive; (4) Super-additive; (5) Sub-additive. 

(B) Model simulation of isobologram between ICI and E2 for the normalized cell number at 17days. 

Different colors of the isobole represents the different levels of normalized cell number. The solid 

line represents the lowest cost value simulation and the shaded regions contain the central 98% 

of the cohort simulations. 

(C) Model simulation of isobologram between palbociclib and E2 (high concentration) for the 

normalized cell number at 17days. 
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(D) Model simulation of isobologram between palbociclib and E2 (low concentration) for the 

normalized cell number at 17days. 

(E) Model simulation of isobologram between abemaciclib and E2 (high concentration) for the 

normalized cell number at 17days. 

(F) Model simulation of isobologram between abemaciclib and E2 (low concentration) for the 

normalized cell number at 17days. 

(G) Model simulation of isobologram between palbociclib and abemaciclib for the normalized cell 

number at 17days. 

(H) Model simulation of isobologram between palbociclib and ICI for the normalized cell number 

at 17days. 

(I) Model simulation of isobologram between abemaciclib and ICI for the normalized cell number 

at 17days. 

(J) Boxplot of the model predictions and experimental verifications of normalized cell number 

showing the synergism between palbociclib and ICI. The doses of drug combinations used in the 

experiment are marked by the blue hexagons in (H). The prediction results shown in purple are 

from all cohort simulation results. Statistical testing was performed by two-way ANOVA (ns: non-

significant; *: p <0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001). Center line on each box is the 

median. The bottom and top lines on each box are the 25th and 75th percentiles, respectively. The 

whiskers are maximum and minimum values without considering outliers. Data points are 

considered outliers if they are more than 1.5×IQR (interquartile range) below the 25th percentile 

or above the 75th percentile. 

(K) Boxplot of the model predictions and experimental verifications of normalized cell number 

showing the synergism between abemaciclib and ICI. The doses of drug combinations used in 

the experiment are marked by the blue hexagons in (I). The prediction results shown in purple are 

from all cohort simulation results. The statistical testing used and explanation of the boxplot are 

the same as (J). 
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Figure 7. Optimal Treatment Design Using the Model 

(A) Proposed Alternating treatment to reduce total drug dosage. E2+palbo(770nM) 

monotreatment is shown in purple with a solid line. E2+ICI(700nM) monotreatment is shown in 

black with a solid line. For the alternating treatment, each treatment period is 7days. In a 28 day 

cycle, the alternation starts with E2+palbo(280nM) shown in purple with a dashed line, then 

changes to a combination treatment of E2+palbo(190nM)+ICI(365nM) shown in a brown dashed 

line, then changes to E2+ICI(515nM) shown in a black dashed line, then changes to the 

combination treatment again. The cycle is repeated 3 times for a total of 84 days. The solid and 
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dashed lines represent the lowest cost value simulation and the shaded regions contain the 

central 98% of the cohort simulations. 

(B) Model simulation of normalized total cyclinD1 level changes in the proposed alternating 

treatments shown in (A). The lines and shaded regions have the same meaning as (A). 

(C) Model simulation of normalized cyclinD1:Cdk4/6 level changes in the proposed alternating 

treatment shown in (A). 

(D) Model simulation of normalized RB1-pp level changes in the proposed alternating treatment 

shown in (A). 
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