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Molecular fingerprints are not useful in large-scale search
for similarly active compounds†

Vishwesh Venkatraman,∗a Jeremiah Gaiser,b,c, Amitava Roy,d and Travis J. Wheelerb,e

Computational approaches for small molecule drug discovery now regularly scale to consideration of
libraries containing billions of candidate small molecules. One promising path to increased speed in
evaluating billion-molecule libraries is to develop representations of each molecule that enable fast
computation of similarity between molecules. Molecular fingerprints have long provided a mecha-
nism for succinct representation and fast comparison of small molecules, with a large collection of
competing fingerprints. Here, we explore the utility of many of these fingerprints in the context of
predicting similar molecular activity. We show that fingerprint similarity enables insufficient discrim-
inative power between active and inactive molecules for a target protein based on a known active.
We also demonstrate that, even when limited to only active molecules, fingerprint similarity values
do not correlate with compound potency. In sum, these results highlight the need for a new wave of
molecular representations that will improve the capacity to detect biologically active molecules based
on similarity to other such molecules.

1 Introduction
Methods for computational identification of small molecules
likely to bind to a drug target (virtual screening) are increasingly
intended to explore a space of billions of candidate molecules1–4.
One strategy for exploring this massive molecular search space is
to begin with a collection of known or presumed active molecules
(seeds), and use those seeds as the basis of a rapid search among
billions of candidates5 for other molecules expected to demon-
strate similar activity6,7.

The notion that small molecules with similar structure are
likely to share biological properties, coined the similar property
principle (SPP)8,9, is central to such a search strategy. The SPP is
simple and intuitive, and has served as the basis for predictions of
biological activity10, toxicity11–13, aqueous solubility13,14 (logS),
and partition coefficient15 (logP); it is, however, difficult to as-
sess objectively, and may not necessarily reflect the chemical sim-
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ilarity from a medicinal chemist’s perspective16. Furthermore,
the proper definition of structural similarity depends on the con-
text. For example, the quantitative structure-activity relation-
ship focuses on similarity between local structural features of two
molecules, while similarity in biological activity typically depends
on more global features of the molecules17–19 (though even these
notions of local and global similarity are also not well defined).

The most common way to quantify structural similarity of two
small molecules begins with calculation of a so-called molecular
fingerprint, a binary or count vector that encodes structural and
often chemical features20–22. Such a fingerprint is computed for
each molecule, then the fingerprints of molecules are compared
for overlap to approximately assess molecular similarity. Finger-
print similarity has been used to effectively estimate logS and logP
values23. This success is attributed to the fact that these values
can largely be approximated from the small molecule itself with-
out explicitly considering interacting partners.

Other molecular properties involve a greater dependency on
context, placing greater strain on the utility of the SPP. For exam-
ple, biological activity of a small molecule depends on the inter-
action between that molecule and the target protein binding re-
gion. Such binding regions (or pockets) are unique for different
proteins, and therefore impose strong context dependence in bi-
ological interactions. Consequently, small molecule ligand-based
fingerprint similarity may not be sufficient to capture the wide
spectrum of similarities in biological activities. Similarly, the tox-
icity of a small molecule depends on the molecule’s interaction
with multiple proteins, limiting the inference power provided by
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similarity at the level of molecular fingerprints.

Despite previous demonstrations of the limitations in using SPP
to predict similarity in biological activity24,25, the technique is
heavily used in drug development. This is especially true in
fingerprint-based virtual screening (VS), in part due to the com-
putational simplicity and speed of searching the vast chemical
space of small molecules2,26–28. Martin et al. 24 , have attributed
the limitations to the lack of concurrence between the empirical
and computational perception of similarity.

A variety of molecular fingerprints have been devised for use in
ligand-based virtual screening (LBVS), to aid in identifying bio-
logically active small molecules28,29 (hereafter referred to as ac-
tives), from within a library of small molecules. LBVS begins with
a small number of known actives (queries) for a target protein
pocket, and explores a library of other small molecules, seeking
a set that is expected to also be active. This expectation is based
on the SPP, so that LBVS seeks molecules with high fingerprint
similarity to one of the queries, under the assumption that fin-
gerprint similarity to known actives will generally assign a higher
ranking to actives than to non-actives (decoys). Here, we explore
the shortcomings of simplistic molecular fingerprints in the con-
text of LBVS, and demonstrate that all commonly used fingerprint
methods fail to sufficiently enrich for actives in a library of mostly
decoy molecules.

2 Methods and Materials

2.1 Fingerprint Representations

The palette of fingerprints evaluated in this study (see Table 1),
can be broadly classified into those based on (i) path, (ii) circular
features, (iii) pharmacophore, and (iv) pre-defined generic sub-
structures/keys30. The circular31 and path-based fingerprints are
generated using an exhaustive enumeration of (linear/circular)
fragments up to a given radius/size, which are then hashed into
a fixed-length bit vector. The SIGNATURE descriptor32 generates
explicitly defined substructures, which are mapped to numerical
identifiers (no hashing involved). The LINGO fingerprint15 works
directly with the SMILES strings (rather than the usual depen-
dence on a molecular graph representation), by fragmenting the
strings into overlapping substrings.

All fingerprints were generated using open-source software.
Routines in the RDKit45 library were used to compute the
AVALON, ERG, RDK5, RDK6, RDK7, MHFP, and TT fingerprints.
FP2, FP3 and FP4 fingerprint similarities were calculated directly
using the OpenBabel toolbox38. The other fingerprints were
calculated using custom software that makes use of the jCom-
poundMapper34 and Chemistry Development Kit36 libraries.

Although a number of similarity metrics have been in use46, the
most common approach to measuring fingerprint similarity is the
Tanimoto coefficient47. The Tanimoto coefficient Tab is a measure
of the similarity of two fingerprints, such that Tab = |Fa∩Fb|/|Fa∪
Fb|, where Fa and Fb are the fingerprints of molecules a and b,
respectively – this is equivalent to the Jaccard index. The value
ranges between 1 (identical fingerprints, though not necessarily
identical compounds) and 0 (disjoint fingerprints).

2.2 Benchmarking Data Sets
In order to evaluate VS methods, numerous benchmarking data
sets have been developed over the years48,49. Each data set con-
tains a set of active compounds (with known/documented ac-
tivity for the target of interest) and a corresponding set of in-
actives/decoys. While the definition of actives is consistent, there
is some variance in the question of what should be considered
a ‘decoy’. Some benchmarks include only confirmed inactive
molecules, while others add compounds presumed to be non-
binding50–52. Data set composition can impact VS evaluation,
such that both artificial under- and over-estimation of enrichment
have been documented51,53,54.

In this study, we employ four different VS data sets to explore
the utility of molecular fingerprinting strategies for prediction of
similar activity. These data sets are briefly summarized in Table 2
and described here:

DUD-E Directory of Useful Decoys, Enhanced55: DUD-E is a
widely-used data set for VS benchmarking, containing data
for 102 protein targets. On average, each target is repre-
sented by ∼224 active ligands, ∼90 experimental decoys,
and ∼14,000 computational decoys per target. Compounds
are considered active based on a 1 µM experimental cut-
off, and experimental decoys are ligands with no measurable
affinity up to 30 µM. Computational decoy ligands are se-
lected from ZINC50 to have 50 physical properties (rotatable
bonds, hydrogen bond acceptors/donors, molecular weight,
logP, net charge) similar to the actives, but with low finger-
print (Daylight56) Tanimoto coefficient Tab < 0.5.

MUV Maximum Unbiased Validation57 MUV data sets are based
on bioactivity data available in PubChem58. This benchmark
design strategy makes use of experimental design to se-
lect sets of 30 actives (taken from confirmation assays) and
15000 decoys (drawn from corresponding primary screens)
for each of the 17 targets. The goal of the experimental
design is to obtain an optimal spread of the actives in the
chemical space of the decoys. Since the data are taken from
high-throughput screening assays that can be affected by ex-
perimental noise and artifacts (caused by unspecific activity
of chemical compounds), an assay filter is applied to remove
compounds interfering with optical detection methods (aut-
ofluorescence and luciferase inhibition) and potential aggre-
gators.

DEKOIS The Demanding Evaluation Kits for Objective In silico
Screening (DEKOIS)59 benchmark is based on BindingDB60

bioactivity data (Ki, Kd , or IC50 values). The DEKOIS data
set is derived from a set of 15 million molecules randomly se-
lected from ZINC, which are divided into 10,752 bins based
on their molecular weight (12 bins), octanol–water parti-
tion coefficient (8 bins), number of hydrogen bond accep-
tors (4 bins), number of hydrogen bond donors (4 bins), and
number of rotatable bonds (7 bins). Active ligands are also
placed into these pre-defined bins. For each active ligand,
1500 decoys are sampled from the active’s bin (or neighbor-
ing bins, if necessary). These are further refined to a final
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Table 1 Molecular fingerprints evaluated in this study. Abbreviations: Topological torsion (TT), Extended Connectivity Fingerprint (ECFP), Functional
Class Fingerprint (FCFP), Atom pair (AP2D), Atom Triplet (AT2D), All Star Paths (ASP), Depth First Search (DFS).

TYPE FAMILY DESCRIPTION SIZE (bits)
AP2D 33 SUBSTRUCTURE Topological Atom Pairs 4096
ASP 34 PATH All-Shortest Path encoding 4096
AT2D 34 SUBSTRUCTURE Topological Atom Triplets 4096
AVALON SUBSTRUCTURE Enumerates paths and feature classes 1024
DFS 35 PATH All-path encodings 4096
ECFP_0 31,36 CIRCULAR Extended-connectivity fingerprint of diameter 0 1024
ECFP_2 31,36 CIRCULAR Extended-connectivity fingerprint of diameter 2 1024
ECFP_4 31,36 CIRCULAR Extended-connectivity fingerprint of diameter 4 1024
ECFP_6 31,36 CIRCULAR Extended-connectivity fingerprint of diameter 6 1024
ESTATE 36,37 SUBSTRUCTURE Fingerprint based on E-State fragments 79
FCFP_0 31,36 CIRCULAR Feature-class fingerprint of diameter 0 1024
FCFP_2 31,36 CIRCULAR Feature-class fingerprint of diameter 2 1024
FCFP_4 31,36 CIRCULAR Feature-class fingerprint of diameter 4 1024
FCFP_6 31,36 CIRCULAR Feature-class fingerprint of diameter 6 1024
FP2 38 PATH Indexes linear fragments up to 7 atoms in length –
FP3 38 SUBSTRUCTURE Based on 55 SMARTS patterns defining functional groups –
FP4 38 SUBSTRUCTURE Based on SMARTS patterns defining functional groups –
KR 36,39 SUBSTRUCTURE Klekota-Roth SMARTS based fingerprint 4860
LINGO 15,36 TEXT fragmentation of SMILES strings –
LSTAR 34 PATH Local Path Environments 4096
MACCS 40 SUBSTRUCTURE Molecular ACCess System structural keys 166
MAP4 41 CIRCULAR combines substructure and atom-pair concepts 2048
MHFP 42 CIRCULAR encodes circular substructures 2048
P2PPHAR2D 43 PHARMACOPHORE Pharmacophore pair encoding 4096
P3PPHAR2D 43 PHARMACOPHORE Pharmacophore triplet encoding 4096
PUBCHEM 36,44 SUBSTRUCTURE substructure fingerprint 881
RAD2D 18 CIRCULAR Topological Molprint-like fingerprints 4096
RDK5 45 SUBSTRUCTURE Encodes substructures at most 5 bonds long 1024
RDK6 45 SUBSTRUCTURE Encodes substructures at most 6 bonds long 1024
RDK7 45 SUBSTRUCTURE Encodes substructures at most 7 bonds long 1024
SIGNATURE 32,36 SUBSTRUCTURE based on an array of atom signatures –
TT 33 PATH based on bond paths of four non-hydrogen atoms –

Table 2 Comparison between different VS data sets. In all cases, the actives may not bind to the same pocket of the target.

Data
set

Active source Comments Decoy generation Comments

DUD-E ChEMBL09 No rigorous method to remove
false positives

0.65% from experiments.
99.35% generated choosing
different topologies with
similar chemical properties
using 2D similarity methods.

Decoys biased towards 2D
similarity methods.

MUV PubChem
BioAssay

Removal of false positives and
assay artifacts

Choosing unbiased distribu-
tion of decoys from experi-
mentally available data.

Low active to decoy ratio.

DEKOIS DUD
(from literature)

Decoys generated choosing
different topologies with sim-
ilar chemical properties using
2D similarity methods.

Decoys biased towards 2D
similarity methods.

Low active to decoy ratio.

LIT-
PCBA

PubChem
BioAssay

Removal of false positives and
assay artifacts.

Decoys were chosen from ex-
perimentally available data
and pruned to have similar
chemical properties.

High active to decoy ratio. Ac-
tives may not bind to the same
pocket of a target. Variable
performance in 2D and 3D
similarity search and docking
across different target sets.

set of 30 structurally diverse decoys per active. The DEKOIS
data set includes 81 targets found in the DUD-E data set.

LIT-PCBA The LIT-PCBA benchmark61 is a curated subset of the
PubChem BioAssay database, containing data from exper-
iments where more than 10,000 chemicals were screened
against a single protein target, and dose-response curves
identified at least 50 actives. Active ligands identified in

a bioassay experiment are not guaranteed to bind to the
same pocket of the target protein; to overcome this concern,
LIT-PCBA includes only targets with representative ligand-
bound structures present in the PDB, such that the PDB lig-
ands share the same phenotype or function as the true active
ligands from the bioassay experiments. The LIT-PCBA data
set was further refined to contain only targets for which at
least one of the VS methods (2D fingerprint similarity, 3D
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shape similarity, and molecular docking) achieved an enrich-
ment in true positives. Targets in the LIT-PCBA have a vari-
able active to decoy ratio that ranges from as low as 1:20 to
1:19000.

2.3 Virtual Screening Evaluation

A common measure for the efficacy of a method’s discriminatory
power depends on the receiver operating characteristic (ROC)
curve, which plots the sensitivity of a method as a function of
false labels62. If a classification method assigns better scores to
all true matches (actives) than to any false matches (decoys), then
the area under that curve (AUC) will be 1. A random classifier will
have an AUC of 0.5, while the worst possible value is 0.

AUC provides a measure of the sensitivity/specificity trade-off
across the full sensitivity range, but medicinal chemists are often
more interested in early recognition of active molecules63. As
an example, consider an imaginary method that assigns the high-
est scores to 10% of all active molecules, then afterwards loses
discriminative power and assigns essentially random scores to all
remaining molecules (actives and decoys). The AUC for such a
method would be not particularly good, even though the early
enrichment (ranking 10% of actives above every single decoy) is
excellent.

To address this shortcoming of ROC AUC, a number of other
metrics have been devised to assess early enrichment28,64,65. Un-
fortunately, it can be difficult to extract an intuitive meaning from
these measures66, and they are often not comparable across test
sets because their scale and value depends on set size and num-
ber of decoys in the test set. Here, we introduce a simple new
early enrichment measure, the decoy retention factor (DRF); DRF
is easy to interpret, and generalizes across input size. We note
that DRF is only applicable in situations in which the number of
active and decoy ligands is known beforehand. For analysis of
fingerprint benchmarks, we present both DRF and AUC values.
Additional metrics such as BEDROC63 and sum of log rank28 are
summarised visually in Figure F1 the Supplementary Information.

The purpose of DRF is to identify, for a parameterized frac-
tion p of the active molecules, how effectively decoys are filtered
from the score range containing those actives. Consider an input
containing n active compounds and d decoys, and an enrichment
threshold of p = 0.1. Since we are interested in the score of the
top p fraction of actives, let x = dpne, and let sp be the score of the
xth element. Define dp to be the number of decoys that exceed sp

– this is a fraction of the d total decoys. DRFp measures the extent
to which decoys have been filtered out of the range containing the
top p actives:

DRFp =
dp

bpdc
(1)

If no decoys have score greater than the xth active element,
then dp = 0, so that DRFp = 0. If DRFp = 1, the fraction of decoys
with score above x is the same as the fraction of actives – the
method is performing equivalently to a random score assignment.
A DRFp = 0.2 indicates that only 20% of the expected number of
decoys remain (there is a 5-fold reduction in decoys), while a

DRFp > 1 indicates that the method enriches for decoys.

We find DRF to be a useful measure because it enables predic-
tion of the number of decoys expected to remain in a score-filtered
result set, based on the size of the underlying library. For exam-
ple, consider a library of 1 million molecules – this will consist
almost entirely of inactives (decoys), so that d ≈ 1,000,000). If
we hope to discover 10% of actives, and we have previously es-
tablished that DRF0.1 = 0.05 (a 20-fold reduction in decoys), then
we expect to observe dp ·DRFp ≈ 1,000,000 ·0.1 ·0.05 = 5,000 de-
coys mixed with the surviving actives.

3 Results
To gain insight into the utility of various fingerprinting strategies
for billion-scale virtual drug screening, we explored the capacity
of fingerprint similarity to extract a small set of candidates that
is highly enriched for molecules with activity similar to the seed
query molecules. First, we computed measures of enrichment for
32 fingerprints on four benchmark data sets, presenting both clas-
sical ROC AUC calculations and our new decoy retention factor
(DRF) scores. We then explored the distributions of fingerprint
similarity scores across a variety of target molecules, and show
that the score distributions for actives and decoys are not suffi-
ciently separable for billion-scale search. We further considered
whether there is a correlation between compound potency and
active-active similarity scores, and found that there is not. Finally,
we used a data set containing more than 300,000 experimentally-
confirmed inactive compounds, and found that fingerprint simi-
larity to an active molecule does not enable discrimination be-
tween actives and inactive. In total, these results indicate that
fingerprint similarity is not a reliable proxy for likely similar bind-
ing activity.

3.1 Enrichment for active molecules

To assess the utility of fingerprinting strategies for selecting com-
pounds with similar expected activity, we computed similarities
of all compounds to a query active molecule, and tested whether
active molecules tend to be more similar to other actives than
to decoys. Specifically, for each target protein, we computed the
fingerprints of each molecule associated with that target protein.
Then, for each active compound, we computed the similarity of its
fingerprint to each of the other compounds (actives and decoys)
affiliated with that target. The union of these distance calcula-
tions was merged and sorted by similarity. DRF0.1 and ROC AUC
were computed from these ordered lists.

Table 3 presents the resulting enrichment values on each
benchmark data set. The performance of all fingerprints is poor
for both the MUV and LIT-PCBA data sets, with AUC values gener-
ally <0.6, and DRF0.1 values close to one. Performance is some-
what better for DEKOIS and DUD-E, but not particularly strong,
and is offset by concerns previously expressed about these data
sets. Others have highlighted issues such as artificial enrich-
ment49,67–71 (enrichment due to bias in the actives or decoys),
analogue bias (limited diversity of the active molecules), and false
negative bias (risk of active compounds being present in the de-
coy set), all of which can cause misleading VS results51,72. In
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response, Imrie et al. 70 developed a deep learning method (Deep-
Coy) to generate decoys that closely match the actives in terms of
the physicochemical properties while simultaneously minimizing
risk of introducing false negatives. By incorporating the DeepCoy
decoys into DUD-E, Imrie et al. 70 reported a lowering of the aver-
age per-target AUC to 0.63, compared with the value of 0.70 for
the original set (using AutoDock Vina73). The use of the DeepCoy
decoys in place of the original decoys was not found to impact the
enrichment values (see Table S1 in the Supplementary Informa-
tion). Table 3 also provides a summary of the VS performances
obtained for the fingerprint types (substructure, circular, path,
text, pharmacophore). No particular fingerprint strategy appears
to be better suited to the problem of virtual screening.

Most circular and path-based fingerprints employ a standard
length of 1024 bits. O’Boyle and Sayle 74 suggested that increas-
ing the bit-vector length from 1024 to 16384 can improve VS
performance, though at a cost of space and run time for com-
parison. We evaluated the utility of longer fingerprints For the
MUV and LIT-PCBA data sets, and found that longer fingerprints
yield little to no gain in efficacy (see Table S2 in Supplementary
Information).

3.2 Tanimoto Similarity Distributions Are Generally Indis-
tinguishable

To explore the distribution of similarities between actives and de-
coys, we computed Tanimoto coefficients for active-active and
active-decoy molecule pairs in the DEKOIS data set. For each
target protein in DEKOIS59, we randomly selected an active
molecule, and computed the molecular fingerprint Tanimoto sim-
ilarity to all other actives and decoys for that target. Figure 1
shows the resulting score distributions for 32 fingerprints. In
DEKOIS, the distributions of active-active (blue) and active-decoy
(red) Tanimoto values are quite similar – the vast majority of ac-
tives fall into a score range shared by most decoys.

Most of the fingerprints in Figure 1 present a thin high-
Tanimoto tail for actives (blue) that is not seen for decoys (red),
suggesting that perhaps a small fraction of actives could be dis-
criminated from decoys by establishing a sufficiently high score
threshold. However, consider the ECFP2 fingerprint, which shows
an apparently compelling right tail in the active-active plot (blue),
such that it appears to be reasonable to establish Tanimoto cutoff
of 0.5. In DEKOIS, there are 423 active matches to active queries
above this threshold. Though the right tail of the active-decoy
distribution (red) is imperceptible in this plot, it still contains
∼0.0064% of the decoys. Extrapolating to a library of 3.7 billion
candidates, as we used in Venkatraman et al. 2 , we expect to see
∼23.7M decoys with Tanimoto ≥ 0.5, so that the active-to-decoy
ratio is ∼1:56,000. Setting the Tanimoto threshold to 0.75 leads
to an expected ratio of ∼1:68,000 (57 actives to ∼3.9M expected
decoys). This is not sufficient enrichment for useful downstream
analysis, particularly considering existing concerns about bias in
DEKOIS decoys (see previous section).

3.3 Fingerprint similarity values do not correlate with com-
pound potency

The previous sections demonstrate that fingerprint similarity has
limited utility in discriminating active molecules from decoys.
Alternative use of fingerprints could be to take a set of candi-
dates that have already (somehow) been highly enriched for ac-
tive compounds, and rank them according to expected potency.
The LIT-PCBA data set provides a measure of molecule potency
for each active (specifically, the concentration at which the com-
pound exhibits half-maximal efficacy, AC50 µM), and therefore
provides a mechanism for evaluating this value proposition.

For each target protein in the LIT-PCBA data set, we selected
the most potent active molecule, and computed fingerprint sim-
ilarities for all other actives for the corresponding target. We
evaluated the correlation of fingerprint similarity value to ob-
served AC50 by computing the Kendall rank correlation75. Fig-
ure 2 presents a heatmap of these correlation values (τ) for each
fingerprint across 15 protein targets, and demonstrates that all
fingerprints exhibit poor correlation, with values ranging between
-0.53 to 0.54, and generally only slightly higher than zero. This
suggests that the fingerprints evaluated are unlikely to yield a
ranked set of enriched highly potent compounds, in agreement
with the observations of Vogt and Bajorath 76 .

Figure 3 presents scatter plots corresponding to three of the
heatmap squares in Figure 2. The middle plot shows fingerprint
similarity and AC50 values for the target/fingerprint pair (tar-
get=VDR, fingerprint=SIGNATURE) with median Kendall cor-
relation, and is representative of most of the target/fingerprint
pairs; it shows essentially no correlation between fingerprint sim-
ilarity and AC50 values (τ = 0.01). The first and last scatter
plots show fingerprint similarity and AC50 values for the tar-
get/fingerprint with the highest (ADRB2, FFCP0) and lowest
(PPARG, ASP) correlation values. Note that Kendall rank correla-
tion values for FCFP0 with targets other than ADRB2 (τ = 0.54)
vary from -0.30 to 0.05 and for ASP with targets other than
PPARG (τ = −0.53) from -0.23 to 0.18. Even in the occasional
case of a specific fingerprint having a high correlation with com-
pound potency (perhaps due to chance effects in the case of low
number of actives), such properties are not generalized enough
to be useful for VS studies.

3.4 Evaluation on a target with many validated inactive
molecules

The previous experiments depend on benchmarks containing
computationally-identified decoys that almost entirely have not
been experimentally validated as inactive. The MMV St. Jude
malaria data set77 is an excellent resource to evaluate the util-
ity of fingerprint similarity for activity prediction in the context of
verified decoys. It contains a set of 305,810 compounds that were
assayed for malaria blood stage inhibitory activity. Among these
molecules, 2507 were classified as active, while the remaining
303,303 compounds were classified as inactive.

For each active molecule, we computed Tanimoto similarity to
each other active and to each inactive. Figure 4 shows bar plots
for each fingerprint, with each plot showing the fraction of in-
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FP AUC DRF
DEKOIS DUDE MUV LIT-PCBA DEKOIS DUDE MUV LIT-PCBA

AP2D 0.64 0.66 0.49 0.51 0.55 0.39 1.24 1.00
AT2D 0.78 0.79 0.58 0.55 0.20 0.12 0.86 0.83

AVALON 0.72 0.73 0.60 0.55 0.30 0.18 0.85 0.97
ESTATE 0.71 0.75 0.53 0.50 0.31 0.17 0.98 0.94

FP3 0.68 0.77 0.51 0.52 0.45 0.20 0.89 0.83
FP4 0.74 0.80 0.58 0.54 0.30 0.12 0.89 0.91

MACCS 0.71 0.75 0.55 0.54 0.33 0.18 0.99 0.93
PUBCHEM 0.76 0.76 0.55 0.54 0.28 0.20 1.06 0.97

RDK5 0.76 0.75 0.58 0.56 0.24 0.16 0.90 0.89
RDK6 0.70 0.70 0.59 0.58 0.38 0.29 0.86 0.82
RDK7 0.62 0.63 0.58 0.59 0.74 0.70 0.98 0.85

KR 0.72 0.74 0.54 0.51 0.31 0.19 1.05 0.96
SIGNATURE 0.72 0.72 0.55 0.54 0.33 0.23 0.97 0.99

SUBSTRUCTURE 0.71 0.73 0.56 0.54 0.36 0.24 0.96 0.91

ASP 0.80 0.79 0.58 0.53 0.17 0.12 0.89 0.99
DFS 0.79 0.78 0.55 0.52 0.18 0.14 0.98 1.01
FP2 0.79 0.78 0.55 0.54 0.20 0.14 1.01 0.90

LSTAR 0.78 0.78 0.54 0.51 0.19 0.13 0.97 1.03
TT 0.80 0.80 0.61 0.56 0.15 0.10 0.72 0.85

PATH 0.75 0.75 0.57 0.54 0.18 0.13 0.91 0.96

ECFP0 0.70 0.77 0.53 0.50 0.33 0.13 0.97 0.96
ECFP2 0.77 0.81 0.54 0.51 0.19 0.09 0.99 1.01
ECFP4 0.76 0.80 0.54 0.51 0.19 0.09 0.99 1.00
ECFP6 0.75 0.78 0.54 0.52 0.20 0.10 0.99 0.98
FCFP0 0.66 0.69 0.54 0.52 0.35 0.23 0.41 0.42
FCFP2 0.76 0.75 0.55 0.52 0.24 0.19 0.93 1.01
FCFP4 0.78 0.76 0.54 0.52 0.20 0.15 0.93 1.01
FCFP6 0.78 0.75 0.54 0.52 0.20 0.15 0.96 0.98
MAP4 0.81 0.83 0.56 0.54 0.14 0.07 0.91 0.85
MHFP 0.81 0.81 0.54 0.53 0.17 0.10 0.97 0.94
RAD2D 0.76 0.77 0.53 0.53 0.23 0.14 0.99 0.93

CIRCULAR 0.76 0.77 0.54 0.52 0.26 0.11 0.98 0.99

P2PPHAR2D 0.66 0.74 0.51 0.54 0.50 0.25 1.20 0.94
P3PPHAR2D 0.71 0.76 0.52 0.55 0.33 0.16 1.17 0.93

PHARMACOPHORE 0.75 0.76 0.54 0.53 0.42 0.21 1.19 0.94

LINGO 0.77 0.79 0.54 0.54 0.21 0.10 1.02 0.91

Table 3 Summary of the VS performances in terms of the AUC and DRF (p = 0.1) for the 32 fingerprints tested on the DEKOIS, DUDE, MUV and
LIT-PCBA data sets.

actives (red) and actives (blue) with Tanimoto similarity values
Tab ≥ c for values of c = (0.1, 0.2, ... , 0.9) and 0.99. In gen-
eral, the remaining fraction of actives only slightly exceeds the
remaining fraction of inactives, suggesting minimal enrichment
of actives at increased Tanimoto similarity values. MAP4 shows
an apparent relative abundance of actives, but note enrichment
is still only ∼10-fold, and that <1.5% of actives show Tanimoto
similarity >0.1 to another active, raising concerns about the use-
fulness of MAP4.

4 Discussion

There is substantial interest in the development of computational
approaches to identifying good candidate small molecule drugs
for specified protein binding pockets. This can be supported by
high-quality, succinct representations of the molecules in a library,
such that it is possible to rapidly identify ”neighbors” of known
or suspected active molecules. The results of this study demon-
strate that molecular fingerprints, and specifically measurement
of molecular similarity based on those fingerprints, are not effec-
tive at discriminating molecules with similar binding activity from
those with dissimilar activity. This suggests that the field must

expand beyond fingerprint representation of molecules. Though
the path forward is not clear, we suggest that it is vital that
molecules be represented in such a way that the potential con-
text of the molecule (i.e. information about the potential bind-
ing target) can be considered when evaluating the similarity of
molecules. We suspect that future successful strategies will em-
phasize the surface properties of the small molecule, and will rep-
resent the compound not as a monolith, but as a collection of sur-
face patches78–80. These, we believe, will enable a more context-
dependent emphasis on features of importance to particular in-
teractions, without interference from unimportant features.
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Fig. 1 Ridgeline plots showing the distribution of the Tanimoto fingerprint similarities calculated between a randomly-selected active molecule for
each target protein and all other actives (shown in blue) and decoys (in red) for that target. Data taken from the DEKOIS data set.
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Fig. 2 Heatmap of the Kendall rank correlation (τ) between fingerprint
Tanimoto (Tc) similarities calculated between the most active compound
for a given target and the potency values (AC50) of the actives for that
target.
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