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Abstract—Super resolution ultrasound imaging has shown its
potential to detect minor structures of tissues beyond the limit
of diffraction and achieve sub-wavelength resolution through
localizing and tracking the ultrasound contrast agents, such as
micro-bubbles. Normally, one important step of super resolution
ultrasound imaging, micro-bubbles localization is implemented
through conventional computer vision techniques, such as local
maxima detection etc. However, these classical techniques are
generally time consuming and need fine-tuning multiple param-
eters to achieve the optimal results. Hence, in the manuscript,
a deep learning based micro-bubbles localization is proposed,
trying to replace or simplify the complex operations of classical
methods. The efficiency of our proposed models is preliminarily
proved through 2022 ultra-SR challenge.

Index Terms—super resolution ultrasound imaging, deep learn-
ing based micro-bubbles localization, micro-bubbles tracking

I. INTRODUCTION

Super resolution (SR) ultrasound imaging has been proved
to be a valuable ultrasound modality to detect fine and detailed
structure of blood vessel or small animal organ beyond the
limit of sound wave diffraction [1]. Currently, SR ultrasound
imaging has been applied to differentiate malignant and benign
tissues in rats [2] or human breast [3]. It is also applied to
neurology to detect small vessels pathology, which can be
viewed as an indicator for brain dysfunction [4].

The manuscript is a brief summary of results submitted to
2022 ultra-SR challenge (https://ultra-sr.com/, abbreviated as
challenge in the following parts) 1. Normally, the SR images
are formed through localizing and tracking some ultrasound
contrast agents, such as micro-bubbles (MBs). The MBs local-
ization is conventionally implemented through local maxima
detection [6], 2-D Gaussian fitting after deconvolution with
point spread function (PSF) [7] etc. Some MBs localization
methods through deep learning are recently proposed [8], [9].
Deep learning based technique is also the main topic and
method of our manuscript. To the tracking part, Monte Carlo
based on Markov chain [10] and maximum intensity cross-
correlation between frames [11] etc. are proposed to solve the

1Since the challenge focused on the localization and tracking of micro-
bubbles in SR ultrasound imaging, below we mainly state the results related
with these two parts only. For complete view of SR ultrasound imaging,
readers can refer [5] for more details.

issue. Besides, Hungarian algorithm [6] based approach is also
employed to track MBs.

The main contributions of our proposed method are (1)
more efficient and powerful variants of conventional U-net,
which, to our best knowledge, were not employed in MBs
localization previously are tailored to solve the issue; (2) Dice
loss is added to the total loss function for better convergence.
Besides, through adjusting the threshold for segmentation dur-
ing training (see Sec. II.A), accuracy of pinpointing the local
maxima position can be easily controlled, hence increasing the
overall model performance.

II. METHODS

Common steps of SR ultrasound imaging includes B images
generation, slow time filtering for separation of MBs and
tissue background, MBs localization, MBs tracking and tracks
accumulation [1] as well as necessary motion compensation
between frames. Below we mainly state the details of MBs
localization and tracking (Fig. 1).

Fig. 1. SR ultrasound imaging processing pipeline in our methods.

A. Deep learning based localization

As illustrated above, a deep-learning based localization
method was proposed to replace conventional time consum-
ing computer vision (CV) operations, such as blob or local
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maxima detection etc. In our method, the MBs localization
was transferred to heatmap local maxima detection hence
it is nature and straightforward to use deep learning based
technique.

1) Training data generation: First we would like to point
out unlike methods shown in [12], training data generated
by simulations were not employed in our experiments for
following consideration. It seems that oscillations of MBs are
not considered in above mentioned paper and essentially, MBs
and normal scatters suffer different underlying physical disci-
plines when insonified by ultrasound beam [13]. Therefore, we
believe accurate simulations with oscillations of MBs needs to
be investigated in our future work however it is beyond the
scope of this manuscript. Hence, inspired by the work of Deep-
stochastic optical reconstruction microscopy (Deep-STORM)
[14], we decided to directly use real ultrasound images with
patches cropping mode. Our mode can greatly increase the
number of training samples with appropriate data augmenta-
tions, such as contrast adjust and image smoothing etc. More
important, our method does not induce any simulation error.

Since in the challenge, only 4 datasets (two synthetic and
two in-vivo datasets) were provided and their appearance are
quite different (see Fig. 2), herein in our solution, 4 models
were separately trained. To synthetic dataset, first 20 frames
from total 500 frames were selected to generate training
patches. To in-vivo rat brain dataset, randomly selected 10
videos (800 frames total) from 100 videos (8,000 frames)
were employed to train the corresponding model. For in-vivo
human lymph node dataset, first 594 frames from video 1 (total
3 videos with 1,382 frames) were used. Because no ground
truth of locations of MBs were provided in the challenge, local
maxima detection was employed with the help of Matlab build-
in function imregionalmax.m [6].

After getting the positions of MBs, Gaussian function with
kernel size 3×3 and σ = 1 was convolved with the localization
images, generating the heatmaps which were employed as the
labels of training samples. In order to further increase the
accuracy of MBs localization, all the images were up-sampled
to 3 times larger. Besides, the images were interpolated to the
same pixel size in axial and lateral direction with bi-linear
method before cropping for the dataset with anisotropic pixel
size, such as synthetic dataset 1. Note that the ratio between
training samples and total samples is less than normal deep
learning training strategy (normally 70% or more) due to
similar appearance of individual MB.

2) Model architecture selection: Because the MBs local-
ization has been transferred to heatmap local maxima de-
tection, widely-employed encoder-decoder structure, e.g. U-
net [15], was employed as our baseline model. Right now,
popular transformer-based models are not considered in this
challenge due to their requirements of large amount of training
samples in general, but will be investigated in our future
work. Two variants of classical U-net were mainly explored
in our solutions, nnU-net [16] and U-net with ImageNet
pretrained ResNet-18 as encoder backbone. nnU-net adopts
self-adapting framework to dynamically trade off the batch

Fig. 2. Video frames from the challenge dataset. (a) Frame 1 of synthetic
dataset 1. (b) Frame 1 of synthetic dataset 2. (c) Frame 1 of in-vivo rat brain
dataset video 1. (d) Frame 300 of in-vivo lymph node dataset video 1.

size and the model capacity, achieving better performance
than conventional U-net. For U-net with pretrained ResNet-
18, spatial and channel attention sub-module [17] was applied
in decoder branch, automatically adjusting the spatial pixels
and channel contributions to final predictions through trainable
weights.

3) Loss function: Besides conventional L1 loss [12], dice
loss was added to the total loss, increasing the convergence
speed of training in our experiments. When using dice loss,
one threshold was pre-set to segment the heatmap (label) to
foreground and background. Herein, setting higher value of
threshold will ideally increase the accuracy of localization.
The total loss used in the challenge was

Ltot = Ldice + λL1 (1)

In the equation, λ was empirically set to 2.0 and the normal
dice loss [18] and L1 loss were employed.

4) Training and inference details: The samples generated
in Sec. II.A.1) were split into training subset and validation
subset with proportion 8 : 2. The model with minimum
validation loss was saved and used for predictions. During the
training phase, widely used ADAM optimizer was employed
using PyTorch 1.11. The models were implemented with the
help of MONAI 0.8.1 [19] and Segmentation models 0.3.0
[20]. All the training and inference were implemented on one
Nvidia GPU (GeForce, RTX 2060).

Before predictions, the interpolated test images (with
isotropic pixel size) were also up-sampled to 3 times larger.
The sliding window (256×256) fashion with window overlap-
ping ratio 0.25 over up-sampled images was performed after
that.
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B. Linear sum assignment based tracking

In the tracking part, conventional tracking algorithm through
linear sum assignment (LSA) was employed because of the
following considerations. The appearance of MBs are quite
similar (see Fig. 2) and identification of single MB only
through the image features, whatever manually selected or
learned by deep learning, is theoretical difficult. Therefore
using LSA is more straightforward and nature although it
may be time consuming [6]. The distances between potential
localized MBs from previous step and current step were used
as the entries of cost matrix and conventional Hungarian
algorithm was employed to search the global minimum to the
cost function of LSA. After the tracking paths were completed,
the MBs density and velocity images could be calculated
accordingly.

III. RESULTS

A. Accuracy of localization

Fig. 3 to Fig. 4 show the estimated MBs locations with
two neural nets for different dataset respectively. For synthetic
dataset 1 (see Fig. 3), it seems that U-net with ResNet-18 as
backbone predicts the MBs locations with lower intensity more
than nnU-net (Fig. 3 (a)). Besides, most predicted positions of
MBs by two nets correspond whatever for synthetic dataset 1
or dataset 2.

Fig. 3. Localization results for synthetic dataset. (a) Synthetic dataset 1. (b)
Synthetic dataset 2.

To in-vivo rat brain data, visually most bright points which
may correspond the MB locations are detected. To in-vivo
lymph node, since the dataset was log compressed, it looks
like more noisy. However, at least from Fig. 4, the detection
results still seem reasonable for two nets.

B. Super resolution images

Considering the large size of super resolution images (10
times larger than original size), only portions of images are
show in Fig. 5 and Fig. 6. Fig. 5 and Fig. 6 show the
MBs density and velocity magnitude map in in-vivo rat brain
cortex parts, respectively. It is obvious that some minor vessel
structures can be clearly seen in the figures. Since obvious
minor structure cannot be seen in portion of lymph node
images, the images are rescaled to 0.3 of original ones to show

Fig. 4. Localization results for in-vivo dataset. (a) In vivo rat brain. (b) In
vivo lymph node.

the complete view in Fig. 7 and Fig. 8. From the figures, it can
be seen that in the middle part of images, minor bright spots
which may represent small lymph nodes can be easily seen.
However, we don’t know the actual structure of whole lymph
node and this dataset is the only log compressed one in the
challenge (also more noisy than other datasets visually), some
parameters based on prior information, especially tracking
related parameters such as minimum length of single track
etc., may not be set to the optimal values.

Fig. 5. Rat brain MBs density map (a.u.).

Fig. 6. Rat brain MBs velocity magnitude map (mm/s).
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Fig. 7. Lymph node MBs density map (a.u.).

Fig. 8. Lymph node MBs velocity magnitude map (mm/s).

C. Model running time of MBs localization

In this sub-section, a brief comparison between running
time of our deep learning based localization and local maxima
detection is shown in Table. I to Table. IV. We only report
running time per frame in the following tables.

TABLE I
RUNNING TIME OF DEEP LEARNING METHODS AND LOCAL MAXIMA

DETECTION FOR SYNTHETIC DATASET 1

Method Image size Running time (ms)
nnU-net 3066× 1536 43

ResNet-18 U-net 3066× 1536 31
local maxima detection 512× 512 11

Considering that the deep model predictions were performed
on 3 times up-sampled images and with sliding windows

TABLE II
RUNNING TIME OF DEEP LEARNING METHODS AND LOCAL MAXIMA

DETECTION FOR SYNTHETIC DATASET 2

Method Image size Running time (ms)
nnU-net 1536× 1536 9

ResNet-18 U-net 1536× 1536 13
local maxima detection 512× 512 11

fashion, the running time for deep model is longer than
local maximum detection for some datasets is reasonable.
Local maxima detection based localization normally needs
extra post-processing of MBs detection for increasing the
accuracy of localization, which are normally not necessary
for deep learning end-to-end training mode. The extra time for
post-processing one frame is different based on the selected
methods (see [6] for more details), normally from 3 ms to 48
ms (Gaussian curve fitting) or even more for synthetic dataset.
Here we would like to point out that our deep learning based
methods were running on GPU (although not so powerful)
while the local maxima detection was performed on CPU (Intel
Core I7-10700). Thus the comparison may not be rigorously
fair.

TABLE III
RUNNING TIME OF DEEP LEARNING METHODS AND LOCAL MAXIMA

DETECTION FOR IN-VIVO RAT BRAIN

Method Image size Running time (ms)
nnU-net 498× 378 0.5

ResNet-18 U-net 498× 378 0.5
local maxima detection 166× 126 0.9

TABLE IV
RUNNING TIME OF DEEP LEARNING METHODS AND LOCAL MAXIMA

DETECTION FOR IN-VIVO LYMPH NODE

Method Image size Running time (ms)
nnU-net 1122× 1308 3

ResNet-18 U-net 1122× 1308 3
local maxima detection 374× 436 5

To the in-vivo rat brain and lymph node set, similar trends as
synthetic dataset can be observed. The extra post-processing
time per frame for in-vivo rat brain is from around 10 ms
to 60 ms. To the in-vivo lymph node dataset, the extra post-
processing time ranges from 18 ms to over 100 ms.

IV. DISCUSSIONS AND CONCLUSIONS

In the challenge, the efficiency of our proposed deep learn-
ing based MBs localization is preliminarily proved. However,
there are still lots of issues that need to be addressed in
the future. For example, accurate multi-physics simulations
including flow simulation, MBs oscillations induced by ultra-
sound wave as well as ultrasound beam-forming specialized to
SR ultrasound imaging etc. have to be investigated for easily
generating abundant training samples. The model architectures
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need to be further specialized to MBs localization task maybe
with the help of Auto ML etc.

We also would like to point out the datasets in the challenge
may not well reflect the situations in various clinical or
experimental settings of ultrasound imaging. Herein, more
data still needs to be acquired and analyzed in order that SR
ultrasound imaging can be deployed in our machine.
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