






Fig. 7. Lymph node MBs density map (a.u.).

Fig. 8. Lymph node MBs velocity magnitude map (mm/s).

C. Model running time of MBs localization

In this sub-section, a brief comparison between running
time of our deep learning based localization and local maxima
detection is shown in Table. I to Table. IV. We only report
running time per frame in the following tables.

TABLE I
RUNNING TIME OF DEEP LEARNING METHODS AND LOCAL MAXIMA

DETECTION FOR SYNTHETIC DATASET 1

Method Image size Running time (ms)
nnU-net 3066 � 1536 43

ResNet-18 U-net 3066 � 1536 31
local maxima detection 512 � 512 11

Considering that the deep model predictions were performed
on 3 times up-sampled images and with sliding windows

TABLE II
RUNNING TIME OF DEEP LEARNING METHODS AND LOCAL MAXIMA

DETECTION FOR SYNTHETIC DATASET 2

Method Image size Running time (ms)
nnU-net 1536 � 1536 9

ResNet-18 U-net 1536 � 1536 13
local maxima detection 512 � 512 11

fashion, the running time for deep model is longer than
local maximum detection for some datasets is reasonable.
Local maxima detection based localization normally needs
extra post-processing of MBs detection for increasing the
accuracy of localization, which are normally not necessary
for deep learning end-to-end training mode. The extra time for
post-processing one frame is different based on the selected
methods (see [6] for more details), normally from 3 ms to 48
ms (Gaussian curve fitting) or even more for synthetic dataset.
Here we would like to point out that our deep learning based
methods were running on GPU (although not so powerful)
while the local maxima detection was performed on CPU (Intel
Core I7-10700). Thus the comparison may not be rigorously
fair.

TABLE III
RUNNING TIME OF DEEP LEARNING METHODS AND LOCAL MAXIMA

DETECTION FOR IN-VIVO RAT BRAIN

Method Image size Running time (ms)
nnU-net 498 � 378 0:5

ResNet-18 U-net 498 � 378 0:5
local maxima detection 166 � 126 0:9

TABLE IV
RUNNING TIME OF DEEP LEARNING METHODS AND LOCAL MAXIMA

DETECTION FOR IN-VIVO LYMPH NODE

Method Image size Running time (ms)
nnU-net 1122 � 1308 3

ResNet-18 U-net 1122 � 1308 3
local maxima detection 374 � 436 5

To the in-vivo rat brain and lymph node set, similar trends as
synthetic dataset can be observed. The extra post-processing
time per frame for in-vivo rat brain is from around 10 ms
to 60 ms. To the in-vivo lymph node dataset, the extra post-
processing time ranges from 18 ms to over 100 ms.

IV. DISCUSSIONS AND CONCLUSIONS

In the challenge, the efficiency of our proposed deep learn-
ing based MBs localization is preliminarily proved. However,
there are still lots of issues that need to be addressed in
the future. For example, accurate multi-physics simulations
including flow simulation, MBs oscillations induced by ultra-
sound wave as well as ultrasound beam-forming specialized to
SR ultrasound imaging etc. have to be investigated for easily
generating abundant training samples. The model architectures
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need to be further specialized to MBs localization task maybe
with the help of Auto ML etc.

We also would like to point out the datasets in the challenge
may not well reflect the situations in various clinical or
experimental settings of ultrasound imaging. Herein, more
data still needs to be acquired and analyzed in order that SR
ultrasound imaging can be deployed in our machine.
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