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Abstract 

Single-molecule localization microscopy (SMLM) enables the detailed visualization of nuclear 

pore complexes (NPC) in vitro with sub-20 nm resolution. However, it is challenging to translate 

the localized coordinates in SMLM images to NPC functions because different algorithms to 

cluster localizations as individual NPCs can be biased without ground truth for validation. We 

developed a Monte-Carlo simulation to generate synthetic SMLM images of NPC and used the 

simulated NPC images as the ground truth to evaluate the performance of six clustering algorithms. 

We identified HDBSCAN as the optimal clustering algorithm for NPC counting and sizing. 

Furthermore, we compared the clustering results between the experimental and synthetic data for 

NUP133, a subunit in the NPC, and found them to be in good agreement. 
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Introduction 

The nuclear pore complex (NPC) forms a nanosized channel on the nuclear membrane. It is an 

essential gateway for transporting biomolecules (e.g., RNA, proteins) between the cell nucleus and 

the cytoplasm [1,2]. The NPC has highly preserved ring-shaped features across different 

mammalian species and is composed of about 30 different nucleoporin subunits (NUPs) in human 

cells with well-defined NUP stoichiometries [1]. The scaffold NUPs, are typically classified into 

outer-ring, inner-ring, and transmembrane NUPs (Figure 1) and have either 8 or 16 copies of the 

corresponding NUPs possessing 8-way symmetry. While state-of-the-art structural biological 

techniques (e.g., X-Ray crystallography and cryogenic electron microscopy) provide the detailed 

structural organization of NPCs [3], the functional information of specific NUPs under different 

cellular conditions remains understudied. 

Single-molecule localization microscopy (SMLM) allows optical imaging of subcellular 

architectures at the molecular level based on stochastic fluorescence emissions with high 

molecular specificity [4,5]. SMLM enables the capture of the otherwise inaccessible spatial and 

functional information of biomolecules [6–9]. In NPC imaging, NUPs have not only been 

visualized using SMLM [10] but have also been treated as reference standards for benchmarking 

the imaging performance of various SMLM techniques [11] because of NPC’s well-defined and 

highly-preserved nanostructures. However, the objective analysis of functional information in 

NPC presented in SMLM images remains challenging. This is because it requires clustering of the 

coordinates data obtained from SMLM into individual NPCs before investigating any NPC 

functions (e.g., NUP composition, NPC size & density). Existing clustering methods typically have 

a biased clustering outcome due to the subjective selection of clustering parameters (e.g., minimum 

size and points of the cluster). Using ground-truth information would allow us to optimize and 

validate the clustering performance [12]; however, such ground-truth data is not readily available 

in SMLM imaging of NPC. 

To overcome this challenge, we developed a Monte-Carlo simulation method to simulate 

NPC images following the physical process in SMLM experiments to generate ground-truth NPC 

data. The simulation incorporates several fundamental physical uncertainties that collectively 

determine each single-molecule localization (SML) coordinate, thereby providing well-controlled 

and realistic subjects for NPC clustering. First, in the SMLM data, each NPC will be visualized as 

a point cloud consisting of the coordinates of SMLs. The SMLs arise from the stochastic 
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fluorescence photoswitching events of fluorescent labels (marked as the small red symbol on the 

secondary antibody in Figure 1) that are tagged to selected NUPs [4]. Second, we considered the 

influence of uncertainties arising from indirect immunofluorescence labeling [8]. Because the 

antibodies used to label NPCs often have an inherently large size (~10-15 nm), localizing the 

fluorescence molecules entangles complicates the true localization uncertainty of target molecules 

in SMLM [8]. Second, the flexible Y-shaped structure of antibodies makes it even more 

challenging to correlate the localization events with the true location of the target molecule as 

antibodies may orient in different directions. Third, we introduced localization uncertainties and 

realistic non-specific SML background from antibody off-targeting and background 

autofluorescence signals [13] in the final SMLM image. By providing a model that links the 

ground-truth geometry to an SMLM image, this work sets the stage for SMLM to validate and 

optimize clustering methods for objective NPC clustering and subsequent functional analyses. 

Results and discussion 

SMLM imaging of NUP133 using indirect immunofluorescence labeling 

We first statistically characterized three experimental parameters of NPCs to be used in our Monte-

Carlo simulation: (1) localization precision, (2) SMLs per labeling site, and (3) background SMLs. 

We imaged NUP133, an outer-ring NUP with an average radius of 53.5 nm to the central axis, 

using our home-built experimental SMLM system [14]. The SMLM image of NUP133 shows 

individual clusters spanning the entire nuclear membrane (Figure 2A). The magnified view shows 

the characteristic nanosized ring-shaped features (Figure 2B). Particularly, only a portion of the 8 

NUP133 proteins was labeled and visualized in each NPC the steric hindrance of the antibodies 

mask the reactive sites for the antigen-antibody reactions, and intrinsically poor labeling efficiency 

of the primary and secondary antibodies. We observed smaller localization clusters (highlighted 

by the arrows in Figure 2B) which could be detected as the SMLs from (1) true individual NPCs 

signals at relatively low labeling efficiency (i.e., 1 of 8 NPC sites labeled) or (2) non-specific 

binding of secondary antibodies. We obtained an average localization precision of 15 nm measured 

from ~70,000 SMLs, and the localization precision follows a normal distribution (Figure 2C). We 

further deposited the dye-labeled secondary antibody on a glass substrate and found that the SMLs 

per antibody follows an exponential distribution with a mean value of 10 (Figure 2D), which was 
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used to simulate the number of SMLs from each NUP protein. Our imaging results of the NUP133 

protein are consistent with the literature [10]. 

The lack of ground truth information makes it challenging to identify true NPC clusters 

visually, as shown in the cases in Figure 2B. Therefore, our goal is to comprehend the major 

sources of uncertainty to simulate the NPC images resembling the experimental conditions. We 

intentionally used the classical indirect immunofluorescence labeling method (i.e., an anti-

NUP133 primary antibody and the corresponding Alexa Fluor 647-tagged secondary antibody) to 

label the NUP133 protein to present a challenging case with multiple sources of uncertainties. 

Thereafter, we incorporated these variations into our Monte-Carlo simulation in addition to the 

localization uncertainties. 

Monte-Carlo simulation of SMLM imaging of NPC 

Using the experimentally acquired probability density functions (PDFs) of localization precision 

and number of SMLs from each secondary antibody (Figures 2C-2D) and the physical size of 

primary and secondary antibodies, we summarized the overall Monte-Carlo simulation process 

with the four main functions described in the flowchart (Figure 3). First, we simulated the spatial 

distribution of NPCs and the coordinates of NUPs of interest. NPCs are known to be randomly 

distributed on the nuclear membrane with varying pore distances of approximately 250 to 500 

nm [15]. We simplified the spread model of NPC as projections on a two-dimensional (2D) 

squared box with varying NPC spatial density based on the following two rationales: (1) most 

SMLM studies of NPC use TIRF illumination to selectively image the NPCs close to the flat cell-

glass interface, and (2) the typical axial resolution of ~80 nm in SMLM is challenging to resolve 

the NUPs on the nuclear membrane. Then, we obtained the distance-to-center parameter of 

different NUPs from the literature [3]. We assumed that all the NUPs maintained 8-way 

symmetricity and generated eight sites around the NPC centroid (orange dots in Figure 4A). Next, 

we used the Poisson disk algorithm [16] to generate the NPC centroid locations (green circles with 

black crosses in Figure 4A) with a minimum spacing of 250 nm and a distance of 53 nm to simulate 

NUP133 as an example. We then trimmed the list of candidate NPC centroids to 1-9 NPCs per 

μm2, corresponding to the NPC densities reported in typical mammalian cells [17]. 

Second, we simulated the effects of indirect immunofluorescence labeling on different 

NUPs. On the one hand, antibodies are known to show finite labeling efficiency to the protein of 

interest because of antibody affinity [18] and steric hindrance around the proteins [19]. Such 
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labeling inefficiencies have been observed in SMLM-NPC imaging, with <50% of the NUPs being 

labeled and visualized [20]. On the other hand, antibody labeling of NUPs can be anisotropic, such 

as the labeling of inner-ring NUPs and transmembrane NPCs. More specifically, the antibodies 

may only access the reactive sites of the inner-ring NUPs from the central channel region because 

the other side of the inner-ring NUP is blocked by the transmembrane NUPs (Figure 4B). The 

linker length, coupled with the labeling directionality can cause underestimates of the radius of the 

inner NUP rings. A similar effect has been observed in SMLM imaging of microtubules, wherein 

antibodies can only access the outer wall of the microtubule and cause an elevated diameter 

measurement [21]. In contrast, antibodies can presumably access the outer ring NUPs isotropically 

because they are labeled parallel to the central channel (Figure 4B). To simplify the model of the 

antibodies, we assume that primary and secondary antibodies are 15 nm rigid structures that form 

two spheroid joints on the target proteins (Figure 4B). We assumed that they can fall within two 

hemispheres orthogonal to the target site since it is likely difficult for the secondary antibody to 

fold back onto the primary antibody due to steric hindrance. We also assumed that secondary 

antibodies only bind to the primary antibody's farthest end, representing the worst-case scenario 

of labeling for SMLM. Further, we assumed that fluorophores are uniformly distributed along the 

length of the secondary antibodies. Most fluorophores are bioconjugated to the antibodies through 

covalent reactions to the largely abundant amino, carboxyl, or thiol residues on the proteins, which 

possess similar reactivities [22]. Collectively, we incorporated antibody accessibility and used a 

binomial distribution on the eight sites for labeling efficiency to generate the labeling sites of the 

NUPs. 

Third, for each fluorophore site generated, we used a random number of SMLs according 

to the experimentally measured PDF of SMLs. We assumed a uniform localization uncertainty of 

10 nm for SMLs to represent the 20 nm resolution [23] unless otherwise stated. The overall 

simulation outcome for each NPC is a point cloud representing the SMLs typically detected in the 

SMLM images (Figure 4C). A representative NUP133 simulation shows the labeling of six sites 

of the eight subunits, which can readily be resolved visually (left panel in Figure 4C). In contrast, 

as the anisotropic labeling of an inner-ring NUP, the three labeled sites are unresolved after 

convolving with the experimental PDFs (right panel in Figure 4C). With the simulation, we can 

trace the origins of each SML from the individual NUPs (shown as the six different colored point 

clouds in Figure 4C), which would be challenging to identify without knowing the ground truth. 
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Using the coordinate list output from the Monte-Carlo simulation, we rendered 

representative synthetic SMLM images, FG repeats (central channel NUPs), NUP93 (inner-ring 

NUPs), NUP210 (transmembrane NUPs), and NUP133 (outer-ring NUPs) (Figures 3D-3G). These 

four NUPs have a radius of 53 nm, 10 nm, 40 nm, and 80 nm, respectively. NUP210 can be fully 

resolved using antibodies because of the relatively large separation among individual NUP210 

proteins along with its labeling direction (Figure 4F), which is consistent with the published 

experimental results [24]. However, the visualization of the ring-shaped structures for NUP93 and 

FG-repeats is ambiguous (Figures 3D-3E), suggesting that only the transmembrane or outer-ring 

NUPs are resolvable in SMLM using an indirect immunofluorescence labeling approach. We also 

simulated the NUP133 SMLM image (Figure 4H) with the experimental PDFs. The overall quality 

of the image visually resembles the experimental results. In both images, ten NPCs are 

unambiguously identified with diameters of ~100 nm with their unique ring-shaped structures. In 

addition, two smaller clusters (highlighted by the arrows in Figure 4H) arose from extremely low-

efficiency labeling of an NPC. In short, these SMLM images generated by Monte-Carlo simulation 

can reflect the structural organization of different NUPs and are consistent with our experimental 

results. 

Clustering performance test using simulated NPCs 

Treating the Monte-Carlo simulated NPCs as the ground truth, we investigated the optimal 

clustering method for NPC for SMLM. We selected density-based spatial clustering of applications 

with noise (DBSCAN) [25], Hierarchical DBSCAN (HDBSCAN) [26], Ordering points to 

identify the clustering structure (OPTICS) [27], Agglomerative [28], K-means [29], and balanced 

iterative reducing and clustering using hierarchies (BIRCH) [30] methods in our test. While the 

first three do not require the input of the number of clusters as a parameter, the latter three require 

it. To systematically test their clustering performance, we generated synthetic SMLM images of 

NUP133 with a relatively high NPC density of 9 NPC per µm2, which is among typical values 

reported for mammalian cells [17] to present challenging cases. We generated a 10×10 µm2 area 

of NPCs with NUP133 as labeling targets (Figure 5A). As we assume that our labeling efficiency 

follows a binomial labeling process, NUP133 clusters have diverse shapes with 2-6 sites labeled 

(magnified views in Figure 5A).  

We used an Adjusted Rand Index using Python’s scikit-learn package to quantitatively 

compare the clustering performance of the tested methodsThe Adjusted Rand Index calculates the 
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similarity between clustering results and the ground truth, and is used extensively for 

characterizing clustering performance [12]. An Adjusted Rand Index approaching 1 indicates 

better clustering performance (Figure 5B), and with this, we found that HDBSCAN stands out 

among all the other algorithms tested (green bars in Figure 5B). Additionally, the number of 

clusters identified from the six algorithms are 55, 101, 90, 100, 100, and 100 for DBSCAN, 

HDBSCAN, OPTICS, Agglomerative, KMeans, and BIRCH, respectively (red bars in Figure 5B). 

Notably, as Agglomerative, KMeans, and Birch require the number of clusters in the dataset to be 

provided, we used a value of 100, which matched the ground truth (as indicated with the dashed 

yellow line in Figure 5B) to test their theoretical clustering performances. The NPC counting 

percent errors were then calculated with (Nd−Ng)/Ng×100%, where Nd is the number of NPC 

detected by the algorithm, and Ng is the number of NPC in the ground truth, and the numbers are 

45%, 1%, 10% for DBSCAN, HDBSCAN, and OPTICS, respectively. The percent errors of the 

other three algorithms were not calculated because we used Nd = Ng = 100, which give percent 

errors of 0%. However, it is practically challenging to select a number-of-clusters value that 

exactly matches the ground truth in these three algorithms. Furthermore, considering the high 

Adjusted Rand index available in HDBSCAN without the need to input the number-of-clusters 

value, we conclude that HDBSCAN is the optimal clustering algorithm for NPC identification. 

Next, we investigated HDBSCAN’s sizing and counting performance under different 

background SMLs and NPC density conditions, which might affect the clustering performance. 

The number of SMLs per NPC and the background count of SMLs in the simulations follow 

experimental parameters (Table 1). We compared the Adjusted Rand Index values to test the 

clustering performance in this case. As the minimal cluster size is the only required input parameter 

in HDBSCAN, we first optimized this parameter in our clustering performance at different 

background SML levels. Concurrently varying the minimal cluster size with the background levels, 

we observed that a cluster size of 15 yielded the highest Adjusted Rand Index (~0.9–1.0) at 

different background SML levels, as shown in Figure 5C as a heatmap. Additionally, the heatmap's 

second to fourth columns in Figure 5C illustrates minimal variations of the Adjusted Rand Index 

at different background levels. This feature highlights the robustness of HDBSCAN in NPC 

clustering without prior knowledge of the number of clusters and with different background 

conditions that are potentially associated with experimental biological imaging conditions.  
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Further, we calculated the counting and sizing errors to better understand the clustering 

performance (Figure 5D). Specifically, the counting errors increase from 1.0% to 1.3%, while the 

sizing errors decrease from 1.9% to 0.3% as a function of increasing background SMLs. 

Consequently, these errors are relatively small in understanding the potential change in NPC 

functions of size and density variations. The minimal variations in sizing and counting errors at 

different background levels suggest that HDBSCAN is unlikely to be biased when analyzing 

different biological samples with various autofluorescence and non-specific binding conditions. 

Finally, we quantified the NUP133 cluster size using the experimental, simulated, and ground truth 

datasets extracted from HDBSCAN (Figure 5E). The average radius of the NUP133 clusters are 

58 nm, 59 nm, and 59 nm for the experimental, simulated, and ground-truth datasets, respectively. 

These values are consistent with the reported 53 nm radius plus the antibody labeling and 

localization uncertainties [11]. 

Methods 

1. Sample preparation and SMLM imaging 

HeLa cells (ATCC) were grown in DMEM (Gibco/Life Technologies) supplemented with 2 mM 

L-glutamine (Gibco), 10% fetal bovine serum (Gibco/Life Technologies), and 1% penicillin / 

streptomycin (10 kU/mL, Gibco/LifeTechnologies) at 37°C with 5% CO2. The cells were plated 

on a No. 1 borosilicate bottom 8-well Lab-Tek™ Chambered Cover Glass with 30%-50% 

confluency. After 48 hours, the cells were permeabilized and fixed following the literature 

protocol  [10]. The fixed samples were blocked with a blocking buffer (3% BSA, 0.5% Triton X-

100 in PBS) for 20 min and then incubated with the primary antibodies (Rabbit anti-NUP133, 

1:100 dilution, Sigma HPA059767) in the blocking buffer overnight at 4°C and rinsed with a 

washing buffer (0.2% BSA, 0.1% Triton X-100 in PBS) thrice. The samples were further incubated 

with the corresponding Donkey secondary antibodies-dye conjugates (Anti-Mouse Alexa Fluor 

647, 2.5 μg/mL in blocking buffer) for 40 min at 25°C, washed thoroughly with PBS thrice at 

25°C, and then stored at 4°C. SMLM imaging was performed with a custom-built SMLM system 

based on a Nikon Ti-2E inverted fluorescence microscope, as described before [31]. The samples 

were immersed in an SMLM imaging buffer [32], excited with a 647 nm continuous-wave laser 

under total internal reflection fluorescence (TIRF) illumination mode. An exposure time of 20 ms 

was used and an image sequence of 20,000 frames was collected to reconstruct the SMLM image 

using the ThunderSTORM plugin in ImageJ [33]. 
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2. Monte-Carlo simulation 

The Monte-Carlo simulation [34] was implemented in MATLAB 2022a with main functions 

following four main steps shown in Figure 3. In the first step, we used the Poisson disk 

algorithm [16] to generate the NPC centroid locations with a minimum spacing of 250 nm. The 

number of centroids was then adjusted to give the desired NPC density. With each NPC centroid 

location, the label sites were simulated using a uniform distribution between [0°, 45°) to simulate 

the rotational freedom of the nuclear pore complex within the nuclear membrane. 

In the second step, we assigned a probability on each of the eight rotationally symmetric 

NUPs sites depending on the NUP site (Table 2) to simulate the stochastic process of antibody 

binding onto each available NUP site. 

In the third step, we simulated the location of individual fluorophores on the antibody. To 

simplify the model of the antibodies, we assumed that primary and secondary antibodies were 15 

nm rigid structures that form two spheroid joints on the target proteins (Figure 4B). For each 

antibody, we assumed that they fall within a hemisphere normal to the target site. The angle of 

attachment of each antibody was simulated using a uniform distribution for the azimuth with [0°, 

360°) and a uniform distribution scaled by an inverse sine function between [0,1], giving an 

elevation of [0°, 90°]. This ensures that the points generated were equally dense throughout the 

semicircular region. We assumed that secondary antibodies only bind to the primary antibody's 

farthest end, representing the worst-case scenario of labeling in imaging. Further, we used a 

uniform distribution between [0, 15] nm to generate the fluorophore location along the length of 

the secondary antibodies. 

In the last step, we used a random number generator that follows a negative binomial 

distribution [35] to generate the number of SMLs with parameters adjusted so that the mean 

number matched our experimental results. For each SML, we assumed a uniform localization 

uncertainty of 10 nm, and we modeled the spread of the localizations using a symmetric bivariate 

normal distribution. The MATLAB code for our simulation is available on Github at 

https://github.com/FOIL-NU/MC-NPC. 

3. Clustering test 

We carried out all the clustering tests using the Python packages Scikit-learn 1.1.2 for DBSCAN, 

OPTICS, Agglomerative, KMeans, and BIRCH; and an individual package of HDBSCAN. When 

investigating the performance among different clustering methods, we selected consistent 
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parameters, including a minimum point of 10 and a minimum size of 30, to minimize the chance 

of extracting repeatedly emitting individual fluorophores. In the cases of Agglomerative, KMeans, 

and BIRCH, we used the number of clusters of 100, which was identical to that of the ground truth, 

to test their theoretical performance. In the case of HDBSCAN, we only selected a minimum size 

of 30 as the rest of the parameters were automatically optimized by the intrinsic hierarchical 

clustering feature. 

Conclusion 

In this work, we developed a Monte-Carlo model based on experimental SMLM parameters, 

structural organization of NPC subunits, uncertainties due to the physical sizes of molecular 

labelings, and the single molecule localization uncertainties due to stochastic blinking events. We 

used this model to generate ground truth NPC images and tested six reported clustering methods. 

We found that HDBSCAN was the optimal clustering algorithm for NPC, with the lowest errors. 

In addition, HDBSCAN provides a consistent measurement of the radius of NUP133 rings from 

both experimental and Monte-Carlo simulated images compared to the ground truth. 
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Figure 1. Illustration of the physical sizes and relationship between the structural components of 

NPC, outer ring NUPs, inner ring NUPs, transmembrane NUPs, and nuclear NUPs. On the outer 

ring NUP, we show fluorescence labeling by a primary antibody and a secondary antibody with a 

fluorophore. 
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Figure 2. (A) SMLM imaging reconstruction of NUP133 labeled HeLa cells; (B) a magnified view 

of the area highlighted by the orange box in panel A; (C) A histogram showing the probability 

distribution of localization precision from ~70,000 single molecules detected in panel A and a 

fitted curve using a gaussian distribution (red curve); (D) A histogram showing the probability 

distribution of the number of SMLs in Alexa Fluor 647-labeled secondary antibody fitted onto an 

exponential distribution (red curve). 
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Figure 3. Flowchart of our Monte-Carlo simulation. GetNupParameters, GenerateCentroids, 

GenerateLabelSites, GenerateFluorophoreSite, and GenerateLocalizations are functions used in 

the simulation and can be found at https://github.com/FOIL-NU/MC-NPC. 
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Figure 4. (A) An illustration of the initial centroid and label site generation process. Black crosses: 

centroids generated; yellow and green circles: label sites of outer ring NUPs and inner ring NUPs, 

respectively; (B) A illustrated cross-section of a single NPC site with dotted hemispherical regions 

depicting possible locations of antibodies due to the degree of freedom with labeling. Fluorophores 

are randomly assigned along the length of the secondary antibody (pink dots); (C) A detailed 

illustration of a single NPC site. Scatterplots of the coordinates simulating a single NPC for an 

outer NUP (left) and inner ring (right). Colored crosses: SMLs; black dots: primary antibody; green 

circles and gray crosses indicate the center location of the NPC as references; (D) Simulated 

SMLM images of FG repeats; (E) Simulated SMLM images of NUP93; (F) Simulated SMLM 

images of NUP210; (G) Simulated SMLM images of NUP133 with 3 NPCs/μm2; (H) Simulated 

SMLM images of NUP133 using the identical experimental uncertainties in Figure 2. 
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Figure 5. (A) A simulated SMLM image of NUP133 with 9 NPCs/μm2 with background levels of 

100 SMLs per μm2; (B) Adjusted Rand Index (green bars) and the number of clusters (red bars) 

values using different clustering algorithms. The dashed line indicates the ground-truth number of 

clusters; (C) A heatmap showing the Adjusted Rand Index for clustering performance 

characterization as a function of increased background number of SML and minimal size of the 

cluster in the HDBSCAN parameter; (D) The counting (black line) and sizing (red line) errors of 

HDBSCAN clustering at a background number of 40 SMLs, with a minimum cluster size of 15 

using the image shown in panel A; (E) A violin plot illustrating the histogram radius distribution 

of the NUP133-ring of the experimental data (cyan) and the simulated data (magenta) of each 

NUP133 cluster after HDBSCAN clustering and using the ground-truth (green). 
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Table 1. Summary of NUP parameters used in the simulation. 
 

NPC protein Location Radius relative to NPC centroid 
(nm) 

NUP93 Inner Ring 40.0 

NUP133 Outer Ring 53.5 

NUP210/GP210 Transmembrane NUP 80.0 

FG repeats Central Channel 10.0 

 
 
Table 2. Summary of simulation constants unless otherwise noted. 
 

Parameter Value 

Localization uncertainty 10 nm 

Primary antibody length 15 nm 

Secondary antibody length 15 nm 

Chemical tag length 5 nm 

Probability of labeling onto a NUP133 protein 0.3 per site 

Average number of SMLs per secondary antibody 10 

Nuclear membrane size  10 × 10 μm2 

Minimum spacing between adjacent NPCs 250 nm 

Background noise 0, 40, and 100 photons per μm2 

Density of NPCs 1, 3, 5, 7, and 9 NPCs per μm2 
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