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Abstract: Bacterial populations are highly adaptive, enabling them to respond to and surviving in 
shifting environments or stresses. Yet, how these single-cell organisms vary and organize their 
behavior to tolerate stressors is poorly understood. This is because many bacterial 
subpopulations are rare and cannot be readily discovered by existing single-cell sequencing 
methods due to limitations in cell number and sequencing depth. Here we develop Massively-
parallel Microbial mRNA sequencing (M3-Seq), which addresses these challenges by using 
combinatorially-indexed cells to overload droplets in combination with RNA amplification and 
post-hoc rRNA depletion. In a single M3-Seq experiment, we profile hundreds of thousands of 
bacterial cells from multiple species under a wide range of conditions. In addition to validating 
our approach and findings, we exploit the scale of M3-Seq to make several unexpected 
discoveries, including new insights into bet hedging strategies in stress responses, bacterial 
responses to antibiotics, and host responses to phage infection. 
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Introduction 
         Bacteria have a remarkable ability to survive and adapt in diverse, changing 
environments. This remains true even if a population of bacteria originates from a single parent 
bacterium. Individual cells can specialize at the transcriptional level, allowing the population as a 
whole to flourish in the face of unpredictable environmental stressors. These specializations can 
manifest in morphologically distinct states such as the sporulation phenotype in certain Gram-
positive organisms such as Bacillus subtilis, or morphologically-indistinguishable but 
functionally distinct states such as the rare (1 in 10,000) antibiotic-resistant “persister” 
phenotypes in species such as Staphylococcus aureus and Escherichia coli (1–3). 

To recognize the full range of specializations within bacterial populations, it is necessary 
to measure how single cells orchestrate the expression of multiple genes over different stressors. 
Single-cell RNA Sequencing (scRNA-seq) has transformed how researchers study phenotypic 
variation in eukaryotic systems via the ability to profile the transcription of all the genes in single 
cells (4–6). Despite the blazing pace at which single-cell studies have been developed for 
eukaryotic cells, there have only recently been a handful of techniques developed for bacterial 
cells (7–11). These pioneering methods represented crucial steps towards the systematic study of 
single-cell transcriptomes in bacteria but are still limited in coverage, scale, and application (Fig. 
1A). 

Previous efforts to profile single bacterial cells have relied on in-situ combinatorial plate-
based indexing (PETRI-Seq and micro-Split) (7, 8), isolating single cells in single wells 
(MATQ-Seq) (10), or hybridizing mRNA transcripts with specific probes followed by imaging 
(parSeqFISH) (11),  or droplet-based indexing for sequencing (9). An advantage to combinatorial 
plate-based and single-well based indexing methods is that they are unbiased in the genes 
detected and can profile multiple conditions; however, current approaches have only been 
extended from a hundred (10) to around twenty thousand cells (7, 8) because of the limited 
number of available indices and the abundance of ribosomal RNA (rRNA) (95%) in the final 
library. These approaches also typically use multiple in-situ reactions on un-amplified mRNA 
transcripts, creating a bottleneck for mRNA capture that decreases overall mRNA detection. 
Alternatively, transcript probe-based approaches do not capture rRNA and have a higher 
transcript detection efficiency, but require a priori selection of dedicated probes for each species 
and gene studied and can thus either study hundreds of thousands of cells and conditions for a 
handful of genes (11), or thousands of cells for all the genes within one condition (9).  Each of 
these approaches requires trade-offs to be made amongst the number of cells, conditions, and 
mRNAs captured (Fig. 1A), limiting their ability to detect rare bacterial subpopulations and 
understand how these subpopulations vary across different classes of stressors. 
  Here, we report massively parallel microbial mRNA single-cell sequencing (M3-Seq), 
which addresses the existing limitations of bacterial single-cell RNA sequencing to profile 
hundreds of thousands of bacterial cells and tens of samples in a single experiment while 
maintaining a high mRNA capture rate. M3-Seq achieves this scale by sequentially employing 
plate-based in-situ barcoding using random primers followed by droplet-based barcoding and a 
novel post-hoc rRNA depletion scheme. We harnessed the power of M3-Seq to discover the 
independence of distinct phage induction programs in B. subtilis, the differentiation of a bet-
hedging subpopulation in E. coli, heterogeneities in antibiotic responses in multiple species, and 
host-pathogen dynamics upon phage infection. 
 
M3-Seq captures rRNA-depleted whole transcriptomes of single bacterial cells 
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To expand the scale and scope of scRNA-seq in bacteria, we reasoned that we could 
perform combinatorial indexing followed by droplet-based indexing to index a large number of 
single cells, and then apply RNA amplification and rRNA depletion to enrich for mRNA 
transcripts. We designed our platform as follows (Fig. 1B): Bacterial cells grown under 
conditions of interest are fixed (overnight incubation with 4% formaldehyde), washed, and 
permeabilized with lysozyme (similar to (7, 8)). Cells are then subjected to two rounds of 
indexing: first, using in-situ reverse transcription in plates with random priming to mark 
individual transcripts with one cell barcode (BC1) and a unique molecular identifier (UMI); then, 
using a commercially available droplet-based, single-cell kit (Chromium Next GEM Single Cell 
ATAC, 10X Genomics) to ligate another cell barcode (BC2) onto the resulting cDNA molecules. 
After indexing, mRNA sequence enrichment is performed by depleting cDNA molecules 
containing abundant rRNA sequences, and the resulting gene expression libraries are sequenced 
(Fig. S1). 

First, we verified that we could barcode a large number of bacterial cells by 
combinatorial-fluidic indexing, which was originally developed for mammalian cells (12). In 
principle, a minimal number of indices (<300) in the first indexing round, multiplied by the 
~100,000 potential barcodes introduced during droplet-based second round of indexing, should 
lead to hundreds of thousands of unique cell indices. However, bacterial cells are wildly different 
from mammalian cells—they have thick cell walls that require enzymatic digestion, and are 
much smaller — so we optimized a number of different conditions based on (7–9). To implement 
this approach in bacteria, we evaluated bacterial cell loading into droplets and used that 
information to calculate expected index collision rates across different numbers of round-one 
indices (Fig. S2A). While standard loading protocols suggest a maximum of 10,000 cells per 
droplet-generation run to minimize index collision rate, distributions of bacterial cells in droplets 
suggest that using less than 300 round-one indices would enable hundreds of thousands of cells 
to be loaded in a single run of the system with <1% collision rate (Fig. S2B). 

We sought to verify that we could generate single-cell transcriptomes at massive scale 
with our approach. We mixed equal numbers of cells from different bacterial strains (B. subtilis 
168 and E. coli MG1655) at exponential and stationary phases, performed combinatorial 
indexing using 96 indices on the combined samples, and then loaded the droplet-generating 
system with 100,000 cells (experiment BW1 in Table S2). Without round-one indexing, we 
would expect 15.7% of all sequence-able droplets to yield an index collision (Fig. S2B). 
Consistent with these expectations, indexing the data with only droplet indices yielded a 12.7% 
collision rate (Fig. S2C). However, by incorporating the combinatorial indices in our analysis, 
the collision rate decreased by an order of magnitude to 0.7% (Fig. S2D). Our platform can 
therefore attain single-cell resolution at cell numbers an order of magnitude larger than 
previously achieved for bacteria (Fig. S2C-D). 

We next examined the transcriptomes provided by these data. Average RNA-Seq profiles 
were similar to those obtained from bulk RNA-Seq (r = 0.59) (Fig S2E). However, consistent 
with other methods that use in-situ reverse transcription (7, 8), most of our reads aligned to 
rRNAs, and consequently, the mRNA read depth per cell was low. Indeed, of roughly 1,000-
2,000 reads per cell, only ~100 (3-10%) aligned to mRNA, and the rest aligned to rRNA (90-
97%) (Fig. S2F-G). This problem could be overcome by sequencing to a greater depth (~40,000 
reads per cell), but this approach becomes cost-prohibitive as the number of cells increases. 

To profile bacterial transcriptomes more deeply across many cells, we therefore 
implemented rRNA depletion in conjunction with RNA amplification. Previous work has 
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suggested that rRNA depletion within fixed cells decreases mRNA capture efficiency (7). 
Therefore, we developed a custom approach to amplify total RNA after combinatorial-fluidic 
indexing and barcoding, and then deplete rRNA in solution (Fig. 1B, Fig. S3A, B). First, we 
fragment the gene expression cDNA library with Tn5 transposase and amplify the library with a 
primer containing a T7 RNA polymerase promoter. Then, we convert the resulting T7-tailed, 
double-stranded DNA library to single-stranded RNA using in vitro transcription. Next, we 
hybridize with rRNA-specific DNA probes and then treat the RNA library with RNase H to 
digest rRNA-DNA hybrids. Finally, we reverse transcribe the rRNA-depleted RNA library back 
into DNA using an end-specific primer that preserves the single-cell indices. This approach 
enables rRNA depletion while limiting bottlenecking of informative sequences. In the full M3-
Seq pipeline, we recovered transcriptomes with 66.9% of E. coli reads and 80.8% of B. subtilis 
reads aligning to mRNA, representing a >20-fold increase from our previous experiment (Fig. 
1C, Fig. S3B).  
      Finally, we applied M3-Seq to evaluate different stages of growth and treatment in E. coli 
and B. subtilis (“BW2”, Table S2). We recovered single bacterial transcriptome resolution (1.7% 
doublet rate, Fig. 1D), with a range of 515–984 median UMIs per cell (298–371 median genes) 
for B. subtilis (blue), and 100–211 median UMIs per cell (75–151 median genes) for E. coli 
MG1655 in exponentially growing cells. Compared to state-of-the-art bacterial scRNA-Seq 
technologies that profiled at similar conditions (7–9), we capture twice as many UMIs for B. 
subtilis, and roughly the same number of UMIs for E. coli (Fig. 1E, Fig.S4A). Moreover, these 
data revealed a 25-fold increase in mRNA read coverage compared to if there was no rRNA 
depletion (Fig. 1D). To quantify how our rRNA-depletion method improves the sensitivity of 
detecting single bacterial transcriptomes, we evaluated the average number of captured genes per 
cell as a function of sequencing reads per cell. We observed that the un-depleted library requires 
an order of magnitude more reads (~15X) per cell to achieve the same number of genes detected 
as that of the depleted single-cell libraries (Fig. 1E). Finally, to ensure that the depletion scheme 
does not mask the biological signal of the data, we compared the rRNA depleted single-cell 
libraries to rRNA-depleted bulk libraries of E. coli grown in similar conditions and found good 
agreement in expression between the two (r=0.72) (Fig. S4B). Thus, by combining our post-hoc 
rRNA depletion with droplet overloading, M3-Seq provides biologically meaningful, mRNA-
enriched transcriptomes at single-cell resolution at scales which have not been previously 
achieved for bacteria. 
 
Early stationary phase E. coli contain a rare, acid-tolerant subpopulation as a bet-hedging 
strategy 
         We first set out to study exponential phase and early stationary phase, a transition point 
between rapid cell division versus slow growth as nutrients are depleted from the environment. 
We grew the lab strain E. coli MG1655, and the probiotic strain E. coli Nissle 1917 to 
exponential (OD=0.3) and early stationary phase (OD=2.8, OD=2.6) respectively, and used M3-
Seq to profile the cultures. Similar to previous studies, cells in exponential and stationary phase 
could clearly be distinguished and identified by known biological processes such as glucose 
metabolism in exponential phase, and secondary carbon metabolism in early stationary phase 
(Fig. S4C-E). When we looked more closely at the early stationary phase population, we found 
that both strains of E. coli in that growth stage exhibited distinct subpopulations (Fig. 2A). A 
gene ontology analysis revealed that in addition to the main early stationary phase cluster (cluster 
1 in MG1655, Fig. 2A), one subpopulation was dominated by induction of a prophage (cluster 3, 
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Fig. 2A), and one subpopulation was dominated by genes implicated in intracellular pH elevation 
and glutamate catabolism (cluster 2, Fig. 2A-B). The most strongly expressed genes in this 
cluster were gadA and gadB (Fig. 2A, Fig S5B). GadA and GadB are glutamate decarboxylases 
that are well conserved among enteric bacteria (Fig. S5A) and de-acidify the cellular cytoplasm 
by consuming a proton in the process of decarboxylating glutamate to GABA (13–15). Indeed, 
we verified that these genes are essential for acid tolerance by experimental manipulation. 
Consistent with previous studies, when we deleted the gadABC genes in MG1655, the bacterial 
population was unable to survive acid treatment (Fig. S5C). These observations prompted us to 
ask: if gadABC genes are essential for acid tolerance, what is the functional significance of only 
having a subpopulation of bacteria express the gad genes?  

Bulk measurements have established that expression of the gad genes is induced in 
stationary-phase cultures of E. coli grown in complex media such as LB, but the heterogeneity of 
gad expression during the transition into stationary phase has not been previously studied. 
Previous work found heterogeneous expression of gadA/gadB in response to antifolate 
antibiotics, and of gadX (an activator of gadA/gadB) in exponentially growing cells (16, 17). To 
confirm our M3-Seq findings, we transformed MG1655 with PgadB-GFP, a plasmid encoding a 
fluorescent reporter controlled by the gadB promoter, and imaged the reporter strains under the 
same growth condition used for single-cell sequencing (Fig. 2C). We saw a heavy tail of GFP 
expression in the population, indicating that a small subpopulation of cells activated the gadB 
promoter (Fig. 2C). 

We hypothesized that during entry to stationary phase, enteric bacteria asynchronously 
activate the gad genes, perhaps as a bet-hedging strategy to protect some cells against strong acid 
stress. To test this hypothesis, we developed an imaging-based acid-recovery assay to track 
individual cells in response to acid treatment (Fig. 2D). We first grew the PgadB-GFP reporter 
strain to early stationary phase and imaged the population to obtain the GFP fluorescence 
distribution as a proxy for gadB expression in single cells (Fig. 2E). We experimentally acidified 
the culture from pH 7.5 to 3.0 for 1 hour using hydrochloric acid, and then performed live-cell 
imaging on an agarose pad made with fresh LB to correlate cell viability and PgadB-GFP 
expression. A cell was considered “viable” if the cell underwent a division during the 8-hour 
imaging period after acid treatment (Movie 1). 

The intensity of PgadB-GFP in viable cells was much higher than the pre-treatment 
population average, indicating that cells that had induced gadB before acid treatment were pre-
disposed to survive acid treatment (Fig. 2E). To further explore the possibility that surviving 
cells activated the gadB promoter before stress (and not in response to strong acid stress), we 
imaged the reporter strain at early stationary phase under an agarose pad made with acidic LB 
(pH 3.0) (Movie 2) and found that GFP fluorescence intensity steadily decreased in bacterial 
cells (Fig. S5D). This suggests that under sudden strong acid stress, E. coli cannot activate and 
translate acid resistance proteins, and must rely on the existing set of translated proteins that cells 
possess before the stress. 

A significant cost for expressing high levels of the gad genes that are protective of acid 
stress would explain the benefit of only having a subpopulation of cells express these genes. To 
test this hypothesis, we cloned the gadBC operon into an inducible-overexpression vector and 
performed growth curve assays in LB across a range of inducer concentrations (18, 19). We 
found that, in contrast to overexpressing GFP, overexpression of gadBC at even low induction 
levels (1-10µM, 50-1000x less than typical induction concentrations) causes a growth defect 
(Fig. 2F, Fig S5E). These data demonstrate how M3-Seq can uncover rare bacterial 
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subpopulations with important functional consequences such as acid tolerance. Specifically, in 
early stationary phase, a subpopulation of E. coli may activate the gad genes to protect against 
strong acid stresses that they may experience when passing through acidic environments like the 
stomach. Because the acid tolerance gained by gad expression comes at the cost of decreased 
growth of those cells, it may benefit the population to not induce these genes in all cells in case 
the acid stress does not materialize. 
   
DNA damaging antibiotics independently induce two distinct prophages in B. subtilis   
         In addition to bet-hedging strategies, how single bacterial cells vary their responses to 
antibiotic-treatment remains an important question in the field. Historically, it has been 
challenging to profile such cells at scale due to the large number of possible bacterial species and 
antibiotics. Leveraging the massively parallel scale of M3-Seq, we grew bacterial cultures of B. 
subtilis, E. coli, and Pseudomonas aeruginosa to early exponential phase (OD=0.3) and treated 
the bacteria with each of 8 antibiotics of 4 different mechanisms (DNA damaging agents, cell 
wall inhibtors, 30S ribosome, 50S ribosome) at 2 times the minimum inhibitory concentration 
(2X MIC) (Fig. S6A) for 90 minutes. We sequenced a total of 29 different conditions in a single 
experiment, recovering a total of 263,760 single bacterial transcriptomes from a million loaded 
cells, representing an order of magnitude more cells than previous methods. 
         B. subtilis cells exhibited a wide variety of transcriptional states upon treatment with 
DNA damaging antibiotics (ciprofloxacin and nalidixic acid) (Fig. 3A). Upon clustering the data 
and identifying marker genes associated with each cluster, we found that clusters 4, 5, and 6 had 
distinct sets of strongly co-expressed genes that belonged to the PBSX or SPβ prophages (Fig. 
3B). PBSX and SPβ are the two prophages carried in the B. subtilis 168 genome (Fig. 3C). These 
prophages are latent bacterial viruses that reside within the host genome, and can be induced 
under conditions that induce the SOS response such as UV light or other DNA damaging 
antibiotics such as mitomycin C (20). Previous single-cell studies have also found that the PBSX 
prophage is induced in a small fraction of exponentially growing B. subtilis PY79 (7). However, 
it was previously unclear whether prophage induction is stochastic or whether prophages induce 
in the cells with the greatest damage. Similarly, it remained unknown if there is crosstalk 
between the two phage induction programs. 

The depth of coverage afforded by M3-Seq enabled us to observe that upon treatment 
with DNA damaging antibiotics, the PBSX and SPβ prophages induce in subsets of the treated 
population (Fig. 3B-D). We observed a single subpopulation (cluster 4) expressing PBSX 
prophage genes (Fig. 3B-D), and two subpopulations (clusters 5 and 6) expressing genes from 
the SPβ prophage. These two subpopulations represent different induction stages of the SPβ 
prophage (Fig. 3B), which is known to have a two-tiered induction strategy in which the late-
stage genes are transcribed in a single operon using the SPβ RNA polymerase YonO (21). 
Cluster 5 expresses the early-stage genes of SPβ, and cluster 6 expresses a subset of the early-
stage genes and the late-stage genes of SPβ. We validated the heterogeneity in prophage 
induction identified by M3-Seq by performing single-molecule FISH (smFISH) on 
ciprofloxacin-treated cells using two different fluorescently labeled sets of probes that hybridize 
to the most strongly expressed PBSX or SPβ genes (Fig. 3E).  

In our M3-Seq data, we noted that while most cells either induced one or the other 
prophage, some cells induced both prophages (Fig. 3F). To determine if there is cross-talk 
between the prophages (e.g. if one phage represses the other’s induction), or if the prophages 
might induce purely as a function of the magnitude of DNA damage in the host cell (in which 
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case the cells with the most damage would induce both phages), we computed the rates of 
induction for each prophage by thresholding on the percentage of prophage UMIs within the total 
UMIs detected per cell. We found that PBSX induces in ~17% of cells and SPβ induced in ~14% 
of cells. The observed rate of co-induction (2.44%) closely matched the rate that would be 
expected if the two subpopulations induced independently (2.47%), suggesting that the induction 
of the two prophages in DNA damaged B. subtilis 168 is stochastic and independent. We 
observed no significant cross-repression, nor a positive correlation such as would be expected if 
the individual cells with the greatest damage had the greatest likelihood of inducing both 
prophages. 
  
 
Bacteriostatic antibiotics induce greater diversity of transcriptional states than bactericidal 
antibiotics in E. coli 
         The heterogeneity of bacterial responses to antibiotics has emerged as an area of great 
interest. However, to date these studies have primarily been limited to responses to bactericidal 
antibiotics, as they produce readily-measurable single-cell persistence and tolerance phenotypes 
(2, 22–24). In contrast, little is known about heterogeneity in the response to bacteriostatic 
antibiotics.  

Interestingly, M3-Seq revealed that E. coli MG1655 cells treated with bacteriostatic 
ribosomal antibiotics (tetracycline or chloramphenicol) exhibit a wide variety of transcriptional 
states corresponding to activation of mobile genetic element (prophages, transposons) (Fig. S6B-
C). Some of these small subpopulations could represent rare alternative strategies that E. coli use 
to tolerate or respond to antibiotic treatment or other stresses.  

To understand how the ability to detect alternative transcriptional states increases with 
the number of cells sequenced, we first needed a metric independent from our clustering analysis 
that captures the degree of transcriptional variability within a population. We found in our data 
that certain principal components had heavy tails, and cells in these tails were assigned as 
members of unique subpopulations in our clustering analysis (Fig. S7A). We therefore reasoned 
that we could assess the magnitude of transcriptional variability in a population by computing the 
kurtosis (a measure of how heavy the tails of a distribution are) for each principal component 
(Fig. S7B-C) (25). 
         To estimate our sensitivity to detect rare cell subpopulations, we performed rarefaction 
analysis in which we down-sampled the cells per experiment and ranked the kurtosis of the 
principal components of gene expression in each sample (Fig. 4A). We observed that the rare 
cell populations (such as the populations expressing insI-2, Fig. S7D) were undetectable at the 
limited cell numbers enabled by previously existing methods (~1,000 – 10,000 cells) (Fig. 4A). 
Furthermore, we found that the kurtosis of the “heaviest” tailed principal components 
monotonically increased with increasing cell numbers up to the actual number of cells in our 
experiment (75,000 cells), suggesting that sequencing even more cells could potentially enable 
discovery of even rarer subpopulations. 
         Next, we sought to test if the diversity of transcriptional states seen in bacteriostatic 
antibiotic treated cells was specific to the target of the drug (30S/50S ribosome), or the cidality 
of the drug. To test this, we compared single-cell transcriptomes of MG1655 treated with 
bactericidal ribosome inhibitors (gentamycin and erythromycin) and MG1655 treated with the 
above bacteriostatic ribosome inhibitors (down-sampled to the same number of cells as the 
bactericidal population) (Fig. 4B). We found that bactericidal drugs do not cause as much 
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variability in transcriptional states as bacteriostatic drugs (by comparing the kurtosis of the 
heaviest tailed principal components), suggesting that bacteriostatic drugs specifically induce the 
activation of alternative transcription programs in E. coli. Previous studies of antibiotic 
persistence and tolerance have drawn significant attention to the importance of rare 
subpopulations in the response to antibiotics. However, antibiotic persistence and tolerance 
assays depend on cell death, a measure which is not relevant for bacteriostatic drugs. Far less is 
known about the strategies that subpopulations of bacteria utilize in response to bacteriostatic 
antibiotics. Our use of M3-Seq to reveal that bacteria also have heterogeneous responses to 
clinically used bacteriostatic antibiotics should thus motivate future efforts in this understudied 
area. 
  
M3-Seq enables the study of host-pathogen interactions at the single-cell level 

Because M3-Seq can detect prophage gene expression within single cells, we reasoned it 
might also be able to detect the gene expression of new phage infections in single cells, thus 
providing a genomic platform to study how phages and host bacteria interact, in a manner similar 
to recent eukaryotic host-viral studies (26, 27). Previous bulk transcriptomic measurements in the 
well-studied E. coli-λ system have claimed that E. coli host does not specifically respond to λ 
phage induction (28, 29). However, because phage infection and induction are known to be 
heterogenous even in well-mixed environments, we hypothesized that bulk measurements could 
not accurately capture the host-pathogen dynamics that occur during infection (30–32). To 
precisely study how E. coli and λ behave at the single-cell level during infection, we infected E. 
coli MG1655 at exponential phase (OD=0.3) with λ phage at saturating multiplicity of infection 
(MOI=100) and sampled the cultures at 30- and 90-minutes post infection (Fig. 4C.I). We 
aligned our reads to a combined genome that includes both the E. coli and λ genes and found that 
there was a distinct subpopulation of cells expressing high levels of late-stage λ genes (Fig. 
4C.II, Fig. 4D), indicating that these cells were undergoing lytic infection. We found that we 
could still differentiate the subpopulation by performing the analysis with only λ genes, but this 
subpopulation was not as strongly differentiated when we performed the analysis using only E. 
coli genes (Fig. 4C). This result suggested that the lytic subpopulation in our data was primarily 
differentiated by phage gene expression.  

We confirmed the limited nature of the host response to lytic infection by computing the 
silhouette scores of cells undergoing lysis under all 3 combinations of host and pathogen genes 
(E. coli genes only, λ genes only, E. coli + λ genes) (Fig. 4D). The silhouette score is a 
“goodness of clustering” metric that quantifies how similar cells in a cluster of interest are to 
each other compared to cells outside the cluster of interest (33). In our application, we compute 
the silhouette scores across the subsets of genes in the principal component space to see if the 
lytic cluster has distinguishable transcriptional signatures on both the host (E. coli) and the 
pathogen (λ) side. We found that the group of cells undergoing lysis had a strong silhouette score 
when aligned to genomes that included λ genes, but the signal was drastically decreased when 
those cells were aligned only to the E. coli genome. Specifically, the set of genes involved in 
host response are genes that respond to the downstream effects of lysis, such as dNTP depletion 
from phage DNA replication (Fig. S8A-B). This suggests that despite the production of hundreds 
of foreign virions during late-stage lysis, the E. coli host genome does not mount a specific 
transcriptional response in defense when infected during exponential growth (Fig. S8A-B). 
Despite the intense study of E. coli infection by λ for so many years, we believe this is the first 
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study to demonstrate that bacterial hosts undergoing lytic infection do not mount a specific 
transcriptional response to lambda phage. 

To see if λ had detectable transcriptional programs distinct from the late-stage lytic cycle, 
we clustered the cells aligned to the combined genome and then examined λ gene expression 
across the clusters (Fig 4C.III). As expected, the lytic cluster (cluster 4) contained upregulated 
late-stage λ genes (S, R, Rz, F). Interestingly, cluster 1 also upregulated genes in the nin region 
(ninB-ninI), which are nonessential λ genes of unknown function in the lytic operon (Fig. 4E). 
During the early stages of the λ lytic cycle, transcription from the early lytic PR promoter is 
terminated at different locations in the nin region until enough of the λ antiterminator N 
accumulates to allow the RNA polymerase to read through the terminators and transcribe another 
antiterminator Q, which in turn enables transcription of the downstream genes (Fig. S8B) (29, 
34, 35). We hypothesize that cluster 1 represents cells undergoing the early stages of the lytic 
cycle, during which the PR promoter is active but there are insufficient quantities of 
antiterminator N, so that only genes in the nin region are transcribed. This suggests that during 
lytic infection, infected cells exist in two transcriptional states: a less studied state in which 
levels of antiterminator are still low resulting in high nin gene expression and low late-stage gene 
expression, and the more familiar state when levels of antiterminators (N, Q) pass a critical 
threshold to promote high late-stage gene expression and foreign virion production. Having 
validated M3-Seq with an extremely well-studied phage whose results could be readily 
contextualized based on prior studies, we anticipate that this approach will be of great utility to 
the rapidly expanding field of host-phage competition. 
  
Discussion 
         Even though bacteria often live as genetically identical populations of single cells, they 
can readily adapt to new environments due to transcriptional heterogeneity. Identifying and then 
characterizing these rare subpopulations requires the ability to sequence large numbers of single 
bacterial cells experiencing a diverse array of experimental manipulations. Here we describe the 
development of M3-Seq, a two-step procedure of combinatorial-fluidic indexing and post-hoc 
ribosomal RNA depletion, which simultaneously enables scale in the number of cells profiled 
(260,000), breadth in the stressors that can be profiled in a single experiment (29), and a high 
mRNA detection efficiency (100-1,000 UMIs per cell) (Fig. 1A). 

Sequencing a large number of cells, and achieving high transcriptome coverage per cell, 
are both critical to discovering rare subpopulations in biologically meaningful contexts. For 
example, little is known about the strategies that rare subpopulations of bacteria utilize in 
response to bacteriostatic antibiotics. After sequencing >75,000 cells using M3-Seq, we 
successfully identified a number of rare subpopulations. However, rarefaction analysis indicated 
that we would not have discerned these populations using fewer than 50,000 cells per sample. 
The scale of M3-Seq also enables analysis of the cross-interactions or independence of 
subpopulations, as we demonstrated with B. subtilis PBSX and SPβ prophage induction. 

Why do rare bacterial subpopulations exist among a genetically identical bacterial 
population? One reason may be that transcriptional heterogeneity may act as a bet-hedging 
strategy in response to environmental variation, which has been challenging to study with 
previous methods. We discovered a rare acid-tolerant subpopulation expressing the gad genes in 
E. coli. Through genetic manipulation and orthogonal validation, we found that gad expressing 
bacteria could survive strong acid treatment but were less fit in standard growth conditions. Yet, 
our M3-Seq data show that a rare gad+ population exists at early stationary phase, before the 
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environment becomes acidified, which supports a bet-hedging model. Many questions remain: 
what mechanisms generates this transcriptional heterogeneity? How do varying environments 
change the presence of this subpopulation? How prevalent is this bet-hedging strategy in nature? 

M3-Seq holds several advantages over existing methods, but also has a few limitations. 
Pioneering combinatorial indexing-based methods had outstanding scale and UMI capture for the 
first of their kind, but still had an overabundance of rRNA reads in the final library, limiting the 
scale of their applications (7, 8). Furthermore, the mRNA detection efficiency was hampered by 
the multiple consecutive in-situ enzymatic reactions in the protocols. On the other hand, the 
probe-based, droplet-based approach contained no rRNA reads and offered an outstanding 
mRNA detection efficiency but could not be readily scaled to multiple conditions or larger 
numbers of cells (9). Imaging based methods captured multiple conditions and many cells but 
could only capture up to a hundred genes at a time (11). In contrast to imaging-based methods, 
M3-Seq cannot capture the spatial information of single cells, and thus requires further 
development for studying systems such as biofilms. Finally, we note that another recently 
published study combines many of the same elements of our method, albeit without post-hoc 
mRNA depletion and more in-situ enzymatic steps leading to a lower mRNA detection 
efficiency (36). These emerging studies are indicative of the excitement in the field to push the 
number of cells and conditions profiled with a high capture rate to discover novel bacterial 
subpopulations. 

Looking forward, we see multiple biological systems for which our technology is ripe to 
be applied to understand and discover new phenomena at the single-cell level, including host-
pathogen interactions and mixed-species microbial communities. When we infected E. coli with 
λ phage, we captured both pathogen (λ) and host (E. coli) mRNA transcripts in individual cells. 
We anticipate that applying our method in targeted experiments may provide new insights into 
how bacteria mobilize immunity mechanisms in response to phage infection. Moreover, this 
application need not be restricted to bacterial cells. Because of the generality of using random 
primers and the rRNA depletion scheme, our method can also be employed to study how 
mammalian cells respond to infection by intracellular pathogens, and how these infecting 
pathogens respond to host factors. Finally, based on our species mixing experiments, M3-Seq 
can also be profitably extended to study mixed-species bacterial communities, where we could 
use our technology to uncover new niches and strategies that emerge within a microbial 
community.  
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Fig. 1. M3-Seq Overview. A. Overview of existing methods and reported number of cells, 
conditions, and mRNA transcripts per cell that were detected in one experiment. Current 
approaches require sacrifices to be made on at least one of the three axes. M3-Seq 
simultaneously addresses all three limitations to maximize the chances of discovering novel 
bacterial subpopulations. B. Schematic of M3-Seq: (i) RNA molecules in fixed, permeabilized 
cells are barcoded and reverse transcribed in situ in a 96-well plate. (ii) Cells are collected after 
the first barcoding step, and loaded onto the 10x scATAC-Seq platform, where they undergo 
another round of barcoding in droplets. (iii) Fixed cells are then collected, lysed, and the cDNA 
library is prepared following 1 (in the final step, a T7-Nextera promoter is used to amplify the 
library). The full cDNA constructs are converted to RNA using T7 RNA polymerase. (iv) The 
pool of RNA is depleted of ribosomal reads by hybridizing the RNA library with specific DNA 
probes that are complementary to the rRNA sequences, and then reverse transcribed back to 
DNA using a primer at the 5’ end (P5) of the construct. The final library is then constructed with 
another round of PCR using the P5 and P7 primers.  C. “Barnyard” experiment where a mixture 
of B. subtilis (blue) and E. coli (red) are processed together using our method. Each point 
corresponds to a unique combination of plate and droplet barcodes, ideally representing a single 
cell. These “cells” were colored and assigned to a particular species if more than 90% of the 
corresponding UMIs belonged to that species. D. mRNA percentages in single-cell samples with 
and without rRNA depletion. Both B. subtilis (blue) and E. coli exhibit >20x enrichment of 
mRNA via rRNA depletion. E. mRNA UMI counts for the two species at exponential phase 
across two experiments. For B. subtilis (blue), we recover a median of 515 ± 245 (median 
absolute deviation) UMIs in the first experiment using M3-Seq (“BW2”), and 953± 310 in the 
second experiment using M3-Seq (“BW3”). For E. coli MG1655 (red), we recover 211 ± 85 
(median absolute deviation) UMIs in “BW2”, and 100±47 UMIs in “BW3”. F. Median genes 
detected per B. subtilis (blue) or E. coli (red) cell as a function of number of total reads in the 
final sequencing sample. Depleting the sequencing library of rRNA reads (solid curves) enables 
an order of magnitude deeper detection of single bacterial transcriptomes than un-depleted 
(dashed curves) libraries. 
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Fig. 2. M3-Seq reveals an acid-tolerant bet-hedging subpopulation in early stationary phase 
E. coli: A. UMAP embeddings of single E. coli MG1655 transcriptomes from cells at early 
stationary phase (OD=2.8) colored by cluster identity. Centered and normalized expression of 
marker genes for each cluster is displayed below the embedding. B. GO-term enrichment 
analysis for marker genes in cluster 2. The p-values for each biological process are log10 
transformed and multiplied by -1 such that the strongest enriched biological processes have the 
highest score. C. Normalized fluorescence distribution of E. coli expressing PgadB-GFP. The inset 
is a representative image of E. coli MG1655 transformed with PgadB-GFP grown to OD=2.8. D. 
Schematic of acid-stress recovery assay. E. coli cells expressing PgadB-GFP are grown to early 
stationary phase in LB media (OD = 2.8) and imaged. The pH of the culture is then adjusted to 
3.0 using 12N HCl. The culture is allowed to shake for another hour, after which an aliquot of 
the cells is placed onto a fresh LB-agarose pad (t = 0) and imaged over 9 hours. E. 
Representative images of E. coli cells expressing PgadB-GFP on a fresh LB-agarose pad after one 
hour of strong acid treatment. The arrows point to the viable cells that divided after an hour of 
strong acid stress.  F. Result of the recovery assay. Kernel density estimates of the fluorescence 
distribution of all cells before acid treatment, and density estimates of the initial fluorescence 
distribution of cells (at t = 0) that survived the acid treatment and divided over the course of 8 
hours. The inset is a representative composite overlay of the cells 180 minutes after the start of 
recovery. G. Growth curves of E. coli MG1655 transformed with a GFP overexpression plasmid 
(green), and MG1655 transformed with a gadBC overexpression plasmid (red). Strains were 
grown either with 10µM of IPTG (dotted curves), or no inducer (solid curves) for 1000 minutes. 
We note that induction of gadBC (red) using 10µM of inducer creates a growth defect in the 
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overexpression strain compared to the uninduced case, whereas inducing GFP at (green) with the 
same amount of inducer does not lead to any noticeable growth defect.  
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Fig. 3. M3-Seq enables detection of heterogeneous activation of prophages in B. subtilis in 
response to DNA damage: A. Uniform manifold approximation and projection (UMAP) 
embeddings of single B. subtilis transcriptomes from cells at exponential phase (OD = 0.3) 
treated for 90 minutes with DNA damaging antibiotics (ciprofloxacin and nalidixic acid).   B. 
UMAP embedding of the treated cells colored by the assigned cluster, and heatmap of marker 
gene expression for each cluster. Six clusters were detected, with PBSX and Spβ prophage genes 
upregulated in clusters 3,4,5. C. Schematic of the location of the two prophages in the B. subtilis 
genome. D. UMAP data from A, B colored by relative expression of PBSX (Left) and Spβ 
(Right) prophage genes as a percentage of total single-cell transcriptome. E. Dual color smFISH 
image of B. subtilis treated with ciprofloxacin for 90 minutes. Probes hybridizing to PBSX genes 
were labeled with a green fluor, and probes hybridizing to Spβ genes were labeled with a red 
fluor (see Methods). F. Co-expression of Spβ (x-axis) and PBSX (y-axis) genes in each single 
cell. Cells were identified as inducing PBSX prophage if the relative expression of PBSX genes 
in each cell was greater than the 10th percentile (8.4%) of PBSX prophage gene expression in 
cluster 5, and inducing Spβ if the relative expression of Spβ was greater than the 10th percentile 
(15.0%) expression of Spβ genes in cluster 6. The induction probabilities of each prophage in the 
population are denoted as above, with the expected independent co-induction probability of 
2.47% calculated by multiplying the observed PBSX and Spβ probabilities.  
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Fig. 4. M3-Seq provides the scale and technical capacity to discover new bacterial 
responses to antibiotics and phage infection: A. Cell rarefaction experiments of bacteriostatic 
antibiotic treated E. coli MG1655 cells. We sampled from a range of 1,000 to 75,000 cells, 
performed principal component analysis, and ranked the kurtosis of each principal component. 
Each curve (colored by the number of cells used) corresponds to the kurtosis of the 15 principal 
components with the highest kurtosis within that sample. Using the principal components, we 
also computed the UMAP embedding from each down-sampled matrix (inset, also colored by 
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cells used in that experiment). The top row of embeddings corresponds to the scale afforded by 
current technologies, while the bottom row represents the scale enabled by M3-Seq. B. UMAP 
embedding of cells treated with different modes of ribosome-inhibiting antibiotics (bacteriostatic 
versus bactericidal), along with the ranked kurtosis curves of the top 15 principal components for 
each mode of ribosome inhibitor.  C. UMAP embeddings of λ phage infected E. coli MG1655. 
The first column are embeddings using only E. coli genes, the second are embeddings using only 
λ genes, and the third are embeddings using both E. coli and λ genes. In the first row (I) each 
point in the embeddings is colored by the timepoint at which the infected cells were sampled. In 
the second row (II), each point in the embeddings is colored by relative percentage of λ UMIs in 
that single cell. In the third row (III), cells are colored by cluster (which are assigned using the 
combined E. coli and λ genomes).  Cluster 4 corresponds to infected cells undergoing late-stage 
lytic infection. D. Silhouette scores of the lytic cluster (cluster 3) and of a random sample of cells 
across each alignment. Silhouette scores were computed using the principal components of gene 
expression. We note that the silhouette score of the lytic cluster drastically decreases with the 
removal of the λ genes, indicating that the lysis signal is primarily driven from the phage. E. 
Heatmap of detected λ phage genes in each cluster. We note that while most of the known λ 
genes are upregulated in the late-stage lytic cluster (cluster 3), a particular set of λ genes (ninB-
H) are also upregulated in a distinct cluster (cluster 2). 
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Materials and Methods 

Experimental methods 
  
Bacterial strains and growth conditions for BW1. B. subtilis 168 and E. coli (MG1655) were streaked out from a 
frozen glycerol stock onto an LB plate and grown overnight at 37°C. Following a night of growth, a single colony 
was picked and inoculated into 5 mL of LB broth and grown shaking at 250 RPM overnight at 37°C. The next 
morning, the overnight culture was diluted (1:100 for E. coli, 1:25 for B. subtilis) into multiple tubes 5 mL of fresh 
LB media in a 30 mL tube grown shaking at 250 RPM. Cells were harvested once at OD=0.6, and again 4 hours post 
dilution. The volume of cells was normalized so that 1 OD of cells was sampled and fixed at each step. Cells were 
immediately spun down for 5 minutes at 5,000 g at 4°C, resuspended in 4 mL of freshly made 4% formaldehyde. 
The resuspended cells were rotated overnight at 4°C until the next morning. 
 
Bacterial strains and growth conditions for BW2. B. subtilis 168 and E. coli (MG1655) were streaked out from a 
frozen glycerol stock onto an LB plate and grown overnight at 37°C. Following a night of growth, a single colony 
was picked and inoculated into 5 mL of LB broth and grown shaking at 250 RPM overnight at 37°C. The next 
morning, the overnight culture was diluted (1:100 for E. coli, 1:25 for B. subtilis) into 35 mL of fresh LB media in a 
250mL Erlenmyer flask and grown shaking at 250RPM. Upon reaching OD = 0.3, 5 mL of cells were split into 
tubes containing 2X the minimum inhibitory concentration of antibiotics (Ciprofloxacin or Cefazolin, 2 tubes), or no 
drug (2 tubes). The cells in the no drug tubes were sampled once at OD = 0.6, and again 120 minutes after the split. 
The cells in the tubes with drugs were sampled 20 minutes post-split (T20), and again at 120 minutes post-split 
(T360). The volume of cells was normalized so that 1 OD of cells was sampled and fixed at each step. Cells were 
immediately spun down for 5 minutes at 5,000g at 4°C, resuspended in 4 mL of freshly made 4% formaldehyde. The 
resuspended cells were rotated overnight at 4°C until the next morning. 
  
Bacterial strains and growth conditions for BW3. B. subtilis 168 and E. coli (MG1655 and Nissle) were streaked 
out from a frozen glycerol stock onto an LB plate and grown overnight at 37°C. Following a night of growth, a 
single colony was picked and inoculated into 5 mL of LB broth and grown shaking at 250 RPM overnight at 37°C. 
The next morning, the overnight culture was diluted (1:100 for E. coli, 1:25 for B. subtilis) into 35 mL of fresh LB 
media in a 250mL Erlenmyer flask and grown shaking at 250RPM. Upon reaching OD = 0.3, 5 mL of cells were 
split into tubes containing 2X the minimum inhibitory concentration of antibiotics (Ciprofloxacin or Cefazolin), or 
no drug. The cells in the no drug tubes were sampled once at OD = 0.6, and again 360 minutes after the split. The 
cells in the tubes with drugs were sampled 90 minutes post-split (T90), and again at 360 minutes post-split (T360). 
The volume of cells was normalized so that 1 OD of cells was sampled and fixed at each step. Cells were 
immediately spun down for 5 minutes at 5,000g at 4°C, resuspended in 4 mL of freshly made 4% formaldehyde. The 
resuspended cells were rotated overnight at 4°C until the next morning. 
  
Bacterial strains and growth conditions for BW4 
 B. subtilis 168, E. coli MG1655, and P. aeruginosa PA14 were streaked out from a frozen glycerol stock 
onto an LB plate and grown overnight at 37°C. Following a night of growth, a single colony was picked and 
inoculated into 5 mL of LB broth and grown shaking at 250 RPM overnight at 37°C. The next morning, the 
overnight culture was diluted (1:100 for E. coli, 1:25 for B. subtilis, 1:50 for P. aeruginosa) into 35 mL of fresh LB 
media in a 250mL Erlenmyer flask and grown shaking at 250 RPM. Upon reaching OD = 0.3, 4mL of cells were 
split into tubes containing 2X the minimum inhibitory concentration of antibiotics (gentamycin, tetracycline, 
erythromycin, chloramphenicol, cefazolin, cycloserine, ciprofloxacin, or nalidixic acid), � phage at MOI=100 (for E. 
coli), or no drug. The cells in the tubes were sampled and had their absorbance read 90 minutes post-split (T90). The 
volume of cells was normalized so that 1 OD of cells was sampled and fixed at each step. Cells were then prepared 
in the same manner as with BW1,2,3. 
 
  
Cell preparation. Following an overnight fixation, cells were prepared for scRNA-Seq as previously described2. 
Briefly, cells were first spun down for 10 minutes at 5,000g at 4°C. Cells were then resuspended in 0.5 mL of PBS-
RI, which comprises of PBS + 0.01 U/µL SUPERase-IN RNase Inhibitor (Invitrogen, AM2696). Cells were spun 
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down again for 10 minutes at 5,000g at 4°C and resuspended in 300 µL of 1X PBS-RI, and 300 µL of 100% ethanol. 
Following the first permeabilization, cells were spun down for 8 minutes at 7,000g at 4°C, and washed twice with 
200 µL of PBS-RI. After this final wash, cells were permeabilized by resuspension in 45 µL of 2.5mg/mL lysozyme 
solution dissolved in TEL-RI buffer, comprised of 100mM Tris pH 8.0, 50mM EDTA, 0.1U/µL SUPERase-IN 
RNase Inhibitor, and incubated at 30°C for 15 minutes. Cells were then spun down and washed twice in 100 µL of 
PBS-RI. After the final wash, cells were resuspended in 100 µL of 0.5X PBS-RI, and counted and examined with a 
hemocytometer (INCYTO DHC-S02). 
 
Plate-based indexing. Fixed  and permeabilized cells were split into wells of a 96 well plate, each containing a 
single indexing primer (2.5 µL/well, 20µM). To each well, we added 312,500 cells, 0.25 µL of Maxima H Minus 
Reverse Transcriptase (Thermo Fisher Scientific, EP0753), 0.25 µL of dNTPs at an original concentration of 10 µM 
(NEB, N0447L), 2.5µL of 5X Maxima H Minus Reverse Transcription Buffer, 0.125µL RNase-OUT (Thermo 
Fisher Scientific, 10777019), and PEG8000 to a final concentration of 7.5%, Tween-20 to a final concentration of 
0.02%, and nuclease free water up to 10 µL . Reactions were then incubated as follows to perform first-round 
indexing by reverse transcription: 50°C for 10 minutes, 8°C for 12 seconds, 15°C for 45 seconds, 20°C for 45 
seconds, 30°C for 40 seconds, 42°C for 6 minutes, 50°C for 50 minutes, and hold at 4° C. Samples were then pooled 
together and spun for 20 minutes at 7,000 g to isolate processed cells. Cells were then washed in 0.5 X PBS-RI and 
resuspended in 75 µL of 1X Ampligase buffer (Lucigen, A0102K). Pooled cells were counted and examined on the 
hemocytometer and diluted for loading onto the Chromium Controller (10x Genomics). The cell loading for each 
experiment indicated in Supplementary Table 2. Methods in this section were adapted from single-cell combinatorial 
fluidic indexing procedures. 
 
  
Loading cells into microfluidic droplets. Cells were prepared for loading onto the Chromium scATAC platform 
v1.1 (10X Genomics 1000176). After counting, pooled cells were aliquoted with and mixed with 19µL 10X 
Ampligase Buffer, 2.3µL U/µL Ampligase (Lucigen A0102K), 1.5 µL Reducing agent B (10x Genomics 2000087), 
2.3µL of 100 µM bridge oligo oDS025, and nuclease free water up to 75 µL. The mixture was kept on ice and 
loaded onto the Chromium Next GEM Chip H (10x Genomics, 1000162) with gel beads from the NextGem 
scATAC platform (10x Genomics, 1000176). To create emulsions, we followed the 10X Next GEM scATAC 
protocol[MOU1]  (CG000209 Rev A). Briefly, the microfluidic chip was prepared by adding 70µL of cell mixture to 
wells in row 1, 50µL Next GEM scATAC beads to wells in row 2, and 40µL of partitioning oil to wells in row 3. 
Additionally, 50% glycerol was added to all unused lanes (40µL of 50% glycerol was added to unused lanes in row 
3, 50µL to unused lanes in row 2, and 70µL to unused lanes in row 1). The chip runs on the Chromium Controller 
(10x Genomics) with the Next GEM Chip H program. This step partitions the cells and uniquely indexed gel beads 
into droplets. Methods in this section were adapted from single-cell combinatorial fluidic indexing procedures1. 
 
  
Droplet-based indexing . After transferring 100µL of each emulsion mixture to a clean reaction tube, second-round 
indexing was performed by ligation. Briefly, emulsions were incubated at 98°C for 30 seconds and 59°C for 2 
minutes in 12 cycles. Emulsions were broken by adding 125µL Recovery Agent (10x Genomics) and pipetting up 
the hydrophobic phase . Cells were then reverse crosslinked and lysed by adding 10µL of 10X Lysis-T (250mM 
EDTA, 2M NaCl, 10% Triton X-100) and 4µL of proteinase K (NEB, P8107S) and incubating at 55°C for 1 hour. 
After lysis, DNA:RNA hybrid libraries were isolated with the following procedure: (1) 200µL of Dynabead Cleanup 
Mix, which consists of 182 µL Cleanup Buffer (10X Genomics, 2000088), 9µL Dynabeads MyOne Silane (Thermo 
Fisher Scientific, 37002D), 5µL Reducing Agent B (10X Genomics, no catalog no.) , and 5µL of nuclease free 
water, was added to each sample; (2) samples were mixed by pipetting (10x); (3) samples were incubated at room 
temperature for at least 10 minutes; (4) beads were isolated from samples using a magnetic stand and washed 2 
times with 200µL 80% ethanol; (5) hybrid libraries were then eluted in 40µL of elution buffer (Qiagen, 19086).  
Second strand synthesis. The eluted single stranded library was stripped of RNA by adding 2µL of RNAse H 
(NEB M0297L), 4 µL of 10X RNase H buffer (NEB B0297S) and incubating for 30 minutes at 37°C. The reaction 
was purified with a 1.8X SPRI, where the final eluate volume was 25 µL. To perform second strand synthesis, we 
used a modified version from 8, where we added 8µL of 5X Maxima H- Reverse Transcription Buffer, 4 µL of 10 
µM dNTP’s, 2.5 µL of Klenow Fragment (3’ -> 5’ exo -, NEB M0212L), 5 µL 50% PEG 8000, and 1.5 µL of 100 
µM S^3 randomer (oBW140). The reaction was incubated at 37°C for 60 minutes, cleaned with a 1.8X SPRI, and 
eluted in 30 µL of Nuclease free water. The full length, double stranded library was amplified using PCR by adding 
30 µL of 2X Q5 High Fidelity Master Mix (NEB M0492L), 0.4 µL of 100 µM oDS028, and 0.4 µL of 100 µM 
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oBW170. We amplified the library using the following protocol: 98°C for 30 seconds, 14 cycles of 98°C for 20 
seconds, 65°C for 30 seconds, 72°C for 3 minutes. Following the first round of PCR, the reaction was cleaned twice 
once using a 1.2X SPRI reaction, each time eluting in 40 µL. This was to ensure primer dimers were properly 
removed. The resulting samples were the gene expression (GEX) libraries. 
 
Library fragmentation using Tn5 transposase. We prepared the following 5X Tn5 reaction buffer: 50mM TAPS 
(Sigma, T9659-100G), 25mM MgCl2.  We assembled i7-only transposomes according to established protocols2. 
Briefly, 10 µL of 100 µM oDS029 and 10 µL of 100 µM oDS30 were mixed and annealed using the following 
temperature program: 95°C for 2 minutes, followed by a 0.1°C/second ramp down to 4°C. Annealed oligos were 
then diluted with 80 µL of nuclease free water (final concentration, 10 µM) and, after 10 µL of 100% glycerol was 
added to the mixture, 8µL of the oligo-glycerol sample was mixed with 2µL of EZ-Tn5 (Lucigen, TNP92110) and 
incubated at 25°C for 40 minutes. The resulting i7 transposomes were stored at -20°C. 

After construction, gene expression  libraries  were quantified (Qubit HS dsDNA kit) and fragmented in 
multiple reactions with the following components: 10ng gene expression library sample, 4 µL of 5x Tn5 buffer, 1µL 
of i7 transposome, and water up to 20uL. Reactions were  incubated at 55°C for 10 minutes and then inactivated  
with 1µL of 20% SDS at 55°C for 10 minutes. Following inactivation , reactions were  purified using a 1.2X SPRI 
reaction (elution volume, 25 µL). The resulting samples were the fragmented GEX libraries. 
 
Second library amplification and in vitro transcription. Fragmented GEX libraries were mixed with 25 µL of 2X 
Q5 Master Mix, 0.4 µL of 100 µM oBW170, 0.4 µL of 100 µM oBW168 and amplified using the following 
protocol: 72°C for 3 minutes, 98°C for 30 seconds, 9 cycles of 98°C for 10 seconds, 65°C for 30 seconds, 72°C for 
30 seconds, a final incubation at 72°C for 5 minutes, and hold at 4°C. Resulting samples were purified with a 1.2X 
SPRI reaction (elution volume,40 µL) and converted into RNA by in vitro transcription. Briefly, 100ng of amplified 
libraries were mixed with 8µL 5X Transcription Buffer (Thermo Fisher Scientific, EP0112), 6µL of 2.5 mM rNTPs 
(NEB, N0466L), 1.5 µL of T7 RNA Polymerase (Thermo Fisher Scientific, EP0112), and 1µL of RNase-Out. 
Reactions weres incubated at 37°C for 2 hours, after which DNA templates were digested with 3µL DNase I (NEB, 
M0303L) and 3µL 10X DNase I buffer (NEB, B0303S) at 37°C for 15 minutes. RNA was then purified using a 2X 
SPRI reaction (elution volume, 25 µL). These samples were the in vitro transcribed GEX libraries. 
 
Ribosomal RNA depletion. To enrich mRNA reads within a DNA library that was constructed using random 
priming, we developed an in-house approach to deplete ribosomal reads. Probes hybridizing to ribosomal RNA 
sequences of the bacterial species that we used of interest were designed using software from 9. Multiple reactions 
containing the following were prepared (adapted from 9): 500ng of in vitro transcribed RNA, 3µg of rRNA probes, 
0.6µL 5M NaCl, 1.5 µL 1M Tris-HCl, and Nuclease free water up to 15 µL. In vitro transcribed RNA was 
hybridized to the DNA probes using the following temperature program: 95°C for 2 minutes, and 0.1°C/second 
ramp down to 25°C, 25°C for 5 minutes. Following rRNA probe hybridization, 6µL RNase mix (3µL of 10x RNase 
H buffer (NEB B0297), 2µL of Thermostable RNase H (NEB M0523S), 1µL of RNase H ) were added to each tube. 
The reactions were incubated for 45 minutes at 50°C to digest the rRNA-DNA hybrids. Following rRNA digestion, 
the DNA probes were degraded by adding 3µL of 10x DNase I buffer, 3µL of DNase I, and incubating for 45 
minutes at 37°C. The rRNA-depleted RNA library was purified with a 2x SPRI reaction and eluted in 25 µL of 
nuclease free water. 
 
Final library prep. To recover the original DNA library from the depleted RNA library, we used the end specific 
P5 primer to ensure the full DNA molecule gets reverse transcribed. To each tube of purified RNA, the following 
reagents were added: 8µL Maxima H Minus Reverse Transcription Buffer, 1µL Maxima H Minus Reverse 
Transcriptase, 1µL RNase Out, 6µL 2.5mM dNTPs, 0.4 µL 100 µM oBW170, 0.2µL 100 µM oBW171. The 
reaction was incubated in the thermocycler with the following temperature program: 50°C for 10 minutes, 8°C for 
12 seconds, 15°C for 45 seconds, 20°C for 45 seconds, 30°C for 40 seconds, 42°C for 6 minutes, 50°C for 18 
minutes, and hold at 4°C. 
Following reverse transcription, the reaction was purified with a 1.2X SPRI and eluted in 25 µL of nuclease free 
water. The reverse transcribed DNA reactions were then indexed using a final indexing PCR. For each reaction that 
needed to be indexed, 25 µL of reverse transcribed DNA was mixed with 25 µL Q5 High Fidelity Master Mix, 0.4 
µL 100 µM oBW501, and 0.4 µL 100 µM of a unique P7 index primer. The reactions were amplified with the 
following temperature program: 98°C for 30 seconds, 9 cycles of 98°C for 10 seconds, 65°C for 30 seconds, 72°C 
for 30 seconds, a final incubation at 72°C for 5 minutes, and hold at 4°C. 
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The resulting final DNA library was purified twice with a 0.8X SPRI, and then quality controlled on the Qubit and 
Bioanalyzer. We also checked the concentration and sequencability of the DNA library using qPCR with the 
following primers: oBW170/oBW176, oBW141/oBW176. We note that this final qPCR step is essential as it lets us 
know if we need to redo some steps of the procedure by checking for the percentage of the sequencable reads in the 
library. Following the final qPCR, libraries were diluted to 5nM, and sequenced with the NovaSeq SP 100 cycle kit 
(Illumina 20028401) using the following read structure: 26bp Read 1, 30bp i5 index, 8bp i7 index, 74bp Read2. 
 
Fluorescent in-situ hybridization (FISH). To enable cost effective detection of multiple different RNAs in the 
same cells, we closely followed the framework used in 10–12. Briefly, multiple primary probes hybridizing to an 
mRNA of interest are first designed. These probes contain a constant 20nt flanking sequence that allows for 
hybridization of a fluorescent secondary probe. This allows us to avoid the cost of ordering multiple fluorescent 
primary probes to tile our gene of interest. 

 Primary probes for fluorescent in-situ hybridization for RNA sequences of interest were designed using 9. 
For each RNA transcript of interest, we designed at least 10 different probes hybridizing to different regions of that 
transcript. A 20nt sequence was added to the 3’ end of each probe to allow for hybridization of the fluorescent 
readout probes. Primary probes for each gene were mixed at an equimolar ratio such that the final concentration of 
DNA molecules was 100 µM. Fluorescent readout probes were ordered following 12. 

Cells in each condition of interest were grown, fixed, and permeabilized as described above. After the 
permeabilization step, cells were washed and resuspended in 600 µL primary hybridization buffer (40% Formamide 
(Thermo Fisher Scientific 15515026), 2X SSC (Invitrogen AM9673)) and aliquoted into 1.5 mL tubes. 1µL of 100 
µM primary probe mix was added to each tube and hybridized overnight at 30°C in the dark. The next morning, 
cells were spun down at 7,000g for 8 minutes and resuspended in 200 µL wash buffer (30% Formamide (Thermo 
Fisher Scientific 15515026), 2X SSC (Invitrogen AM9673)). Cells were spun down for 8 minutes at 7,000g, 
resuspended again in 200 µL wash buffer, and incubated in the dark at room temperature for 30 minutes. Cells were 
then spun down at 7,000g for 8 minutes and resuspended in 100 µL secondary hybridization buffer (10% 
Formamide, 2X SSC, 10% Ficoll PM-400 (Sigma-Aldrich F5415-25 mL)). 0.5 µL of each 100 µM readout probe 
was added to the tubes, and incubated for 1 hour at 34°C. Following secondary hybridization, cells were spun down 
at 7,000g, and resuspended in wash buffer with 10 µg/mL DAPI (Thermo Fisher Scientific D1306). Cells were 
incubated for 20 minutes at room temperature, spun down at 7,000g, and resuspended in 100 µL of 2X SSC. 

Cells were imaged on 1% agarose pads made with filtered water on a Nikon TiE microscope with a Plan 
Apo 100X objective, and Hanamatsu ORCAFlash4.0 camera. Images were analyzed using FIJI software.  

 
Acid tolerance assay. A 25mL culture of E. coli (MG1655) or E. coli (MG1655 ΔgadAΔgadBΔgadC) was first 
grown to OD = 0.3 in a 125mL flask shaking at 250 RPM 37°C. After reaching OD = 0.3, the cultures were split in 
aliquots of 5mL to culture tubes and placed back onto the shaker to grow for another 6 hours until OD = 2.8. 
Cultures were then acidified to pH 3.0 using 12N HCl and returned to the shaker. 10 µL of the cultures was sampled 
at intermittent timepoints and serial diluted for CFU counting. 
 
Acid recovery assay. A 25mL culture of E. coli (MG1655) transformed with PgadB-GFP was first grown to OD = 
0.3 in a 125mL flask shaking at 250 RPM 37°C. After reaching OD = 0.3, the cultures were split in aliquots of 5mL 
to culture tubes and placed back onto the shaker to grow for another 6 hours until OD = 2.8. At this point, 1 µL of 
the culture was imaged on an 1% agarose pad made with LB media to understand the distribution of GFP 
fluorescence in single cells. Cultures were then acidified to pH 3.0 using 12N HCl and returned to the shaker. 
Following an hour of acid stress, 1 µL of the acidified culture was transferred onto an 1% agarose pad made with 
fresh LB media to assess viability. Cells were imaged every 15 minutes to track and assess growth over time.  

The resulting movies were analyzed by first segmenting the cells using Delta (37), and then using custom 
python scripts to extract the fluorescence distribution and assess viability. A cell was considered viable if it 
underwent a single division during the 8 hour imaging period. 
 
 
 
Bulk RNA-Seq Library preparation. E. coli (MG1655) was grown as described above to OD = 0.6. 2mL of cells 
were spun down at 5,000g for 10 minutes, resuspended in 45 µL of 2.5mg/mL lysozyme solution (described above), 
and incubated at 37°C for 15 minutes. RNA was purified using the Qiagen RNeasy Mini Kit (Qiagen 74104) where 
the final eluate volume was 30 µL. The RNA was reverse transcribed by adding 5 µL Maxima H Minus Reverse 
Transcription Buffer, 0.5 µL Maxima H Minus Reverse Transcriptase, 0.5 µL RNase Out, 4 µL 2.5mM dNTPs, 0.4 
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µL 100 µM oBW121 and incubating using the following temperature program:  50°C for 10 minutes, 8°C for 12 
seconds, 15°C for 45 seconds, 20°C for 45 seconds, 30°C for 40 seconds, 42°C for 6 minutes, 50°C for 50 minutes, 
and hold at 4°C. 
Following reverse transcription, RNA was stripped from the reverse transcribed DNA by adding 2µL of RNase H 
and incubating the mixture at 37°C for another 30 minutes. The library was purified using a 1.2X SPRI and eluted in 
25 µL nuclease free water. Second strand synthesis, PCR, and tagmentation were performed as described above. The 
first PCR was performed using primer pairs oBW154 and oDS28. Following tagmentation, the library was amplified 
8 cycles as described above using oBW154 and oBW168. This library was used to test for different rRNA depletion 
strategies. 
 
Cas9 based rRNA depletion. To test Cas9 based rRNA depletion, we first synthesized a pool of guide RNAs which 
cleave at different sites of the 5S, 16S, and 23S ribosomal RNAs. DNA templates for the guide RNAs were designed 
using software from 20. The DNA templates were purchased as a pool from IDT, and amplified with PCR by first 
annealing at a 1:1 equimolar ratio mixing 1µL DNA template, 0.4 µL 100 µM oBW138, 0.4 µL 100 µM oBW139, 
10 µL nuclease free water, 12.5 µL 2X Q5 High Fidelity Master Mix, and using the following temperature program: 
98°C for 30 seconds, 35 cycles of 98°C for 10 seconds, 65°C for 30 seconds, 72°C for 45 seconds, a final incubation 
at 72°C for 5 minutes, and hold at 4°C. Following PCR, the DNA templates were purified using a 1.2X SPRI and 
used for in vitro transcription. Guide RNAs were transcribed using the NEB HiScribe kit (NEB E2040S) by mixing 
100ng of DNA template, 2µL of 10X reaction buffer, 2µL 100mM ATP, 2µL 100mM GTP, 2µL 100mM CTP, 2µL 
100mM UTP, 2µL T7 RNA Polymerase Mix, nuclease free water up to 20 µL, and incubated overnight at 37°C. 
         Following an overnight in vitro transcription, DNA template was digested by adding 3µL 10X DNase 
buffer, 2µL DNase I, and incubating for an additional 15 minutes at 37°C. Guide RNAs were purified using a 2X 
SPRI reaction and checked for purity by running on a 15% TBE-Urea Gel (Invitrogen EC6885BOX). Guide RNA 
concentration was quantified using the Broad Range RNA Qubit kit (Thermo Fisher Scientific Q10210). 

To perform Cas9 based depletion in our most optimized condition, 2 ng of library was mixed with 1.5 µL 
NEB 3.1 buffer, and sgRNA and NEB cas9 at a 20,000:3,000:1 ratio of sgRNA:Cas9: DNA. The reaction was 
incubated at 37°C for 2 hours after which Cas9 was stripped from the DNA by adding in 1µL Proteinase K, 1µL 
10% SDS, and incubating for 15 minutes at 50°C. The DNA library was purified with a 1.2X SPRI, eluted in 25 µL 
nuclease free water, and mixed with 25 µL 2X Q5 High Fidelity Master Mix, 0.4 µL 100 µM oBW170, and 0.4 µL 
100 µM of a unique P7 index primer. The reactions were amplified with the following temperature program: 98°C 
for 30 seconds, 12 cycles of 98°C for 10 seconds, 65°C for 30 seconds, 72°C for 30 seconds, a final incubation at 
72°C for 5 minutes, and hold at 4°C. Libraries were sequenced on the MiSeq Reagent Kit v2 (300 cycles) (Illumina 
MS-102-2002) using the following read structure: 26bp Read 1, 30bp i5 index, 8bp i7 index, 100bp Read2. 
 
Quantifying cell loading in the 10X Microfluidic system. To quantify if single bacterial cells could be loaded into 
the 10X Microfluidic system, we first fixed 2mL of E. coli MG1655 cells grown to OD=0.4 overnight in 4 mL of 
4% formaldehyde. Cells were prepared as described above up to after the first wash following permeabilization. 
Following the first wash, cells were incubated in 50 µL of 5 µM Sytox Green (Thermo Fisher Scientific S7020) for 
15 minutes. After the incubation, cells were washed twice in 100 µL of PBS-RI, and then resuspended in 100 µL of 
0.5X PBS-RI. Cells were counted, and then loaded onto the 10X Microfluidic system using the Chip A 5’ kit.  

Following droplet generation, 5uL of the mixture was transferred onto a glass coverslip, and imaged on a 
Nikon TiE microscope with a Plan Apo 20X objective, and Hanamatsu ORCAFlash4.0 camera. Cells in each droplet 
were then manually counted.  

 
Computational Methods 
 
Data Preprocessing. Raw basecalls were retrieved from the NovaSeq, and processed with a custom version of 
picard tools v2.19.2 following the pipeline described in 1. Reads were aligned to a combinations of one or more of B. 
subtilis 168, E. coli MG1655, and E. coli Nissle genomes using STAR v2.7614, and annotated with featureCounts 
v2.0.015. Reads were filtered such that all the reads used for downstream analysis have mapQ score > 1, and mapped 
lengths greater than 20bp. Annotated and filtered reads were loaded into Python 3.7.6 where custom code was 
written to assign non-rRNA reads to combinations of droplet and plate barcodes in pandas. 

After assigning reads to barcode combinations, we filtered out droplets barcodes in which a given droplet 
barcode had more than 8 associated plate barcodes, which corresponds to a barcode collision rate greater than 25%. 
We then split barcode combinations by condition (plate barcodes), and then performed another filtering step using 
the knee method for each condition16. We note that this step is important because bacteria in different conditions 
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have different amounts of mean mRNA expression. After the last filtering step, a cell/gene matrix was made where 
the entries of the matrix are the number of UMI’s that we measured for that gene in a particular cell. 
 
Single-Cell Analysis. Metrics for the scRNA-Seq results were compiled and plotted using custom scripts in Python 
3.7.6. Downstream analysis of single cell data was performed using pipelines detailed in Seurat v4.0.317. Data was 
first preprocessed filtering out genes that were expressed in less than 10 cells, and cells that expressed less than 10 
UMI’s. The data was then normalized by dividing the UMI counts in each cell by the total number of UMI’s 
measured in that cell, multiplying by a scale factor of 100, adding a count of 1 to each entry, and then log-
normalizing the scaled values. The normalized expression data was then scaled to have mean 0 and unit variance, 
and dimension reduced using principal component analysis. When necessary, the kurtosis of each principal 
component was computed by taking the matrix of cells by principal component coordinates, and then calling the 
“kurtosis” function.  
         Following principal component analysis, we computed a uniform manifold approximation representation18 
and a shared neighbor graph (SNN) using the first 10 principal components. We performed graph-based clustering 
on the shared neighbor graph to identify clusters of gene expression programs using the Louvain algorithm 
(algorithm 3 in Seurat 4.0.3)19. Marker genes for each cluster were computed using the Wilcoxon Rank-sum test. 
Further data analysis and plotting was performed using custom scripts in R. 
            Geneset enrichment analyses were performed using topGo (2.48.0). Briefly, marker genes for each cluster 
were first obtained using the FindMarkers function in Seurat. The list was filtered by taking genes with p value < 
0.05. This list was then split into genes that were upregulated in the cluster, and genes that were downregulated. The 
two lists of genes were then used for biological process term enrichment using Fisher’s exact test. 
 To compute silhouette scores, we took the PCA matrix and cluster outputs from Seurat, and used the 
silhouette score function from the KBET package(38). 
 
Comparison with Bulk RNA-Seq. Bulk RNA-Seq data for exponentially growing E. coli was downloaded from (8) 
(GEO accession number GSE141018). Raw reads from the bulk data were aligned to the E. coli MG1655 genome 
and annotated as described above. Single-cell and bulk transcriptomes of exponential growing E. coli were 
compared by computing the Pearson correlation of log10 transcripts per million (TPM) of each gene between the two 
measurements. Genes with 0 counts in either dataset were first omitted. TPM for each gene in single cell data was 
then computed by adding a pseudocount of 1 to each gene, summing over the UMI counts for that gene across all 
cells, normalizing by gene length, and dividing by the sum of length normalized counts. TPM for bulk 
measurements were computed as previously described. The TPMs of the bulk and single-cell datasets were log10 

transformed and used for plotting and correlation measurements. 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508688doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508688

