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Abstract

Gene expression from bulk RNA-seq studies is an average measurement between two chromosomes and

across cell populations. Both allelic and cell-to-cell heterogeneity in gene expression results from promoter

bursting patterns that repeatedly alternate between an activated and inactivated state. Increased cell-to-cell

heterogeneity in gene expression has been shown as a hallmark of aging, which is potentially induced by the

change of promoter bursting patterns. Despite their importance in humans, bursting kinetics studies have been

studied only in a limited number of genes within selected model organisms due to technical restrictions in

measuring multiple transcript levels over time. Here, we construct a transcriptomic kinetics map using

single-cell RNA-seq (scRNA-seq) data and systematically investigate the regulatory effect of genetic variants

and transcription factor (TF) binding on transcriptional kinetics. We obtain allelic level expression from

scRNA-seq data with phased genotypes for two clonal cell lines and estimate transcriptional bursting kinetics

for a single chromosome. We found that among transcriptional kinetics, the transcription initiation rate and

burst frequency correlate most with eQTL effect sizes from bulk RNA-seq studies, suggesting that eQTLs affect

average gene expression mainly through altering the transcription initiation rate and burst frequency. Notably,

eQTL studies focused on mean expression changes cannot identify scenarios where burst size and frequency

are regulated in opposite directions, which is common amongst genes from lymphoblastoid cell lines. We

further found that ~90% of the variance of burst frequency can be explained by TF occupancy within the core

promoter and allele-specific binding events of individual TFs are typically associated with the change of

transcription initiation rate and burst frequency. Finally, we demonstrate how a genetic variant alters TF

binding, resulting in changes to promoter burst kinetics of HLA-DQA1 to influence multiple hematological traits.

Introduction

Episodic bursting of expression is a prevalent phenomenon in eukaryotic cells (Lammers et al. 2020)

compared to prokaryotic cells, which reflects their relative complexity and hierarchical nature of transcriptional

regulation. Sandberg et al. (2019) modeled bursting kinetics at each allele independently with scRNA-seq and

showed that core promoter elements, including TATA box and initiators, affect bursting kinetics in primary

mouse fibroblasts. Such transcriptional bursts can introduce significant cell-to-cell transcriptional variability
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over a cell population and protein level variability, which can result in phenotypical differences in tissue or

organism level. For example, prominent cell-to-cell transcriptional variability has been shown as a hallmark

feature of aging (Martinez-Jimenez et al. 2017). Early disturbance in the bursting expression pattern

establishes an initial population heterogeneity that allows the selection and propagation of cell-type-specific

gene expression (Ohnishi et al. 2014). Hence, elucidating the transcriptional burst provides us with detailed

molecular mechanisms of transcription, precise prediction of drug effects, and robust ways to characterize

different cell types (Rodriguez and  Larson 2020).

The study of episodic bursting expression was limited to a few cell types among selected genes, largely due to

technical restrictions. The direct measurement of bursting kinetics depends on single molecule techniques in

live cells, such as MS2 tagging and Cas-derived systems, which allow real-time observation of nascent mRNA

measurement (Larson et al. 2011; George et al. 2018). However, such techniques can only simultaneously

assay tens to hundreds of genes and are limited to cultured cells and tissues. In addition, despite multiple

studies that have investigated how gene regulatory factors (transcriptional factors, histone acetylation, DNA

methylation, etc.) modulate transcriptional burst, the results are inconsistent among different cell lines and

species, probably due to both cell type-specific effects and technical variation (Sánchez and Kondev 2008;

Singh et al. 2010; Dar et al. 2012; Fukaya et al. 2016; Faure et al. 2017; Nicolas et al. 2018; Li et al. 2018;

Larsson et al. 2019; Bartman et al. 2019; Dobrinic et al. 2021; Gupta et al. 2022). Therefore, a

transcriptome-wide and unbiased investigation of how regulatory factors modulate transcriptional bursts in

human cells is needed to understand how it influences gene expression at the cell population level and further

propagates to tissue or organism-level phenotypes.

Literature exploring allelic bursting kinetics in human cells and their regulatory mechanisms are sparse. One

reason is that phased genotypes obtained from familial inference, deep sequencing, or haplotype phasing are

not as comprehensive as those from inbred strains of laboratory animals. Therefore in this study, we design a

pipeline to characterize bursting kinetics from scRNA-seq data and phased genotype profiles with multiple

filtering and validation procedures. scRNA-seq quantifies the mRNA molecules at the single-cell level and

reveals complex cellular heterogeneity and dissects cell types. In the study of bursting kinetics, scRNA-seq has

unique advantages that allow a snapshot of each cell within the population, capturing the distribution of gene

expression over time resulting from the transcriptional burst. Therefore, we can estimate allele-level gene

expression by quantifying scRNA-seq reads containing heterozygous variants (i.e. allele-specific

expression[ASE]), enabling unbiased measurement distinguishing the bursting kinetics of the two separate

promoters present within one subject.

In brief, we first achieve an allele-level single-cell gene expression profile using allele-specific read mapping

and inference. We then derive transcriptional kinetics by fitting the allele level expression profile with a

two-state model. The two-state model (see Methods) is a stochastic model that represents the episodic

bursting feature for gene expression. The estimated kinetics parameters are transcription initiation rate (k+),

transcription termination rate (k-), and mRNA transcription rate (r), based on which we can derive bursting
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kinetics including burst size and frequency. We want to emphasize that the terms “allele-specific expression”

and “allelic transcript” were used in this study only to indicate the different observed transcript levels between

the two alleles and do not imply any causal relationship between the allele and its expression.

To investigate how regulatory elements modulate transcriptional kinetics, we derive the allelic occupancy

profile of 152 TFs, 11 histone markers, and allelic chromatin accessibility profile from ATAC-seq data on

GM12878. We hypothesize that transcriptional kinetics are modulated by allelic-specific TF binding or histone

modification. We first estimate the variance of transcriptional kinetics explained by the TF binding within the

core promoter region and within the distal enhancer region, respectively. Next, we investigate how individual

TF and histone markers alter transcriptional kinetics across the genome. Finally, we investigate if eQTLs are

associated with the change of transcriptional kinetics due to allele-specific binding (ASB) of TF or allelic open

chromatin.

Results

Transcriptomic mapping of transcriptional kinetics for lymphoblastoid cell lines of European and
African ancestry
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Figure 1. Schema of the allelic transcriptional burst. (A) Gene g has two promoters independently transcribing mRNA. (B)

Take the first allele as an example. The promoter over time will switch between an on and off state with rates of k+ and k-.

In the on state, a promoter can transcribe mRNA with rate r and the mRNA will be degraded with rate d. (C) The

transcriptional burst reflected in single cells are the observed reads from alleles in phase with T or G (colored red and

blue, respectively). The transcriptional burst in a time-series experiment will be observed as episodic bursts of the

transcript followed by a silenced period. (D) In single-cell studies, promoters with different bursting expression patterns

result in different distribution patterns between two promoters.

We derived transcriptional kinetics for GM12878 and GM18502, which are lymphoblastoid cell lines (LCLs)

from a female of European descent and a female of African descent, respectively. We obtained allele level

expression profiles by combining scRNA-seq data and phased genotype profiles for both samples and fitting

them with a beta-binomial distribution (see Methods). Even though the maternal and paternal origin of

chromosomes are available for GM12878, we do not have such information for GM18502 and most

experiments. Therefore, for simplicity, we assign alleles to Haplotype1and the counterpart to Haplotype2 for the

context of all analyses. The associated features for Haplotype1and 2 are color-coded as blue and red,

respectively.

Despite the different continental ancestry of the two individuals, the single-cell allelic expression for these two

LCLs is highly consistent (Figure S1A, E). For GM12878, 972 of 1,020 genes with an average probability of

observing a transcript from Haplotype1 around 0.5 are actually from a bimodal distribution (Figure S1B).

Similarly, for GM18502, the majority of the genes (1,463 out of 1,542) expressed with bimodal distributions

(Figure S1F). Genes with bimodal distributions are expressed preferably with one of the two alleles within a

single cell, which is different from genes with unimodal distribution expressing both alleles within a single cell;

even though both distributions can result in biallelic expression in population average.

In addition to the highly consistent allelic expression, GM12878 and GM18502 have highly overlapping allelic

transcriptional kinetics. The transcription initiation rate (k+) and transcription termination rate (k-) are not

independent of each other and occupy restricted phase space (Figure 2A, E). The average active fraction

is bound between 0 to 0.6 and most observations are smaller than 0.5, indicating that k+ is smaller
𝑘
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(𝑘
+

+𝑘
−

)  

than k- (Figure 2B, F). The burst size and burst frequency are empirically independent bursting kinetics derived

from k+, k-, and r (Figure 2C, G) The histogram of burst size and burst frequency for GM12878 and GM18502

shows a similar distribution and boundary to those derived from mouse primary fibroblasts (Larsspm et al.,

2019) (Supplemental Figure S2). The consistent allelic expression and transcriptional kinetics in GM12878 and

GM18502 indicate that they express a set of genes with very similar bursting patterns. While we only have

results from two LCLs, we reason that such consistency might be cell-type specific.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508743doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508743
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. (A-D) The distribution of transcriptional kinetics for GM12878 and GM18502(from up to down). (A) shows the

distribution of and in the log scale. (B) shows the distribution of r and . is related to the average𝑘
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active time fraction. (C) shows the distribution of burst size and burst frequency. The burst size and burst frequency are

related to , , and r in the form of and . (D) is the log scale's violin plot of all transcriptional𝑘
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kinetics.

eQTL may exist to alter transcriptional kinetics than mean expression

Previous studies have shown that burst size and burst frequency can be independently regulated by

transcriptional machinery and lead to the change of allelic transcription. We want to know if the transcriptional

kinetics are influenced by genetic variants or if they are related to eQTL studies that only look at the mean

expression. Therefore, we examined the correlation between our transcriptional kinetics and established sets

of eQTLs from bulk expression data. We accessed 934,849 significant eQTL from LCLs across four studies in

the eQTL Catalog (Kerimov et al. 2021). We retained 48,869 eQTL variants that were heterozygous in

GM12878 and were potential eQTLs (alpha=1e-5) for genes with transcriptional kinetics. We normalize the

directions for both eQTL effect size and log fold change of transcriptional kinetics from Haplotype2 to

Haplotype1. Then we correlated the eQTL effect size with the log-transformed fold change of transcriptional

kinetics from Haplotype2 to Haplotype1 (see Methods).
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Since bulk gene expression is an averaged expression level across cells and eQTL effect sizes reflect the bulk

gene expression change between two alleles, we expect that the mean expression change measured from a

single cell experiment will mostly correlate with eQTL effect size. Indeed, the mean and variance change in

gene expression between alleles have the highest correlation with the eQTL effect size (Figure 3A, B). Similar

results are observed for GM18502 (Supplemental Figure S3A, B).

We found that among transcriptional kinetics, the k+ and burst frequency correlate most with the eQTL effect

size (p-value=8.65e-22, Spearman correlation coefficient=0.249; p-value=2.91e-17, Spearman correlation

coefficient=0.221), respectively. Similar results are also observed for GM18502 (Supplemental Figure S3C, D).

Even though the eQTL is derived primarily from European descent subjects, we still observe a high correlation

for k+ and burst frequency with eQTL effect size for GM18502. Based on the correlation results, we

hypothesize that eQTLs affect average gene expression mainly through altering k+ and burst frequency.
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Figure 3. (A-G) Spearman correlation between eQTL effect size and transcriptional kinetics for GM12878. The x-axis is

the effect size from the previous eQTL studies, and the y-axis is the log2 fold change of transcriptional kinetics. The

directions for both eQTL effect size and log2 fold change of transcriptional kinetics are from Haplotype2 to Haplotype1.

(A-B) The change of mean and variance in gene expression from scRNA-seq between alleles has the highest correlation

with the eQTL effect size. (C-D) k+ and burst frequency have the largest correlation coefficient with the eQTL effect size.

(E-G) k-, r, and burst size do not correlate with eQTL effect sizes.

First, we examined if eQTL or transcriptional bursting kinetics analysis can identify the change in expression

when burst size and burst frequency are both affected by genetic variants. We simulate an experimentally ideal
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scenario for both eQTL and transcriptional kinetics analysis with 100 subjects and 1000 cells per subject. We

choose the estimated transcriptional kinetics from GM12878 and change them at both burst frequency and

burst size. We found that transcriptional kinetics analysis can identify the change in bursting kinetics in all

simulated configurations while eQTL analysis cannot when burst size and frequency are changed in opposite

directions (Figure 4B). However, we found that it is common for burst size and frequency to change in opposite

directions, as shown in GM12878 and GM18502 (Figure 4C).

To further investigate the case where the change of burst size and burst frequency cannot be detected, we

simulated it with varied samples and cells where burst size is increased by 2 fold and burst frequency is

reduced by half (Figure 4C). We found that even where there are as few as 18 subjects and 600 cells,

transcriptional bursting kinetics can still show the change that is detectable with a power greater than 60%. We

then investigated why eQTL analysis cannot detect expression changes introduced by underlying altered

transcriptional kinetics. When reducing the burst size by half and increasing the burst frequency, the mean

expression shows no statistical difference while the variance does (Figure 4D). However, eQTL analysis only

reflects the mean expression change driven by the existence of genetic variants. Therefore, when only a small

number of cells are available, which is typical for tissue-based gene expression studies, it is more powerful to

estimate transcription variance or transcriptional kinetics rather than mean expression.
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Figure 4. (A) The simulation workflow. A SNP will regulate gene g expression by modulating burst size and frequency. We

simulated the genotype for n subjects and their allelic expression of gene g for M cells with Poisson-beta distribution with

their burst size and frequency. The bulk gene expression for each subject is calculated by averaging through M cells. We

then re-estimate the transcriptional kinetics based on each subject's single cell allelic expression. We compare the

bursting kinetics for all subjects with the Student t-test. On the other side, we perform eQTL analysis on SNP J and bulk
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expression of gene g. (B) We simulate the optimal scenario for both eQTL and transcriptional kinetics analysis with 100

subjects and 1000 cells per subject. The x-axis is the log2 transformed change from bs to and the y-axis is the log2𝑏𝑠
0 

transformed change from bf to . Each combination of burst size and burst frequency will be run 100 times𝑏𝑓
0 

independently. The power of either the eQTL test or Student t-test of bursting kinetics is the percentage of tests reaching

significance level (alpha=0.05). (C) We simulate the scenario where burst size is and burst frequency 2 , which0. 5𝑏𝑠
0 

𝑏𝑓
0

is the scenario where eQTL analysis cannot detect the change in gene expression even with 100 subjects and 1000 cells

per subject. The x-axis is the number of samples from 8 to 30 and the y-axis is the number of cells from 100 to 1000.

Each combination of the number of cells and subjects will be run 100 times independently. The power of either the eQTL

test or the Student t-test of bursting kinetics is calculated by the percentage of tests reaching the significance

level(alpha=0.05). (D) The violin plot of gene expression at single-cell resolution for different dosages of G alleles. The

single-cell expression profile is simulated under the experimentally ideal scenario for both eQTL and transcriptional

kinetics analysis with 100 subjects and 1000 cells per subject. The amount of transcript from the T allele and G allele is

simulated with bursting kinetics ( , ) and ( , ).𝑏𝑠
0 

𝑏𝑓
0 

0. 5𝑏𝑠
0 

2𝑏𝑓
0 

Transcription Factors bound to the transcription start site explain most transcriptional kinetics

Significant differences in transcriptional kinetics exist between the two chromosomal copies. We hypothesize

that transcriptional kinetics are determined by features of the regulatory regions. To examine our hypothesis,

we investigate the variance of transcriptional kinetics that can be explained by TF binding or histone markers

existing on the same haplotype. In detail, we first obtained the allelic level TF occupancy profile with ChIP-seq

reads and phased genotype profiles. We realigned ChIP-seq reads to ASB sites (heterozygous SNPs) located

in the regulatory region. The regulatory regions are divided into the distal enhancer region from EnhancerAtlas

(Gao and Qian 2020) predicted based on multiple high throughput experimental datasets, and the core

promoter region with 1,000 base pairs (bp) upstream and downstream from the transcription start site. The

distance between the boundary of the enhancer region and the gene ranges from 1,001bp to 9.7Mbp, with a

mean of 1.4M. Then we determined the occupancy for a TF or histone marker on Haplotype1or Haplotype2 by

the number of allelic reads mapped to Haplotype1 or Haplotype2. Finally, we estimate the variance of

transcriptional kinetics explained by the TF occupancy profile with a linear mixed model (LMM).

In the core promoter profile, ~90% of the variance of burst frequency can be explained by TF occupancy.

However, only ~30% variance for burst size is explained (Figure 5). This is consistent with prior findings where

burst frequency is highly regulated by transcription factors while burst size is not in mouse embryonic cells

(Dobrinic et al., 2021) and Drosophila embryos (Fukaya et al., 2016). Compared to the core promoter profile,

less variance for bursting kinetics is explained by the distal enhancer profile; it explains ~20% for k+ and ~25%

for k-, 37% for r, and 35% for burst frequency. These numbers are on average over 90% in the core promoter

profile, therefore, transcriptional kinetics is largely contributed by TFs within the core promoter region.
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Figure 5. (A) Fold change of bursting kinetics between Haplotype1and Haplotype2 in GM12878 and GM18502. The x-axis

is the log2 transformed change from bs to and the y-axis is the log2 transformed change from bf to . Left figure is𝑏𝑠
0 

𝑏𝑓
0 

the overall distribution of fold change of bursting kinetics between Haplotype1and Haplotype2 in GM12878 and GM18502.

Right figures shows the distribution when log2( ) and log2( ) are bound by (-2, 2). (B) Proportion of𝑏𝑓
𝐻2

/𝑏𝑓
𝐻1 

𝑏𝑠
𝐻2

/𝑏𝑠
𝐻1 

variance in transcriptional kinetics explained by TF binding. The bars with back slashes are the estimated variance of

transcriptional kinetics explained by TF ASB within the core promoter, while the bars with dots are the estimated variance

of transcriptional kinetics explained by TF ASB within the distal enhancer region.

Transcriptional factors regulate gene expression by altering k+ or burst frequency

Given that a significant proportion of the variance in transcriptional kinetics can be explained by the TF ASB

profile, we next want to identify the individual effect of TF on transcriptional kinetics.

We combined the core promoter and distal enhancer ASB profiles to investigate the individual TF effect in

transcriptional kinetics. Given that both core promoter and distal enhancer regions have ASB profiles,

combining them helps increase the number of ASB events and thus the statistical power. Overall, there are 516
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genes (519/1,020) with ASB events within either the core promoter or distal enhancer region, and these ASB

events come from 112 TFs and Histone markers (112/151).

We performed a paired Wilcoxon test to compare the transcriptional kinetics between Haplotype1 and

Haplotype2 of genes across the entire genome. We only include TFs with ASB events in >=10 genes in the

Wilcoxon test. The test examines whether the change of a specific TF binding status affects the transcriptional

kinetics on average across the genome. We adjust the results for multiple testing with FDR correction. Positive

effect size indicates that one allele of a gene with a specific TF binding will have a larger kinetic than the

counterpart allele without it and vice versa.

We found that for LCL, the ASB events of multiple TFs are associated with transcriptional kinetics (Figure 6B).

The binding of YY1 is associated with gene expression by increasing k+ and burst frequency (FDR<0.1). The

pair-wise comparison between YY1 bound and unbound alleles are shown in Figure 6C. ASB events of

Multiple TFs including YY1, EED, POLR2AphosphoS5, EBF1, IKZF2, PAX5, MTA2, and FOXK2 are associated

with the change of transcriptional kinetics at nominal significance (p-value<0.05). In summary, most of the

significant ASB events of TF are associated with the change of k+ and burst frequency. In contrast, we found

no significant association between the transcriptional kinetics and allelic open chromatin (Supplemental figure

S4).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508743doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508743
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508743doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508743
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. (A)The work schema for the paired test. The comparison is done across genes with only one allele binding TF

and between pairs of alleles. (B) Association between the ASB TF occupancy and kinetics with the Wilcoxon test. Overall,

46 TFs that have ASB for more than 10 genes tested for transcriptional kinetics. We correct each Transcriptional kinetic

result for multiple testing.YY1 binding increases burst frequency and k+ are colored red ( FDR < 0.1). Other transcriptional

kinetics associated with YY1, EED, POLR2AphosphoS5, EBF1, IKZF2, PAX5, MTA2, and FOXK2 binding at nominal

significance are colored gray. Positive effect size indicates that one allele of a gene with TF binding will have a larger

transcriptional kinetic than the counterpart allele without the TF and vice versa. (C) Association results between the YY1

occupancy and transcriptional kinetics with paired Wilcoxon test.

eQTLs induce preferential TF binding that shapes the bursting kinetics of gene expression

In the eQTL section, we have shown that we can potentially detect a genetic variant affecting bursting kinetics

through transcriptional kinetics analysis (18 samples with 600 cells per sample to reach a power of 60%;

Figure 4C). On the other hand, we have shown that ASB of TF is associated with transcriptional kinetics. In this

section, we will combine them to infer potential eQTL mechanisms regulating burst kinetics by altering TF

binding affinity and how they associate with phenotypes in the GWAS catalog.

An eQTL and GWAS Catalog variant rs9271588 (Table 1a-c) is carried by GM12878, the T allele of which

induces preferential binding of SRF, and consequently leads to higher burst frequency and larger transcription

variance. rs9271588 is close to the transcription start site of HLA-DQA1 and overlaps with the SRF ChIP-seq

peaks (Figure 7A), which is mostly mapped to the rs9271588_T allele. To further confirm that rs9271588 will

induce ASB of SRF, we use Qbic-pred (Martin et al. 2019) to predict the consequence of rs9271588 and found

that TF is bound with the T allele and unbound with the C allele. Therefore, the ASB of SRF might be

introduced by the rs9271588.

rs9274623 and rs9271586, GWAS catalog loci and eQTLs for HLA-DQA1 (Table 2a,b), are also associated

with multiple TF preferential binding events. While none of the loci are predicted to change TF binding affinity,

there is PORL2 ChIA-PET evidence showing physical contact between these loci and rs9271588. Therefore,

the TF preferential binding including IKZF2, PKNOX1, and MLLT1 is likely to be introduced due to their

physical contact with SRF, which is preferential binding at rs9271588.

In GM18502 where no TF ChiP-seq and ASB profile were available, we found that the haplotype in phase with

rs9271588_T (Haplotype2) is again concurrent with higher burst frequency and larger transcription variance.

Therefore, rs9271588 is also likely to change SRF preferential binding in GM18502 and lead to the change in

allelic transcription reflected in increased burst frequency and large transcription variance.

The rs9271588_C allele, predicted to have lower TF binding affinity and consequently resulting in low burst

frequency and small transcription variance in LCL, is associated with an increased count of cells of myeloid

lineage. Lymphoid progenitor cells have similar HLA class II expression profiles to hematopoietic stem cells

(Boegel et al. 2018). Therefore, rs9271588_C might have a similar influence on HLA-DQA1 in hematopoietic

stem cells to LCL, which results in cell-to-cell heterogeneity in hematopoietic stem cells and consequently an
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increased count of cells in myeloid lineage. While the risk alleles of rs9274623 and rs9271586 are not in phase

with rs9271588_C, they have been shown associated with open chromatin (Table 2a,b; Goes et al. 2015) and

consistent with the ASB results in Figure 7.

Summarizing the above evidence, TF preferential binding is associated with the allelic expression and bursting

kinetics. More specifically in the HLA-DQA1 example, the higher burst frequency and larger transcription

variance are associated with a collection of TF preferential binding.

Figure 7. (A) Chromatin context of rs9271588 in GM12878. rs9271588 is an eQTL and GWAS Catalog locus near the

transcription start site of HLA-DQA1. On rs9271588, the ChIP-seq peaks of SRF show ASB. Multiple TFs including IKZF2,

PKNOX1, and MLLT1 show preferential binding in the downstream region of HLA-DQA1. The PORL2 CHIA-PET shows

the interaction between the rs9271588 and downstream ASB sites. (B) The histogram of UMI between Haplotype1and

Haplotype2 in GM12878 and GM18502. In GM12878, Haplotype1 in phase with rs9271588_T is colored blue and shows a

larger mean and variance of transcription while Haplotype2 in phase with rs9271588_C is colored red and shows a

smaller mean and variance of transcription. In GM18502, Haplotype1in phase with rs9271588_C is colored blue and

shows a smaller mean and variance of transcription while Haplotype2 in phase with rs9271588_C is colored red and

shows a larger mean and variance of transcription.

Table 1a: Busting kinetics affected by rs9271588

Gene TF Allele Burst size Burst
frequency Mean Variance
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HLA-DQA1 SRF
GM12878 T(Haplotype1) 5.695 0.65 3.680 23.511

C(Haplotype2) 8.278 0.0368 0.310 1.438

GM18502 C(Haplotype1) 7.554 0.902 6.841 29.773
T(Haplotype2) 6.168 1.166 7.195 43.320

Table 1b: HLA-DQA1 association with rs9271588 in the eQTL catalog

Gene eQTL Locus Study Tissue -log10(p) Effect Size SE
(Effect Size)

HLA-DQA1 rs9271588_T/C
GEUVADIS

LCL
8.25 -0.58 0.098

GTEx 3.69 -0.76 0.2
GENCORD 2.9 -0.55 0.17

Table 1c: phenotypes for rs9271588,rs9271586 and rs9274623 in the GWAS catalog
Variant and
risk allele P-value Beta CI Trait(s) Study accession

rs9271588-C

2 x 10-58 0.0576552 unit
increase [0.051-0.065] neutrophil count,

basophil count GCST004620

2 x 10-66 0.06164672 unit
increase [0.055-0.069] granulocyte count GCST004614

4 x 10-66 0.06142442 unit
increase [0.054-0.068] neutrophil count,

eosinophil count GCST004613

9 x 10-68 0.06247162 unit
increase [0.055-0.07] myeloid white cell

count GCST004626

1 x 10-58 0.05764791 unit
increase [0.051-0.065] neutrophil count GCST004629

Table 2a: Table 1b: HLA-DQA1 association with rs9274623 and rs9271586 in the eQTL catalog
Gene eQTL Locus Study Tissue -log10(p) Effect Size SE(Effect Size)

HLA-DQA1

rs9274623_G/T
GEUVADIS

LCL
14.35 -1.04 0.13

GENCORD 7.21 -1.33 0.23
GTEx 3.05 -0.89 0.26

rs9271586_G/T
GEUVADIS

LCL
8.25 -0.58 0.098

GTEx 3.69 -0.76 0.2
GENCORD 2.9 -0.55 0.17

Table 2b: Genes for rs9271588 in the eQTL catalog
Variant and risk allele P-value Odds CI Trait(s) Study accession

rs9271586-G 6 x 10-115 - - Neutrophil count GCST90056178
rs9274623-G 6 x 10-19 1.1363636 - Schizophrenia GCST003048

Discussion:

We have shown in GM12878 and GM18502, allele-specific expression is prevalent in LCL, specifically in the

form of random monoallelic expression in single cells. By associating the allelic level transcriptional kinetics

with the allelic-specific TF occupancy profile, we found that the allelic-specific binding of TF is associated with

the regulation of transcriptional kinetics and consequently leads to allelic expression. Such allelic expression

not only differs in mean transcription but also the transcription variance. Therefore, allelic transcriptional

kinetics derived from scRNA-seq data provide higher resolution to study allelic-specific expression than eQTL

studies.
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Two assumptions are made for the kinetic estimations: the ergodic process and constant mRNA degradation

rate. The ergodic process assumption is valid for this study since no perturbation is introduced, and GM12878

is an isogenic cell line. However, the ergodic process can be violated when multiple cell types are involved. We

anticipate that along with scRNA-seq data, there will be independent information like surface receptors to help

characterize the cell population. The second assumption is the constant mRNA degradation rate. Rabani et al.

(2011) have shown that most genes in mammalian cells have a similar degradation rate, and the expression of

those genes is little correlated with the change in degradation rates. Therefore, it is valid to estimate kinetics

assuming a constant degradation rate and compare the transcriptional kinetics scaled by the degradation rate

between genes.

When we investigated the individual TF effect on transcriptional kinetics, we measured the averaged effect of

TF binding on the transcriptional kinetics across the genome. However, TF can act collectively to regulate gene

expression and is highly orchestrated by the chromatin 3D structure. Figure 7 has demonstrated an example

where multiple TFs share the same ASB site. Because of the above possibilities, there can be outliers shown

in Figure 6C, of which the change of transcriptional kinetics is not consistent with other pairs. In this case, the

binding of YY1 might be shadowed by other regulatory factors.

The kinetic parameter estimation is sensitive to the protocol of scRNA-seq. Because the scRNA-seq dataset

here is generated with the 10x Genomics 3' sequencing, we have less coverage of exome regions with

scRNA-seq reads and, therefore, fewer allelic expression events identified. We use a stringent threshold to

retain reads with unique alignment and high base-pair sequencing quality at the ASE SNP site. With such a

strategy, we can estimate the allelic expression and transcriptional kinetics for 1,020 genes, while the original

expression profile is available for 21,524 genes. We recognize that we compromise a larger proportion of lowly

expressed genes during the QC process. However, with the latest scRNA-seq protocols, such as the

Smart-seq3(Hagemann-Jensen 2020), more genes can likely be included in the estimation of the kinetic

parameters.

In this study, we have focused only on the effect of TF on kinetics. However, other notable factors can shape

gene expression profiles and regulate the kinetics of genes, such as chromatin looping, DNA methylation, etc.

We anticipate that with the development of the multi-omics technique in the single-cell paradigm single-cell

profiles with multiple measurements will be available, which can help further explain the mechanism of gene

expression and characterize the regulation of transcriptional bursts in depth.

MATERIAL AND METHODS

Kinetic Parameter Estimation pipeline
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Figure 8. Diagram for kinetic parameter estimation from the scRNA-seq profile with phased genotype profile. The original

scRNA-seq profile is with the unique molecular identifier(UMI) unit. We mapped the scRNA-seq reads back to the

chromosomes at heterozygous SNPs and derived the allelic level expression profile. The allelic level expression profile

will be fit with the two-state model to obtain the estimation of three kinetic parameters: k+, k-, and r, which are all scaled

by the degradation rate d.
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Figure 9. Workflow for the allelic-specific mapping, kinetic estimation, and validation process.

1) Obtain Allele-Specific expression from the scRNA-seq profile

The allele-specific mapping is done by combining the scRNA-seq data and phase genotype profiles. We first

pile all scRNA-seq reads upon phased heterozygous SNPs with Samtools (Li et al. 2009). The minimum

mapping quality for an alignment is 50, and the minimum base quality is 30.

Let g denote gene index and H1 denote Haplotype1. We first process cells with reads mapped to gene g and

allelic-specific mapping information available. A read mapped to multiple SNPs on one chromosome within the

gene g will be counted as one single read. For reads mapped to multiple SNPs on both chromosomes, the

reads will be discarded in allele-specific mapping. We derive the allele ratio by calculating the proportion of

reads from two alleles, and then use the allele ratio to infer the allele count for a gene g in a single cell. 𝑚
𝑔
𝑘(𝐻1)

represents the number of transcripts from Haplotype1 for gene g in the kth cell. is the number of total𝑀
𝑔
𝑘

transcripts for gene g in the kth cell. We assume that in cell k with transcripts, the probability of observing𝑀
𝑔
𝑘

follows a beta-binomial distribution(1,2).𝑚
𝑔
𝑘(𝐻1)

, (1)𝑚
𝑔
𝑘(𝐻1)|𝑀

𝑔
𝑘 ~ 𝐵𝑖𝑛(𝑀

𝑔
𝑘 , θ

𝑔
) 𝑘 ∈ {1, 2,... 𝐾}
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(2)θ
𝑔
~𝐵𝑒𝑡𝑎(α

𝑔 
, β

𝑔
)

where are canonical shape parameters of the beta distribution and is the probability sampled fromα
𝑔
 𝑎𝑛𝑑 β

𝑔
θ

𝑔

the beta distribution. Based on and , We can derive the expectation for observing a transcript fromα
𝑔
 β

𝑔

Haplotype1 within a single cell(3).

(3)𝑃
𝑔

=
α

𝑔

(α
𝑔
+β

𝑔
)

Let denote the allelic expression observation in K cells. We first obtain the𝜼 = {(𝑚
𝑔
𝑘(𝐻1), 𝑀

𝑔
𝑘),  𝑘 = 1, 2,... 𝐾}

log-likelihood of the compound distribution shown in (4). We use the maximum likelihood estimation (MLE) to

estimate the and in cells with ASE reads (5) and obtain the confidence interval for and from theα
𝑔
 β

𝑔
α

𝑔
 β

𝑔

Hessian matrix (6).

𝓛(α
𝑔 

, β
𝑔
; 𝜼) =

𝑘=1

𝐾

∑ 𝑙𝑛[𝑓(𝑚
𝑔
𝑘(𝐻1)|𝑀

𝑔
𝑘 ; α

𝑔 
, β

𝑔
)] =

𝑘=1

𝐾

∑ 𝑙𝑛[
Γ(𝑀

𝑔
𝑘+1)

Γ(𝑚
𝑔
𝑘(𝐻1)+1)Γ(𝑀

𝑔
𝑘−𝑚

𝑔
𝑘(𝐻1)+1)

Γ(𝑚
𝑔
𝑘(𝐻1)+α

𝑔 
)Γ(𝑀

𝑔
𝑘−𝑚

𝑔
𝑘(𝐻1)+β

𝑔
)

Γ(𝑀
𝑔
𝑘+α

𝑔 
+β

𝑔
)

Γ(α
𝑔 

+β
𝑔
)

Γ(α
𝑔 

)Γ(β
𝑔
) ]

(4)

(5)α
𝑔 

^
, β

𝑔

^
= 𝑎𝑟𝑔𝑚𝑎𝑥 𝓛(α

𝑔 
, β

𝑔
; 𝜼)

(6)σ2(𝜽) = [𝐾𝐼(𝜽)]−1, 𝐼(𝜽) =− { ∂2𝓛
∂θ

𝑖
∂θ

𝑗
} , 𝜽 = ( α

𝑔 
, β

𝑔
)' 

For cells with reads mapped to gene g but no allelic-specific reads available, we use the estimated

beta-binomial distribution (1) and (2) infer the Haplotype1 and Haplotype2 transcription count of gene g.

To ensure valid inference, we only keep genes with positive , , and confidence intervals. andα
𝑔
 β

𝑔
α

𝑔
 β

𝑔

estimated with an unrealistic confidence interval (i.e., confidence interval covering 0) indicates a failed

convergence during maximum likelihood estimation and thus will not be kept.

In summary, with either observed allele-specific reads or inferred allele-specific reads, we divided the overall

unique molecular identifier (UMI) to Haplotype1 and Haplotype2 to obtain the allele-specific expression profile

for gene g.

2) Estimate Kinetic Parameters

The stochastic gene expression is characterized by a two-state model (Figure 8). In the two-state model, a

gene switches between active and inactive status with rates of k+, k-. While in the active status, the gene can

transcribe mRNA with a rate of r. The degradation rate of a transcript is d.

We use the Poisson-Beta distribution as the steady-state distribution and estimate the kinetic parameters using

the maximum likelihood approach. The probability density function for Poisson-beta distribution takes the same

form as the analytical solution for the two-state model (Bressloff 2014). We denote m as the number of mRNA

in the cell, is the mRNA number at the steady-state, , , and F is the confluent𝑚
𝑠

= 𝑟/𝑑 ξ
0

= 𝑘
−

/𝑑 ξ
1

= 𝑘
+

/𝑑
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hypergeometric function of the first kind (Shahrezaei and Swain 2008). The analytical solution for the two-state

model is shown in Formula 7. The Poisson-beta distribution for a representative steady-state distribution is

shown in Formula 8 (Vu et al. 2016), where is the hyper-parameter can be interpreted as the stochasticλ

switch rate.

(7)𝑝(𝑚) =
𝑚

𝑠
𝑚𝑒

−𝑚
𝑠

𝑚! •
Γ ξ

0
+𝑚( )Γ ξ

0
+ξ

1( )
Γ ξ

0( )Γ ξ
0
+ξ

1
+𝑚( )  𝐹(ξ

1
,  ξ

0
+ ξ

1
+ 𝑚; 𝑚

𝑠
)

; (8)𝑝 𝑚( ) =
λ
∫ ρ

𝑠𝑠
λ( )𝑒−λ λ𝑚

𝑚! 𝑑λ ρ
𝑠𝑠

(λ) = λ
ξ

1
−1

 1−λ( )
ξ

0
−1

𝐵(ξ
1
, ξ

0
)  

The kinetic parameters estimated from all three methods are k+, k-, and r, scaled by d. However, k+, k-, and r

are not necessarily independent of each other. Therefore, we derive a set of empirically orthogonal bursting

kinetics including bursting size (bs) and burst frequency (bf).

(9)𝑏𝑠 = 𝑟
𝑘

−
;  𝑏𝑓 =

𝑘
+

𝑘
−

𝑘
+

+𝑘
−

3) Validate, Filter, and Generate Valid Kinetic Parameter Profile

We validate the estimated kinetic parameter profile using two independent approaches and select estimated

kinetic parameters whose validation profile has passed either filtering criteria.

Figure 10. The flow chart of the first validation approach

In the first approach, we simulate gene expression based on the kinetic parameter estimated from the original

expression profile and re-estimate the kinetic parameters again from the simulated expression profile. This

approach examines the correlation between the original and simulated expression profiles and the correlation

between the estimated and simulated kinetic parameter profiles. We use the Kolmogorov–Smirnov test and the

likelihood ratio test to examine the correlation between the original and simulated expression profiles. When

Kolmogorov–Smirnov and Likelihood ratio tests are not significant, indicating that the underlying probability

distributions for the original expression profile do not deviate from the simulated expression profile. We also

require the estimated kinetic parameter and the simulated kinetic parameter to be restricted byϕ
^
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, indicating that the simulated kinetic parameters do not differ from the originally estimated𝑙𝑜𝑔
2
(ϕ

𝑠
/ϕ

^
)|||
||| <  1

kinetic parameters. Estimated kinetic parameters will be kept if Kolmogorov–Smirnov and Likelihood ratio tests

are not significant and the estimated kinetic parameter and the simulated kinetic parameter are restricted byϕ
^

.𝑙𝑜𝑔
2
(ϕ

𝑠
/ϕ

^
)|||
||| <  1

In the second approach, we measure the variance of each estimated kinetic parameter and filter out those with

large variance. Let denote the observation of transcript in K cells. The posterior𝑴 = {𝑚
𝑘
 , 𝑘 = 1, 2,... 𝐾}

distribution is sampled with the Metropolis-Hastings algorithm (Zoller et al. 2018) in 10,000𝑝(𝑘
+

, 𝑘
−

, 𝑟|𝑴)

iterations. The final estimation and 95% credible interval are derived from the marginal posterior distribution for

each kinetic parameter. We require the upper bound and lower bound of the confidence intervals forϕ
^

𝑈𝐵
ϕ
^

𝐿𝐵

kinetics to be and .𝑙𝑜𝑔
2
(ϕ

^

𝑈𝐵
/ϕ

^
)|||
||| <  1 𝑙𝑜𝑔

2
(ϕ

^

𝐿𝐵
/ϕ

^
)|||
||| <  1

Allelic binding of transcriptional factors and histone modification

We combine the ChIP-seq data and phased genotype from GM12878 to identify allelic-specific TF binding and

allelic-specific histone modification events, generalized as ASB in the follows. We used 152 TF and 11 histone

ChIP-seq datasets for GM12878 from the ENCODE4 project (Davis et al. 2018). We realign the ChIP-seq

reads upon heterozygous SNPs located in the regulatory region and tested if there are allelic-specific binding

events with BaalChIP (de Santiage et al. 2017). The regulatory regions are defined as the distal enhancer

region from EnhancerAtlas (Gao and Qian 2020) and the core promoter region with 1,000 base pairs (bp)

upstream and downstream from the transcription start site. SNPs will be clustered if they are located within the

same CHiP-seq peak. If within a single CHiP-seq peak there are multiple SNPs showing both ASB and

nonASB events, this CHiP-seq peak will not be considered an ASB event.

We derive the TF occupancy profile from ChIP-seq data by encoding the ASB events. For SNPs that show

ASB, based on the phased genotype and allelic reads mapping, we will determine if the TF preferably binds to

Haplotype1 or Haplotype2. The preferably bound allele will be encoded as 1 for TF occupancy while the

counterpart allele will be encoded as 0. If a single CHiP-seq peak shows conflict ASB events by multiple SNPs,

it will not be considered an ASB event.

Associate the transcriptional kinetics with the eQTL effect size

Given the eQTL effect size is defaulted as the change from the alternative allele against the reference allele,

we use the following strategy to make the allelic transcriptional kinetics in phase with the eQTL. First, based on

the phased genotype, we modified the eQTLs effect size to reflect the change of gene expression from

Haplotype2 against Haplotype1. Meanwhile, we derived the log-transformed fold change of transcription burst

from Haplotype2 against Haplotype1. With allelic transcriptional kinetics in phase with the eQTL, we associated

the transcriptional kinetics with the eQTL effect size by the spearman correlation test.
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Power simulation

In Figure 4B, We simulate the scenario for both eQTL and transcriptional kinetics analysis with N=100 subjects

and K=1000 cells per subject. We choose the bursting kinetics and from HLA-DQA1 estimated from𝑏𝑠
0 

𝑏𝑓
0

GM12878. We simulate SNP J, the allele of which results in two different sets of bursting kinetics ( ) and (𝑏𝑠,  𝑏𝑓

, ) for gene g.𝑏𝑠
0 

𝑏𝑓
0 

We determined the minor allele frequency p for the regulatory SNP J and simulated the genotype for N=100

subjects assuming SNP J following Hardy-Weinberg equilibrium. Based on their genotype, we simulate each

subject expression of gene g for K=1000 cells. is the expression of Haplotype 1 allele of gene g for𝑚
𝑔
𝑛𝑘(𝐻1)

the nth subject in the kth cell and it follows a Poisson-beta distribution with their burst size and burst𝑏𝑠
𝑔
𝑛𝑘(𝐻1)

frequency (10). Similar annotation applies to , , and . The bulk expression𝑏𝑓
𝑔
𝑛𝑘(𝐻1) 𝑚

𝑔
𝑛𝑘(𝐻2) 𝑏𝑠

𝑔
𝑛𝑘(𝐻2) 𝑏𝑓

𝑔
𝑛𝑘(𝐻2)

for the nth subject is simulated by averaging across K cells and two alleles H1 and H2 (12). We then𝑔
𝑛

re-estimate the transcriptional kinetics for the kth subject based on its allelic expression profile

across K cells (13, 14). We compare the bursting kinetics for all subjects with the𝑚
𝑔
𝑘(𝐻1),  𝑚

𝑔
𝑘(𝐻1){ },  𝑘ϵ{1.. 𝐾}

Student t-test. On the other side, we perform eQTL analysis on SNP J and the bulk expression of gene g.

Finally, we compare the results from the eQTL analysis and the re-estimated bursting kinetics. Each

combination of burst size and burst frequency will be run 100 times independently. The power of either the

eQTL or burst kinetic test is the percentage of tests reaching the significance level (alpha=0.05).

(10)𝑚
𝑔
𝑘(𝐻1)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝐵𝑒𝑡𝑎 𝑏𝑠

𝑔
𝑛(𝐻1),  𝑏𝑓

𝑔
𝑛(𝐻1)( ); 𝑛ϵ 1…𝑁{ },  𝑘ϵ{1.. 𝐾}

(11)𝑚
𝑔
𝑘(𝐻2)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝐵𝑒𝑡𝑎 𝑏𝑠

𝑔
𝑛(𝐻2),  𝑏𝑓

𝑔
𝑛(𝐻2)( ); 𝑛ϵ 1…𝑁{ },  𝑘ϵ{1.. 𝐾}

(12)𝑔
𝑛

= 𝐸 𝑚
𝑔
𝑛𝑘(𝐻1)⎡⎢⎣

⎤⎥⎦ + 𝐸 𝑚
𝑔
𝑛𝑘(𝐻2)⎡⎢⎣

⎤⎥⎦,  𝑘ϵ{1.. 𝐾}

(13)𝑏𝑠
𝑔
𝑛(𝐻1)
~

,  𝑏𝑓
𝑔
𝑛(𝐻1)
~

 ~ 𝑚
𝑔
𝑘(𝐻1){ },  𝑚ϵ{1.. 𝑀}

(14)𝑏𝑠
𝑔
𝑛(𝐻2)
~

, 𝑏𝑓
𝑔
𝑛(𝐻2)
~

  ~ 𝑚
𝑔
𝑘(𝐻2){ },  𝑚ϵ{1.. 𝑀}

Similarly for Figure 4C, we set up the scenario where the allele of SNP J will result in a corresponding set of

bursting kinetics ( ) and ( and ). We varied the number of samples N from 8 to 30 and the0. 5𝑏𝑠
0
,  2𝑏𝑓

0
𝑏𝑠

0 
𝑏𝑓

0 

number of cells K from 100 to 1000. Each combination of K and N will be run 100 times independently. The

power of either the eQTL or burst kinetic test is the percentage of tests reaching the significance level

(alpha=0.05).

Associate the transcriptional kinetics with the ASB profile
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We use a linear mixed model to estimate the variance of transcriptional kinetics explained by TF occupancy,

where is the TF occupancy profile and is the variance of a Transcriptional kinetic explained by .𝑫 σ2 𝑫

(15)𝑦~𝑁(0, σ2𝑫𝑇𝑫)

While LMM requires the residual to follow a normal distribution, we do not know if the transcriptional kinetics

are violating the assumption. However, we argue that we only use the LMM to estimate the strength of

association between the transcriptional kinetics and TF occupancy. If a large proportion of variance of

transcriptional kinetics can be explained by the TF occupancy, we have theoretical evidence to support

transcriptional kinetics are likely contributed by gene regulation, which allows us to further investigate the

individual TF and their effect on transcriptional kinetics.

We examine the TF occupancy within the regulatory region. The regulatory region is divided into the distal

enhancer region and core promoter region. Because transcriptional kinetics is not normally distributed (Figure

1D, E), we use the non-parametric Wilcoxon test to examine the association between ASB of TFs and

transcriptional kinetics. Specifically, we normalized the effect size from the Wilcoxon test to be within (-0.5,0.5).

A positive Wilcoxon test effect size indicates that the existence of a regulator will increase the transcriptional

kinetic and vice versa. We correct the test result for every TF and transcriptional kinetic for multiple testing with

the False Discovery Rate(FDR). We select TFs whose association with any transcriptional kinetic is significant

after FDR correction.

scRNA-seq Data Source and QC

We use two criteria to filter the scRNA-seq expression profile to remove abnormal cells and still maintain

cell-cell variability. Firstly, we preserve cells with <20% of the transcript from mitochondrial genes. In addition,

cells with fewer UMI than one standard deviation from the population mean are excluded.

The scRNA-seq data for GM12878 and GM18502 is from Osorio et al. (2019). For GM12878, 8,287 cells are

sequenced, and 7,145 pass the quality control(QC). Using these 7,145 cells from GM12878, we obtain the

valid estimation of transcriptional kinetics for 1,935 alleles corresponding to 968 genes. For GM18502, 5,991

cells are sequenced, and 5,029 pass the QC. we obtain the valid estimation of transcriptional kinetics for 1,480

genes with 2,959 alleles.
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The code for this study is available on GitHub: https://github.com/bushlab-genomics/ASEkinetics with open
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