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ABSTRACT: 
 

Breast cancer is a heterogeneous disease. Tumor cells and the surrounding microenvironment 

form an ecosystem that determine disease progression and response to therapy. To characterize 

the breast cancer ecosystem and the changes induced by targeted treatment selective pressure, we 

analyzed 136 HER2-positive tumor samples for the expression of canonical BC tumor diagnostic 

proteins at a single cell level without disrupting the spatial context. The combined expression of 

HER2, ER, PR, and Ki67 in more than a million cells was evaluated using a tumor-centric panel 

combining the four biomarkers in a single tissue section by sequential immunohistochemistry to 

derive 16 tumor cell phenotypes. Spatial interactions between individual tumor cells and cytotoxic 

T cells were studied to determine the immune characteristics of the ecosystem and the impact on 

response to treatment. HER2-positive tumors displayed individuality in tumor cells and immune 

cells composition, including intrinsic phenotype dominance which only partially overlapped with 

molecular intrinsic subtyping determined by PAM50 analysis. This single cell analysis of 

canonical BC biomarkers deepens our understanding of the complex biology of HER2-positive 

BC and suggests that individual cell-based patient classification may facilitate identification of 

optimal responders or resistant individual to HER2-targeted therapies. 

 

INTRODUCTION: 
 

Breast cancer (BC) is a heterogeneous disease accompanied by differences in clinical, molecular, 

and biological features1, which creates a challenge for prognosis and treatment2. Currently, BC 

samples are stratified for clinical purposes based on tumor cells' expression of ER, PR, HER2, 

and the proliferation marker Ki67. These immunohistochemistry (IHC) biomarkers together with 

clinicopathologic indexes are used to predict disease outcome3, for treatment decisions, and serve 

as surrogates for prognostic gene expression profiles (GEP)4–7 categorizing BC into four basic 

subtypes which are related – but not equivalent – to GEP-defined intrinsic subtypes8. Luminal A 

and luminal B are roughly equivalent to [ER+|PR+] HER2− and [ER+|PR+] HER2+ tumors, 

respectively, though a small percentage of [ER+|PR+] HER2− tumors with Ki67 positivity are 

reported to belong to the luminal B subtype9. HER2 enriched tumors refer to [ER−|PR−] HER2+ 

despite the different methods used on HER2 assessment. The [ER−|PR−] HER2− (also named 

triple negative tumors) subtype is mainly composed of basal-like tumors, which are highly 

heterogeneous including at least claudin-low10, metaplastic breast cancer11 and interferon-rich 

tumours12 in addition to core basal tumors as demonstrated by the accumulated evidence. 

 

Although these stratifications have improved therapy success, patient responses vary within each 

subtype demanding better characterization of BC ecosystem. Targets of current therapies are 

heterogeneously expressed within and between patients. This heterogeneity equips cancer cells 

for proliferation, survival, and invasion and likely underlies differential treatment efficacies. This 

ecosystem is further shaped by cellular relationships (tumor cell-tumor cell, tumor cell-immune 

cell, …) and strategies targeting relationships that promote tumor development are promising.  

 

Next generation technologies such as gene expression based molecular profiling and genetic 

testing are considered as the future of cancer diagnostics. Despite that, the results generated may 

be significantly affected by the level of intra-tumor heterogeneity in the bulk sample typically 
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analyzed with those methodologies. Given the heterogeneity of cellular phenotypes and 

relationships, patients classification and treatment should ideally consider the entire tumor 

ecosystem. Recent single-cell RNA sequencing and mass cytometry studies provided hints into 

breast cancer complexity and how this may influence prognostic and response to treatment 13–16. 

However, no study specifically characterizes the distribution of common breast cancer biomarkers 

at a single cell level in HER2-positive breast cancer without disrupting the tissue architecture. In 

the present study, we explored the composition, heterogeneity, and spatial organization of HER2-

positive breast cancer at a single-cell level resolution maintaining the spatial information as well 

as the treatment induced changes following dual HER2 inhibition with lapatinib and trastuzumab. 

To do so, we took advantage of an innovative technique recently developed in our lab which 

allows multiplex in situ biomarker analyses in a single FFPE tissue section. Customized 

algorithms were developed to extract the different phenotypic cell populations within the tissue 

for subsequent analyses. In addition, we analyzed the spatial distribution and interactions between 

tumor phenotypes, the interaction with immune cells and their impact in predicting response to 

treatment.  

 

The results from this analysis might help understand better intra-tumor heterogeneity and improve 

treatment strategies. 

 

MATERIALS AND METHODS: 
 

1. STUDY POPULATION: 
 

Patients enrolled in the PAMELA phase II trial will be included in the study. Briefly, 151 patients 

with operable or locally advanced HER2-positive breast cancer were treated with neoadjuvant 

lapatinib (1000 mg daily) and trastuzumab (8 mg/kg IV loading dose followed by 6 mg/kg) for 

18 weeks. Patients with hormone receptor (HR)-positive disease received letrozole or tamoxifen 

according to menopausal status. Formalin-fixed paraffin-embedded (FFPE) tumor samples at 

baseline and at D15 of treatment were collected according to protocol. Of the 151 patients enrolled 

in PAMELA study, 72 had a baseline sample and 64 had an on-treatment (day-15) sample for 

multiplexed immunohistochemistry analysis. Forty-nine patients had paired baseline and day-15 

samples. Summary shown in Supplementary Figure S1. 

 

From the all the patients, demographic patient data, tumor histopathological features (histotype, 

size, pT stage, pN stage), HER2 status (IHC and/or FISH results) and Hormone receptor status, 

PAM50 intrinsic subtype and treatment response data (pCR) were available. Clinicopathologic 

data is summarized in Table 1.  

 

2. NGI (NEXT GENERATION IHC): 
 

We used an automatized, simple, and flexible IHC protocol developed in our laboratory, named 

next generation immunohistochemistry (NGI) to study the expression of four canonical breast 

cancer biomarkers (ER, PR, KI67, HER2) at a single-cell level resolution17,18. The NGI protocol 

consists of iterative cycles of stanining/destaining on the same tissue section and uses the 

combination of Ventana Discovery Ultra (Roche Diagnostics), Nanozoomer slide scanner 

(Hamamatsu) and Visiopharm image analysis software.  Briefly, an alcohol soluble chromogen 
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(DISCOVERY AEC KIT (#760-258, Roche-Ventana)) was used to allow the destaining of the 

samples. After each automated IHC, samples were mounted in aqueous medium and digitalized 

(cycle 1). Subsequently, the section was destained in alcohol and submitted to the following 

staining cycle as shown in Figure1A. The sequence of the stainings were PR, KI67, HER2, ER 

followed by a PANCK staining for tumor area definition (antibody specification and protocol 

conditions in Supplementary Table 1. 

 

Before image analyses, individual images generated during each NGI staining cycle were aligned 

into a single virtual image using the VisiopharmⓇ software. Once co-registered, image-analysis 

algorithms were applied to extract the data. First, a tissue recognition APP was run and then the 

PANCK staining was used to recognize the tumor for tumor analysis. A pathologist supervised 

the regions of interest. After that, a breast panel APP was run, which localizes and classifies all 

the tumor cells in positive or negative for ER, PR, KI67 and Her2 biomarkers. Any brown stain 

above the background level (average of 210 pixel-intensity) was considered positive for the 

classification. The number of each of the generated 16 tumor phenotypes (or classes) and the 

position of them is obtained by the APP. Image analysis algorithms are shared in supplementary 

material.  

 

For subgroup analyses, the obtained classes were grouped into 4 categories (Supplementary 

Table 2): Her2-enriched (HER2E) for Her2-positive, hormone receptor negative cell phenotypes 

(classes 6 and 8), luminal A-like (LumA) for hormone receptor positive (ER -positive and/or PR -

positive), Her2-negative, and Ki67-negative cells phenotypes (classes 11,12 and 15), luminal B-

like (LumB) for hormone receptor positive (ER -positive and/or PR -positive) and  HER2 -

positive  or KI67-positive cells (phenotypes 1-5,7,9,10 and 13), and triple negative (TN) for Her2-

negative and hormone receptor negative phenotypes (classes 14 and 16).  

 

For the neighborhood analyses, CD8 staining images generated on a consecutive section from our 

previous study18 were aligned with the PR images to extract tumor cell phenotypes and location. 

CD8 APP was run (image analysis algorithms are shared in supplementary material) and the 

number and location of each of them were obtained for consecutive analyses.  

 

3.  STATISTICAL ANALYSES: 
 

R software (v.3.6.1)19 was used for all statistical analyses. Statistical significance level was set to 

<0.05. Wilcoxon-Mann-Whitney non-parametric test was used for two group comparisons and 

Kruskal-Wallis test for three group comparisons. Heterogeneity analyses were done using vegan 

package. Intratumoral diversity (alpha diversity) was analyzed using richness, Shannon and 

evenness indexes. Intertumoral diversity (beta diversity) was analyzed using one of the most 

common metrics, the Bray-Curtis dissimilarity. Significance between groups was tested with 

Peranova test (adonis). Classes that had a median higher than 1% were used for the heterogeneity 

analyses. Hierarchical cluster analysis was done using pheatmap package and using Ward’s 

method to group patients with similar compositions. For neighborhood analyses, we connected 

the cells to each other by means of a Delaunay triangulation algorithm, using the centroid of the 

segmentation mask. This allowed us to locate the nearest neighbors avoiding those connections 

that are shielded by nearest cells. In addition, to avoid connections between cells that were too far 

apart, we established a maximum distance of 20 microns between two neighboring cells. The 

percentage of connections per sample was obtained and normalized by the total tumor cells for 
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statistical analyses to ensure that tumor size was not affecting the results. The affinity of the CD8 

to the different subtypes was calculated by dividing the percentage of the connections of the cd8 

for each subtype by the percentage of that particular subtype in the sample. 

RESULTS: 
 

1. Single-cell composition analysis of HER2-positive 

breast cancer 
 

We analyzed 136 prospectively collected tumor biopsies from the PAMELA trial, including 72 

baseline and 64 day-15 samples from HER2-positive breast cancer using our NGI technology 

(Supplementary Figure 1A). Clinicopathological characteristics of the NGI cohort are 

summarized in Table1. In total, 1028974 cells were analyzed (mean=7566, median=4060, 

IQR=1378-9454). To ensure data quality, we compared NGI results generated with the matched 

IHC scores available as part of central confirmation analysis of the PAMELA trial. The 

frequencies of ER+, PR+, HER2+, and Ki67+ cells determined by NGI were comparable with the 

centrally determined pathological scores (Supplementary Figure S2). 

 

To characterize the composition of breast cancer at a single cell level, we used a tumor-centric 

panel including ER, PR, HER2, and Ki67 to classify individual tumor cells in 16 different 

phenotypes based on the combined markers expression of the 4 markers. (Figure 1A, 

Supplementary Figure S2). As expected, most cells in HER2-positive breast cancer were 

expressing HER2 (intrinsic cell phenotypes: 1-8, median=92.3%) followed by ER (intrinsic cell 

phenotypes 1,3,5,7,9,11,13 and 15, median=57.9%), Ki67 (intrinsic cell phenotypes 

1,2,5,6,9,10,13 and 14, median=16.4) and PR (intrinsic cell phenotypes 1-4 and 9-12, 

median=5.7) (Supplementary Table S3).  

 

The analysis of distribution of individual intrinsic cell phenotypes revealed a heterogeneous 

distribution of tumor cell-intrinsic phenotypes in HER2-positive breast cancers, being the HER2E 

cell phenotype 8 the predominant cell phenotype (median=11.44, IQR=61.79) followed by TN 

phenotype 16 (median=3.87, IQR=9.04) and LumB phenotype 7 (median=3.63, IQR=29.01) 

(Figure 1B, Supplementary Table S4).  

 

Analysis of paired samples showed an overall decrease of HER2-positive (median 

baseline=95.7%, median day-15=87.5%, p=0.022) and Ki67-positive (baseline=20.2%, day-

15=7.5%, p<0.0001) cells from baseline to day-15. On the other hand, dual HER2 inhibition did 

not induce a significant shift in the overall composition of ER-positive and PR-positive cells. The 

overall decrease of HER2-positive and Ki67-positive cells from baseline to day-15 induced by 

the treatment was driven, at the intrinsic cell phenotype level, by the significant increase of non-

proliferating TN cells (phenotype 16, median baseline=2.1%, median day-15=6.0%, p=0.0016) 

and decrease of proliferating HER2-positive cells (HER2+Ki67+, median baseline=18.1%, 

median day-15=5.1%, p<0.0001; phenotype 6, median baseline=2.4%, median day-15=0.9%, 

p=0.0001; phenotype 5, median baseline=0.3%, median day-15=0.01%, p=0.019) (Figure 1C). 

Interestingly, no treatment effect was observed on proliferation in HER2-negative cells (median 

baseline=0.4%, median day-15=0.4%, p=0.6492) providing evidence that the treatment is 

specifically targeting Her2-positive cells (Figure 1D). 
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The cell type frequencies varied among and between tumor molecular intrinsic subtypes 

determined by GEP, with a higher frequency of HER2-positive cells in HER2E samples (p-

value<0.0001), PR-positive and ER-positive cells in luminal samples (p-value <0.0001), and 

proliferating KI67 positive cells in Basal samples (p-value <0.0001) (Figure E, Supplementary 

Table S4). 

 

At the individual intrinsic cell phenotype level, basal tumors showed a higher frequency of TN 

(phenotypes 14 and 16) and HER2E (phenotypes 6 and 8) cells compared to other breast cancer 

subtypes, which was statistically significant for TN phenotypes. Tumors of HER2E subtype were 

significantly enriched in HER2E cell phenotypes 6 and 8 with a lower frequency of the remaining 

intrinsic cell phenotypes compared to non-HER2E tumors. A higher frequency of luminal cell 

phenotypes was observed in luminal samples which were also showing significantly less HER2E 

cell phenotypes frequency than other tumor subtypes. LumB cell phenotype 5 significantly 

differentiates luminal A from luminal B tumors (median LumA=0.32, median LumB=6.77, p-

value=0.0013). Normal samples were mainly composed of HER2E cells (phenotypes 6 and 8) and 

TN cells, the latter being significantly more abundant in normal compared to non-normal samples 

(median phenotype 16, normal=11.67, non-normal=3.22, p-value=0.00026) (Supplementary 

Table S5). When comparing baseline with day-15 samples, we did not find significant differences 

neither at overall marker levels (Figure 1F) nor at individual intrinsic cell phenotype composition 

(Figure 1G) except for molecular intrinsic subtype luminal A where the percentage of 

ER+/Ki67+ and phenotypes 1 and 9 was significantly lower in on-treatment samples. 

 

Lastly, we analyzed whether intrinsic cell phenotypes distribution varied according to the 

clinicopathological features of the tumor. As expected, clinical HR positive tumors showed a 

significantly higher proportion of ER-positive and PR-positive tumor cells as compared to HR-

negative tumors and a lower proportion of KI67-positive and Her2-positive cells. Luminal 

intrinsic cell phenotypes were significantly enriched in clinical HR-positive compared to HR-

negative tumors except for PR+/ER- phenotypes which were higher (phenotypes 2 and 4) or did 

not differ significantly (phenotype 10) in HR-negative tumors. HER2E intrinsic cell phenotypes 

(6 and 8) were also significantly enriched in HR-negative compared to HR-positive tumors 

(Figure 1H, Supplementary Table S6). 

 

Tumor size and nodal stage did not significantly impact on the distribution of, neither the four 

biomarkers (Supplementary Table S6), nor the intrinsic cell phenotype tumor content.  

 

2. HER2-positive breast cancer heterogeneity  
 

Tumor heterogeneity is believed to drive disease progression or resistance to treatment. 

Intratumoral heterogeneity was determined using alfa-diversity indexes which quantify the 

number of different intrinsic cell phenotypes co-existing within a sample (richness index), their 

relative abundance (Shannon index), and how similar the phenotypes are numerically distributed 

(Pielou’s evenness index) within a sample. Intratumoral heterogeneity increased with tumor stage 

(Baseline eveness index: T1 vs T2, p=0.005; T1 vs T3, p=0.0027) indicating a progressive 

acquisition of different cell phenotypes with tumor growth. No significant differences were found 

according to nodal stage. Clinical HR-positive tumors were more heterogeneous than HR-

negative tumors. This finding was in line with the higher heterogeneity observed in luminal 
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tumors compared to other intrinsic molecular subtypes by GEP (Figure 2A). Treatment did not 

induce a significant shift in intratumoral heterogeneity as shown by paired samples analyses 

(median baseline=0.88, median on-treatment=0.84, p-value=0.52) (Supplementary FigureS2A). 

Intertumoral heterogeneity was determined using the Bray-Curtis matrix which quantifies the 

similarity of tumors based on intrinsic cell phenotypes composition and visualized with principal 

coordinates analysis plot (Figure 2B). Analysis of intertumoral heterogeneity failed to show 

significantly different compositions according to their tumor size or nodal involvement, with 

tumors segregating together independently of these clinicopathological features. Clinical HR-

positive tumors segregated together and separately from HR-negative tumors (p-value <0.0001). 

This diversity was maintained during treatment in day-15 samples (p-value= 0.00316). Luminal 

tumors (A and B) clustered together and separately from Basal and HER2-E tumors. The 

difference was statistically significant at day-15 (p-value= 0.01769) with normal-like tumors 

clustering together with HER2E and Basal tumors. Intertumoral heterogeneity analyses on paired 

samples showed the same results (Supplementary Figure S3). 

 

Analysis of tumors according to response to anti-HER2 neoadjuvant therapy revealed that tumors 

from responders shared a similar composition at baseline (p-value=0.008) and separated from 

tumors from non-responders, suggesting that tumor intrinsic features predictive of pCR may be 

found before treatment is started. On the other hand, intratumor heterogeneity was not a tumor 

characteristic predictive of response at baseline but at day-15. Tumors from patients who did not 

achieve a pCR exhibited a significantly higher intratumoral heterogeneity at day-15 compared to 

tumors from patients who responded to the treatment (Shannon, p=0.044), indicating that on-

treatment survival of different cell phenotypes may predict resistance (Figure 2A). 

 

Response analysis by tumor intrinsic cell phenotype 

composition. 
 

To assess whether tumor intrinsic cell phenotype composition may affect response to neoadjuvant 

anti-HER2, we calculated whether the frequency of each individual tumor cell phenotype differed 

between patients achieving or not achieving pathological complete response (pCR).  

 

As our dataset was a subset of the original PAMELA trial, we first determined whether this 

smaller subset was representative of the entire study in terms of response analyses. At baseline, 

TILS were significantly higher in responders (median=20) compared to non-responders (median 

=10, p=0.0017). At day-15, TILs (median responders=50, median non-responders=15, p=0.0036) 

and the CelTIL (median responders=58.3, median non responders=-1.5, p<0.0001) were 

significantly higher in responders thus confirming previous finding obtained from analysis of the 

full dataset.  

 

Comparative analysis of tumor intrinsic cell phenotypes distribution between responders and non-

responders did not show significant differences of any individual cell phenotypes between 

responders and non-responders both at baseline and day-15, except for LumB phenotype 2 at 

baseline (median responders=0.1%, median non-responders=0.03%, p=0.03), LumB class 11 at 

baseline (median responders=0.0%, median non-responders=0.04%, p=0.02), and LumB class 1 

at day-15 (median responders=0.0% median non-responders=0.08%, p=0.04). However, median 

values for differentially abundant phenotypes were extremely low, being below 1% in both 

outcome groups (Supplementary Figure S4). When grouping the intrinsic cell phenotypes, we 
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found a higher proportion of Her2-positive (median responders=95.9%, median non-

responders=89.9%, p-value=0.028) and Her2-enriched (phenotypes 6 and 8) cells in responders 

(median=73.5%) as compared to non-responders (median=10.0%, p-value=0.047).  Luminal A 

phenotypes (11,12 and 15) were enriched in non-responders (median non-responders=1.3%) as 

compared to responders (median=0.2%p-value=0.003) (Figure 3A). 

 

The total number of HER2-positive cells significantly decreased in patients responding to anti-

HER2 (median baseline=97.9%, median day-15=87.6%, p=0.009) but not in patients who did not, 

suggesting a reduction in tumor burden. On the other hand, patients who did not achieve a pCR 

showed an increase of LumB phenotype 7 with treatment (median baseline=0.8%, median day-

15=3.9%, p=0.042) which was not observed in responders, possibly reflecting the expansion of a 

resistant clone (Figure 3B). 

 

Consensus clustering was performed to group samples from HER2+ patients according to the 

distinct cell phenotypes. Unsupervised hierarchical clustering (Figure 3C) using paired samples 

classified tumors into six groups (C1-C6). Cluster 1 (HER2E) was dominated by tumor cells from 

phenotypes 6 and 8. Tumors in cluster 1 were clinical HR-negative (86.1%) and molecular 

intrinsic subtype Her2-E or Normal-like (94.7%). Clusters 2 and 5 (LumA) were enriched in cells 

from phenotypes 15 and 11, respectively. All tumors were clinical HR-positive. 63.2% were 

LumA and 21.1% LumB by intrinsic molecular subtyping. Clusters 3 and 4 (LumB) were 

composed mostly of cells from phenotypes 7 (cluster 3) and 3 (cluster 4). All but two tumor 

samples in these clusters were clinical HR-positive and exhibited a mixed molecular intrinsic 

subtyping (32.3% Her2-E, 41.2% Lum-A, 8.8% Lum-B,5.9% Basal and 11.8% Normal). Lastly, 

cluster 6 (Basal) was enriched in TN phenotypes 14 and 16. Tumors were clinical HR-negative 

(7/8, 87.5%) and half exhibited a basal intrinsic molecular subtype. Baseline and on-treatment 

samples from the same patients tended to group together in the same cluster or moved to a similar 

cluster during treatment (Figure 3E) More treatment-induced changes were observed in 

molecular intrinsic subtyping by PAM50. Similarly, only 20% of LumB tumors remained LumB 

after treatment. Treatment did not significantly impact on LumA and Basal tumors which tended 

to maintain the same subtype after treatment (Figure 3F).  

 

To determine whether patients responding or not responding to anti-Her2 therapy segregated 

within a specific cluster, we performed consensus clustering of all (paired and unpaired) baseline 

and on-treatment samples independently. At baseline, hierarchical clustering classified patients 

into five groups corresponding to HER2E (C1, phenotypes 6 and 8), LumB (C2 and C3, 

phenotypes 7 and 3), LumA (C4, phenotype 15) and mixed Luminal/Basal (C5) clusters. Twelve 

out of 31 (39%), 3 out of 16 (19%), 0 out of 15 (0%) and 4 out of 19 (20%) patients from HER2E, 

LumB, LumA, and mixed clusters achieved a pCR, respectively. Patients in the HER2E cluster 

C1 had a significantly higher probability of responding to anti-HER2 therapies as compared to 

those in other clusters (Fischer exact test, p=0.01) (Figure 3G). At day-15, clustering analysis 

showed six tumor clusters with similar phenotype compositions as the baseline clusters. Six of 19 

patients (32%), 2 out of 21 (9.5%), 1 out of 12 (8%), and 2 out of 12 (17%) patients from HER2E, 

LumB, LumA, and mixed clusters achieved a pathological complete response, respectively. 

Patients in the HER2E cluster had a non-significant higher probability of responding to anti-HER2 

therapies as compared to those in other clusters (Fischer exact test, p=0.06) (Figure 3H).  
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3.  Breast cancer tumor and immune cells 

relationship  
 
Interactions between tumor cells and immune cells within the tumor microenvironment drive 

disease progression and response to treatment. To study homotypic and heterotypic relationships 

between tumor and immune cells, we determined the percentage of connections between each 

individual tumor cell phenotype, the distribution of tumor cell phenotypes according to tumor 

infiltrating lymphocytes (TILs) and the spatial relationship between cytotoxic (CD8+) immune 

cells with each tumor cell phenotype.  

 

Homotypic tumor cells relationships were the most common. Most of the connections were found 

between cells belonging to the same or similar phenotype. Most of the homotypic connections 

were found between Her2E phenotype 8 cells, followed by connections between LumB phenotype 

3 cells, TN phenotype 16 cells, LumA phenotype 11 cells and heterotypic connections between 

phenotype 8 with phenotypes 6 and 7 (Figure 4A).  

 

To determine whether tumor cell phenotypes were differentially enriched in breast cancer 

according to the level of immune infiltration, we correlated the proportion of TILs with that of 

each individual cell phenotype in the same sample. Levels of TILs were positively correlated with 

HER2E phenotypes 6 and 8 both at baseline (0.49 and 0.41, respectively) and at day-15 (0.32 and 

0.55, respectively) (Supplementary Figure S5 A). When we grouped tumors into inflamed (TILs 

>50%) and non-inflamed (TILs <50%) based on TILs infiltration, inflamed tumors were again 

significantly enriched in HER2E cell phenotypes 6 (median high=8.9%, median low=0.7%, 

p=0.026) and 8 (median high=59.3%, median low=6.3%, p=0.005) and depleted of LUM-B cells 

(median high=8.9%, median low=35.6%, p=0.048) compared to non-inflamed tumors (Figure 

4B, Supplementary Table S7).  

 

After finding the enriched subtypes in inflamed tumors, we wanted to explore whether TILs levels 

differed according to tumor intrinsic cell phenotype-defined clusters. We found that patients from 

clusters 2 and 5 (non-responder clusters) had significantly lower cd8 densities (median cd8 

density in cluster 2= 114.5cells/mm2 and cluster 3 202.2 cells/mm2) while cluster 1 patients 

(responders) had the highest cd8 densities (median 723.5 cells/mm2) (Figure 4C).  

 

To determine the spatial relationship between CD8+ immune cells and tumor cell phenotypes, we 

calculated the proportion of intratumoral immune-tumor cells connections. The most common 

connections were between CD8 and HER2E tumor cell (phenotypes 8, median=22.75%; 

phenotype 6, median=2.5%) followed by TN cell phenotype 16 (median=3.93%). Similar results 

were found when dividing the dataset into baseline and day-15 samples (Figure 4D, 

Supplementary Figure S5 B). Anti-HER2 treatment induced a general increase of number of 

connections between CD8+ immune cells and tumor cells (median baseline=0.2%, median 

day15=0.5%, p=0.01) without significant changes in connections of CD8 with any individual 

tumor cell phenotypes (Figure 4D, Supplementary Table S8).  

 

The higher number of connections observed between CD8 immune cells and HER2E and TN 

tumor cells phenotypes may be attributable to the higher prevalence of these phenotypes within 

the tumor. To elucidate whether cytotoxic T cells tended to interact preferentially with a specific 

tumor cell phenotype within a tumor, we determined the affinity of cytotoxic T cells for each 
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tumor cell phenotype by dividing the percentage of connections of CD8+ cells with each of the 

phenotype by the percentage of tumor cells that were of the same phenotype.  

 

More affinity of CD8 was found with TN cell phenotype 16 (median=0.58) followed by TN cell 

phenotype 14 (median=0.50), Her2E phenotype 8 (median=0.47), LumB phenotype 10 

(median=0.44) and Her2E phenotype 6 (median=0.43) (Figure 4E). The affinity of CD8 for the 

Her2E cell phenotype 8 (median baseline=0.3%, median on-treatment=0.6%, p=0.018) and LumB 

phenotype 7 (median baseline=0.1%, median on-treatment=0.3%, p=0.029) significantly 

increased with treatment (Supplementary Table S9).  

 

Lastly, we wanted to analyze whether differences in the types of connection and affinity between 

responders and non-responders could be found. Overall, no significant differences in the number 

of connections between cd8 and the different cell phenotypes were observed between responders 

and non-responders. At baseline, no significant differences of CD8 connections or affinity were 

found between responders and non-responders. On day-15, tumors from patients responding to 

the treatment showed an overall increase in CD8/tumor cell ratio, connections of CD8 with any 

tumor cells, with HER2-positive cells and with phenotype 8 cells compared with tumors from 

non-responders. Similarly, higher CD8 affinity for HER2E phenotypes (phenotype 6 and 8), 

LumB phenotypes (4, 7, and 13) and LumA phenotype 11 was found in responders compared to 

non-responders (Figure 4F, Supplementary Table S10). These findings were confirmed in 

paired sample analysis.  

 

Anti-HER2 treatment induced a significant increase in the number of CD8 connections with any 

tumor cell (median baseline=0.2%, median on-treatment=1.7%, p=0.007) and, specifically, with 

TN phenotype 16 (median baseline=0.0%, median on-treatment=0.2%, p=0.02) in responders 

compared to non-responders (Figure 4H).  Similarly, affinity for the Her2E class8 (median 

baseline=0.3, median on-treatment=1.6, p=0.0059) and class6 cells (median baseline=0.4, median 

on-treatment=1.5, p=0.022); LumB class7 (median baseline=0.1, median on-treatment=0.7, 

p=0.04) and class4 cells (median baseline=0.3, median on-treatment=2.7, p=0.013) (Figure 4I) 

increase in the responders but not in non-responders.  

 

Due to the higher number of connections between CD8 and tumor cells observed in responders 

compared to non-responders, we included this feature to the intrinsic tumor cell phenotypes and 

performed unsupervised clustering analysis. The addition of immune feature to tumor features did 

not improve segregation of responder vs non-responders at baseline (Figure 4J). However, at 

day-15, the number of connections between cytotoxic T cells and tumor cells separated the 

HER2E cluster in two distinct clusters with different response rate the one with more connections 

specially enriched in (67% of responders) as expected as compared to the other her2 enriched 

cluster that became not enriched in responders (15% of responders) (Figure 4K). 

 

DISCUSSION:  
 

In this study, we conducted an in situ single-cell analysis of Her2 positive breast cancer using a 

sequential immunohistochemistry protocol combined with image analysis to provide virtual 

multiplexed expression of different biomarkers on the same slide. The developed methodology 

(called NGI or next generation immunohistochemistry) provided information on the expression 

of 4 canonical breast cancer biomarker at an unprecedented resolution allowing analysis of their 
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co-expression in the same cell, their distribution, their spatial interaction (tumor cell-tumor cell, 

tumor cell-immune cells) and their changes during anti-Her2 treatment.  

 

ER, PR, Her2 and Ki67 are standard biomarkers used in clinical practice for diagnosis and 

prognostication of breast cancer. Their expression is determined by conventional 

immunohistochemistry and their status defined by consensus cutoffs recommended in clinical 

guidelines. HER2-positive tumors are defined by >10% tumor cells showing strong (3+) complete 

membrane positivity or equivocal 2+ weak to moderate complete membrane staining in >10% of 

the tumor cells with Fish-negative result20. Similarly, hormone receptor status is defined by >10% 

tumor cells showing positivity at any intensity of ER and/or PR. For Ki67, no standard cut-off 

exists. A 20% threshold is generally used to define a high proliferative tumor and usually 

associated with poor prognosis21–23.  

 

Treatment strategies are currently defined according to the individual status of each one of these 

biomarkers. However, treatment responses are heterogeneous and a better understanding of the 

breast cancer tumor ecosystem is needed.  

 

Transcriptomics and proteomics approaches have been used to analyze the landscape of breast 

cancer and dig into the complexity of the tumor. However, these studies are performed on bulk 

samples, thus lacking contexture analyses24–26. Single-cell studies have provided a deeper 

understanding of the different cell populations distribution, tumor heterogeneity and influence on 

cancer progression and resistance27–32, but to the best of our knowledge, no studies have performed 

single cell level resolution analyses in Her2-positive breast cancers during the anti-her2 treatment.  

 

The approach we described in this study combines a routine, widely used methodology such as 

IHC with image analyses algorithms to extract complex data from a single slide. Despite 

immunohistochemistry is traditionally considered a qualitative, single-plex, low-throughput 

methodology, our NGI protocol allows to virtually multiplex up to 6 (or more) different antibodies 

on the same slide to simultaneously study the co-expression, distribution, spatial interactions, and 

function of biomarkers of interest in the target cell (tumor or immune) with a single-cell level 

resolution and without disrupting the tissue organization by maintaining the spatial information. 

In this study, we developed a custom-made 5-plex panel which included HER2, ER, PR, Ki67 

(classical breast cancer biomarkers) and CK (as tumor mask) to classify more than million cells 

into 16 different tumor cell intrinsic phenotypes. With an average of 4060 cells/sample analyzed; 

our approach is at least equivalent (if not superior in term of cells analyzed) to other single-cell 

breast cancer studies30–34 . 

 

Cell phenotypes prevalence and distribution were investigated in HER2-positive breast cancer 

from the PAMELA trial and correlated with clinicopathological and molecular features of the 

tumors. Intratumoral and intertumoral heterogeneity was quantified and impact of anti-HER2 

inhibition on the cellular composition of the tumors and response to treatment investigated. 

Finally, tumor cell phenotype information was integrated with cytotoxic T cells spatial data to 

study homotypic and heterotypic relationships between tumor and immune cells and how 

interactions within the tumor microenvironment may predict treatment response or resistance. 

 

Several confirmatory findings validated our experimental approach. First, comparative analysis 

of biomarkers expression determined by NGI was highly correlated with those obtained by 

standard immunohistochemistry analysis performed at central laboratory. Second, the overall 
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reduction of Her2 and ki67 from baseline to day-15 confirmed previous findings reported in the 

Pamela trial using alternative methodologies as well as those from other neoadjuvant studies in 

Her2 positive breast cancer. Importantly, higher resolution analysis of tumor individual cell 

populations showed that Her2-positive breast ecosystem is constituted by multiple tumor cell 

phenotypes (both her2+ and her2-), which are differently modulated by the treatment. Non 

proliferating Her2+/ER-/PR- represents the predominant phenotype (class 8) followed by triple 

negative (16) and luminal B (7) phenotypes. Dual her2 blockade did not affect all phenotypes in 

the same manner. The significant reduction of proliferative her2 positive phenotypes-only without 

an effect on her2 negative ones is indicative of a clear pharmacodynamic effect of dual her2 

inhibition24,25,35.  

 

Poor prognosis and therapy resistance are associated with tumor heterogeneity36,37. We analyzed 

intratumor and intertumor heterogeneity according to breast cancer intrinsic cell phenotype 

composition and their impact on response to treatment. First, we found that intratumoral 

heterogeneity increases with tumor stage indicating a progressive acquisition of different cell 

phenotypes with tumor growth38. Second, we found that HR-positive tumors (clinical and luminal 

subtype by PAM50) exhibited higher intratumor and intertumor heterogeneity as compared with 

HR-negative tumors (clinical HR-negative and HER2E by PAM50). Third, tumor heterogeneity 

was inversely correlated with the probability of achieving a pCR. These findings may explain 

why her2-enriched and HR-negative patients, which are homogeneously composed 

predominantly by tumor intrinsic cell phenotypes 8 and 6, showed the highest rate of response to 

anti-HER2 treatment24,25.  

 

On the other hand, clinical HR-positive, luminal tumors by PAM50 were highly heterogenous in 

composition with significant enrichment of different LumB (3 and 7) and LumA (11, 12 and 15) 

intrinsic cell phenotypes and depletion of HER2E phenotypes (6 and 8) which, in turn, resulted 

in reduced sensitivity to HER2 targeted therapy. Interestingly, the association found between 

higher intratumoral heterogeneity at day-15 and lower response rates indicated that on-treatment 

survival of different cell phenotypes may predict resistance. Heterogeneity analysis also revealed 

that tumor intrinsic features predictive of pCR may be found before the treatment is started as 

shown by the similar ecosystem found at baseline in tumors from responder with beta diversity 

analysis.  

 

Consensus clustering was performed to group samples from HER2-positive patients according to 

the distinct cell phenotypes composition and correlated with response. Six different clusters (one 

HER2E, 2 LumA-like, 2 LumB-like, and one Basal) were identified based on tumor intrinsic cell 

phenotypes composition which only partially recapitulated molecular intrinsic subtyping by 

PAM50. Baseline and on-treatment samples from the same patients tended to group together in 

the same cluster or moved to a similar cluster during treatment. In contrast, PAM50 changes 

during treatment were notable with 20% of HER2E tumors shifting to LumA molecular subtype.  

Patients in the HER2E cluster (phenotypes 8 and 6) had a higher probability of responding to anti-

HER2 therapies as compared to those in other clusters (Baseline, p=0.01; day-15, p=0.06). 

Importantly, patients in LumA clusters (enriched in phenotypes 11 and 15) were exquisitely 

resistant to anti-HER2 inhibition. This data provides more insight into our previous observation 

that HER2E tumors cells that are sensitive to anti-HER2 therapy but do not die acquire a Luminal 

A phenotype35. Our new results point to tumor intrinsic cell phenotype 15 (ER+/PR-/HER2-

/Ki67-) as a resistant clone which pre-exist at low frequencies in HER2-positive breast cancer 

even before treatment starts, independently of the PAM50 subtype. The observed rapid 
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acquisition (after 14 days of treatment) of PAM50 LumA molecular subtype may indeed reflect 

the expansion (as consequence of reduction of HER2E cells due to treatment) of this preexisting 

resistant clone. On the other hand, PAM50 HER2E tumors that became normal-like, an on-

treatment biomarker of tumor responsiveness, are still predominantly composed of HER2E cells 

(phenotypes 8 and 6) which are diluted by stromal contamination due to decrease in tumor burden 

as consequence of response.  

 

We also found LumB phenotype 7 (HER2+/ER+/PR-/Ki67-) as a resistant phenotype. This 

finding reflects the possible effect of the strong interplay between HER2 and ER, which may 

negatively impact on the response to anti-HER2 27,30,39,40. 
 

The study of how tumor and immune cells interact within the tumor microenvironment may 

increase our understanding of treatment response25,41. We’ve previously reported that patients 

responding to dual anti-HER2 inhibition showed higher TILS compared to non-responders18. In 

the present study, we further dig into tumor-immune cells relationship by spatial analysis. 

Inflamed tumors were enriched in HER2E cells (phenotypes 6 and 8) as opposed to non-inflamed 

ones where Luminal phenotypes predominated. In line with these observations, densities of CD8+ 

immune cells were higher in the HER2E cluster with LumA cluster showing the lowest levels of 

cytotoxic T cell infiltration. Connectivity analysis showed a higher number of connections 

between CD8+ immune cells and HER2E and TN tumor cells phenotypes as compared to other 

phenotypes, more affinity of CD8 for TN cells (phenotypes 14 and 16) and less affinity for 

hormone receptors positive cells in general. This observation matched with the differences in 

immunogenicity described according to breast cancer subtypes and partially explains why HER2-

positive and TN tumors are more immunogenic42 as well as why HER2-positive breast cancer 

enriched in HER2E responded significantly better to anti-HER2 inhibition compared to other 

phenotypes.  

 

During her2-treatment, cytotoxic T cells increase significantly18,24,25 and higher densities of 

intratumoral CD8s associated with pCR18. Here, we now showed that this increase reflects a 

higher number of connections and increased affinity of CD8 with tumor cells and HER2-positive 

cells in responders which is not found in patients who did not respond to the treatment. Lastly, 

the addition of the immune microenvironment status to tumor intrinsic cell phenotypes separated 

the HER2E cluster at day-15 into two subgroups with different response rates based on the 

connections between CD8 and tumor cells.   

 

One of the biggest limitations of the study is the limited number of cases which did not allowed 

us to develop a predictive model of response to the treatment. Second, the number of biomarkers 

analyzed simultaneously on the same section is lower as compared with other single-cell, high 

throughput methodologies. Third, our study did not consider the different levels of expression of 

HER2, which is particularly relevant now due to the development of antibody-drug conjugates 

targeting the HER2-low breast cancer population. Future studies would be needed to address these 

gaps. 

 

In conclusion, we have analyzed the HER2-positive breast cancer ecosystem at a single-cell 

resolution using a relatively simple and inexpensive methodology developed in our laboratory. 

Our findings confirmed previous observation using more expensive and less accessible 

approaches and expand our knowledge of Her2-positive breast cancer biology and composition 
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during anti-her2 treatment providing potential clinically important information that could be used 

to improve targeted therapies. 
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TABLES: 
 
Table1. 

 
Table 1. Summarized clinicopathologic data of the analyzed samples. 
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FIGURE LEGENDS: 
 
Figure 1. Her2-positive breast cancer composition.  

A) Illustration of NGI methodology used for the study. A single slide is stained for the first 

biomarker, scanned and destained and the process is repeated five times for each of the 

biomarkers. All obtained images are aligned and image analysis is used for the extraction of each 

tumor cell classification and location per sample. Information that is used for 

composition, clusterization and connectivity analyses. B) Box plot of the phenotype composition 

of her2-positive breast cancer samples, showing classes names, median, IQR for all samples and 

subtype classification into LumB, LumA, HER2-e and TN. In grey the positivity for each of the 

analyzed biomarkers (HER2, ER, PR and KI67) for each of the 16 generated classes. C) Box plots 

of phenotype-changes during the treatment in paired samples. D) Box plots of grouped 

Her2+KI67+ and Her2-Ki67+ changes during the treatment. E) Box plots of percentages of Her2, 

ER, PR and KI67 tumoral cells in the PAM50 groups. F) Box plots of general-composition of the 

different PAM50 groups. In pink SCR samples and in blue the day-15 samples. Star for significant 

differences between scr and day-15 samples medians. G) Box plots of phenotype-composition of 

the different PAM50 groups. In pink SCR samples and in blue the day-15 samples. Star for 

significant differences between scr and day-15 samples medians. H) Box plot of HR status 

differences in LumB, LumA and TN groups.  

 

Figure 2. Heterogeneity analyses. 

A) Box plots showing intratumoral diversity variation for tumor stage, nodal status, hormone 

receptor status, pam50 classifications and response in all (left), scr (middle) and day-15 

(right) samples. Star shows the significant intratumoral heterogeneity between groups. 

B) PCoA analysis plots of Bray-Curtis computed distances between all (left), scr (middle) and 

day-15 

(right) samples. Different clinicopathologic features are shown in different colors. Star shows th

e groups that are significantly different in phenotype composition. 

 

Figure 3. Response analyses. A) Boxplots of significant variables between responders and 

responders. B) Boxplots of treatment induced changes in paired responders and non-responder 

patients. C) Heatmap showing the percentage of each phenotypes of paired scr and day-15 

samples. Each cluster is generated with patients with similar phenotype compositions. Heatmap 

colors represent percentage of each of the phenotypes. Annotation colors are shown next to the 

heatmap. D) Representative images of classified tumors from each cluster. Colors of the cells are 

shown next to the classes in the heatmap. E) Alluvial plot showing the cluster changes of paired 

patients during the treatment. F) Alluvial plot showing the Pam50 group changes during the 

treatment. G) Heatmap of SCR samples. Number of responders and non-responders are shown 

for the first cluster and for the others. H) Heatmap of day-15 samples. Number of responders and 

non-responders are shown for the first cluster and for the others.  

 

Figure 4. Spatial analyses. A) Dot-plot showing the connections between different tumor 

phenotypes. The size and color of the dots represent the proportion of connections. B) Boxplot 

of significantly different variables between TIL high and TIL low groups. C) Box plot of CD8 

densities in the different clusterized groups' samples. D) Box plots of the CD8 connections with 

each of the tumor phenotypes in all samples. Dot plots of the medians in SCR and day-15 are 

shown in the right. E) Box plots of the CD8 affinity with each of the tumor phenotypes in all 
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samples. Dot plots of the medians in SCR and day-15 are shown in the right. F) Representative 

dot plots and virtual multiplexed images of a responder and non-responder patient. The size and 

color of the dots represent the proportion of connections between CD8 and tumor cells. CD8 cells 

are shown in red in the image. G) Boxplots of treatment induced connection-changes in paired 

responders and non-responder patients. H) Boxplots of treatment induced affinity-changes in 

paired responders and non-responder patients. I) Heatmap of SCR samples with CD8-tumor 

connection information. Annotation colors are shown next to the heatmap. J) Heatmap of day-15 

samples with CD8-tumor connection information. Annotation colors are shown next to the 

heatmap.  

 

Supplementary Figure 1. A) Sample cohort diagram. B) Scatter plot and Spearman coefficient 

of NGI and central lab results for each of the 4 canonical biomarkers. C) Box plots of the 

percentage of positive cells for the different biomarkers with NGI for the central lab categorized 

results. 

 

Supplementary Figure 2. Heterogeneity analyses. A) Box plots showing non-significant 

intratumoral diversity variation in paired samples during the 

treatment. B) PCoA analysis plots of Bray-Curtis computed distances in paired 

samples. Different clinicopathologic features are shown in different colors. Star shows the grou

ps that are significantly different in phenotype composition. 

 

Supplementary Figure 3. Results from response analyses. A) Box plots of the different 

phenotypes proportions in responder and non-responder patients in SCR and day-15 samples. B) 

Box plots of the different phenotype proportions on responder and non-responder SCR samples. 

C) Box plots of the different phenotype proportions on responder and non-responder day-15 

samples.  

 

Supplementary Figure 4. Spatial analyses.  A) Scatter plot and Spearman correlation coefficient 

of TILs and different phenotypes in SCR and day-15 simples. B) Box plots of CD8 connections 

with the different tumor phenotypes for SCR and day-15 samples. C) Box plots of CD8 affinity 

to the different tumor phenotypes for SCR and day-15 samples.  
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