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The recent return of wolves to the Hungarian forests escalates conflicts among stakeholders. 

Hunting management agencies communicate that the presence of wolves may change the 

behaviour of big game species leading to difficulties for hunting organization and logistics. 

Here, we take a data driven approach to explore the activity of wolves and big game species. 

For this purpose we analysed camera trap data, collected in the Bükk National Park, Hungary. 

To estimate avoidance among wolves, humans and games we calculated a non-parametric 

activity overlap coefficient (Δ4) and used a machine learning (XGBoost) model. Our results 

show that game species have higher overlap coefficient with wolf (Δ4 = 0.83-0.89) than with 

human activity (Δ4 = 0.26-0.52), because predators and games are active in the same periods of 

the day, mainly night and dawn, and human activity mainly takes place during daytime. We 

could detect the refugee effects in the case of all game species. Our XGBoost analyses only 

found a moderate negative effect of wolf on red deer occurrence, while human activity had 

higher importance value and lowered the occurrence of all three game species investigated. Our 

results may thus indicate that human disturbance might be more important in shaping game 

activity than the presence of the grey wolf in Hungary.

Introduction

Earlier studies suggest that grey wolf can have an important role in the ecosystem as a top 

predator. For example, the processes initiated by the reintroduction of wolves in the 

Yellowstone National Park in 1995-1996 supports the Trophic Cascade Theory. After the wolf 

reintroduction, the elk (Cervus elaphus) population decreased and their spatial distribution was 

altered. Due to these changes the vegetation could have renewed and provided habitat and food 

for many other species. Consequently, the elks population without wolves seemed to have an 

increased browsing effect, which led to species decline, while it appears that the wolves 
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indirectly contributed to the growth of biodiversity by their direct and indirect effects on elks 

[1–4]. The significance of trophic cascades caused by large carnivores, however, still remains 

questionable in many other cases [5,6].

But not only carnivores can influence game populations. Nowadays, constant human presence 

is also widespread in many of the forests. The pioneering studies of Hediger (1934) (cited in 

[7]) and Walther (1969) about fleeing distances have initiated research on the effect of human 

disturbance on African game species. According to their results, games produce the same anti-

predator response to approaching cars as to predators. Since then, a lot of research has supported 

[8–10] that this anti-predator behaviour is not only triggered by lethal human disturbance (e.g. 

hunting) but also by non-lethal ones (e.g. hiking, [11]). Nevertheless, it seems that games do 

not indiscriminately respond to different disturbances, their responses depend on the type of 

disturbance [9–11]. For example, the games may respond less intensively to a hiker or horse 

rider than to logging or hunting [9,11]. However, according to a meta-analysis by Doherty et 

al. (2021) [12], hunters and hikers may have a larger effect on the movements of animals than 

urbanisation or logging. A form of these anti-predator behaviour can be the avoidance of 

disturbing agents though limiting the spatial and temporal overlap with them [13–16].

Behaviourally mediated direct effects can be observed between predator and game species when 

the game’s avoidance of predators has an influence on the distribution of games [17,18]. In the 

same way humans can influence the distribution of predators [1,8,19], but this does not mean 

that humans do not influence the distribution of game individuals. Hebblewhite et al. (2005) [1] 

suggests that elks would avoid areas where human disturbance is low, but the abundance of 

wolves is high; an hypothesis is supported by several other studies, e.g. [10,14,15]. The refugee 

effect is, when an area with high human disturbance may serve as refugees for preys, because 

predators avoid humans more than their preys do [15,20,21]. So whether ungulates avoid wolf-
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dens areas and prefer human dominated landscapes depends on the type of human land use [9]. 

Moreover, based on a meta-analysis by Tucker et al. 2022 [22], animal movement activity 

decreases where human impact is high.

Games can also adapt to predators and human disturbance by limiting their temporal overlap in 

their activities. According to previous observations, games often change their daily routines if 

a predator appears in the same habitat [23–27]. Predators, however, are able to adjust their 

activities to match them to the games’ [27,28]. Also human disturbance can change the 

predator’s activity patterns indirectly through the changes caused in activity patterns of games 

[28]. 

The grey wolf (Canis lupus) is a native species in Hungary; its extinction in the late 19th century 

was solely caused by human persecution and extermination [29–31]. Until that time its presence 

in the Carpathian Basin was continuous for at least the last 15 000-16 000 years in spite of 

extensive climate changes [30]. Their sporadic occurrence has been documented again since 

the 1970s in the northeast part of Hungary, near Slovakia [32]. The presence of wolves in the 

territory of Bükk National Park has been reported in 2010 by Bükk National Park Directorate 

[33]. Now, Hungary has stable populations in the northeast part of the country, in the Bükk 

Region (25-35 ind., [34]), Aggtelek Karst (12 ind.) and Zemplén Mountains (25 ind.) of the 

North Hungarian Mountains [35]. 

According to a study carried out in the Aggtelek National Park [36] the main food of wolves 

were big game, such as red deer (Cervus elaphus) and wild boar (Sus scrofa) followed by roe 

deer (Capreolus capreolus) and muflon (Ovis gmelini). From the point of view of nature 

conservation it is welcomed that wolves take control of the population size of game species, but 

the hunting industry became worried that the presence of wolves will reduce their efficiency in 

big game hunting [37]. For instance, they communicate that hunting has become more difficult 
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due to the big game’s behavioural changes caused by wolves: games started to avoid certain 

areas and became more shy [38–41]. 

Currently, both advantageous and disadvantageous effects of wolves for certain stakeholder 

groups are, however, only supported by anecdotal evidence in Hungary. Furthermore, the 

arguments in general do not take into account that human presence might be as, or even more, 

crucial for game as of the predators. Here, we aim to contribute to this debate in an evidence 

based way, by quantitatively analysing camera trap data, recorded in the Bükk National Park, 

to investigate the avoidance by machine learning and the temporal overlap between activities 

of games and predators and human disturbance. We assume that negative associations between 

game and either predator or human disturbance is an indication that game avoids predators or 

humans.

Materials and Methods

Study area

Our research was carried out in the central area of the Bükk Mountains, in the Bükk National 

Park (BNP), northern Hungary (N 48°06’, E 20°30’). The largest forested area of Hungary (c. 

140 km2) can also be found here. This is one of the coldest parts of Hungary with mean annual 

temperature varying between 7-8 °C. The mean yearly rainfall, 600-700 mm, is high compared 

to the rest of the country [42]. The number of days with snow cover is also outstanding within 

Hungary [42,43]. Forest cover is 95% formed by species like mountain and submountain beech 

(Fagus sylvatica), sessile oak (Quercus patreae) and Austrian oak (Quercus cerris) [42–44]. 

The main economic activity is forestry, managed by two large state-owned companies 

(Egererdő Forestry Company and Északerdő Forestry Company). Many roads cross the study 
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area, and it is a popular place for hunting, hiking and other recreational activities. Vehicular 

traffic consists of off-road vehicles, cars, trucks, tractors and motorcycles. Hikers mainly move 

on foot or ride on horse or bicycle. Seasonally there are many mushroom collectors as well 

(pers. obs. P. Gombkötő).

The big game species in the area (with their estimated numbers after Csányi 2022 [45] are red 

deer (Cervus elaphus, 10 085), boar (Sus scrofa, 2 465), muflon (Ovis gmelini, 2 332) and roe 

deer (Capreolus capreolus, 10 741). Main mesocarnivores are red fox (Vulpes vulpes), Eurasian 

badger (Meles meles) and wild cat (Felix sylvestris). Large carnivores besides grey wolf (Canis 

lupus) are Eurasian lynx (Lynx lynx) and occasionally brown bear (Ursus arctos) [42].

Camera traps

Use of camera traps is a non-invasive, cost-efficient method for wildlife monitoring [46]. As it 

is a non-specific approach, one can study more species simultaneously [47] and also investigate 

human disturbance. The frequency of animals captured on a camera trap correlates with their 

abundance and activity and thus can be a useful indicator of the occurrence of species in a given 

location [48–50]. Furthermore, as indicated above, this method is also suitable for studying the 

daily activity pattern of species in a habitat [16,27,51,52].

We used RECONYX camera traps (UltraFire XR6; HyperFire HC500, PC900 and PC800; 

RapidFire PM75). They were posted on roads, trails, game trails, mud baths where the presence 

of the wolf was previously confirmed by tracks and scats. Cameras were inspected every 4 

weeks to change batteries and memory cards. We analysed the data obtained from May 2015 to 

December 2019 (Fig 1) on twenty seven different sites. The recordings consist of both images 

and videos.
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Fig 1. The operating periods of camera traps.

The data

For each site, one of us (ZS) screened the recordings to collect the date and time of occurrences 

of studied species or human disturbance at a particular site. Following Ciuti et al. (2012) [11] 

we categorized human disturbance into three types: hikers (including hunters), motorised 

vehicles (m.vehicle) and riders (bikers and equestrians). The number of individuals (both 

animals and humans) were also collected. To lower the level of pseudoreplication we pooled 

two subsequent occurrences of the same species or the same type of human disturbance if they 

were separated by less than 15 minutes [15].

We analysed 101 676 files of 267.55 GB. We recorded 11 689 occurrences in total, of which 

were 596 Canis lupus, 1035 Vulpes vulpes, 1826 Cervus elaphus, 1738 Sus scrofa, 1301 

Capreolus capreolus observations. Furthermore, 4139 observations of human disturbance, 

1570 hikers, 2312 motorised vehicles, and 257 riders, were recorded. The remaining 1054 

observations were excluded from the analyses because they included infrequently observed 

mammals, such as Meles meles, Martes foina, Ovis gmelini, Sciurus vulgaris and Lepus 

europaeus, livestock and indeterminable observations.

All analyses were performed in the R interactive statistical environment (version 4.0.4, R Core 

Team 2021).

Temporal Overlap
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We estimated temporal overlap between (i) games and wolf, (ii) human activity and games and 

(iii) wolf and human activity through the non-parametric calculation of the overlap coefficient 

(Δ4: Weitzman 1970). Δ4 ranges from 0 to 1, where 0 means no overlap, and 1 means complete 

overlap [53]. We classified site locations as low human density (LHD) areas where human 

activity is below the median human activity detection per day and high human density (HHD) 

areas otherwise. Separate temporal overlap estimations were performed on LHD and HHD 

classes, as well as over every site. Confidence intervals on Δ4 values were computed after 

bootstrapping samples 100 times from the dataset. We performed this analysis with the 

„circular” and „overlap” R packages [54,55]. We used two-sample t-tests to compare overlap 

coefficients between LHD and HHD locations.

Co-occurrence of game and disturbance factors

To investigate the effects of predators (e.g. wolf) and human disturbance (e.g. motorised 

vehicles or hikers) on the occurrence of big game we fitted eXtreme Gradient Boosting 

(XGBoost) models as implemented in the 'xgboost' R package (version 1.6.0.1) [56]. To 

increase the robustness of our analyses we only considered presence/absence data, i.e. we re-

coded each variable as one if the given species or human disturbance occurred on a given day 

and zero otherwise. As we are mainly interested in the relative effects of the presence of 

disturbance factors (predators or humans) we removed those days from the dataset when neither 

the game nor the disturbance factors occurred. In other words, we deleted those rows where all 

occurrence values were zero. This step prevents us from estimating the absolute probability of 

occurrence but it facilitates the model fitting process, e.g. by allowing the calculation of ten-

fold cross-validation statistics.
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For each of the three big games (C. capreolus, C. elaphus and S. scrofa) we run separate 

analyses. In these analyses the occurrence data of the given big game served as label or 

dependent variable, while the occurrence data of human disturbances (motorised vehicle, 

hikers, riders) and those of wolf (for all three big game) and fox (only for C. capreolus, as it is 

important predator for fawns [57]) were used as features or explanatory variables.

To infer the reliability of our results we run permutation tests where the occurrence data of big 

game (our dependent variables) were randomised within each stratus formed by each operating 

period within each camera. For both the observed values and the randomised datasets we 

calculated (i) metrics characterising the model fits and (ii) the differences in occurrence 

probability of the big game predicted for the presence and absence of the given disturbance 

factor. We used the following metrics: the square root of mean squared error (rmse), the 

logarithmic loss (logloss) and the area under the curve (auc) [56]. To assess reliability we 

compared the calculated metrics and differences to their distributions obtained from the 

randomised fits. Here after, we call an effect as significant if its value calculated from observed 

data is not contained by its distribution obtained from the randomised data. Each randomisation 

was repeated 1000 times.

All model fits were run for ten rounds with the default parameter values of the xgboost package. 

Results

Temporal Overlap

Predators and games are mainly active during the night, while human activity peaks at the 

middle of the day (Fig 2). The Δ4 values between human and game activities are lower than 

values between wolf and games.  In the case of games-human overlaps we found the greatest 
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Δ4 value for roe deer (Δ4=0.52), followed by red deer (Δ4=0.41) and finally the wild boar 

(Δ4=0.26). The wolf has an overlap value with human activity (Δ4=0.40) which is comparable 

to the overlap values between humans and games. For the wolf-games overlaps the greatest 

overlap value was for red deer (Δ4=0.89) followed by roe deer (Δ4=0.84) and wild boar 

(Δ4=0.83). The 95% confidence intervals on the calculations are shown in Table 1. These 

indicate that the overlap between wolf and games are significantly higher than between human 

activity and games. Comparing the Δ4 values calculated separately for LHD and HHD areas, 

we can observe significant increases in overlap in case of human disturbance with all games at 

LHD sites. Contrary to this effect, wolf-game overlaps decrease significantly at LHD sites. In 

case of human-wolf overlap, the overlap also decreases significantly.

Fig 2. Temporal overlap between human activity and big games, between Canis lupus and 

big games, and between human activity and Canis lupus for all areas. The estimated overlap 

values (Δ4) between two activity patterns range from 0 to 1, where 0 means no overlap, and 1 

means complete overlap.

Table 1. Summary of overlap coefficients (Δ4, for all sites), their 95% confidence intervals 

(95% CI), and comparison of Δ4 values between Low Human Density (LHD) and High 

Human Density (HHD) sites.

Overlap Δ4 95% CI HHD Δ4 LHD Δ4 Δ4 change p-value (FDR)

Human with

C. capreolus 0.52 [0.49; 0.55] 0.49 0.55 +0.06 p<0.001

C. elaphus 0.41 [0.39; 0.43] 0.37 0.47 +0.10 p<0.001

S. scrofa 0.26 [0.24; 0.27] 0.22 0.24 +0.02 p<0.001
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Wolf with

C. capreolus 0.84 [0.80; 0.88] 0.83 0.73 -0.10 p<0.001

C. elaphus 0.89 [0.86; 0.92] 0.88 0.75 -0.13 p<0.001

S. scrofa 0.83 [0.79; 0.86] 0.80 0.69 -0.11 p<0.001

Human with wolf 0.40 [0.37; 0.43] 0.40 0.33 -0.07 p<0.001

Significant differences were found between LHD Δ4 and HHD Δ4 values with p < 0.001 after 

false discovery rate (FDR) correction. Δ4 change was calculated as LHD Δ4 - HHD Δ4.

Co-occurrence of game and disturbance factors

For all three big games the metrics of the fits indicate that our models fitted rather well (Fig 3).

Fig 3. Metrics characterising the fit of XGBoost models to the occurrence data of big 

games in the Bükk Region. The stars show the metrics for the models fitted to the observed 

data. The violin plots illustrate the distribution of 1000 metrics obtained by fitting models to 

randomly permuted data. In the cases of the metrics of rmse and logloss lower values indicate 

better fit. In case of auc, higher values mean better fit.

Examining the importance values of the explanatory variables (predators and human 

disturbance) reveals that the most important factors influencing the occurrence of big games 

are motorised vehicles (0.29-0.46) and hikers (0.23-0.35) (Fig 4). 

Fig 4. The importance of disturbance factors on the occurrence of big games in the Bükk 

region. Importance indicates how important a given factor is in the prediction of occurrence of 

big games. Darker columns indicate human disturbance, lighter ones predators.
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Predators only appeared as third, in case of C. capreolus is fox (0.19), while in cases of C. 

elaphus and S. scrofa is wolf (0.19 and 0.17) and in case of C. capreolus, wolf (0.18) is forth. 

Riders were the least important factors in the cases of all three big games (0.04-0.09).

The effects of all disturbance factors were negative for each big game (Fig 5). In other words, 

the big games occurred less likely on the same day if either human disturbance or predators 

were present. The most significant of these were the effects of motorised vehicles and hikers 

while the effect of riders was never significant. In case of C. capreolus the influence of wolf 

wasn’t significant, because permuted data results were between -0.0042 and -0.0992, and 

observed data was -0.0952, also in case of S. scrofa, where permuted data was between -0.0438 

and -0.1400, and observed data was -0.1406. Wolf influenced significantly in case of C. 

elaphus, where permuted data was between -0.0222 and -0.0855, while observed data was -

0.1149 (min. difference is 0.0294). However human disturbance has a stronger effect in case of 

hikers (permuted data was between -0.0024 and -0.0712, observed data was -0.1333; min. 

difference is 0.0621) and motorised vehicles (permuted data was between -0.0169 and  -0.0879, 

observed data was -0.1254; min. difference is 0.0375).

Fig 5. The estimated effects of disturbance on the occurrence of big games in the Bükk 

region. The stars mark the effects estimated from the observed data, while the violin plots 

illustrate the distributions of effects from randomly permuted data. Darker violins indicate 

human disturbance, lighter ones predators.

Discussion

Games can adapt to predators and human disturbance by limiting their temporal or spatial 

overlap in their activities. According to previous observations, games often change their daily 
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activity pattern if a predator appears in the same habitat [23–27]. Predators, however, are also 

able to adjust their activities to match the games’ [27,28].

Our results show that the activity patterns of animals and humans are markedly different. The 

games and wolf are mainly active at night and dawn, while human activity is predominantly 

observable at daytime and peaks at noon. Human activity can modify the activity patterns of 

both predators and games: the transition of diurnal animals to nocturnal life caused by human 

activity is a well-known, globally observed phenomenon [8,58]. Also human disturbance can 

change the predator’s activity patterns indirectly through the changes caused in activity patterns 

of games [28]. Our overlap analyses also indicate that games avoid humans more in areas where 

they have a higher chance to meet them (HHD areas). Furthermore, high human density results 

in higher overlap between wolves and games which might indicate that games accept a higher 

overlap with wolves to decrease the overlap with humans i.e. humans force the prey to overlap 

more their activities with predators. These results suggest that games actively avoid humans.

Temporal changes in activity patterns can have negative effects on the fitness of animals [8,58]. 

For instance, the chance of successful hunting and foraging may significantly decrease when a 

basically diurnal species is forced to become nocturnal which can ultimately result in the 

reduction of the success of mating and parental care. Furthermore, to games, the anti-predator 

behaviour may also be less efficient because of the poorer visibility [8,58]. Apart from temporal 

avoidance, humans can also influence the spatial distribution of games and predators 

[1,8,19,59]. By investigating land use differences Theuerkauf and Rouys (2008) [9] found that 

games did not avoid the areas used by wolves. 

Based on our XGBoost results we could only detect a mild negative effect of wolves on the  

occurrence of  red deer. This finding corroborates the results of Lanszki et al. 2012 [36], i.e. 

that red deer is the main prey of wolves in this area. Nevertheless, the presence of wolves was 
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not the most important factor influencing game occurrence, the negative effects of human 

disturbance were larger and more important in the case of all games. As our analyses show, the 

presence of motorised vehicles, followed by hikers influenced most the occurrence of big game 

in this area. In accordance with results of Ciuti et al. (2012) [11] we also couldn’t detect 

significant effects of equestrians or bikers (riders).

Because of the return of the grey wolf the games are now subject to additional pressure. From 

an hunting economic point of view this is mainly important in the case of red deer and the wild 

boar since they are economically the most important big game species in the region. Our results, 

however, suggest that this additional pressure, compared to the strong human disturbance, is 

relatively mild for these species. Nevertheless, as other studies have showed, this pressure can 

facilitate the increase of the local biodiversity [1–4,10]. We also have to note that based on our 

results human disturbance has a larger influence on the behaviour of big game species than the 

presence of wolves. 

To summarise, our results indicate that human disturbance has a strong  influence for the game 

species. The disturbance by motorised vehicles is especially dominant. Therefore, intermittent 

resting in the woods, like restrictions on vehicle use, or reducing pedestrian traffic to some 

places might have an advantageous effect on the populations of the big game. 

Acknowledgements

We are grateful to the Bükk National Park Directorate, and their rangers, who gathered the data, 

especially to Péter Mlakár and Ádám Pongrácz. We thank Tamás Cserkész for his careful 

comments on a previous version of the manuscript. ZB was supported by a National Research, 

Development and Innovation Fund grant (TKP2021-NKTA-32).

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


15

References

1. Hebblewhite M, White CA, Mckenzie JA. Human Activity Mediates a Trophic 

Cascade Caused by Wolves. Biol Sci Fac Publ. 2005;288. 

2. Ripple WJ, Beschta RL. Linking wolves to willows via risk-sensitive foraging by 

ungulates in the northern Yellowstone ecosystem. For Ecol Manage. 2006;230: 96–

106. doi:10.1016/j.foreco.2006.04.023

3. Beyer HL, Merrill EH, Varley N, Boyce MS. Willow on yellowstone’s northern range: 

Evidence for a trophic cascade? Ecol Appl. 2007;17: 1563–1571. doi:10.1890/06-

1254.1

4. Ripple WJ, Beschta RL. Trophic cascades in Yellowstone: The first 15 years after wolf 

reintroduction. Biol Conserv. 2012;145: 205–213. doi:10.1016/j.biocon.2011.11.005

5. Middleton AD, Kauffman MJ, Mcwhirter DE, Jimenez MD, Cook RC, Cook JG, et al. 

Linking anti-predator behaviour to prey demography reveals limited risk effects of an 

actively hunting large carnivore. Ecol Lett. 2013;16: 1023–1030. 

doi:10.1111/ele.12133

6. Marshall KN, Thompson Hobbs N, Cooper DJ. Stream hydrology limits recovery of 

riparian ecosystems after wolf reintroduction. Proc R Soc B Biol Sci. 2013;280. 

doi:10.1098/rspb.2012.2977

7. Walther FR. Flight behaviour and avoidance of predators in Thomson’s gazelle. 

Behaviour. 1969;34: 184–220. doi:10.1163/156853969X00053

8. Frid A, Dill L. Human-caused disturbance stimuli as a form of predation risk. Ecol Soc. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


16

2002;6. doi:10.5751/es-00404-060111

9. Theuerkauf J, Rouys S. Habitat selection by ungulates in relation to predation risk by 

wolves and humans in the Białowieża Forest, Poland. For Ecol Manage. 2008;256: 

1325–1332. doi:10.1016/j.foreco.2008.06.030

10. Dorresteijn I, Schultner J, Nimmo DG, Fischer J, Hanspach J, Kuemmerle T, et al. 

Incorporating anthropogenic effects into trophic ecology: Predator - Prey interactions 

in a human-dominated landscape. Proc R Soc B Biol Sci. 2015;282. 

doi:10.1098/rspb.2015.1602

11. Ciuti S, Northrup JM, Muhly TB, Simi S, Musiani M, Pitt JA, et al. Effects of Humans 

on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear. 

PLoS One. 2012;7. doi:10.1371/journal.pone.0050611

12. Doherty TS, Hays GC, Driscoll DA. Human disturbance causes widespread disruption 

of animal movement. Nat Ecol Evol. 2021;5: 513–519. doi:10.1038/s41559-020-

01380-1

13. Fortin D, Beyer HL, Boyce MS, Smith DW, Duchesne T, Mao JS. Wolves influence 

elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. 

Ecology. 2005;86: 1320–1330. doi:10.1890/04-0953

14. Sih A. Predator-prey interactions. In: Barbosa P, Castellanos I, editors. Most. Oxford 

University Press; 2005. pp. 241–255. 

15. Muhly TB, Semeniuk C, Massolo A, Hickman L, Musiani M. Human activity helps 

prey win the predator-prey space race. PLoS One. 2011;6: 1–8. 

doi:10.1371/journal.pone.0017050

16. Rossa M, Lovari S, Ferretti F. Spatiotemporal patterns of wolf, mesocarnivores and 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


17

prey in a Mediterranean area. Behav Ecol Sociobiol. 2021;75. doi:10.1007/s00265-020-

02956-4

17. Schmitz OJ, Beckerman AP, Brien KMO. Behaviorally Mediated Trophic Cascades: 

Effects of Predation Risk on Food Web Interactions. Ecology. 1997;78: 1388–1399. 

Available: http://www.jstor.org/stable/2266134

18. Preisser EL, Bolnick DI. The many faces of fear: Comparing the pathways and impacts 

of nonconsumptive predator effects on prey populations. PLoS One. 2008;3: 5–8. 

doi:10.1371/journal.pone.0002465

19. Hebblewhite M, Merrill EH. Multiscale wolf predation risk for elk: Does migration 

reduce risk? Oecologia. 2007;152: 377–387. doi:10.1007/s00442-007-0661-y

20. Theuerkauf J, Jȩdrzejewski W, Schmidt K, Okarma H, Ruczyński I, Śniezko S, et al. 

Daily patterns and duration of wolf activity in the Białowieża Forest, Poland. J 

Mammal. 2003;84: 243–253. doi:10.1644/1545-

1542(2003)084<0243:DPADOW>2.0.CO;2

21. Jędrzejewski W, Spaedtke H, Kamler JF, Jędrzejewski B, Stenkewitz U. Group Size 

Dynamics of Red Deer in Białowiez˙ a Primeval. J Wildl Manage. 2006;70: 1054–

1059. 

22. Tucker MA, Böhning-gaese K, Fagan WF, Fryxell JM, Moorter B Van, Alberts SC, et 

al. Moving in the Anthropocene: Global reductions in terrestrial mammalian 

movements. 2018;469: 466–469. 

23. M . G . L . Mills T. M. S. Predator--Prey Relationships : The Impact of Lion Predation 

on Wildebeest and Zebra Populations. Soc Br Ecol. 2016;61: 693–702. Available: 

http://www.jstor.org/stable/5624

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


18

24. Fenn MGP, Macdonald DW. Use of Middens by Red Foxes: Risk Reverses Rhythms 

of Rats. J Mammal. 1995;76: 130–136. doi:10.2307/1382321

25. Eccard JA, Pusenius J, Sundell J, Halle S, Ylönen H. Foraging patterns of voles at 

heterogeneous avian and uniform mustelid predation risk. Oecologia. 2008;157: 725–

734. doi:10.1007/s00442-008-1100-4

26. Gliwicz J, Da̧browski MJ. Ecological factors affecting the diel activity of voles in a 

multi-species community. Ann Zool Fennici. 2008;45: 242–247. 

doi:10.5735/086.045.0401

27. Ross J, Hearn AJ, Johnson PJ, Macdonald DW. Activity patterns and temporal 

avoidance by prey in response to Sunda clouded leopard predation risk. J Zool. 

2013;290: 96–106. doi:10.1111/jzo.12018

28. Theuerkauf J, Jedrzejewski W, Schmidt K, Gula R. Spatiotemporal Segregation of 

Wolves from Humans in the Bialowieza Forest (Poland). J Wildl Manage. 2003;67: 

706. doi:10.2307/3802677

29. Szemethy L, Firmánszky G, Heltai M, Szabó Á, Márkus M. Farkas (Canis lupus) 

fajmegőrzési terv. Budapest: Ministry of Environment and Water; 2004. 

30. Kovács Z. Farkasok a Kárpát-medencében. Éva B, editor. Budapest: Corvina Kiadó 

Kft.; 2007. 

31. Kaczensky P, Chapron G, Arx M von, Huber D, Andrén H, Linell J. Status, 

management and distribution of large carnivores – bear, lynx, wolf & wolverine – in 

Europe 2. Eur Comm. 2012; 1–72. 

32. Faragó S. A farkas (Canis lupus LINNÉ, 1758) 1920-1985 közötti előfordulása 

Magyarországon. 1988; 139–164. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


19

33. BNPD. Jelentés a Bükki Nemzeti Park 2010. évi tevékenységéről [Annual report on 

Bükk National Park Directorate’s Activities, 2010]. 2011. 

34. BNPD. Jelentés a Bükki Nemzeti Park Igazgatóság 2021. évi tevékenységéről [Annual 

report on Bükk National Park Directorate’s Activities, 2021]. 2022. 

35. ANPD. Jelentés az Aggteleki Nemzeti Park Igazgatóság 2021. évi szakmai 

tevékenységéről [Annual report on Aggtelek National Park Directorate’s Activities, 

2021]. 2022. 

36. Lanszki J, Márkus M, Újváry D, Szabó Á, Szemethy L. Diet of wolves Canis lupus 

returning to Hungary. Acta Theriol (Warsz). 2012;57: 189–193. doi:10.1007/s13364-

011-0063-8

37. BNPD. Jelentés a Bükki Nemzeti Park Igazgatóság 2014. évi tevékenységéről [Annual 

report on Bükk National Park Directorate’s Activities, 2014]. 2015. Available: 

http://regi.bnpi.hu/oldal/tervek-jelentesek-309.html

38. Jurán V. Kárpáti ordasok. Budapest: Móra Ferenc Könyvkiadó; 1966. 

39. Vadászlap. Diána istenasszony nem a vadászokat, hanem a farkasokat fogadta 

kegyeibe. 2017. Available: https://vadaszlap.hu/2017/01/20/diana-istenasszony-nem-

vadaszokat-hanem-farkasokat-fogadta-kegyeibe/

40. Nagy O. A farkasok már a spájzban vannak. 2020. Available: 

https://vadaszlap.hu/2020/03/03/farkasok-mar-spajzban-vannak/

41. Szabó A. Kutyadolog? Vadászlap. 2021XXX.: 32-33. 

42. Baráz C, editor. A Bükki Nemzeti Park. Hegyek, Erdők, Emberek. Eger; 2002. 

43. Juhász L. A Bükki Nagymező növényzete. Acta Academiae Paedagogicae Agriensis. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


20

1959. pp. 495–505. 

44. András V. A Központi-Bükk déli előterének vegetációja. Fol Hist-nat Mus Matr. 1990; 

27–36. 

45. Csányi S. A 2020/2021. vadászati év vadgazdálkodási eredményei valamint a 2021. 

tavaszi vadállomány becslési adatok és vadgazdálkodási tervek. 2022. 

46. Kays W. R, Keith M. S. Remote cameras. Noninvasive Survey Methods for 

Carnivores. Washington, Covelo, London: Island Press; 2008. pp. 110–128. 

47. Rowcliffe JM, Field J, Turvey ST, Carbone C. Estimating animal density using camera 

traps without the need for individual recognition. J Appl Ecol. 2008;45: 1228–1236. 

doi:10.1111/j.1365-2664.2008.01473.x

48. Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JR, et al. The use 

of photographic rates to estimate densities of tigers and other cryptic mammals. Anim 

Conserv. 2001;4: 75–79. doi:10.1017/S1367943001001081

49. Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JR, et al. The use 

of photographic rates to estimate densities of cryptic mammals: Response to Jennelle et 

al. Anim Conserv. 2002;5: 121–123. doi:10.1017/S1367943002002172

50. Jennelle CS, Runge MC, MacKenzie DI. The use of photographic rates to estimate 

densities of tigers and other cryptic mammals: a comment on misleading conclusions. 

Anim Conserv. 2002;5: 119–120. doi:10.1017/S1367943002002160

51. Ridout M, Linkie M. Estimating overlap of daily activity patterns from camera trap 

data. J Agric Biol Environ Stat. 2009;14: 322–337. 

52. Oliveira T, Chiriac S, Corradini A, Marcon A. Factors influencing wolf (Canis lupus) 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


21

detection rate in a camera trapping survey in the Eastern Carpathians, Romania. 10th 

Baltic Theriological Conference. 2017. pp. 2–5. 

53. Linkie M, Ridout MS. Assessing tiger-prey interactions in Sumatran rainforests. J 

Zool. 2011;284: 224–229. doi:10.1111/j.1469-7998.2011.00801.x

54. Agostinelli C, Lund U. R package “circular”: Circular Statistics (version 0.4-93). CA: 

Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari 

University, Venice, Italy. UL: Department of Statistics, California Polytechnic State 

University, San Luis Obispo, California, USA; 2017. Available: https://r-forge.r-

project.org/projects/circular/

55. Meredith M, Ridout M. Estimates of coefficient of overlaping for animal activity 

patterns. R CRAN Repository; 2017. 

56. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, et al. xgboost: Extreme 

Gradient Boosting. R package version 1.6.0.1. 2022. Available: https://cran.r-

project.org/package=xgboost

57. Jarnemo A. Roe deer Capreolus capreolus fawns and mowing - mortality rates and 

countermeasures. Wildlife Biol. 2002;8: 211–218. doi:10.2981/wlb.2002.035

58. Gaynor KM, Hojnowski CE, Carter NH, Brashares JS. The influence of human 

disturbance on wildlife nocturnality. Science (80- ). 2018;360: 1232–1235. 

doi:10.1017/S1473550416000240

59. Crawford DA, Conner LM, Clinchy M, Zanette LY, Cherry MJ. Prey tells, large 

herbivores fear the human ‘super predator.’ Oecologia. 2022;198: 91–98. 

doi:10.1007/s00442-021-05080-w

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508874
http://creativecommons.org/licenses/by/4.0/

