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ABSTRACT 20 

Interleukin 1α (IL-1α) and IL-1β are the founding members of the IL-1 cytokine family, and these 21 

innate immune inflammatory mediators are critically important in health and disease. Early studies 22 

on these molecules suggested that their expression was interdependent, with an initial genetic 23 

model of IL-1α depletion, the IL-1α KO mouse (Il1a-KOline1), showing reduced IL-1β expression. 24 

However, studies using this line in models of infection and inflammation resulted in contrasting 25 

observations. To overcome the limitations of this genetic model, we have generated and 26 

characterized a new line of IL-1α KO mice (Il1a-KOline2) using CRISPR-Cas9 technology. In 27 

contrast to cells from the Il1a-KOline1, where IL-1β expression was drastically reduced, bone 28 

marrow-derived macrophages (BMDMs) from Il1a-KOline2 mice showed normal induction and 29 

activation of IL-1β. Additionally, Il1a-KOline2 BMDMs showed normal inflammasome activation and 30 

IL-1β expression in response to multiple innate immune triggers, including both pathogen-31 

associated molecular patterns and pathogens. Moreover, using Il1a-KOline2 cells, we confirmed 32 

that IL-1α, independent of IL-1β, is critical for the expression of the neutrophil chemoattractant 33 

KC/CXCL1. Overall, we report the generation of a new line of IL-1α KO mice and confirm functions 34 

for IL-1α independent of IL-1β. Future studies on the unique functions of IL-1α and IL-1β using 35 

these mice will be critical to identify new roles for these molecules in health and disease and 36 

develop therapeutic strategies.   37 
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INTRODUCTION  38 

The IL-1 family of cytokines is a diverse family made up of potent inducers of inflammation. 39 

Members of this family can either prevent or promote disease, and they have been widely 40 

recognized as potential therapeutic targets (Lukens et al, 2012; Malik & Kanneganti, 2018; Ridker 41 

et al, 2017a; Ridker et al, 2017b; Ridker et al, 2011). The three members of the IL-1 sub-family, 42 

IL-1α, IL-1β, and IL-1 receptor antagonist (IL-1RA), bind the same IL-1 receptor (IL-1R). The 43 

cytokines IL-1α and IL-1β act as agonistic ligands, whereas IL-1RA is a strong antagonist; 44 

together, these molecules orchestrate robust proinflammatory immune responses (Dinarello, 45 

2009; Dinarello et al, 1974).  46 

Among the IL-1 cytokines, significant overlap has been observed in the downstream processes 47 

they activate. However, there are also key differences between their expression and release and 48 

the biological processes they drive (Cavalli et al, 2021). The pro-form of IL-1β is biologically 49 

inactive and requires proteolytic processing for its activation. Inflammasome-dependent caspase-50 

1 activation and pyroptosis are the major mechanisms responsible for IL-1β processing and 51 

release (Kanneganti, 2010; Kayagaki et al, 2015; Shi et al, 2015). Unlike IL-1β, the pro-form of 52 

IL-1α is constitutively expressed in most cells from healthy hosts (Berda-Haddad et al, 2011; 53 

Kupper et al, 1986); it is also biologically active and can be present directly on the plasma 54 

membrane for signaling or released following membrane damage during various forms of cell 55 

death, making it a classic danger signal (Kaplanski et al, 1994; Kurt-Jones et al, 1985; Malik & 56 

Kanneganti, 2018).  57 

As signaling molecules, a wide range of pathogen-associated and damage-associated molecular 58 

patterns (PAMPs and DAMPs) that activate innate immune signaling induce the expression and 59 

activation of both IL-1α and IL-1β (Malik & Kanneganti, 2018; Mantovani et al, 2019). IL-1 family 60 

receptors carry the cytoplasmic TIR domain, a shared feature with pathogen sensing TLRs, 61 

making them excellent amplifiers of inflammatory signaling (Boraschi et al, 2018). Indeed, 62 

nanomolar doses of IL-1α and IL-1β can trigger lethal inflammatory responses in mice and 63 
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humans (Dinarello, 1996; Lomedico et al, 1984; Smith et al, 1993). Consistently, IL-1α and IL-1β 64 

were shown to act as self-amplifying factors and upregulate each other via IL-1R signaling 65 

(Dinarello, 2009; Dinarello et al, 1987; Goldbach-Mansky et al, 2006; Greten et al, 2007; Warner 66 

et al, 1987). However, studies of IL-1α and IL-1β have produced conflicting results with regard to 67 

how these cytokines regulate each other. Studies focused on TLR triggers reported that these 68 

self-amplifying positive feedback mechanisms are redundant or not important to amplify the 69 

production of IL-1α and IL-1β further (Almog et al, 2015; Copenhaver et al, 2015; Fettelschoss et 70 

al, 2011; Glaccum et al, 1997; Labow et al, 1997). These observations differed from studies using 71 

a genetic Il1a knockout mice (hereafter referred to as Il1a-KOline1), which showed substantial 72 

reduction in IL-1β production when Il1a was deleted (Dagvadorj et al, 2021; Gross et al, 2012; 73 

Horai et al, 1998), suggesting that IL-1α may regulate IL-1β expression even during TLR 74 

activation. These conclusions remained debated and poorly understood for many years.  75 

Therefore, we sought to generate a new line of Il1a knockout mice (hereafter referred to as Il1a-76 

KOline2) using CRISPR-Cas9 technology. The newly generated Il1a-KOline2 mice showed normal 77 

development, with comparable levels of basal immune cells in the blood compared with wild-type 78 

(WT) mice. Bone marrow-derived macrophages (BMDMs) prepared from the Il1a-KOline2 mice 79 

showed no defect in expression or activation of inflammasome components in response to 80 

PAMPs and live pathogen triggers. Additionally, while the cells from Il1a-KOline1 showed reduced 81 

expression of both IL-1α and IL-1β, Il1a-KOline2 macrophages had no expression of IL-1α but near-82 

normal expression of IL-1β. Moreover, the Il1a-KOline2 BMDMs showed a specific requirement of 83 

IL-1α for the expression of neutrophil chemoattractant KC/CXCL1, further confirming the 84 

functional accuracy of the KO. In summary, we generated and characterized a new line of IL-1α 85 

KO mice that improve upon the previous version and have normal IL-1β expression. These mice 86 

can be broadly used for future studies on the unique functions of IL-1α and IL-1β to establish their 87 

relevance in health and disease and identify new treatment strategies.   88 
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RESULTS  89 

Generation of the IL-1α KO (Il1a-KOline2) mouse using CRISPR/Cas9 technology  90 

Although IL-1α has long been recognized as a critical regulator of inflammation and immune 91 

responses (Cavalli et al, 2021), its specific functions in physiologic and pathologic inflammatory 92 

outcomes in health and disease remain unclear. IL-1α is subjected to complex regulation, and 93 

early genetic studies using different knockout mice produced conflicting observations (Dagvadorj 94 

et al, 2021; Fettelschoss et al, 2011; Gross et al, 2012; Horai et al, 1998). To clarify the previously 95 

observed contradictory roles of IL-1α in IL-1β expression in Il1a-KOline1 mice, we generated a new 96 

line of IL-1α knockout (KO) mice using CRISPR-Cas9 technology, referred to here as Il1a-KOline2 97 

(Fig. 1). Exons 2-5 of the Il1a gene were deleted by using simultaneous injection of two individual 98 

gRNAs with human codon optimized Cas9 mRNA (Fig. 1A). We opted to use pronuclear-staged 99 

C57BL/6J zygotes for the injections to minimize the background-related genetic issues. 100 

Successful generation of the Il1a-deficient mice was assessed by targeted deep sequencing and 101 

further confirmed by PCR amplification of genomic DNA from the WT and mutant alleles (Fig. 1B), 102 

and western blot analysis to confirm the loss of IL-1α protein production (Fig. 2A). Additionally, 103 

because IL-1α is a multifaceted cytokine that we postulated may have a role in regulating immune 104 

cell phenotypes at basal levels, we evaluated the immune cellularity in the blood from the newly 105 

generated CRISPR Il1a–/– mice (Il1a-KOline2). We found that these mice did not show any gross 106 

abnormalities in the immune cellularity (S. Fig. 1A–B). In sum, we generated a new line of IL-1α 107 

knockout mice, Il1a-KOline2, and confirmed the loss of IL-1α expression with no defects in overall 108 

blood immune cellularity.  109 

 110 

CRISPR-based genetic deletion of Il1a does not affect IL-1β expression or activation 111 

Both IL-1α and IL-1β are known to be highly induced in response to pathogenic insults. Therefore, 112 

we next sought to characterize the cytokine expression in cells from the newly generated Il1a-113 

KOline2 mice in response to PAMPs and pathogens. Treatment of BMDMs with lipopolysaccharide 114 
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(LPS, a toll-like receptor 4 (TLR4) agonist from Gram-negative bacteria) induced robust and time-115 

dependent expression of IL-1α protein in WT cells but not in Il1a-KOline2 cells (Fig. 2A). In addition, 116 

the induction of IL-1α protein expression was not affected by IL-1β genetic deletion, and the 117 

expression of IL-1β in response to LPS was similar in the WT and Il1a-KOline2 cells (Fig. 2A). In 118 

contrast, we observed a delay and reduction in the production of IL-1β in the previously generated 119 

Il1a-KOline1 cells in response to LPS (S. Fig. 2A).  120 

To further understand potential interconnections between IL-1α and IL-1β, we evaluated NLRP3 121 

inflammasome priming, which is known to produce mature IL-1β. We found that IL-1α was not 122 

required for upregulation of NLRP3 or IL-1β expression in response to the innate immune triggers 123 

LPS, LPS plus ATP, Pam3CSK4 (Pam3) plus ATP, or Gram-negative bacteria Escherichia coli or 124 

Citrobacter rodentium (Fig. 2A–C). Moreover, the activation of canonical and non-canonical 125 

inflammasomes, as measured by cleavage of caspase-1 and gasdermin D (GSDMD), were not 126 

reduced by deletion IL-1α (Fig. 2B–C). Consistently, IL-1β release was similar in WT and Il1a-127 

KOline2 BMDMs (Fig. 2D–E). In contrast, using similar experimental approaches, we observed 128 

defects in IL-1β expression in macrophages from the earlier Il1a-KOline1 line, with pronounced 129 

reductions in IL-1β expression at early time points in response to LPS, while the induction 130 

improved at later timepoints (S. Fig. 2A). We also observed reductions in IL-1β expression in 131 

response to NLRP3 inflammasome triggers LPS plus ATP and Pam3 plus ATP (S. Fig. 2B). We 132 

did not observe defects in NLRP3 production or caspase-1 and GSDMD activation in Il1a-KOline1 133 

cells (S. Fig. 2A–B). Together, these results show that while the previously generated Il1a-KOline1 134 

line had defects in IL-1β production, Il1a-KOline2 mice did not share these defects.  135 

 136 

CRISPR-based genetic deletion of Il1a confirms its critical role in the expression of the 137 

chemokine KC (CXCL1) 138 

IL-1α is a pleiotropic cytokine and critical amplifier of inflammation in response to both infection 139 

and sterile cellular insults (Cavalli et al, 2021). IL-1α also plays key roles in regulating neutrophil-140 
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chemotactic factors such as the chemokine KC (CXCL1) in mice (Gurung et al, 2017). Therefore, 141 

to further confirm the IL-1α deletion in the newly generated Il1a-KOline2 mice and assess its 142 

functional effects, we evaluated expression of TNF and KC in response to innate immune triggers. 143 

We found that IL-1α specifically was required to produce KC, but not TNF, in response to both 144 

PAMP- and pathogen-induced signaling in macrophages; loss of IL-1α resulted in significant 145 

decreases in KC release, while loss of IL-1β did not decrease KC release (Fig. 3A–D). Instead, 146 

we observed significantly increased levels of KC production in Il1b−⁄− cells in response to LPS plus 147 

ATP and Pam3 plus ATP treatments (Fig. 3A), suggesting a competition between IL-1α and IL-148 

1β for IL-1R binding in this context, where the increased availability of IL-1R molecules for binding 149 

by IL-1α may promote hyper-expression of select inflammatory factors in the absence of IL-1β. 150 

Together, these findings confirm the specific role of IL-1α for the release of KC, further supporting 151 

the functional relevance of the newly created Il1a-KOline2 mice for the evaluation of IL-1α–152 

mediated signaling and disease phenotypes.   153 
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DISCUSSION 154 

Members of the IL-1 family of cytokines play important roles as inflammatory mediators in host 155 

defense but have also been implicated in disease pathogenesis. Therefore, understanding the 156 

distinct functions of IL-1 family members is fundamental to our understanding of the molecular 157 

basis of disease. Previous genetic models of IL-1α deletion have displayed defects in IL-1β 158 

production, making it difficult to determine the distinct roles of these molecules in immune 159 

responses. To overcome this obstacle, we report the generation of a genetic deletion of IL-1α in 160 

mice using CRISPR technology that did not affect IL-1β induction in response to microbial PAMPs 161 

and pathogens. Our findings suggest that expression of IL-1β in response to TLR activation is not 162 

affected by loss of IL-1α. 163 

Growing evidence supports that IL-1α and IL-1β have distinct functions (Di Paolo et al, 2009; 164 

Eigenbrod et al, 2008; Sakurai et al, 2008). Our findings further confirm that IL-1α is a non-165 

redundant positive regulator of the expression of the chemokine KC in macrophages, which is 166 

consistent with earlier studies reporting the specific role of IL-1α in promoting production and 167 

recruitment of neutrophils in chronic inflammatory conditions (Gurung et al, 2017; Kono et al, 168 

2010; Lukens et al, 2013; Thornton et al, 2010). However, IL-1β has also been shown to be 169 

important for the induction of neutrophil growth- and chemotactic-factors (Cassel et al, 2014; 170 

Eislmayr et al, 2022; Gurung et al, 2016; Hsu et al, 2011; Lukens et al, 2014a). Therefore, it is 171 

plausible that IL-1β might also contribute to neutrophil-mediated inflammatory conditions as a 172 

result of the activation of cell death modalities that drive IL-1β maturation via the activation of 173 

caspase-1 or other proteases (Place & Kanneganti, 2019), though this requires further study.  174 

Additionally, previous studies using the earlier Il1a-KOline1 mice distinguished unique functions of 175 

IL-1α and IL-1β in the development of chronic autoinflammatory diseases (Cassel et al, 2014; 176 

Lukens et al, 2014a; Lukens et al, 2014b; Lukens et al, 2013; Malik et al, 2016). Our results 177 

suggest that the ability to use the Il1a-KOline1 mice to successfully identify this differential 178 

phenotype is due to the chronic nature of the disease. We found that the reduction of IL-1β 179 
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expression in Il1a-KOline1 cells was pronounced only at early time points following stimulation, and 180 

that prolonged stimulation resulted in similar levels of IL-1β in WT and Il1a-KOline1 cells, in 181 

response to both PAMPs and pathogens. This suggests that WT and Il1a-KOline1 mice would have 182 

similar levels of IL-1β during chronic disease, allowing differential phenotypes between Il1b−⁄− and 183 

Il1a−⁄− mice to be observed.  184 

Given the critical roles of IL-1 family cytokines in inflammation and pathology, these cytokines 185 

have been targeted in several therapeutic strategies which have further highlighted unique 186 

functions for IL-1α and IL-1β. For example, the recent SAVE-MORE trial showed that anakinra, 187 

which blocks both IL-1α and IL-1β, reduced the risk of clinical progression in patients with COVID-188 

19, when co-administered with dexamethasone (Kyriazopoulou et al, 2021). Accordingly, 189 

anakinra was authorized for the treatment of COVID-19 in Europe by the EMA. In contrast, the 190 

CAN-COVID trial, which was designed to evaluate the efficacy of canakinumab (a specific IL-1β 191 

blocking antibody) failed to improve the survival of patients with COVID-19 (Caricchio et al, 2021). 192 

These studies further expand the concept that IL-1α plays a dominant and potentially specific role 193 

in driving IL-1β-independent inflammatory immune responses and pathology in some contexts. 194 

Together, these observations show that caution should be used when interpreting previous 195 

studies and highlight the need to authenticate genetic resources for future work. The development 196 

of the Il1a-KOline2 mouse line, which does not display acute or chronic defects in IL-1β production, 197 

may help address many of the critical, long-standing questions in the field regarding the shared 198 

and unique functions and context-dependent interdependencies of IL-1α and IL-1β cytokines to 199 

improve understanding of the molecular basis of disease and inform therapeutic strategies.   200 
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MATERIALS AND METHODS 201 

Mice 202 

Il1b−⁄− (Shornick et al, 1996) and Il1a−⁄− (Il1a-KOline1) (Matsuki et al, 2006) mice were both 203 

previously described. Il1a−⁄− (Il1a-KOline2) mice were generated in the current study and are 204 

described below. All mice were generated on or extensively backcrossed to the C57/BL6 205 

background. All mice were bred at the Animal Resources Center at St. Jude Children’s Research 206 

Hospital and maintained under specific pathogen-free conditions. Mice were maintained with a 12 207 

h light/dark cycle and were fed standard chow. Animal studies were conducted under protocols 208 

approved by the St. Jude Children’s Research Hospital committee on the Use and Care of 209 

Animals. 210 

 211 

Generation of the new IL-1a KO (Il1a-KOline2) mouse strain 212 

The new Il1a-KOline2 mouse was generated using CRISPR/Cas9 technology in collaboration with 213 

the St. Jude Transgenic/Gene Knockout Shared Resource facility. Pronuclear-staged C57BL/6J 214 

zygotes were injected with human codon-optimized Cas9 mRNA transcripts (50 ng/μl) combined 215 

with two guide RNAs (120 ng/μl each; sgRNA1 for the 5’ of exon 2: 216 

AAAAGCTTCTGACGTACCACagg, and sgRNA2 for the 3’ of exon 5: 217 

AAGTAACAGCGGAGCGCTT Ttgg (pam sequences are underlined)) to generate a long deletion 218 

encompassing exons (E) 2–5 of the Il1a gene (Fig. S1A). Zygotes were surgically transplanted 219 

into the oviducts of pseudo-pregnant CD1 females, and newborn mice carrying the desired 220 

deletion in the Il1a allele were identified by PCR agarose gel-electrophoresis (Fig. 1B) and Sanger 221 

sequencing. The WT allele was PCR amplified by using the primers IL1a_F1 (5’-222 

GGGCACACGAATTCACACTCACA-3’) and IL1a_R1 (5’-223 

GGAGAACTTGGTTCCTGTTAGGGTGA-3’), and the KO allele was amplified by using IL1a_F1 224 

and IL1a_R2 (5’- TGATTAGCTTCCTTTGGGCTTTGA-3’) primer pairs. The details of the 225 

generation of the CRISPR reagents were described previously (Pelletier et al, 2015). The 226 
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uniqueness of sgRNAs and the off-target sites with fewer than three mismatches were found using 227 

the Cas-OFFinder algorithm (Bae et al, 2014).  228 

 229 

Macrophage differentiation and stimulation 230 

BMDMs were prepared as described previously (Gurung et al, 2012). In short, bone marrow cells 231 

were cultured in IMDM supplemented with 30% L929 cell-conditioned medium, 10% FBS, 1% 232 

nonessential amino acids, and 1% penicillin-streptomycin for 6 days to differentiate into 233 

macrophages. On day 6, BMDMs were counted and seeded at 106 cells per well in 12-well culture 234 

plates in DMEM containing 10% FBS, 1% nonessential amino acids, and 1% penicillin-235 

streptomycin. iBMDMs (immortalized BMDMs from Il1a−⁄− (Il1a-KOline1) mice) were maintained in 236 

DMEM supplemented with 5% L929 cell-conditioned medium, 10% FBS, 1% nonessential amino 237 

acid, and 1% penicillin-streptomycin. Stimulations were performed with LPS alone (100 ng/ml) for 238 

the indicated times, LPS (100 ng/ml) or Pam3 (1 µg/ml) for 3.5 h followed by the addition of ATP 239 

(5 mM final concentration) for 30 min, or E. coli (MOI, 20) or C. rodentium (MOI, 20) for 24 h. 240 

 241 

Flow cytometry and analysis of cellularity 242 

The cellular phenotypes of immune cells in the blood were analyzed either by flow cytometry (for 243 

T cell subsets and B cells) or by using an automated hematology analyzer machine (for & 244 

lymphocytes, % neutrophils, % monocytes, red blood cell (RBC) counts, hemoglobin (HB) 245 

quantification, and platelet (PLT) quantification). The following antibodies were used for cell 246 

staining: anti-CD19 (APC, clone ID3), anti-CD45.2 (FITC, clone 104), and anti-TCRβ (PECy7, 247 

clone H57-597) from Biolegend, and anti-CD8a (efluor450, clone 53-6.7) from eBiosciences. Data 248 

were acquired on LSR II Flow Cytometer from BD Biosciences, and analyzed using the FlowJo 249 

software (Tree Star), version 10.2 (FlowJo LLC).  250 

 251 

Western blotting 252 
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Samples for immunoblotting of caspase-1 were prepared by mixing the cell lysates with culture 253 

supernatants (lysis buffer: 5% NP-40 solution in water supplemented with 10 mM DTT and 254 

protease inhibitor solution at 1× final concentration); samples for all other protein immunoblotting 255 

were prepared without the supernatants in RIPA lysis buffer. Samples were mixed and denatured 256 

in loading buffer containing SDS and 100 mM DTT and boiled for 12 min. SDS-PAGE–separated 257 

proteins were transferred to PVDF membranes and immunoblotted with primary antibodies 258 

against IL-1α (503207, Biolegend), IL-1β (12426, Cell Signaling Technology), caspase-1 (AG-259 

20B-0042; Adipogen), NLRP3 (AG-20B-0014; Adipogen), GSDMD (ab209845, Abcam), and β-260 

Actin (sc-47778 HRP, Santa Cruz), Appropriate horseradish peroxidase (HRP)–conjugated 261 

secondary antibodies (anti-Armenian hamster [127-035-099], anti-mouse [315-035-047], and 262 

anti-rabbit [111-035-047], Jackson ImmunoResearch Laboratories) were used as described 263 

previously (Tweedell et al, 2020). Immunoblot images were acquired on an Amersham Imager 264 

using Immobilon® Forte Western HRP Substrate (WBLUF0500, Millipore). 265 

 266 

Cytokine analysis 267 

Cytokines and chemokines were measured by multiplex ELISA (Millipore), as per the 268 

manufacturer instructions.  269 

 270 

Statistical analysis 271 

GraphPad Prism 9.0 software was used for data analysis. Data are presented as mean ± SEM. 272 

Statistical significance was determined by t tests (two-tailed) for two groups.  273 
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FIGURE LEGENDS 299 

Figure 1. Generation of the Il1a–/– (Il1a-KOline2) mouse using CRISPR/Cas9 technology  300 

(A) Two sgRNAs targeting the Il1a locus were designed and used to delete exons 2 to 5 (E2 to 301 

E5), as described in the materials and methods section. The vertical bars denote the sgRNAs 1 302 

and 2, respectively (depictions are not to the scale) in the genomic sequence. The location of the 303 

deleted genomic fragment and the primer-binding locations are depicted using short arrows. 304 

(B) The PCR amplification of the Il1a locus from the DNA of wild-type (WT), heterozygous, (Het), 305 

or knockout (KO) mice using the primers (primers P1 and P2 together with P3).  306 

 307 

Figure 2. CRISPR-based genetic deletion of Il1a (Il1a-KOline2) does not affect IL-1β 308 

expression or activation 309 

(A) Western blot analysis of pro-IL-1α (P31), pro-IL-1β (P31), NLRP3 (P110), and β-Actin (P42) 310 

in bone marrow-derived macrophages (BMDMs) treated with LPS for indicated times. (B–C) 311 

Western blot analysis pro- (P45) and activated (P20) caspase-1 (CASP1), pro- (P53) and 312 

activated (P30) gasdermin D (GSDMD), pro-IL-1α (P31), pro-IL-1β (P31), and β-Actin (P42) in 313 

BMDMs treated with LPS + ATP or Pam3 + ATP for 4 h (B), or BMDMs infected with E. coli or C. 314 

rodentium for 24 h (C). (D–E) Measurement of IL-1β release in the cellular supernatants collected 315 

from BMDMs treated as detailed in panels (B) and (C), respectively, for (D) and (E). Western blot 316 

of β-actin was used as loading control. Data are representative of at least two independent 317 

experiments (A–E). Data are presented as the mean ± SEM (D and E). Analyses of the P values 318 

were performed using the t test (D and E). ns, non-significant; **P < 0.01; ***P < 0.001; ****P < 319 

0.0001. 320 

 321 

Figure 3. CRISPR-based genetic deletion of Il1a (Il1a-KOline2) confirms its critical role in the 322 

expression of the chemokine KC (CXCL1) 323 
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(A–D) Measurement of secreted cytokines KC and TNF in bone marrow-derived macrophages 324 

(BMDMs) treated with LPS + ATP or Pam3 + ATP for 4 h (A–B) or infected with E. coli or C. 325 

rodentium for 24 h (C–D). Data are representative of at least two independent experiments (A–326 

D). Data are presented as the mean ± SEM (A–D). Analyses of the P values were performed 327 

using the t test (A–D). ns, non-significant; *P < 0.05; **P < 0.01; ****P < 0.0001.  328 
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SUPPLEMENTAL FIGURE LEGENDS 329 

Supplemental Figure 1. The newly generated CRISPR (Il1a-KOline2) mice do not show gross 330 

abnormalities in blood immune cellularity  331 

(A) Measurement of complete blood counts using automated hematology to analyze percentages 332 

of lymphocytes, neutrophils, and monocytes in the total blood cell population, as well as red blood 333 

cell (RBC) counts, hemoglobin levels (HB), and platelet (PLT) counts from wild-type (WT), Il1a–/– 334 

(Il1a-KOline2), and Il1b–/– mice. (B) Flow cytometry-based quantification of the percent B cells, T 335 

cells, and CD4+ T and CD8+ T cell subsets among the CD45.2+ hematopoietic cells from the blood 336 

collected from WT, Il1a–/– (Il1a-KOline2) and Il1b–/– mice. Data are representative of at least two 337 

independent experiments of 5 to 7 animals per group (A–B). Data are presented as the mean ± 338 

SEM (A–B). Analyses of the P values were performed using the t test (A–B). ns, non-significant. 339 

 340 

Supplemental Figure 2. Previously generated Il1a–/– (Il1a-KOline1) cells have defective IL-1β 341 

expression  342 

(A) Western blot analysis of pro-IL-1α (P31), pro-IL-1β (P31), NLRP3 (P110), and β-Actin (P42) 343 

in immortalized bone marrow-derived macrophages (iBMDMs) treated with LPS for indicated 344 

times. (B) Western blot analysis of pro-IL-1α (P31), pro-IL-1β (P31), NLRP3 (P110), pro- (P45) 345 

and activated (P20) caspase-1 (CASP1), pro- (P53) and activated (P30) GSDMD, and β-Actin 346 

(P42) in iBMDMs treated with PBS (Vehi), LPS + ATP, or Pam3 + ATP for 4 h or infected with E. 347 

coli (EC) or Citrobacter (Citro) for 24 h. Western blot of β-actin was used as loading control. Data 348 

are representative of at least two independent experiments (A–B).  349 
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