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Abstract

Genomic selection models use Single Nucleotide Polymorphism (SNP) markers to predict phenotypes. However, these
predictive models face challenges due to the high dimensionality of genome-wide SNP marker data. Thanks to recent
breakthroughs in DNA sequencing and decreased sequencing cost, the study of novel genomic variants such as Structural
Variations (SVs) and Transposable Elements (TEs) become increasingly prevalent. In this paper, we develop a deep
convolutional neural network model, NovGMDeep, to predict phenotypes using SVs and TEs markers for genomic selection.
The proposed model is trained and tested on samples of A. thaliana and O. sativa using k-fold cross-validation. The
prediction accuracy is evaluated using Pearson’s Correlation Coefficient (PCC), Mean Absolute Error (MAE), and
Standard Deviation (SD) of MAE. The predicted results showed higher correlation when the model is trained with SVs
and TEs than with SNPs. NovGMDeep also has higher prediction accuracy when comparing with conventional statistical
models. This work sheds light on the unrecognized function of SVs and TEs in genotype-to-phenotype associations, as
well as their extensive significance and value in crop development.
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Introduction

The genotype of an organism is described by its entire genetic

composition. Genotype can also refer to the set of alleles

contained within the genome. The phenotype, or observable

characteristics, are influenced by the genotype’s expression in

the cell. Generally, three variables influence a phenotype: the

most effective are genes; the inherited epigenetic factors and

acquired environmental factors are the other two [34].

Because of the success of Genome-Wide Association Studies

(GWAS), there is a growing interest in using genotype data

to predict complex traits like diseases. According to some

recent GWAS analyses only a few common SNPs are involved

in most diseases and these associated SNPs can only explain

a small percentage of the disease susceptibility [19]. Early

plant genomic investigations were hampered by technological

limitations and a lack of high-quality reference genome

assemblies, which prohibited a detailed analysis of both SVs

and TEs in plants. Recent improvements in genomic technology,

notably long-read sequencing, offer the generation of high-

quality plant genome and pangenome assemblies, as well as

exposure to a diverse set of SVs for evaluating their possible

significance in plant phenotypic diversity [38]. Similarly, the

transposition of TEs, which are common in most eukaryote

genomes, accounts for a considerable amount of genomic

variation. As a result, TE-derived molecular markers are useful

resources for unraveling genomic variations in both plant and

animal [28]. This work aims to shed light on the unrecognized

function of SVs and TEs in genotype-to-phenotype associations,

as well as their extensive significance and value in crop

development.

Predicting crop phenotypes is an effective step in explaining

crop behavior using insights from genome-wide markers.

Genomic selection (GS) is a potent method to enhance

quantitative traits since it uses genomic-estimated breeding

values of individuals generated from genome-wide markers to

select candidates for the next breeding cycle [21].

The importance of predicting complex traits using large

volumes of genomic data has led to the development of

novel machine learning models. The conventional genomic

prediction models are rrBLUP (Ridge Regression Best Linear
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Unbiased) [8] and gBLUP (Genomic Best Linear Unbiased

Prediction) [6]. However, these conventional predictors

typically assume that the genotype random effects follow

a normal distribution, and each genotype’s contribution to

phenotypes is considered as an independent attribute. It is,

however, unknown in practice how genotype effects behave

and they may not follow a strict distribution. Moreover,

these conventional statistical models do not consider non-

linearity between the variables, as SNPs may also interact with

other SNPs to cause complex diseases or traits as a result of

epistasis. While these models face challenges due to the high

dimensionality of genome-wide marker data and interactions

between alleles, GS can benefit from Deep Learning (DL), which

provides novel approaches to process noisy data [18] and handle

nonlinearity [15].

For DL models, studies have shown that these methods base

their predictions on overall genetic relatedness, rather than on

the effects of particular markers [32]. Moreover, DL models offer

advanced feature engineering and extraction capabilities [41],

and therefore have the potential to find hidden patterns in

large-scale datasets [22]. As a simplest DL model, in a multi-

layer convolutional neural network, each layer consisting of

many neurons, represents complicated relationships among

the large datasets. The different neurons in each layer,

receive information from the lower hierarchical layers, which

is triggered by predefined activation functions. Activation

functions bring non-linearity to the output of each layer to

determine the input of the next layer [23]. Deep learning-based

models has shown promising results in wide variety of tasks

such as object detection [40], speech recognition [7], natural

language processing [37], and etc.

Existing Methods in Genomic Selection

Broadly speaking, GS methods can be classified into

conventional statistical models and deep learning methods.

In this section, we briefly summarize a few models in each

category. These models are compared with our proposed

NovGMDeep model in Section 3 to demonstrate the prediction of

phenotypes using SV, TE, and SNP markers.

One of the most widely used statistical models for GS is

rrBLUP [8]. The model uses the linear regression algorithm

which takes the genotype matrix as the input and predicts the

phenotype vector. The ridge regression technique is used to

estimate the effects of all genotypic markers, and these effects

follow a normal distribution with a non-zero variance.

The gBLUP model [6] is another statistical model for

estimating an individual’s genetic performance based on its

genomic associations. A genomic relationship matrix is used

in gBLUP to represent genomic markers. To make predictions,

the genotype matrix specifies covariance between individuals

based on observed similarity at the genomic level.

The DeepGS model is developed using a deep Convolutional

Neural Network (CNN) with architecture including a 1D-

convolutional layer, a 1D-max-pooling layer, combination of a

few dropouts and fully connected layers [20]. The final output

represents the predicted phenotypic values for the analyzed

individual markers. The DeepGS model is trained using 10-fold

cross-validation. They used the backpropagation algorithm [29]

with the learning rate of 0.01, the momentum of 0.5, and the

weight decay set to 0.00001 to optimize the parameters of the

model. They trained the model for 6000 epochs. The DeepGS

model utilizes hidden variables to collectively represent features

in the genome-wide markers while making predictions.

The quantitative phenotypic prediction problem was treated

by G2PDeep as a regression problem [39]. Data on zygosity

and SNPs are fed into the model. The model is made up of

a dual-CNN layer and a fully connected neural network. The

encoded genotypes are transferred by dual-CNN, which has two

concurrent series of CNN layers with the kernel sizes of 4 and

20, followed by another CNN layer of size 4 to enhance marker

representation. Both CNN streams are aggregated and fed into

the following CNN layer to complete the feature extractor

section of the model. In the end, fully connected layers with

512 and 1 neurons serve as regression blocks for predicting

phenotypes in the model.

Genomic Selection using Novel Genomic Markers

The above-discussed methods only consider the SNP variants

as genomic markers in predicting the phenotypes. For standard

linear models, the number of genome-wide SNP features largely

exceeds the sample size, leading to overfitting. To mitigate

these limitations, instead of SNPs, we utilize SVs and TEs

to represent genomic variations in two separate experiments

and explore their effectiveness in genomic selection. We have

provided an overview of SVs and TEs in Section 1 and explained

their importance in phenotypic prediction in plants.

Our study illustrates the need to look beyond SNPs to

understand evolutionary processes and how SVs and TEs can

help us understand variation within species or during early

divergence. The genotype-to-phenotype predictions identified

using SVs and TEs will be useful to investigate A. thaliana

and O. sativa evolution and trait architecture. We develop

NovGMDeep, a 1D deep convolutional neural network, to predict

the different phenotypes from novel genomic markers-SVs

and TEs. Unlike the statistical models, our model learns

the complex relationships between genome-wide markers and

phenotypic traits from the training data. With the advanced

deep learning technology, the model evades the overfitting of the

data using the convolutional, pooling, and dropout layers hence

decreasing the complexity of dimensional genomic markers.

This paper is organized as follows. In the Material and

Methods section, first, we discuss our data sources, second,

we present our proposed DL model, and third, we present the

data representation for the proposed model in detail and its

architecture and optimization strategies. Then, in the Results

section, we discuss the prospective results by comparing the

results with all of the mentioned statistical and DL models.

Finally, we draw some conclusions and discuss how predicting

phenotypes using SVs and TEs has more impact than using

SNPs in the Conclusion section.

Materials and Methods

Data Sources

Arabidopsis thaliana dataset with SV markers

The flowering plant, A. thaliana, is an ideal plant species

for researching genotype-phenotype-environment interactions

because their naturally inbred strains allow for repeated

phenotyping and have adapted genotypes under a variety of

controlled circumstances. A. thaliana is quite appealing in

scientific research for surveying the molecular and phenotypic

effects at the species level [33]. It is found in a wide

variety of environments around the world, and representative

accessions have been extensively phenotypically and genetically

characterized. The 1001 Genomes “A Catalog of A. thaliana

Genetic Variation” [27] is a database where whole-genome
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sequencing has been performed on over 1000 A. thaliana

accessions which makes the genomic selection and genome-wide

association studies in this species possible.

The full VCF variant files containing the structural variants

data for the 1, 301 A. thaliana samples are publicly available

on European Variation Archive (PRJEB38975) [10]. They were

used in this study, as well as the SNPs and indels for 1, 135

accessions of A. thaliana [3]. The SV dataset includes several

types of SVs, such as deletions, duplications, and inversions.

The lengths of these variations span from 50 bp to 10 kb.

The phenotypes of matched samples were downloaded from

AraPheno, the 1001 genomes project [31]. Flowering time,

rosette leaf number, cauline axillary branch number, and stem

length were used with their definitions listed as follows.

1. Flowering time: Generally scored as days from seeds in the

soil until the first open flower.

2. Rosette leaf number: A shoot system morphology trait

which is the number of leaves in the shoot system of A.

thaliana.

3. Cauline axillary branch number: A shoot axis morphology

trait which is the amount or pattern of branches arising

from the shoot axis.

4. Stem length: A stem morphology trait often measured from

the soil surface to the highest point on the stem.

Oryza sativa subsp. japonica dataset with TE markers

O. sativa, rice is a monocotyledonous flowering plant in the

Poaceae family that is one of the world’s most significant

agricultural plants, providing the primary source of nutrition

for half of the world’s population. Oryza sativa subsp. japonica

is one of three primary rice subspecies: indica, javanica,

and japonica. The grains of O. sativa are short and high in

amylopectin, causing them to stick together when cooked.

The TE markers computed from the 176 O. sativa

accessions were used in this study [35]. The SNPs for the

same number of accessions were also obtained in this study in

comparison to TE markers.

Four phenotypes are used in the study: panicle length,

spikelet number, days to heading, and plant height measured

for the same accessions [36].

1. Panicle length: The length measured from a terminal

component of the rice tiller which is an inflorescence called

a panicle.

2. Spikelet number: The number of panicle rice spikelets,

which develop into grains.

3. Days to heading: Characterized together by the vegetative

growth phase. It is the period from germination to panicle

initiation and the reproductive phase of rice development,

meaning the time from panicle initiation to heading.

4. Plant height: Defined as the shortest distance between

the upper boundary (the highest point) of the main

photosynthetic tissues (excluding inflorescences) and the

ground level.

NovGMDeep: a Deep Learning Model for Genomic Selection

using Novel Genomic Markers

We present, NovGMDeep, a deep one-dimensional (1D)

convolutional neural network to predict phenotypes in this

study. The model is trained separately with three different

types of data: SVs, TEs, and SNPs. We evaluate the model

by calculating Pearson’s coefficient of correlation among the

predicted and observed phenotype values. The results show that

SVs and TEs are more informative for phenotype prediction

than SNPs.

Genomic Data Representation

Genotypes in plant and animal species are represented as

either haploid or diploid. A haploid genotype comprises a

single set of chromosomes for generating the phenotype whereas

a diploid genotype contains two sets of chromosomes, each

of which is required for phenotype generation. Genotypes

are usually represented as ‘0|0’ or ‘0/0’, where ‘|’ and ‘/’

indicates the phased and unphased genotypes respectively. To

gain a complete picture of genetic variation, phasing entails

separating maternally and paternally inherited copies of each

chromosome into haplotypes. A genotype with at least one set

of explanatory haplotypes is referred to as a phased genotype.

Unphased genotypes are those for which no set of explaining

haplotypes have been identified [24]. The genotype is considered

to be homozygous if all the haplotypes for a specific site

have the same value. Otherwise, the genotype is considered

heterozygous.

SV marker representation : A. thaliana is a diploid species

and has phased genotypes as ‘0|0’ and ‘1|1’ which means

homozygous for reference allele and homozygous for alternate

allele respectively. Although SVs are smaller in numbers than

SNPs, which account for almost a million variant sites per

genome, they are more informative, as they account for a higher

number of nucleotide differences due to their size. Different

types of SVs such as inversions, duplications, and deletions

can capture the genomic variations better than the SNPs.

We propose a strategy as shown in formula 1 to represent

the SVs. The SV genotypic data for inversions, duplications,

and deletions is transformed using one-hot encoding as binary

arrays. In one-hot encoding, given a dataset with different

features, the encoder finds the unique values per feature and

transforms the data to a binary one-hot vector [26]. Different

arrays for different types of SVs were chosen so that the details

of genomic variations were well represented and understandable

by the model. For the SNP and indel data, the same one-

hot encoding strategy was used, 0|0 for reference allele, 1|1
for alternate allele, and .|. indicating the missing genotypes.

As shown below, INV represents inversions, DUP represents

duplications, and DEL represents deletions:

0|0(INV ) → [1, 0, 0, 0, 0, 0]

1|1(INV ) → [0, 1, 0, 0, 0, 0]

0|0(DUP ) → [0, 0, 1, 0, 0, 0]

1|1(DUP ) → [0, 0, 0, 1, 0, 0]

0|0(DEL) → [0, 0, 0, 0, 1, 0]

1|1(DEL) → [0, 0, 0, 0, 0, 1]

.|.(MissingV alue) → [0, 0, 0, 0, 0, 0]

(1)

For the SV dataset, the data is represented in the format of

a 3D matrix A(x × y × z) where x represents the accessions,

y represents the SV/SNP markers, and z represents the size

of one-hot-encoded arrays. As one example, in the A. thaliana

SV dataset, there are 914 accessions, 155, 440 genotypes, and

6 variant types as defined in formula (1), therefore, x = 914,

y = 155, 440, and z = 6 respectively. As another example, for

the A. thaliana SNP dataset, x = 923, y = 500, 000 (only
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500, 000 SNP genotypes were selected randomly from the 10

million genotypes to save computational resources), and z = 2

respectively.

TE marker representation : Oryza sativa is a diploid species

and has unphased genotypes. The TE and SNP markers in the

raw dataset were coded as integers 1, 0, and -1 which means the

reference genotype (1/1), the first (most common) alternative

genotype (0/1), and the second most frequent alternative

genotype (0/0) respectively. A similar strategy is used to encode

TE and SNP variants using one-hot-encoded binary arrays as

shown in formula (2).

1/1 → [1, 0, 0]

0/1 → [0, 1, 0]

0/0 → [0, 0, 1]

./. → [0, 0, 0]

(2)

For the TE markers, the data is represented in the similar

format of a 3D matrix B(u × v × w) where u refers to the

accessions, v indicates the TE/SNP markers, and w shows

the depth of one-hot-encoded vector. So, for the O. sativa TE

dataset u = 176 , v = 6, 074, and w = 3 respectively. And for

the O. sativa SNP dataset, u = 176, v = 493, 882, and w = 3

respectively.

Model Architecture

The proposed deep CNN model has four 1D convolutional

layers, a single 1D max-pooling layer, a flatten layer and one

dropout layer followed by a fully connected layer (Figure 1).

As the backbone of the model, we use four 1D convolutional

layers of the following sizes. The first layer includes 16 filters

of size five. For the next layers, we double the number of filters

in each layer and reduce the filter sizes of the last two layers to

three. If the input to the convolution layer is represented as X,

filter as F , bias as B, and the output of the convolution layer

as Y , the convolution operation between X and F including

bias is defined in equation (3).

Y (Ni) = F ∗ X (Ni) + B (3)

where N is the batch size and ∗ is the cross-correlation [5]

operator. For all the convolutional layers, ReLU activation

function [1] (Equation 4), LecunNormal kernel initializer [12],

and L1L2 kernel regularizer [17] is used with same padding.

ReLU (Y (Ni)) = max (0, Y (Ni)) (4)

To reduce the high dimensionality of the prominent features

of the last convolutional layers, a one-dimensional max-pooling

layer is used after the convolutional layers with a window size of

two and a stride of two. It minimizes the amount of the input

to the following layer by taking only the maximum values as

the most important features, which cut the size of the input

into the following layer in half [2]. Then the extracted feature

map from the model’s backbone is flattened using a flatten layer

and fed into the fully connected layer which is our phenotype

predictor. Fully connected layers link every node in the input

to every node in the output, but they do not capture spatial

information. Due to the high number of input features which

results in a large-size feature map, the dropout layer with

the drop ratio of 0.6 is used before the fully connected layer

Fig. 1. NovGMDeep architecture. The first convolutional layer has 16 filters

of kernel size five. The second layer comes with 32 filters of kernel size five.

The third one has 64 filters of kernel size three. And the last convolutional

layer has 128 filters of kernel size three. The max-pooling layer has a pool

size of two and a stride of two. At last, there is one fully connected layer

as the regressor with one output neuron.

to reduce computational complexity and avoid overfitting. We

use Adam [16] optimizer with a learning rate of 0.0003. The

Adam optimization algorithm is applied to iteratively adjust

the network weights based on training samples. Moreover, we

utilized mean absolute error as the loss function. The NovGMDeep

is developed with Keras [11], an open-source software library

that provides a Python interface for artificial and deep neural

networks. The source code of NovGMDeep is publicly available on

Github (https://github.com/shivanisehrawat4/NovGMDeep.git).

The model predicts quantitative phenotype as a real number

which is the model’s output. The predicted phenotypes are

later compared with the ground-truth values to evaluate the

model performance. As the evaluation metric, we use Pearson’s

coefficient of correlation (PCC) between the predicted and

observed phenotypes. Five assumptions must be met before we

calculate the PCC between two variables [25]. As far as our

datasets are concerned, all of the conditions are true and the

detailed analysis can be found in Appendix. PCC [9], normally

denoted by ρ, is a measure of the linear correlation between two

variables (X and Y ), whose values range from -1 to 1, with 1

indicating total positive correlation, 0 indicating no correlation,

and -1 indicating a total negative correlation. It is defined as

the covariance of the two variables divided by the product of

their standard deviations.

ρ =
cov(X,Y )

σXσY

, (5)

where cov(X,Y ) is the covariance of X and Y , σX is the

standard deviation of X, and σY is the standard deviation of Y .
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PCC is a model-free method, and it, therefore, shows the nature

of the data without depending on any of the existing models. It

is commonly used in statistical analysis for the evaluation of the

model and measuring the relationship between two variables.

Results

We trained the NovGMDeep model on both SVs and SNPs

variations of the accessions and their associated phenotypes for

A. thaliana. We also trained the model on both TE and SNP

data of O. sativa. We split all the samples into training and

testing subsets with the ratios of 80% and 20% respectively.

Note that we applied the 3-fold cross-validation [13] on the

training sets of all the datasets in the model development step.

The best models were saved while training for three rounds of

cross-validation. Then, those best models were used to calculate

the PCC value while testing. Later the average of the three PCC

values obtained from testing was finally used in the results to

evaluate the model.

PCC was used to find the correlation between the observed

and predicted phenotypes. The correlation between the two

quantitative variables assessed for the same samples is depicted

by scatter plots in Figure 2 and Figure 3. The horizontal axis

displays the true values of the phenotypes, while the vertical

axis shows the values of the predicted phenotypes. Each value

in the data is represented by a point on the graph. The strength

of the association between the two variables is a key aspect of a

scatterplot. The slope conveys information about the strength

of the relationship between true and predicted values. When

the slope is 1, the correlation between the two comparable

variables is the strongest. Figure 2 shows the results between

ground truth and predicted phenotypic values for NovGMDeep

using SVs and SNPs respectively for predicting flowering time

of A. thaliana. Figure 3 shows the results between observed and

predicted phenotypic values for NovGMDeep using TEs and SNPs

respectively for predicting heading time of O. sativa. These

PCC graphs were created on the testing samples and show

the accuracy of the proposed model in predicting phenotypes.

The orange line in these graphs represents the trend of the

relationship between the observed and predicted phenotypes

(blue points) by the NovGMDeep model. This linear regression

line shows the best fit between predicted and true values. As

shown in Figures 2 and es 3, the predicted values which are

close to the fitting line indicate a strong correlation, and values

far from the fitting line indicate a weak correlation between the

true and predicted values.

The aforementioned two statistical methods, rrBLUP and

gBLUP, were evaluated with the same data to compare their

overall prediction performance with NovGMDeep. As shown

in Table 1, phenotypes predicted by NovGMDeep show the

strongest correlations with observed phenotypes. Therefore,

NovGMDeep outperforms the other statistical models in predicting

phenotype with SVs data. Moreover, phenotypes predicted by

NovGMDeep using SVs and TEs data show stronger correlations

with observed phenotypes than the ones predicted using SNPs

data. This shows the effectiveness of using SV and TE marker

data instead of SNPs for phenotype prediction. Though, TE

data showed the lowest PCC values compared to the two

statistical models because of the mere 176 samples as there

are not enough training samples for the DL model (Table 2).

The mean absolute error (MAE) metric is used to calculate

the validation loss on the test set. MAE refers to the magnitude

of difference between the prediction of observation and the true

value of that observation.

MAE =
1

N

N∑
i=0

|Pi − Oi|, (6)

where N represents the total number of individuals present in

the training set and Pi and Oi denotes the values for the ith

predicted and ith observed phenotypes.

The Standard Deviation (SD) is a measure of how spread out

numbers are.

SD =

√√√√ 1

N

N∑
i=1

(xi − µ)2, (7)

where x is a value in the data set, µ is the mean of the data

set, and N is the number of data points in the population.

The MAE loss was watched to select the best model during

the training process of 150 epochs with early stopping. The

model with the lowest MAE was selected to evaluate the model

on the test set as shown in Table 3 and Table 4. The SD of all

the MAE values on the test set was also calculated to see the

deviation among those values. The MAE measures the average

absolute error over the dataset while the SD measures how far

the absolute error on each training point is from the MAE. A

low SD means that errors across the dataset tend to have similar

values close to the mean. A high SD tells that the errors are

spread over a bigger range. This can provide insight into the

model: a model with a low MAE indicates a good “average”

performance over the dataset, and if that model also has a

low SD then it tells that the performance is not only good on

average, but also uniformly on the dataset. The low values of

MAE and SD of MAE for the SV and TE markers show higher

prediction accuracy of NovGMDeep model over the SNPs.

Figure 4 and Figure 5 demonstrates a typical training

process for all the datasets. The trend shows that the model

keeps learning the discriminative features of the data for the

first few epochs as both the training and validation losses are

decreasing to a significant amount at the start. For the rest

of the epochs, the flattened part of the graph illustrates that

the model is capable to handle the co-variate shift between

the training and validation set because now the training

and validation losses are decreasing steadily. The closeness

of the training and validation curves demonstrates that the

model is neither overfitted nor underfitted in Figure 4(a) and

Figure 5(a). In Figure 4(b) and Figure 5(b) the training curve

is lower than the validation curve, which shows that the model

is overfitted. An underfitted model will have a high training

and high validation loss while an overfitted model will have

an extremely low training loss but a high validation loss. A

large number of features (SNPs) expands the hypothesis space,

making the data more sparse and this might also lead to

overfitting problems.

The NovGMDeep model was also compared with the

aforementioned DL models in. However, the comparison was

possible just on the SNP data as these models are specially

designed for that. We tried the G2PDeep, which is a web-based

framework where users can upload their datasets and predicts

phenotypes by creating a deep learning model according to the

data. Because of the extremely high-dimensional SNP dataset

we used in this paper, the framework did not work well for us

and, therefore, we ran the code uploaded into the repository

that is publicly available in GitHub . DeepGS package was also

run on the command line. PCC values were calculated for all

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.09.21.508954doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508954


6 Sehrawat et al.

(a) (b)

Fig. 2. PCC analysis of A. thaliana for predicting flowering time using (a) SV and (b) SNP datasets. (a) The orange line represents the trend of

the relationship between predicted and ground-truth values (blue points). The graph shows that predicted values by the model positively follow the

ground truth values with a high confidence level (minimum fluctuation) in a positive direction. (b) The graph shows that predicted values by the model

positively follow the ground truth values but with a low confidence level (more fluctuation).

(a) (b)

Fig. 3. PCC analysis of O. sativa for predicting days to heading using (a) TE and (b) SNP datasets. (a) The graph shows that predicted values by

the model are not following the ground truth values and have a very low confidence level. (b) The graph shows that predicted values by the model are

negatively following the ground truth values and have no confidence level at all.

(a) (b)

Fig. 4. Training and validation losses of NovGMDeep model using (a) SV and (b) SNP dataset for predicting flowering time of A. thaliana. The first few

epochs illustrate that the model is learning quickly as both the training and validation losses are decreasing faster. Later it shows the potential of the

model in handling the co-variate shift between sets as the training and validation losses are decreasing steadily now.

(a) (b)

Fig. 5. Training and validation losses of NovGMDeep model using (a) TE and (b) SNP dataset for predicting days to heading of O. sativa. The graph shows

that the model is learning slowly at the start as it took 20 epochs for it to be at a steady state. Later it shows the potential of the model in handling

the co-variate shift between sets as the training and validation losses are decreasing steadily now.
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Table 1. Pearson’s coefficients of correlations between the observed and predicted phenotypes on the testing set. SVs and SNPs are used

to capture the genomic variations among the accessions of A. thaliana. Results show the average of the three PCC values taken from the

three-fold cross-validation results of the model.

Flowering Time Rosette Leaf Number Branch Number Stem Length

Model PCC (SVs) PCC (SNPs) PCC (SVs) PCC (SNPs) PCC (SVs) PCC (SNPs) PCC (SVs) PCC (SNPs)

rrBLUP 0.664 0.520 0.653 0.547 0.675 0.513 0.690 0.502

gBLUP 0.657 0.516 0.662 0.512 0.683 0.530 0.681 0.514

NovGMDeep 0.788 0.594 0.742 0.563 0.761 0.581 0.759 0.572

Table 2. Pearson’s coefficients of correlations between the observed and predicted phenotypes on the testing set. TEs and SNPs are used

to capture the genomic variations among the accessions of O. sativa. Results show the average of the three PCC values taken from the

three-fold cross-validation results of the model.

Days to Heading Plant Height Spikelet Number Panicle Length

Model PCC (TEs) PCC (SNPs) PCC (TEs) PCC (SNPs) PCC (TEs) PCC (SNPs) PCC (TEs) PCC (SNPs)

rrBLUP 0.439 0.281 0.391 0.275 0.387 0.294 0.405 0.209

gBLUP 0.417 0.212 0.402 0.266 0.371 0.282 0.387 0.215

NovGMDeep 0.436 -0.014 0.406 0.002 0.372 -0.169 0.397 -0.148

Table 3. Mean Absolute Error (MAE) and Standard Deviation of

MAE calculated by NovGMDeep model on the test sets for predicting

the flowering time of A. thaliana using SV and SNP dataset.

SVs SNPs

Phenotypes MAE SD MAE SD

Flowering Time 7.64 6.51 13.71 11.56

Roseatte Leaf Number 8.23 7.02 14.89 12.47

Branch Number 7.89 6.52 14.84 12.62

Stem Length 7.92 6.71 14.31 13.09

Table 4. Mean Absolute Error (MAE) and Standard Deviation of

MAE calculated by NovGMDeep model on the test sets for predicting

the flowering time of O. sativa using TE and SNP dataset.

TEs SNPs

Phenotypes MAE SD MAE SD

Days to Heading 8.65 6.41 16.84 18.51

Plant Height 8.01 6.57 15.92 19.74

Spikelet Number 9.26 7.22 19.46 20.25

Panicle Length 9.51 6.38 16.78 19.02

the phenotypes of A. thaliana and O. sativa in Table 5 and

Table 6 respectively.

The results in the Table 5 showed that NovGMDeep performed

better than the other existing DL models. Also, it can be

seen that G2PDeep has a better performance than DeepGS.

However, in Table 6 the results for DL models suggest that

statistical models are better for datasets with fewer samples as

seen in Table 2.

Discussions and Conclusions

Genomic selection has currently brought a revolution in

applications of breeding programs in plants and livestock

[14]. Novel prediction algorithms and methods for predicting

complex traits of large genotypic data have increasingly become

an essential need of breeders. High-performing deep learning

techniques have served the purpose of the principal need

for breeders to improve their practices. DL as an advanced

technique of machine learning algorithms, has the potential

to find hidden patterns in huge datasets. This work aimed to

develop a DL model and evaluate its accuracy in predicting the

specific traits from genome-wide SV and TE markers.

In this paper, the applications of deep learning and

its relationship with GS have been explored. Although the

literature suggests DL algorithms as a solid method for

predicting complex phenotypes, there are a few limitations

to the usage of deep learning techniques. In the existence of

large-scale datasets, the most important consideration for high

prediction accuracy is the model’s architecture which requires

great knowledge of deep learning techniques. A well-constructed

network in any model is the key source for the high performance

of the model. Another crucial consideration is the choice of

applying convolutional, fully connected, dropout, and sampling

layers with distinct sets of hyperparameters that handle distinct

characteristics of the data [4]. Interpreting the biological

relevance of the data is also a helpful consideration to minimize

the limitations of deep learning techniques in bioinformatics.

The small number of DL for GS applications demonstrates the

enormous potential for these models to enhance early candidate

genotype selection and enhance knowledge of the intricate

biological mechanisms underlying the link between genotypes

and phenotypes. This potential is partially explained by the

way such models are constructed, which provides them the

capacity to recognize more intricate data patterns.

In this study, we developed NovGMDeep as a method to

predict phenotypes based on different types of SVs (inversions,

duplications, and deletions) and TEs. This work was motivated

by the importance of SVs in genome evolution and that SVs

could better capture variants among genomes than SNPs [30].

With the proposed model, it is still difficult to link phenotypes

to genetic structural variation and environmental variables.

Also, the authors of [35] concluded through GWAS that TE

markers have a similar ability to discover association patterns

to SNP markers. Therefore, the model is not only for predicting

phenotypes from SVs and TEs but also shows that SVs can be

more beneficial in genomic selection than SNPs.

Both statistical models (rrBLUP, gBLUP) have the lowest

PCC values compared to the NovGMDeep model for the A.

thaliana data. This is because simple regressions cannot

capture the complex relationships between genotypes and
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Table 5. Pearson’s coefficients of correlations between the observed and predicted phenotypes on the testing set. SNPs are used to capture

the genomic variations among the accessions of A. thaliana. Results show the average of the three PCC values taken from the three-fold

cross-validation results of the models.

Model Flowering Time Rosette Leaf Number Branch Number Stem Length

DeepGS 0.542 0.559 0.544 0.563

G2PDeep 0.561 0.557 0.571 0.569

NovGMDeep 0.594 0.563 0.581 0.572

Table 6. Pearson’s coefficients of correlations between the observed and predicted phenotypes on the testing set. SNPs are used to capture

the genomic variations among the accessions of O. sativa. Results show the average of the three PCC values taken from the three-fold

cross-validation results of the models.

Model Days to Heading Plant Height Spikelet Number Panicle Length

DeepGS -0.004 -0.015 -0.171 -0.165

G2PDeep 0.023 -0.011 -0.036 -0.182

NovGMDeep -0.014 0.002 -0.169 -0.148

phenotypes. For the O. sativa data the PCC value is very

low for TEs and even negative for SNPs because of the

low sample size to train the DL model. The results for

the TE markers are better than the SNPs which makes the

former more useful. Different model architectures impact the

results significantly. Finding a dataset with enough samples

and related phenotypic labels to train a neural network to

be efficient and broadly applicable is the primary challenge

that must be overcome to employ deep learning techniques

for phenotype prediction. There are several datasets with

significant numbers of sequenced genomes that are available,

but the majority of these databases lack reliable phenotypic

data for the linked samples. The cost of sequencing sufficient

depth of coverage for SV and TE calls is also high. The

search for datasets with more than 176 samples and associated

phenotypes for TEs was unsuccessful as of the time of writing

this paper. It was challenging to develop a generalizable

prediction model for TEs due to the issues with overfitting

and short validation sets caused by the use of datasets with

a small sample size. Due to a large number of SNP markers

across the genome used as features, overfitting increases in the

model. This is because the number of SNPs is significantly

larger than the number of samples, causing the “small-n-large-

p problem”. The performance comparison between NovGMDeep

and other DL models, such as: DeepGS [20] and G2PDeep [39],

was only possible with SNP data. NovGMDeep outperformed the

other two DL models for A. thaliana whereas the low sample

size problem persisted for O. sativa.

The study also shows that the nature of data, network

architecture, and the type of the trait which is being predicted

play an influential role in model training and prediction. It is

important to focus on the individuals with high phenotypic trait

values so that they can serve as a selected asset for the different

breeding programs for other vital crops. In future work, we will

explore finding top-ranked individuals with high phenotypic

values by incorporating all types of genomic data, such as

SVs, TEs, and SNPs together. Moreover, environmental data,

such as weather conditions, can be taken into consideration

in phenotype prediction. Overall, the NovGMDeep model was

well implemented in the prediction of phenotypes using SVs

genotypic markers and could be added to the toolkits of crop

breeders. Also, the results showed the importance of the

selection of algorithms and hyperparameters for genotype-to-

phenotype predictions. In conclusion, this study paves the way

for the novel use of SVs and TEs in the field of GS.

Data Sources

The phenotypes for A. thaliana were downloaded from https:

//arapheno.1001genomes.org/study/12/ and https://arapheno.

1001genomes.org/study/38/.

The TE markers for O. sativa were downloaded from https:

//data.cyverse.org/dav-anon/iplant/home/yanhaidong1991/opt_

genos_fltmissing_fltmaf_fltukn_TE.txt and the SNPs were

downloaded from https://data.cyverse.org/dav-anon/iplant/

home/yanhaidong1991/176GATK.indelsnpsFiltered0.05M0.25.txt.

The G2PDeep web-based framework can be found at https:

//g2pdeep.org.

The standalone G2PDeep and DeepGS packages can be

found at https://github.com/kateyliu/DL_gwas and https://

github.com/cma2015/DeepGS respectively.
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Appendix: Detailed Analysis of the assumptions of
PCC

Five assumptions must be met before we calculate the PCC

between two variables [25]. As far as our datasets are concerned,

all of the conditions are true. First, while measuring the two

variables, we should consider the interval or ratio level. All the

phenotypes used in the paper can describe by using intervals

for example, plant height, branch number, stem length etc. on

the real number line. These all are physical measures which fall

into general continuous category.

Second, there must be a linear relationship between both

variables. All the phenotypes when plotted using scatter plot,

fell roughly along a straight line, which can also be seen in

Figure 2 and Figure 3. The main thing to consider here is that

the variables should not exhibit some other type of relationship,

like quadratic.

Third, both variables should have a roughly normal

distribution. We have plotted the values of flowering time for

A. thaliana and days to heading for O. sativa. Figure 6 and

Figure 7 show a bell-shaped curve for both of these phenotypes

that indicates that the variables follow a normal distribution.

Fourth, each observation in the dataset needs to have

a pair of related values. It simply means that to calculate

the correlation between the variables, each observation in

the dataset has one measurement for the observed value

and one measurement for the predicted value. This one was

easy to check as NovGMDeep predicted phenotypes for all the

corresponding ground truth values.

Fifth, the dataset should not contain any extreme outliers.

An extreme value in the dataset substantially changes the PCC

between the two variables. We did not find any extreme outlier

in the dataset of predicted and observed phenotypes.

Fig. 6. The bell-shaped curve show the values of flowering time are

normally distributed.

Fig. 7. The bell-shaped curve show the values of days to heading are

normally distributed.
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