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Differential representation of natural and manmade images in the human ventral visual stream A PREPRINT
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Figure 2: RDMs from the fMRI dataset and CORnet-S, representing a dissimilarity between natural and manmade images. The
dissimilarity seems more pronunced and is easier visible in the model RDMs.

Figure 3: Histogram plots depicting the layerwise correlations obtained from the RDMs of fMRI dataset and CORnet-S. The
difference in the correlation of natural and manmade images start appearing from the layer V4 and are strongest in LatOcc for human
brain. In parallel, CORnet-S depicts the gradually increasing correlation differences for V4 and IT layer.

3 Results

In this work, we wanted to assess if images of natural and manmade scenes are represented distinctly in the ventral
visual pathway and if a representational difference in the human cortex is accurately modeled in a state-of-the-art CNN
model of the human visual pathway.

The data BOLD fMRI data of V1, V2, V4, and LatOcc used for analysis was obtained from two individuals passively
viewing 1870 grayscale images of 20x20px while fixating, each image is viewed 13 times (Kay et al. [2008]). The
stimulus set was classified and subset to 785 natural and 345 manmade scenes for analysis. As a comparative model of
the visual stream, we chose CORnet-S based on its high performance ranking in and its design with each model layer
supposed to model the corresponding layer of the human visual cortex (Schrimpf et al. [2018], Kubilius et al. [2019],
Schrimpf et al. [2020]). The features of the first four layers of CORnet-S, supposed to correspond to V1, V2, V4, and
IT were used for analysis.
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Figure 4: We calculated Cohen’s distance for each layer within both systems to be able to sufficiently judge the change and
magnitude of representational dissimilarity between the model and brain. Both systems show an increase in the last analysed layer,
with an apparent increase starting with the change from layer two to three. CORNet-S’s representational scheme for stimulus category
results in a stronger distinction between natural and manmade images than in the brain. This might be due to the idealized model
results, and a more noisy fMRI BOLD signal.

3.1 Visual stimuli of manmade and natural scenes are differently encoded in both the ventral visual stream and
CORnet-S

To assess how similar or different the visual stimuli of manmade and natural scenes are being processed within the
cortex and CNN, we computed the representational dissimilarity matrix (RDM). An RDM visualizes the similarity
structure between representations of different stimuli. It can be concluded that a brain area and a model use a similar
representational scheme if stimuli that are represented similarly in the brain are represented similarly in the model as
well. Our analysis focuses on the early part of the visual stream. Thus with the underlying correlation coefficients of the
z-scored stimuli responses computed, RDMs for each of the first four layers of the cortex and CNN were constructed.
It is important to mention that the features extracted from the CORnet-S model are distinct from the z-scored fMRI
BOLD responses computed and plotted. However, the model claims to resemble cortical response schemes well. The
resulting stimuli axis on each RDM is sorted by category (natural, manmade) of stimulus to visualize any distinct
representational schemes.

Figure 2 shows the RDMs of both fMRI and CORnet-S. For fMRI, the RDMs show hardly any strong distinction for
any layer, especially when visually interpreting a low-resolution print of thousands of stimuli coming from a noisy
source such as fMRI. Therefore the further quantitative analysis is needed. For the model, starting from the second layer
a clear distinction between stimuli categories starts to form. This distinct representational scheme becomes increasingly
apparent with each layer. This apparent representational scheme of the model and the strong difference in first layer
dissimilarity between fMRI and model seem to point to room for possible improvements in CORnet-S.

Thus the RDMs demonstrate a difference in the encoding of manmade and natural scenes in later layers of CORnet-S.
In addition, the LatOcc activity of the human cortex starts to show signs of a distinct encoding as well. This first
assessment needs to be quantified.

3.2 In both the CORnet-S and the visual cortex, representational differences become more significant in later
stages of processing

What is the quantity of measured response dissimilarity for each layer and system? To quantify the measured response
dissimilarity per layer and compare layerwise differences further, also across systems, we plotted the categorized
response correlations for fMRI and model (figure 3) and computed Cohen’s distance for both (figure 4). The correlation
differences were significant for all the layers in both Cornet and fMRI response (p < le-5, Man-Whitney test). For
fMRI, the categorized responses to manmade and natural scenes start to show a difference in correlation in V4 and
LatOcc. This apparent and quantitative correlational dissimilarity to the stimuli categories is pointing to a different
representational scheme (Cohen’s d: V4 = 0.096, LatOcc = 0.191). For CORnet-S, representational schemes are similar
to the fMRI data in that apparent as differences become apparent in V4 and are strongest in IT, the last layer analysis.
As no fMRI data for IT was available, a direct comparison between the fourth model and the fMRI layer (LatOcc) is not
possible. Nonetheless, a statement on similarities in the process can be made. As in the cortex, the model shows a sharp
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increase in dissimilarity between layers three and four (Cohen’s d: V4 = 0.176, IT = 1.037). The relative increase and
absolute value of correlational differences are many times stronger in the idealized model, however.

The analysis results suggest that images of natural and manmade scenes are represented distinctly in the early ventral
visual pathway starting in V4, with a growing dissimilarity by layer, and that this representational scheme is modeled
similarly in the CNN CORnet-S.

4 Discussion

For decades, the neural encoding of image stimuli has been an important problem in neuroscience. fMRI has proven to
be the gold standard for studying neural encoding in humans due to its spatial resolution. The recent advances in the
field of artificial neural networks have immensely helped us in analyzing the BOLD responses we obtain from fMRI
scans. In our analysis, we tried to capture the power of decoding with fMRI scans to study the encoding of natural and
man-made objects. Through our analysis, we could show that, indeed, there is differential encoding in the brain. But
this is only limited to the regions V4 and Lateral Occipital (LatOcc), which are more downstream in the visual pathway.
Earlier visual layers, V1 and V2, don’t show any differential encoding, which is consistent with our current knowledge
about them being involved in lower-level pre-processing of the image stimuli. As the images in our dataset did not have
a systematic difference at the lower feature level in terms of them being natural or man-made, there wasn’t a differential
representation of images in layers V1 and V2 for being natural or man-made.

We also tried to check if these results also translate to the CORNet-S neural network, which is trained to mimic human
object recognition. The layers V1, V2, V4, and IT in the Cornet-S are congruent to layers V1, V2, V4, and LatOcc in
the human brain. As per our expectations, the results in CORnet-S were similar to the results we got for fIMRI BOLD
responses. The layers V1 and V2 in the CORnet-S showed similar representation, whereas the layers V4 and IT showed
differential representation between natural and man-made images. The neural network layer IT, which is trained to
mimic the brain region responsible for core object recognition, showed the most separation between the two image
categories.

Our results in studying the representation in the brain were limited by the high level of noise in the BOLD responses
of the fMRI responses. The use of better scanners and pre-processing techniques may lead to better neuro-imaging
datasets, which would be more suited to answer the question about how exactly this differential representation takes
place. The Kay natural images dataset also consisted of only grayscaled images, and as color is an important aspect of
image recognition, a study using colored images may yield better insights. A neural network trained to classify natural
and man-made images may help us decode the voxel level differences in image representation. Additionally, the fMRI
dataset included only two subjects which limit the robustness of our analyses.

Overall, through our results, we can claim that there is a differential representation of natural and man-made images in
the human brain, and this differential encoding is exclusive to only the latter regions in the ventral visual pathway. This
differential encoding could be a result of either of multiple possibilities. One distinct module may have developed, over
the course of evolution, to encode natural and man-made scenes separately in the V4 and layers thereon. Two, multiple
modules responsible for encoding the contributory objects of a scene might be selectively active when viewing natural
or man-made scenes. For example, the neural populations encoding a tree or an animal in a natural scene might be
selectively activated to give rise to the wholesome representation of a natural scene and vice-versa for a man-made
scene. Three, natural and man-made scene categorization could be a representation of their complex but distinctly
different low-level image features themselves, suggesting a bottom-up processing event. A thorough analysis can be
done by training ANNS first with natural images and then with man-made images to check for the possible role of
evolution.
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