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Abstract 

 

Plants synthesize specialized metabolites to facilitate environmental and ecological 

interactions. During evolution, plants diversified in their potential to synthesize these 

metabolites. Quantitative differences in metabolite levels of natural Arabidopsis thaliana 

accessions can be employed to unravel the genetic basis for metabolic traits using genome-

wide association studies (GWAS). Here, we performed metabolic GWAS (mGWAS) on seeds 

of a panel of 315 A. thaliana natural accessions, including the reference genotypes C24 and 

Col-0, for polar and semi-polar seed metabolites using untargeted ultra-performance liquid 

chromatography-mass spectrometry. As a complementary approach, we performed 

quantitative trait locus (QTL) mapping of near-isogenic introgression lines between C24 and 

Col-0 for specific seed specialized metabolites. Besides common QTL between seeds and 

leaves, GWAS revealed seed-specific QTL for specialized metabolites indicating differences 
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in the genetic architecture of seeds and leaves. In seeds, aliphatic methylsulfinylalkyl and 

methylthioalkyl glucosinolates associated with the GS-ALK and GS-OHP locus on 

chromosome 4 containing alkenyl hydroxyalkyl producing 2 (AOP2) and 3 (AOP3) and/or with 

the GS-ELONG locus on chromosome 5 containing methylthioalkyl malate synthase (MAM1) 

and MAM3. We detected two unknown sulfur-containing compounds that were also mapped 

to these loci. In GWAS, some of the annotated flavonoids (kaempferol 3-O-rhamnoside-7-O-

rhamnoside, quercetin 3-O-rhamnoside-7-O-rhamnoside) were mapped to transparent testa 

7 (AT5G07990), encoding a cytochrome P450 75B1 monooxygenase. Three additional mass 

signals corresponding to quercetin-containing flavonols were mapped to UGT78D2 

(AT5G17050). The association of the loci and associating metabolic features were functionally 

verified in knockdown mutant lines. By performing GWAS and QTL mapping, we were able to 

leverage variation of natural populations and parental lines to study seed specialized 

metabolism. The GWAS data set generated here is a high-quality resource that can be 

interrogated in further studies. 

 

Introduction 

Two main phenotypic novelties have been critical during the transition from an aquatic to a 

terrestrial environment. The first of these innovations was the emergence of phenylpropanoid 

and lignin biosynthesis, allowing early terrestrial plants to acquire a relatively rigid body 

structure and colonize the land (Weng and Chapple, 2010). The second innovation consisted 

in the development of structures specialized for reproduction and dispersal, like pollen and 

seeds. These were essential for long-distance transport and successful colonization of the 

new environment by the offspring of primordial land plants (Linkies et al., 2010; Willis et al., 

2014). Seeds, as a reproductive structure, also needed to be protected from adverse 

environmental conditions, including fungal attacks, insect feeding, or UV radiation. The 

chemical composition of seeds was thus selected not only to provide the essential nutrients 

during germination, but also to accumulate a number of specialized metabolites conferring 

protective properties against biotic and abiotic stresses (Debeaujon et al., 2000). 

 

Arabidopsis thaliana is an ideal model to study the link between phenotypic and genomic 

variation, given the wealth of genomic resources available (Alonso-Blanco et al., 2016; 

Togninalli et al., 2018). The considerable genetic variation of Arabidopsis was employed to 

study local adaptation in collections of natural accessions (Seren et al., 2017). GWAS is a 

technique to leverage natural variation and was used in previous studies to detect adaptive 

traits (Atwell et al., 2010; Togninalli et al., 2018). GWAS assesses the effect of each genomic 
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marker at the population level, represented by information on high-density SNPs, on a 

quantitatively-assessed phenotype with the likelihood of the association (Seren et al., 2017). 

QTL mapping, in comparison to GWAS, identifies genomic regions that co-segregate with a 

given trait in lines resulting from biparental or lately also multiparental crosses. GWAS and 

QTL mapping were employed to study primary metabolism (Chan et al., 2010a; Wu et al., 

2016; Slaten et al., 2020), specialized metabolism (Kliebenstein et al., 2001a; Hansen et al., 

2008; Chan et al., 2010b; Chan et al., 2011; Routaboul et al., 2012; Li et al., 2014; Bac-

Molenaar et al., 2015; Ishihara et al., 2016; Tohge et al., 2016; Wu et al., 2018), heavy metal 

(Chao et al., 2012) and salt tolerance (Baxter et al., 2010), shade avoidance (Filiault and 

Maloof, 2012), and flowering time (Li et al., 2010). 

 

In A. thaliana, two major classes of specialized metabolites have been considered to confer 

protective properties to abiotic stress, namely flavonoids and glucosinolates. Flavonoids are 

arguably the best-characterized class of specialized metabolites that are universally 

distributed in the plant kingdom (Winkel-Shirley, 2001; Winkel-Shirley, 2002; Falcone Ferreyra 

et al., 2012; Tohge et al., 2017). By analyzing flavonoid-less mutants (ban, ap2, and 

transparent testa), Debeaujon et al. (2000) could show that a lack of flavonoids resulted in 

lower dormancy and structural aberrations in seeds (missing layers, modified epidermal 

layers). Tepfer et al. (2012) and Tepfer and Leach (2017) showed that flavonoid-less seed 

mutants exhibited lower survival rate when exposed to solar UV and cosmic radiation for 1.5 

years. Generally, besides being involved in developmental and photoprotective processes, 

flavonoids convey antioxidative properties (Seyoum et al., 2006; Mierziak et al., 2014) and 

play a role in biotic stress (Treutter, 2005; Mierziak et al., 2014); as yet, however, no such 

information is available if the same is true in seeds. In A. thaliana seeds, a wide array of 

flavonoids can be found, mainly belonging to the subclasses of flavonols (mono- and 

diglycosylated quercetin, kaempferol, and isorhamnetin derivatives) and of flavan-3-ols 

(epicatechin monomers and procyanidin polymers, Routaboul et al., 2006).  

 

The other major class of specialized metabolites conferring tolerance to abiotic stress, 

glucosinolates, are mainly restricted to the Brassicales order, including the Brassicaceae, 

Capparaceae, and Caricaceae families, but were also found in at least 500 non-cruciferous 

angiosperm species (Fahey et al., 2001). The glucosinolate biosynthetic pathway and its 

regulation is well studied (Supplementary Figure S1, Kliebenstein et al., 2001a; Kliebenstein 

et al., 2001b; Grubb and Abel, 2006; Halkier and Gershenzon, 2006; Hirai et al., 2007; Seo 

and Kim, 2017). Glucosinolates are mainly attributed to be involved in biotic stress response 

(Grubb and Abel, 2006; Halkier and Gershenzon, 2006; Samuni-Blank et al., 2012). The role 

of glucosinolates in stress response was mainly defined through functional analysis of 
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overexpression lines or mutants deficient in their regulation or biosynthesis (Beekwilder et al., 

2008; Zhang et al., 2015). In A. thaliana seeds, 34 different glucosinolate species were 

detected that revealed different accumulation patterns in 39 different Arabidopsis ecotypes 

(Kliebenstein et al., 2001a). Two major glucosinolate subclasses, methylthioalkyl and 

methylsulfinylalkyl glucosinolates, showed striking differences between accessions: while the 

accessions Bs-1, Aa-0, Ma-0 and Yo-0 showed high methylthioalkyl:methylsulfinylalkyl 

glucosinolates ratio in seeds (> 5), 13 accessions showed a ratio > 3 (e.g., Sei-0, Tsu-1, and 

Mrk-0, Kliebenstein et al., 2001a). Furthermore, Kliebenstein et al. (2001a) found that 

glucosinolate accumulation differs between leaves and seeds: (i) the accessions Kas and 

Sorbo accumulate low levels of 2-hydroxy-3-butenyl glucosinolate in leaves, but high levels of 

this glucosinolate in seeds; (ii) the methylthioalkyl:methylsulfinylalkyl glucosinolates ratio in 

seeds is for all accessions > 1, while for leaves this was only found in three accessions (Bla-

10, Can-0, Su-0).  

 

Previous studies in our group revealed differences in seed glucosinolate levels of A. thaliana 

Col-0, C24 (unpublished data) in introgression lines (Törjék et al., 2008). Taken together with 

previous findings that showed differences in the accumulation of seed specialized metabolites 

in Arabidopsis ecotypes, we conducted an untargeted metabolic profiling analysis by UPLC 

coupled to high-resolution mass spectrometry (MS) on A. thaliana seed polar and semi-polar 

metabolites (covering several classes of specialized metabolites) to reveal quantitative 

differences of metabolites between accessions. To find putative novel gene candidates that 

control the accumulation of specialized metabolites, we conducted GWAS and, in a 

complementary approach, QTL mapping on the Arabidopsis IL population obtained from the 

cross between C24 and Col-0. We show here that (i) previously characterized metabolites 

(flavonoids and glucosinolates) associate with known loci, (ii) two unknown sulfur-containing 

metabolites map to glucosinolates-associated loci, and (iii) that the respective Arabidopsis 

SALK knockdown lines of the gene AT5G17050, previously selected from GWAS, showed 

quantitative changes in the levels of the associated quercetin-containing flavonol compounds. 
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Results and Discussion 

Genome-wide association studies of untargeted seed metabolite 

analysis shows a large set of mass feature pairs associated with 

the same loci 

Genetic natural variation is an indispensable resource to find genes that are involved in the 

biosynthesis and regulation of plant specialized metabolites (Matsuda et al., 2015; Chen et 

al., 2016). Here, we determined the relative levels of polar and semipolar seed metabolites 

from about 300 A. thaliana ecotypes using UPLC-MS from two growing seasons (replicate 1 

and replicate 2) and from one previously published set of leaf metabolites (Wu et al., 2018), 

and mapped the features to their associated genomic loci using the same GWAS approach 

we applied previously (Zhu et al., 2022). This approach encompasses mixed linear models to 

account for the amount of phenotypic covariance caused by the genetic relatedness, which 

should reduce confounding effects due to the population structure and kinship (Yu et al., 2006; 

Kang et al., 2008; Zhang et al., 2010; Vilhjálmsson and Nordborg, 2013). Due to computational 

constraints, we did not identify epistatic interactions, even though these will contribute to the 

observed phenotypes (Marchini et al., 2005; Cordell, 2009; Kam-Thong et al., 2011; Chen et 

al., 2014; Dong et al., 2015; Kerwin et al., 2015). Epistasis is the interaction of genetic variation 

at multiple loci that results in non-additive effects in the analyzed phenotypes (Soltis and 

Kliebenstein, 2015). In Arabidopsis, epistatic interactions typically involve the interaction of 

three or more loci (Wentzell et al., 2007; Rowe et al., 2008; Joseph et al., 2013a; Joseph et 

al., 2013b; Kerwin et al., 2015). 

 

To compare metabolites across the different sets, we matched the alignments of mass 

features of seed replicate 1 and seed replicate 2/leaf based on their m/z deviation, retention 

time deviation, and the covariance between the two seed replicates resulting in 21007 features 

for the negative and 36194 features for the positive ionization mode. To further refine the 

accuracy, we imposed stricter matching rules, adjusting for retention time shift between 

replicate 1 and replicate 2 and a correlation of > 0.1, resulting in a total number of 9008 

features for the negative and 12133 features for positive ionization mode (core set). 2882 

(negative ionization mode) and 3798 (positive ionization mode) matched mass features, i.e. 

those conserved between the aligned replication datasets, were mapped to the same 

locus/loci in GWAS (Supplementary Figure S2). Those features that were mapped to the same 

locus/loci generally had higher heritability values (H2, Supplementary Figure S1 A, negative 
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ionization mode: all: 0.549, mapped: 0.666; positive ionization mode: all: 0.542, mapped: 

0.665) and higher correlation values (Supplementary Figure S1 B, negative ionization mode: 

all: 0.408, mapped: 0.534; positive ionization mode: all: 0.401, mapped: 0.529) than random 

pairs from the complete core set.  

 

 

In a next step, we created a table with the GWAS results of the two biological replicates of 

seeds and of the leaf samples. We reported for each joint mass feature the assigned QTL and 

LOD scores. From the core set, the two replicates from seed GWAS showed high positive 

Spearman correlation values for both data sets acquired in negative (⍴ = 0.485) and positive 

(⍴ = 0.497) ionization mode. The Spearman correlation values were lower (⍴ between 0.181 

and 0.269) when comparing the seed replicates with the result from leaf GWAS (Figure 1 A 

and B). Furthermore, when looking at the intersection of shared loci (Figure 1 C), we found 

that shared loci between the seed replicates showed a higher number (4884 for negative and 

5688 for positive ionization mode) compared to that between seed and leaf GWAS (2242/1332 

for negative and 2935/1942 for positive ionization mode). This may indicate that the 

reproducibility between the seed replicates of the core set is higher as when compared to the 

results from leaf GWAS. Alternatively, this may reflect a degree of variation in the genetic 

architecture. The comparison of the seeds and leaf datasets allowed the identification of 

tissue-specific QTL (Wu et al., 2018) and highlighted the different genetic architecture of these 

two tissues in controlling the accumulaton of some specific mass features. However, there 

were 1026 and 1247 loci controlling the mass features in the core sets that are shared between 

the two seed replicates and the leaf data set, indicating conserved loci controlling the levels 

of mass features across different tissues. The mass feature pairs that showed overlap 

between the two seed replicates, and for some of these also to the leaf data set, represents a 

highly valuable resource that we make fully available in the Supplemental Material. In the 

subsequent paragraphs we only focus on those associations related to glucosinolates and 

flavanols, as well as on some unknown mass features supposedly representing novel 

glucosinolates and flavonoids.  

 

Alongside the shared loci, the majority of loci were not shared between the different mass 

feature sets (Figure 1 C and D). When analyzing the distribution of the proportion of mass 

features mapped to loci, the sets that did not show intersection (seed replicate 1, seed 

replicate 2, leaf) had a higher proportion of two or more of mass features mapped to the same 

loci compared to sets that show intersection (Supplementary Figure S3). This could be 

attributed to measurement errors, associations of non-causative markers with a given trait, 

driven by linkage with causative markers (Korte and Farlow, 2013), reflect environmental 
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variance, and/or genotype-environment interaction effects. We assume that the significant 

associations from the intersection sets (Figure 1 C and D), being conserved between the 

different replicates, represent genuine QTL characterized by lower sources of error.  
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Figure 1: Mapping of seed replicates 1 and 2 and leaf in genome-wide association 

studies. A and B: Scatterplot of highest LOD values of shared QTL per matched mass feature 

pair for negative (A) or positive ionization mode (B). The colored lanes display the density of 

data points. The Spearman correlation ⍴ values are indicated for the different sets. C and D: 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2022. ; https://doi.org/10.1101/2022.09.23.509130doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509130
http://creativecommons.org/licenses/by-nc/4.0/


 

Intersection sets of QTL for mass feature pairs with LOD > 5.3 for negative (C) and positive 

ionization mode (D). LOD: logarithm of odds; QTL: quantitative trait loci. 

 

 

 

As a complementation, we performed QTL mapping using biparental NILs from Col-0 and C24 

(Törjék et al., 2008). This population was useful in detecting saiginols (phenylacylated 

flavonols) in floral tissues (Tohge et al., 2016). In the GWAS population and NIL population of 

Arabidopsis seeds, saiginols were not detected. 

 

 

Variation in glucosinolate levels in seeds is controlled by the GS-

ELONG, GS-ALK, and GS-OHP loci 

Based on previous studies, we annotated several metabolites in our data set, including amino 

acids, glucosinolates, and metabolites from the flavonoid and phenylpropanoid biosynthetic 

pathways (Supplementary Table S5 and S6). The annotation of glucosinolates included all 

known methylsulfinylalkyl and methylthioalkyl glucosinolates. Most of these metabolites 

showed high broad-sense heritability (H2 > 0.75) and were mostly mapped with high LODs for 

both replicates to a locus on chromosome 5 and, for some of these glucosinolate metabolites, 

to a locus on chromosome 4 (Figure 2 A and Supplementary Figure S4 A for 3-hydroxypropyl 

glucosinolate, Supplementary Table S7 and S8). Within the locus on chromosome 5, the 

genes methylthioalkylmalate synthase 1 (MAM1, AT5G23010) and 3 (MAM3, AT5G23020) 

are located, previously named the GS-ELONG locus. MAM1 catalyzes the condensation 

reaction of two cycles of chain elongation in methionine-derived glucosinolate biosynthesis 

and a mam1 mutant showed a decrease in C4 and an increase in C3 glucosinolates (Kroymann 

et al., 2001). MAM3 accepts all ⍵-methylthio-2-oxoalkanoic acids required to synthesize C5 to 

C8 aliphatic glucosinolates in A. thaliana (Textor et al., 2007). Within the locus on chromosome 

4, the genes AOP1 (AT4G03070), AOP2 (AT4G03060), and AOP3 (AT4G03050) are located, 

which are known as the GS-ALK and GS-OHP locus. The AOP genes encode 2-OG 

dependent dioxygenases that are involved in glucosinolate biosynthesis. AOP2 and AOP3 

convert methylsulfinylalkyl glucosinolates into alkenyl glucosinolates and hydroxyalkyl 

glucosinolates, respectively (Kliebenstein et al., 2001b; Kliebenstein et al., 2001a). The 

parental lines of the NIL population, C24 and Col-0, of the NIL population showed strong 

differences in relative glucosinolate levels: 4-methylsulfinylbutyl glucosinolate showed 8.40-

times and 4-methylthiobutyl glucosinolate 5.05-times higher levels in Col-0 compared to C24; 

3-butenyl glucosinolate showed 23.5-times and 8-methylsulfinyloctyl glucosinolate 265-times 

higher levels in C24 compared to Col-0. Subsequently, aliphatic glucosinolates showed strong 
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relative metabolite differences in QTL mapping for genomic regions containing Col-0 AOP 

(Supplementary Figure S5, Col-0 AOP in MASC05042-MASC09225 referring to the lines M36, 

M20, and M21).  

 

Haplotypes of the genes MAM1, MAM3, and AOP1, AOP2, and AOP3 showed significant 

differences in metabolite levels according to ANOVA (Figure 2 B and Supplementary Figure 

S4 B for 3-hydroxypropyl glucosinolate, GWAS population) indicating that the allelic variation 

at these target loci is responsible for the observed metabolite differences. Indeed, some of the 

SNPs for these genes involved in glucosinolate biosynthesis resulted in amino acid differences 

(Supplementary Table S9). The LD analysis for 3-hydroxypropyl glucosinolate revealed that 

the alleles on chromosome 4 are in high LD (standardized LD r2 close to 1) spanning the 

genomic region containing AOP1, AOP2, and AOP3 (Figure 2 C, left panel). In A. thaliana, LD 

usually decays 50% within 5 kb (Gan et al., 2011; Korte and Farlow, 2013). Here, the loci 

containing AOP1, AOP2, and AOP3 showed wider LD. The situation on chromosome 5 marks 

a sharp decrease for 3-hydroxypropyl glucosinolate and peaks in the gene region of MAM1 

(AT5G23010). Interestingly, MAM3 was in high LD (r2 > 0.6) with the SNP showing the highest 

LOD in MAM1, but did not show as high r2 values as neighboring genes within the locus on 

chromosome 4. This indicates that MAM1 is the main gene controlling 3-hydroxypropyl 

glucosinolate levels. Previously, these loci were also detected from GWAS of glucosinolate 

levels in leaves (Chan et al., 2011). The Arabidopsis gtr1 gtr2 double mutant, which lacks (or 

contains low amounts, depending here on the type of the mutations it carries) the 

nitrate/peptide transporters responsible for glucosinolate transport to seeds, did not 

accumulate glucosinolates in seeds and exhibited a tenfold over-accumulation in the source 

tissues leaves and silique walls (Nour-Eldin et al., 2012). Thus, it seems that the variation in 

glucosinolate levels is `inherited' from these source tissues. 
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Figure 2: Genome-wide association mapping for 3-hydroxypropyl glucosinolate 

(negative ionization mode). A: The Manhattan plot of 3-hydroxypropyl glucosinolate shows 

two peaks in each replicate on chromosomes 4 (highest LOD: 11.01) and 5 (16.35). These 

loci contain the genes AOP1, AOP2, and AOP3 (chromosome 4), MAM1 and MAM3 

(chromosome 5) that are involved in glucosinolate biosynthesis. Only replicate 1 is shown 

here. B: Haplotype analysis of metabolite levels of 3-hydroxypropyl glucosinolate. The 

nucleotide sequence differences were statistically associated with the levels of 3-

hydroxypropyl glucosinolate (ANOVA q-value: 1.78e-20 for replicate 1). Only data for replicate 

1 is shown in A and B. The data for replicate 2 is depicted in Supplementary Figure S4. C: LD 

analysis of the associated genomic regions on chromosome 4 and 5 for 3-hydroxypropyl 
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glucosinolate. The locus on chromosome 4 shows LD for the genomic region containing the 

genes AOP1, AOP2, and AOP3, while the locus on chromosome 5 marks a sharper decrease 

in standardized LD (r2) indicating that the MAM1 gene is mainly responsible for the natural 

diversity of 3-hydroxypropyl glucosinolate levels. AOP: alkenyl hydroxyalkyl producing; A.U.: 

arbitrary units; LD: linkage disequilibrium; LOD: logarithm of odds; MAM: 

methylthioalkylmalate synthase. 

 

Unknown sulfur-containing metabolites map to GS-ELONG, GS-

ALK, and/or GS-OHP loci in genome-wide association mapping 

Next to the annotated glucosinolates, other mass features in the core set also showed 

association with the GS-ELONG, GS-ALK, and/or GS-OHP loci in GWAS. In particular, two 

mass features with m/z of 596.1104 (unknown 596) and 626.1032 (unknown 626) were 

mapped to chromosome 4 or 5. The unknown 626 was mapped to the GS-ELONG locus (both 

seed replicates and leaf had a LOD ≥ 5.3 for GS-ELONG locus, Supplementary Figure S6), 

while the unknown 596 was mapped for both seed replicates to the GS-ALK and GS-OHP loci 

(LOD ≥ 5.3). Correlated mass features that showed m/z differences defined by the 

transformations (Supplementary Table S4) also showed associations to these loci 

(Supplementary Figure S7). 

 

The LD analysis revealed that for the unknown 626 the SNP with the highest LOD was located 

near or within the MAM1 gene. The standardized LD, r2, decreased sharply when moving away 

from the MAM1 gene (Supplementary Figure S6). To reveal the chemical composition of the 

two unknowns, we fed isotope-labeled 13C and 34S to the siliques and analyzed the metabolites 

by LC-QTOF-MS. The unknown 596 (m/z 596.1104 in negative ionization mode) and 626 (m/z 

626.1032 in negative ionization mode) contain most probably 20 C atoms and 22 C atoms, 

respectively, based on isotope feeding experiments with 13C. The MS analysis indicated for 

the feeding experiments with 34S that the two unknown compounds contain two S atoms 

(Supplementary Figure S8). Interestingly, the QTL mapping between C24 and Col-0 

introgression lines of the unknowns 596 and 626 identified an additional locus close, but not 

overlapping, to GS-ALK and GS-OHP (AT4G15733-AT4G24620, M502 in Supplementary 

Figure S5). From the GWAS analysis here, the candidate region for the unknown 596 is 

AT4G00005-AT4G03770, overlapping with AOP1, AOP2, and AOP3. The introgression lines 

M20, M21, and M36 (Supplementary Figure S5 B), corresponding to the region AT4G02465-

AT4G08280, showed higher levels of the unknowns 596 and 626 compared to the C24 

background (Supplementary Figure S5 A). Thus, it is unclear if the GS-ELONG, GS-ALK, and 

GS-OHP loci directly control the levels of the unknowns 596 and 626 or if, by an indirect effect, 

AOP and MAM change the flux of sulfur-containing metabolites. 
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Untargeted genome-wide association mapping of non-annotated 

mass features identifies a gene controlling flavonoid levels 

The mass features with m/z 463.0885/465.1032 (7.08 min), 593.1516/595.1670 (6.73 min), 

609.1466/611.1617 (6.20 min, negative/positive ionization mode, m/z values and retention 

time from the UPLC-MS analysis of SALK lines), and co-eluting mass features were mapped 

to the genes AT5G17040 and AT5G17050 (UGT78D2, Figure 3 A and Supplementary Figure 

S9) in GWAS. Given the characteristic m/z of 303.0504 and other spectrometric peaks 

(positive ionization mode), these metabolites were putatively annotated as quercetin hexoside 

(m/z 463.0885/465.1032), quercetin deoxyhexoside deoxyhexoside (m/z 

593.1516/595.1670), and quercetin hexoside deoxyhexoside (m/z 609.1466/611.1617). The 

chromatographic peaks were distinct from other flavonols with the same m/z, e.g., quercetin 

3-O-rhamnoside-7-O-rhamnoside (retention time of replicate 1: 6.71 min, unknown 

593.1516/595.1670: 6.43 min). 

 

To validate the associations, we selected genes of interest based on (i) the LOD score from 

GWAS; (ii) the expression of the gene from the data reported by Schmid et al. (2005) 

(Affymetrix ATH1 array); (iii) haplotype and LD analysis, and (iv) potential involvement of the 

gene in the biosynthetic pathway based on homology analysis and literature support for 

quercetin-containing flavonols and other non-annotated mass features. For the flavonol-

related metabolites, we selected two genes of interest; for unknown mass features in our core 

set, we selected seven genes of interest, and obtained T-DNA insertion SALK lines for 

functional validation. Except for three SALK lines, which showed to be heterozygous for the 

insertion, homozygosity was confirmed by PCR genotyping in the T2 generation 

(Supplementary Table S10) and SALK lines were individually cultivated in two replicates. 

Seeds of the SALK lines were analyzed by UPLC-MS (Supplementary Figure S10). The 

resulting data set was analyzed in terms of presence and differential abundance of the 

associated mass features with respect to Col-0 and other SALK line seeds in negative and 

positive ionization mode. Only the line SALK_049338 (AT5G17050, encoding UDP-

GLUCOSYL TRANSFERASE 78D2) showed differential abundance for several mass features 

compared to the control lines (Supplementary Table S11 and S12).  

 

When growing the line SALK_049338 (AT5G17050), we observed shorter stature for all plants 

as compared to the wild type (Figure 3 A and Supplementary Figure S11), a phenotype also 

previously reported when mutating this gene (Yin et al., 2014). The quercetin-containing 
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flavonols 463.0885/465.1032 and 609.1466/611.1617 in this line exhibited lower seed 

metabolite levels compared to the other SALK lines (excluding the lines for AT5G17040 and 

AT5G17050) and wild-type Col-0, while levels of 593.1516/595.1670 were not affected by 

AT5G17050 (Figure 3 B).  

 

 

 

 
 

 

Figure 3: Flavonoid biosynthetic pathway: mutant phenotype and functional analysis. 

A: Linkage disequilibrium analysis for quercetin-containing flavonols (negative and positive 

ionization mode). The highest LOD is achieved for a SNP within the region of AT5G17030 or 

AT5G17040. Standardized LD r2 is relatively low for the SNPs that are located within the gene 

AT5G17050. Only data for replicate 1 is shown in A. The data for replicate 2 is depicted in 

Supplementary Figure S9. B: The mutant of AT5G17050 (SALK_049338) exhibited a dwarf 
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phenotype with a loss of apical dominance (stunted inflorescence) as reported previously by 

Yin et al. (2014). C-E: Metabolite analysis of mapped mass features 463.0885/465.1032, 

593.1516/595.1670, and 609.1466/611.1617 (negative/positive ionization mode) showed 

lower levels in the seeds of mutant lines (n = 5 individual plants) compared to wild-type Col-0 

(n = 9). A.U.: arbitrary units.  LD: linkage disequilibrium; LOD: logarithm of odds; MB: 

megabase; SNP: single nucleotide polymorphism. *: p-value < 0.05, **: p-value < 0.01, ***: p-

value < 0.001 

 

 

 

 

Flavonoids are involved in the regulation of auxin transport (Buer and Muday, 2004; Peer and 

Murphy, 2007). Lee et al. (2005) and Tohge et al. (2005) described that UGT78D2 is a 

flavonoid 3-O-glucosyltransferase and that ugt78d2 mutants show an altered flavonoid 

pattern. A ugt78d1 (AT1G30530) ugt78d2 double mutant exhibited a strong and specific 

repression of flavonol biosynthesis and was strongly impaired in the initial 3-O-glycosylation, 

while UGT78D3 (AT5G17030) only contributed to a minor extent to overall 3-O-glycosylation 

(Jones et al., 2003; Tohge et al., 2005; Yonekura-Sakakibara et al., 2008; Yin et al., 2012).  

 

UGT73C6 (AT2G36790) is the 7-O-glucosyltransferase in flowers; however, 7-O-

rhamnosylation by UGT89C1 (AT1G06000) is more common as the form of 7-O-conjugation 

(Yonekura-Sakakibara et al., 2008). Yin et al. (2014), studying UGT78D2, suggested that 

kaempferol 3-O-rhamnoside-7-O-rhamnoside is responsible for the altered growth phenotype 

by narrowing down the potential active moieties using a series of mutants. In the same study, 

a ugt78d1 ugt78d2 double mutant showed strongly reduced levels of kaempferol 3-O-

glucoside-7-O-rhamnoside and kaempferol 3-O-[rhamnosyl (1→2 glucoside)]-7-O-

rhamnoside, while kaempferol 3-O-rhamnoside-7-O-rhamnoside was not detected at all. 

Furthermore, the levels of the aglycones kaempferol and quercetin were reduced to 21 % and 

18 % of the wild-type levels, respectively.  

 

Interestingly, the unknown quercetin deoxyhexoside deoxyhexoside (m/z 

593.1516/595.1670), presumably containing rhamnoside, did not show lower levels in the 

ugt78d2 mutant lines, despite the fact that the unknown flavonol showed association to 

UGT78D2 in GWAS. This could be explained by the fact that UGT78D2 is a 

glucosyltransferase, not a rhamnosyltransferase (Yin et al., 2014) and could indicate that 

UGT78D2 indirectly controls the flux of rhamnosylated (deoxyhexosylated) flavonols in seeds. 

In our GWAS data set, kaempferol 3-O-rhamnoside-7-O-rhamnoside (H2 = 0.837 in positive 

ionization mode) showed association with a gene in the region AT5G01680-AT5G13170, but 

not with the  locus containing AT5G17050 (Supplementary Table S8). The SNP with the 
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highest LOD (> 7.8 in positive ionization mode) located close to transparent testa 7 (tt7, 

AT5G07990, data not shown). TT7 is a cytochrome P450 75B1 monooxygenase, an enzyme 

previously reported to have 3'-flavonoid hydroxylase activity (Schoenbohm et al., 2000) that 

regulates the kaempferol/quercetin ratio (Peer et al., 2001). Similarly, quercetin 3-O-

rhamnoside-7-O-rhamnoside (H2 = 0.921 in positive ionization mode) was mapped with a LOD 

> 6.2 close to TT7 (data not shown, positive ionization mode). On the other hand, kaempferol 

3-O-glucoside-7-O-rhamnoside (H2 = 0.173 in positive ionization mode) had its highest LOD 

within the gene UGT78D3 (replicate 2, no mapping with LOD > 5.3 for replicate 1). For the 

other annotated flavonol glycosides (in positive ionization mode) in the core set, no genome-

wide association was obtained. For QTL mapping, no associations with flavonoids were 

detected. This is to be expected, since annotated flavonoid levels in the biparental lines 

showed little differences: kaempferol 3-O-glucoside-7-O-rhamnoside showed 1.24-times, 

quercetin 3-O-glucoside-7-O-rhamnoside 1.10-times, kaempferol 3-O-rhamnoside 1.26-times, 

and quercetin 3-O-rhamnoside 1.16-times higher levels in C24 compared to Col-0 

(Supplementary Figure S5). For GWAS, missing associations could be due to low absolute 

variation of these metabolites or because these flavonoids are regulated by multiple loci that 

are not reported as significant in our approach. Higher differences in accumulation patterns 

can be triggered through application of different kinds of stress (e.g., UV radiation) before 

analyzing metabolite levels. This finding was generally in line with a previous smaller scale 

study that detected quantitative rather than qualitative differences in flavonoids between A. 

thaliana accessions and concluded that most flavonoids are controlled by a few additive loci 

with relatively broad effects (Routaboul et al., 2012).  

 

Here, we focused on the analysis of the association involving candidate structural genes. In 

this paper we focused on candidate structural genes of the glucosinolate/flavonoid pathways, 

although we report in the Supplementary Material the full list of significant associations that 

may represent a resource to investigate the additional control these metabolites may have at 

the level of pathway regulation. Furthermore, the results from glucosinolates and some of the 

flavonoids indicated pleiotropic effects and collocating QTL for joint mass features. This 

analysis can be extended to a wider scale and to non-biosynthetic enzymes. Moreover, the 

core set exhibited differences in QTL between the mass features from the two seed replicates 

and the leaf replicate. Future studies will investigate the variation in the genetic architecture 

of traits controlling the levels of specialized metabolites across different tissues. 
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Conclusion 

Here, we performed GWAS on metabolic mass features of two biologically independent 

replicates of seed from two growing seasons and one replicate of leaves obtained by 

untargeted UPLC-MS. As a complementary approach, we performed QTL mapping of NIL 

introgression lines between C24 and Col-0 for specific seed metabolites. By including GWAS 

of leaf metabolites, we detected 4884 and 5688 loci for mass feature pairs (negative and 

positive ionization mode) that were exclusively detected for seed GWAS, indicating differences 

in tissue-specific associations between seeds and leaves. On the other hand, 1026 and 1247 

QTL for mass feature pairs (negative and positive ionization mode) were conserved across 

seed and leaf tissues in GWAS. 

 

In seeds, aliphatic methylsulfinylalkyl and methylthioalkyl glucosinolates as well as two 

unknown sulfur-containing compounds, tentatively identified as novel glucosinolates, showed 

associations in GWAS and QTL mapping with the known GS-ELONG, GS-ALK, and/or GS-

OHP loci. In addition, QTL mapping detected an adjacent region on chromosome 4 for the two 

unknown sulfur-containing compounds. In GWAS, some of the annotated flavonoids in seeds 

showed associations to regions containing TT7 or UGT78D2, including three previously 

unknown quercetin-containing flavonols. QTL mapping did not reveal any association for 

flavonoids. This difference is potentially caused by the low allelic variance in flavonoid-

biosynthetic genes resulting in small differences in flavonoid levels in the parental lines.  

 

A SALK knockdown line of the gene UGT78D2 (AT5G17050) showed decreased levels of the 

quercetin-containing flavonols, while SALK lines of the neighboring gene AT5G17040 did not 

show changes in flavonol levels. We would like to draw the following conclusions regarding 

the genetic architecture of seed specialized metabolism: (i) seed specialized metabolism 

differs substantially from leaf metabolism as shown by the identification of QTL that differ 

between these tissues, but the two tissues also exhibit common genetics to some degree; (ii) 

AOP and MAM genes are key regulators for glucosinolate seed metabolite levels in seeds. 

Aliphatic glucosinolates are presumably not synthesized in situ in seeds, but are transported 

from source tissues to seeds. The variation of aliphatic glucosinolates is 'inherited' from these 

source tissues; (iii) the alleles of UGT78D2 (AT5G17050) affect the levels of quercetin-

containing flavonols in seeds. The natural GWAS population was shaped by processes of 

genetic adaptation and meiotic events during evolution. This results in greater phenotypic 

variance compared to the NIL population between Col-0 and C24 as exemplified by 

differences in flavonoid levels. However, the overlap suggests, as previously stated (Brog et 
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al., 2019), that genome-wide association and QTL mapping are complementary techniques to 

study seed specialized metabolism. 

Materials and Methods 

Plant material 

The HapMap collection of natural A. thaliana accessions (315 accessions) with existing SNP 

data (Li et al., 2010; Horton et al., 2012) was used to perform GWAS on polar and semi-polar 

metabolites. Seed material for GWAS analysis was provided by Yariv Brotman (MPI-MP, 

Potsdam, Germany) and grown by the Green team of the Max Planck Institute of Molecular 

Plant Physiology in two growing seasons in the years 2017 (replicate 1) and 2018 (replicate 

2) according to Wu et al. (2018). Seeds were sown directly to soil in 6 cm pots for each 

accession and stratified in a growth chamber (Percival Scientific, Perry, USA; 250 μE m-2 s-1 

day/night 16 h/8 h, temperature of 20°C/6°C, relative humidity, RH, 60%/75%). After two 

weeks (end of March), the seedlings were pricked and transferred to separate pots with six 

replicates per accession. Plants were randomly placed in a polytunnel greenhouse (with an 

integrated frost protection system) and randomly dislocated every 1-2 weeks to avoid 

positional shading. Plants were bagged one month before harvest for seed collection (glassine 

bags, 40 g m-2). Two weeks before harvest, watering was stopped. Plants were harvested 

from the end of May until the middle of June depending on the genotype. Harvested bagged 

inflorescences were stored for four weeks at 15°C and 15% RH. Seeds were collected by 

sieving siliques (sieve size 355, Edinger Direkt, Leinburg, Germany) into glass vials before 

storing them at 15°C, 15% RH. Leaf samples for GWAS analysis were obtained by Wu et al. 

(2018) using the control condition samples. 

 

The introgression line population of Arabidopsis (near-isogenic lines, NILs), obtained from the 

cross between Col-0 and C24 (Törjék et al., 2008), was cultivated as described in Tohge et 

al. (2016). Seeds were collected from three individual plants of 45 M lines (C24 background) 

and 69 N lines (Col-0 background) as described above. 

 

The SALK lines (SALK_008908, SALK_011180, SALK_020876, SALK_021216, 

SALK_024438, SALK_027837, SALK_037430, SALK_049338, SALK_072964, 

SALK_081021, SALK_201809C, SALK_203337C, SALK_203919C, SALK_204674C, 

SALK_206494C) were obtained from the NASC database. C24, Col-0, and SALK mutant lines 

were cultivated under greenhouse conditions (21/19°C, day/night 16/8h, RH 50%/50%, 
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additional illumination by Philips Son-T Agro lamps from 6 a.m.-10 a.m. and 6 p.m.-10 p.m.; 

Philips,  Eindhoven, The Netherlands). The plants of the different lines were randomly placed 

to avoid block effects during growth. Plants were watered daily with 1/1000 Hyponex solution 

(Hyponex, Osaka, Japan). The trays with plants were randomly distributed two times per week 

to prevent positional light effects. Seeds were collected as described above. 

 

Genotyping of Col-0 and SALK lines 

About 4 weeks after germination, one leaf per replicate (in total five replicates) was collected 

from Col-0, C24, and SALK lines, frozen in liquid N2, and stored at -80°C. DNA was extracted 

according to (Kasajima et al., 2004). Col-0 wild-type plants and the SALK lines were 

genotyped by PCR using the following mix: 15.7 μL water, 2 μL 10X DreamTaq buffer, 0.4 μL 

10mM dNTP, 0.4 μL LBb1.3 or line-specific forward primer, 0.4 μL line-specific reverse primer, 

0.1 μL DreamTaq polymerase (Thermo Fisher Scientific, Waltham, USA), 1 μL template DNA. 

The primers are described in Supplementary Table S1. The following program was used 

(Biometra T Professional Thermocycler, Analytik Jena, Jena, Germany): 5 min initial 

denaturation, 95°C; 35 cycles of 30 s denaturation, 95°C, 30 s annealing 58°C, 1 min 

extension, 72°C; 10 min final extension, 72°C; hold, 4°C. 20 μL PCR product were separated 

on a 1% agarose gel for 25 min at 120 V. 

 

Extraction of polar and semi-polar metabolites in seeds and 

leaves 

Metabolites from seeds were extracted according to (Tohge and Fernie, 2010). 200 μL of pre-

cooled (-20°C) 80% MeOH (Sigma-Aldrich, Munich, Germany; containing 1 µg isovitexin and 

0.04 mg ribitol as internal standard) was added to 30 A. thaliana seeds (cooled in liquid N2), 

of which the weight was previously determined. After shaking the tubes, previously cooled in 

liquid N2 (3 min, 25 Hz by Retsch mill MM 301, Haan, Germany), the tubes were centrifuged 

for 10 min at room temperature (17,900 g), and the supernatant was transferred to a new tube. 

The tubes were centrifuged for 10 min at room temperature (17,900 g). 135 μL of the 

supernatant were transferred to a new tube, dried by speed-vac for 2-3 h, filled with argon, 

and stored at -80°C. On the day of analyses, the samples were resuspended in 100 μL 80% 

MeOH and transferred to sample vials. 
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Metabolites from leaves were extracted from 50 mg leaf material (cooled in liquid N2) using 

500 μL of the same extraction buffer as above. The same extraction protocol was followed as 

above transferring 200 μL of the supernatant to a new tube before drying by speed-vac for 2-

3 h. On the day of analyses, the samples were resuspended in 200 μL 80% MeOH and 

transferred to sample vials. 

 

 

Determination of relative polar and semi-polar metabolite levels 

by UPLC-MS for genome-wide association studies 

For leaf and seed metabolites, extracts from Col-0, prepared as described above, were taken 

as a quality control. Metabolites were separated by Waters Acquity UPLC I using a Waters 

Acquity UPLC BEH C18 1.7 μm VanGuardTM 2.1 x 5 mm as a pre-column and a Waters 

Acquity UPLC HSS T3 1.8 μm 2.1 x 100 mm as a column (Waters, Dublin, Ireland; injection 

volume 5 μL, sample temperature 10°C, column temperature 40°C, flow rate 0.4 mL min-1). 

The gradient was as follows: from 0 min to 1 min 99% buffer A (Water UL/C MS grade (Bio-

Lab ltd., Jerusalem, Israel) + 0.1% formic acid) and 1% buffer B (100% acetonitrile UL/C MS 

grade (Bio-Lab ltd., Jerusalem, Israel) + 0.1% formic acid), 11 min 60% A and 40% B, 13 min 

30% A and 70% B, 15 min 1% A and 99% B isocratic flow to 16 min, 17 min 99% A and 1% B 

isocratic flow to 20 min. Metabolites were ionized by ESI in negative and positive ionization 

mode(capillary voltage ±3.5 kV, sheath gas flow 60, auxiliary gas flow 20, capillary 

temperature 275°C, drying gas temperature 300°C, skimmer voltage 25 V, tube lens voltage 

130 V). MS spectra were acquired from 1-20 min by Thermo Scientific Q Exactive in Full MS 

mode (resolution 70000, max. injection time 100 ms, automatic gain control value 3E6; 

Thermo Fisher Scientific, Waltham, USA) in the scan range 100-1500 m/z. Peaks per replicate 

and ionization mode were aligned by Genedata (version 10.5.3) using the settings according 

to Supplementary Table S2. Mass features that eluted before 0.5 min and after 16 min were 

removed from the peak alignment. For each ionization mode separately, the replicates were 

combined by matching based on a m/z deviance of ±0.01 and a retention 

time deviance of ±0.3 min to obtain the joint mass features present in both replicates. Intensity 

values were divided by the respective analyzed seed weight. Intensity values were log2 

transformed and batch effects were removed by the function removeBatchEffect from the 

limma package (v3.38.3, Ritchie et al., 2015). In the case of multiple matches from replicate 

1 to replicate 2, only the matched feature pairs with highest covariance are retained. Outliers 

were removed by checking their intensity values by boxplots and by projecting them via 
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principal component analysis (PCA) by the function prcomp} from the stats package 

(v.4.1.2) in R. 

 

Determination of relative polar and semi-polar metabolite levels 

by HPLC-MS and QTL mapping 

Metabolite levels were determined according to Tohge et al. (2016) using an HPLC system 

Surveyor (high pressure LC; Thermo Finnigan, Waltham, USA) coupled to a Finnigan LTQ-

XP system (Thermo Finnigan, Waltham USA). Chromatographic data were processed via 

Xcalibur (v2.1, Thermo Fisher Scientific, Waltham, USA). QTL mapping was done according 

to Tohge et al. (2016). 

 

13C and 34S isotope feeding and measurement by LC-quadrupole 

time-of-flight (QTOF) MS 

A. thaliana seeds were labeled with 13C (via 13CO2) and 34S (via Na2
34SO4) according to 

Nakabayashi et al. (2013) and Nakabayashi et al. (2016) using Col-0 plants prepared by SI 

Science Co., Ltd. (Saitama, Japan). The dried samples were extracted with 150 μl for 13C 

samples and 50 μl for 34S of 80% MeOH containing 2.5 μM 10-camphour sulfonic acid per mg 

dry weight using a mixer mill with zirconia beads for 7 min at 18 Hz and 4 C. After centrifugation 

for 10 min, the supernatant was filtered using an HLB μElution plate (Waters). The extracts (1 

μl) were analyzed using LC-QTOF-MS (LC, Waters Acquity UPLC system; MS, Waters Xevo 

G2 Q-Tof). Analytical conditions were as follows LC: column, Acquity bridged ethyl hybrid 

(BEH) C18 (1.7 μm, 2.1 mm  100 mm, Waters); solvent system, solvent A (water including 

0.1% [v/v] formic acid ) and solvent B (acetonitrile including 0.1% [v/v] formic acid); gradient 

program, 99.5%A/0.5%B at 0 min, 99.5%A/0.5%B at 0.1 min, 20%A/80%B at 10 min, 

0.5%A/99.5%B at 10.1 min, 0.5%A/99.5%B at 12.0 min, 99.5%A/0.5%B at 12.1 min and 

99.5%A/0.5%B at 15.0 min; flow rate, 0.3 ml/min at 0 min, 0.3 ml/min at 10 min, 0.4 ml/min at 

10.1 min, 0.4 ml/min at 14.4 min and 0.3 ml/min at 14.5 min; column temperature, 40 C; MS 

detection: polarity, negative; capillary voltage, -2.75 kV; cone voltage, 25.0 V; source 

temperature, 120 C; desolvation temperature, 450 C; cone gas flow, 50 l/h; desolvation gas 

flow, 800 l/h; collision energy, 6 V; mass range, m/z 50‒1500; scan duration, 0.1 sec; interscan 

delay, 0.014 sec; data acquisition, centroid mode; Lockspray (Leucine enkephalin); scan 

duration, 1.0 sec; interscan delay, 0.1 sec. 
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Determination of relative polar and semi-polar metabolite levels 

by UPLC-MS for Col-0, C24, and SALK mutant lines 

Metabolites were separated by Waters Acquity UPLC using a Waters HSS T3 C18 (Waters, 

Dublin, Ireland, 100 mm I. x 2.1 mm i.d. x 1.8  μm particle size) as column and pre-column 

(column temperature 40°C, flow rate 0.4 mL min-1). The gradient was as follows: 1 min 99% 

buffer A (Water UPLC MS grade + 0.1% formic acid; Biosolve, Dieuze, France) and 1% buffer 

B (100% acetonitrile + 0.1% formic acid; Biosolve, Dieuze, France), 11 min 60% A and 40  B, 

13 min 30% A and 70% B, 15 min 1% A and 99% B isocratic flow to 16 min, 17 min 99% A 

and 1% B isocratic flow to 20 min. Metabolites were ionised by ESI in negative and positive 

ionisation mode (capillary voltage ±3 kV, sheath gas flow 60, auxiliary gas flow 35, capillary 

temperature 150°C, drying gas temperature 350°C, skimmer voltage 25 V, tube lens voltage 

130 V). MS spectra were acquired from 1-19 min by ThermoScientific Q Exactive in MS mode 

(resolution 25000, max. injection time 100 ms, automatic gain control value 1E6; Thermo 

Fisher Scientific, Waltham, USA;) in the scan range 100-1500 m/z. Peaks were aligned by 

xcms (v3.16.1, Smith et al., 2006) and annotated by CAMERA (v.1.50.0, Kuhl et al., 2012) in 

the R programming language (v4.1.2, see Supplementary Table S3). Intensity values were 

divided by the respective seed weight. Intensity values were log2 transformed and batch 

effects were removed by the function removeBatchEffect from the limma package 

(v3.38.3). Outliers were removed by checking their quality via the MatrixQCvis package  ( 

v1.5.4, Naake and Huber, 2022). Metabolite and mass features were checked by the Thermo 

Xcalibur Qual Browser (v4.0.27.21, Thermo Fisher Scientifc, Waltham, USA). 

 

Genome-wide association mapping, calculation of heritability, 

haplotype and linkage disequilibrium analysis, and statistical 

testing for differences in SALK lines 

A similar approach to Fusari et al. (2017) and Wu et al. (2018) was taken to map metabolite 

information to genetic loci. The R packages EMMAX (Efficient Mixed-Model Association 

eXpedited, Kang et al., 2010) and GAPIT (Genomic Association and Prediction Integrated 

Tool, version 23-May-18, Lipka et al., 2012) were used to perform the mapping. We employed 

a mixed linear model containing fixed and random effects and characterized the population 

structure using the first three principal components (Q matrix , Price et al., 2006) to incorporate 
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this information together with the VanRaden kinship matrix (Eu-Ahsunthornwattana et al., 

2014) as fixed and random effects, respectively (method = “MLM”). The aligned mass 

feature table with normalized intensity values was used as an input. The GAPIT function was 

used to map the phenotypic observations (normalized metabolite intensities) to loci in the A. 

thaliana genome using 199455 SNP markers with minor allele frequency > 1%  obtained using 

Affymetrix GeneChip Array 6.0 (TAIR version 9, Li et al., 2010; Horton et al., 2012) using 

PCA.total = 3, model = “MLM”, SNP.fraction = 1.0 (all other parameters were set 

to default). The logarithm of odds (LOD) threshold was set to 5.3 (-log10(1/N) with N the number 

of SNPs). The resulting SNPs with LOD ≥ 5.3 were assigned to the same group if the genomic 

distance between them was less than 10 kb and the genes within the  respective groups were 

considered as candidate genes.  

 

Broad-sense heritability (H2) was defined by the proportion of the total variance explained by 

the genetic variance according to Fusari et al. (2017) using the lmer function and obtaining 

the variances by the function VarCorr from lme4 (v1.1-23, Bates et al., 2015) . For 

calculating the heritability, only the features were used that showed a retention time deviance 

of ≤ 0.075 min (retention timerepl. 1 - retention timerepl. 2), an absolute m/z deviance of ≤ 0.075, 

and a Pearson correlation of > 0.1.  

 

For haplotype analysis, the distance between haplotypes was calculated from the SNPs by 

the dist.gene function from the ape (v5.3, Paradis and Schliep, 2019) package (method = 

“pairwise”, pairwise.deletion = FALSE, variance = FALSE). Distances were 

clustered by the hclust function (method = “ward.D”) and the tree was cut by cutree 

(h = 0.00001) from the stats package (v3.6.2). To test for statistical relation between 

haplotypes and metabolite levels, ANOVA (anova from the stats package, v3.6.2) was 

performed with FDR correction (false discovery rate, p.adjust with method = “BH”), 

adjusting for the number of all metabolites used for mapping in negative and positive ionization 

mode. For linkage disequilibrium (LD) analysis, the p-values were taken from the GWAS 

results file for the respective mass feature (LOD = -log10(p-value)). Standardized LD, r2, values 

were calculated via the function r2fast from the GenABEL package (v1.8-0, Aulchenko et 

al., 2007). Expression analysis for genes of interest was conducted within the eFP browser 

(Winter et al., 2007) using the data set of Schmid et al. (2005).  

 

To test for differences in SALK lines, the log2-normalized raw intensities were tested against 

Col-0 or the respective complement of SALK lines using limma (v3.50.3). To this end, linear 

models were fitted for each metabolic feature using lmFit and moderated t-statistics were 
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computed by empirical Bayes moderation of the standard errors towards a global value using 

eBayes (trend = TRUE). p-values were adjusted using FDR via the Benjamini-Hochberg 

method. Since there was no corresponding second replicate available in positive ionization 

mode, the corresponding features in negative ionization mode were determined using 

correlation analysis and retention time window thresholding. If multiple features in negative 

ionization mode matched to the feature in positive ionization mode, the feature with highest 

correlation to the feature of positive mode (replicate 1) was selected.  

 

The scripts can be found at https://www.github.com/tnaake/GWAS_arabidopsis_seed.  

 

MetNet network construction 

m/z and retention time values of seed replicate 1 were used for structural network inference 

via structural and rtCorrection from the MetNet package ( v1.15.3, R v4.1.2, Naake 

and Fernie, 2019) using the transformations and retention time shifts described in 

Supplementary Table S4. Edges corresponding to adduct additions were removed if the 

retention time between two mass features was > 0.1 min. The combined peaklists with log-

normalized intensity values of replicate 1 and 2 were used as input for statistical network 

construction (function statistical) using Pearson and Spearman correlation. The 

weighted statistical adjacency matrices were thresholded (function threshold) only retaining 

correlation values > 0.7 for Pearson and Spearman correlation coefficients and FDR-adjusted 

p-values < 0.05 using the Benjamini-Hochberg method. The network was visualized in 

Cytoscape (v3.7.2, Shannon et al., 2003). The script can be found at 

https://www.github.com/tnaake/GWAS_arabidopsis_seed.  
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Supplementary Figures 

 

 

 
 

Supplementary Figure S1: Simplified pathway for aliphatic glucosinolates. The 

biosynthetic pathway starts with the deamination of methionine to an 2-oxo acid by a 

branched-chain amino acid aminotransferase. Subsequently, the 2-oxo acid enters a cycle of 

three successive transformations: condensation with acetyl-CoA by MAM, isomerization by an 

isopropylmalate 

isomerase (not shown), and oxidative decarboxylation by an isopropylmalate dehydrogenase 

(not shown, Sønderby et al., 2010). One round of chain elongation leads to an elongation of 

one ethylene group (-CH2-). After several intermediate steps, including sulfur incorporation, 

the side chain of aliphatic glucosinolates is modified by GS-OX, GS-ALK, GS-OH, and GS-

OHP (Sønderby et al., 2010). The biosynthetic pathway is modified from Sønderby et al. 

(2010). AOP: alkenyl hydroxyalkyl producing; MAM: methylthioalkylmalate synthase; *: 

predicted enzyme; ?: unknown enzyme. 
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Supplementary Figure S2: Metabolite data sets for replicate 1 and 2 (genome-wide 

association studies). A: Pearson correlation coefficient (r)  values of intensity values for 

matched mass feature pairs for negative and positive ionisation mode. r values of mapped 

mass features were higher compared to the random pairs of the core set. B: Broad-sense 

heritability (H2) of intensity values for matched mass feature pairs for negative and positive 

ionisation mode. H2 values of mapped mass features were higher compared to the random 

pairs of the core set. C: Distribution along retention time for all matched mass feature pairs 

and those that were mapped to at least one locus with LOD ≥ 5.3 for negative and positive 

ionisation mode. LOD: logarithm of odds.  
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Supplementary Figure S3: Distribution of number of mass features mapped to 

locus/loci per intersection set. Each panel shows how often a specific mass feature was 

mapped to a locus/loci per intersection set (e.g., a value of 1 on the x-axis means that this 

mass feature was mapped to only one locus). For the intersection sets seed (replicate 1), seed 

(replicate 2), and leaf a higher proportion of mass features was found that were associated 

with several loci. This can be attributed to random sources of measurement errors, to 

associations of non-causative markers with a given trait, to linkage with causative markers 

(Korte and Farlow, 2013), or to environmental effects. The mass features of the other 

intersection sets show an association with mainly one locus. 
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Supplementary Figure S4: Genome-wide association mapping for 3-hydroxypropyl 

glucosinolate (negative ionization mode). A: The Manhattan plot of 3-hydroxypropyl 

glucosinolate shows two peaks in each replicate on chromosomes 4 (highest LOD: 11.22) and 

5 (15.39). These loci contain the genes AOP1, AOP2, and AOP-3 (chromosome 4), MAM1 

and MAM3 (chromosome 5) that are involved in glucosinolate biosynthesis.  B: Haplotype 

analysis of metabolite levels of 3-hydroxypropyl glucosinolate. The nucleotide sequence 

differences were statistically associated with the levels of 3-hydroxypropyl glucosinolate 

(ANOVA q-value: 7.05e-21 for replicate 2). Only data for replicate 2 is shown in A and B. The 

data for replicate 1 is depicted in Figure 2. AOP: alkenyl hydroxyalkyl producing; A.U.: arbitrary 

units; LD: linkage disequilibrium; LOD: logarithm of odds; MAM: methylthioalkylmalate 

synthase. 
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Supplementary Figure S5: QTL mapping using near-isogenic introgression lines 

between C24 and Col-0 (C24 background). A: Heatmap of relative seed metabolite levels 

for C24, Col-0 and NILs with C24 background. B: Genomic region for NILs and allele identity 

based on MASC genomic markers. The highlighted regions refer to the lines with Col-0 alleles 

that show altered levels of glucosinolates and of the unknowns 596 and 626. a: genomic region 

from Col-0; b: genomic region from C24; GS: glucosinolates; NIL: near-isogenic line. 
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Supplementary Figure S6: Manhattan plot and linkage disequilibrium analysis of the 

unknown 626 (negative ionization mode). A: Manhattan plot for replicate 1 (left) and 

replicate 2 (right). The plots show an association of the unknown 626 with a genomic region 

on chromosome 5 containing MAM1 and MAM3. B: The highest LOD score is obtained within 

the region of MAM1. The LOD values decay quickly when moving away from MAM1. LOD: 

logarithm of odds; MAM: methylthioalkylmalate synthase. 
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Supplementary Figure S7: Metabolite network of mapped mass features (negative 

mode). The network was constructed by MetNet and consists of 8819 mass features 

(vertices) and 16090 joint edges from the structural and statistical network inference. The 8819 

mass features showed associations to at least one locus in one replicate. Mass features 

corresponding to annotated metabolites are highlighted (glucosinolates, sinapoylcholine and 

-glucose, unknown 626, and flavonoids). The figure shows only the major network 

components. m/z and retention time values are taken from the alignment of mass 

spectrometric data of replicate 1. Linking mass features to the unknown 626 showed 

association with the GS-ALK/GS-OHP, and/or GS-ELONG loci with a LOD > 5.3. Linking mass 

features to quercetin-containing flavonols showed association with the locus containing 

AT5G17040 and AT5G17050/UGT78D2 with a LOD > 5.3. The highlighted mass features also 

showed associations with other loci (LOD > 5.3). LOD: logarithm of odds. 
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Supplementary Figure S8: Effects of 13C and 34S feeding on the m/z of the unknowns 

596 and 626 (negative ionization mode). The measurement was performed via LC-QTOF-

MS and revealed that the unknown 596 (m/z 596.1104) and 626 (m/z 626.1032) contains 20 

C atoms and 22 C atoms based on isotope feeding with 13C, respectively, and two S atoms 

based on isotope feeding with 34S. 
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Supplementary Figure S9: Flavonoid biosynthetic pathway: Linkage disequilibrium 

analysis for quercetin-containing flavonols (negative and positive ionization mode). 

The highest LOD is achieved for a SNP within the region of AT5G17030 or AT5G17040. 

Standardized LD r2 is relatively low for the SNPs that are located within the gene AT5G17050. 

Only data for replicate 2 is shown. The data for replicate 1 is depicted in Figure 3. LD: linkage 

disequilibrium; LOD: logarithm of odds; MB: megabase; SNP: single nucleotide polymorphism. 
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Supplementary Figure S10: Principal component analysis for metabolite analysis of 

SALK lines (replicate 1). Negative ionization mode: The first two PCs explain 30.15% of the 

variance in the seed data set. 27716 mass features were used for the PC analysis. The 

projection of the mass feature levels of C24 (gray dots) and Col-0 (black dots) are located 

close to each other for each genotype and are distinct from the SALK mutants. Positive 

ionization mode: The first two PCs explain 15.29% of the variance in the seed data set. 28750 

mass features were used for the PC analysis. The projections of the mass feature levels of 

C24 (gray dots) and Col-0 (black dots) are located close to each other for each genotype. PC1 

and PC2 do not separate C24 and Col-0 from the SALK line mutants. The PCA for the replicate 

2 is not shown here. PC: principal component. 
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Supplementary Figure S11: Phenotype of Col-0 and SALK_049338 mutant lines. A: 

Three biological replicates of wild type Col-0. B: Five biological replicates of SALK_049338 

mutant lines, referring to a T-DNA insertion in the exon of AT5G17050 (UGT78D2). The lines 

exhibited a dwarf phenotype with a loss of apical dominance as reported previously by Yin et 

al. (2014). C: Detail of inflorescence of line SALK_049338.  
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