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Abstract 21 

We present a machine learning-based interpretive framework (whatprot) for analyzing single molecule 22 

protein sequencing data produced by fluorosequencing, a recently developed proteomics technology 23 

that determines sparse amino acid sequences for many individual peptide molecules in a highly 24 

parallelized fashion [1] [2]. Whatprot uses Hidden Markov Models (HMMs) to represent the states of 25 

each peptide undergoing the various chemical processes during fluorosequencing, and applies these in a 26 

Bayesian classifier, in combination with pre-filtering by a k-Nearest Neighbors (kNN) classifier trained on 27 

large volumes of simulated fluorosequencing data. We have found that by combining the HMM based 28 

Bayesian classifier with the kNN pre-filter, we are able to retain the benefits of both, achieving both 29 

tractable runtimes and acceptable precision and recall for identifying peptides and their parent proteins 30 

from complex mixtures, outperforming the capabilities of either classifier on its own. Whatprot’s hybrid 31 

kNN-HMM approach enables the efficient interpretation of fluorosequencing data using a full proteome 32 

reference database and should now also enable improved sequencing error rate estimates.  33 
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Introduction 34 

Proteins are key components of living organisms, but their heterogenous chemical natures often 35 

complicate their biochemical analyses, and consequently, the state of protein identification and 36 

quantification methods (e. g., mass spectrometry, antibodies, affinity assays) has generally tended to lag 37 

the remarkable progress exhibited by DNA and RNA sequencing technologies. However, improvements 38 

to protein analyses could potentially directly inform better biological understanding and better translate 39 

into biomedicine and clinical studies. Thus, the field of single molecule protein sequencing attempts to 40 

apply concepts from DNA and RNA sequencing to protein analyses in order to take advantage of the high 41 

parallelism, sensitivity, and throughput potentially offered by these approaches [3] [4] [5] [6].  42 

Fluorosequencing is one such single-molecule protein sequencing technique inspired by methods used 43 

for DNA and RNA [1] [2]. In fluorosequencing, proteins in a biological sample are denatured and cleaved 44 

enzymatically into peptides. The researcher then chemically labels specific amino acid types, or 45 

alternatively, specific post-translational modifications (PTMs), within each peptide with different 46 

fluorescent dyes, then covalently attaches the peptides by their C-termini to the surface of a single-47 

molecule microscope imaging flow-cell (Figure 1A). Sequencing proceeds by alternating between 48 

acquiring fluorescence microscopy images of the immobilized peptides and performing chemical 49 

removal of the N-terminal-most amino acid from each peptide, using the classic Edman degradation 50 

chemistry [7] [8] (Figure 1B). In this manner, the sequencing cycle (corresponding to amino acid 51 

position) at which different fluorescent dyes are removed is measured on a molecule-by-molecule basis, 52 

with these data collected in parallel for all the peptide molecules observed in the experiment (Figure 53 

1C).  54 

In theory, this process gives a direct readout of each peptide’s amino acid sequence, at least for the 55 

subset of labeled amino acids (Figure 1D), but in practice there are several complications because of the 56 
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single-molecule nature of this sequencing method. Single molecule fluorescence intensities are 57 

intrinsically noisy, arising from the repeated stochastic transitions of each individual dye molecule 58 

between ground state and excited state, making stoichiometric data inexact, particularly when there are 59 

large fluorophore counts. Typically, no more than 5-6 copies of the same amino acid, hence dye, are 60 

expected for average proteolytic peptide lengths, with the number of distinct colors (i.e., fluorescent 61 

channels) set by the microscopy optics and available dyes, here assumed to be 5 or fewer. However, 62 

inevitably with any chemical process, some fluorophore labeling reactions fail to occur, and 63 

 

Figure 1. Overview of protein fluorosequencing. (A) illustration of the sample preparation process. Each grey circle 
represents an amino acid, and the letter in the circle corresponds to the standardized single letter amino acid codes. In the 
diagram, proteins are denatured, cleaved with protease, labeled with fluorescent dyes, and then labeled peptides are 
immobilized by their C-termini on the surface of a flow-cell. (B) The Edman degradation chemical reaction cycle, used to 
predictably remove one amino acid per cycle from each peptide. (C) For a given peptide, the sequencing process removes 
amino acids one at a time from the N-terminus, taking with them any attached fluorescent dyes. D: Major steps in 
computational data analysis include: (1) For each field of view, performing image analysis to extract fluorescence 
intensities for each spot (peptide) in each fluorescent channel across time steps (cycles), collating the fluorescence 
intensity data per spot across timesteps and colors. A vector of fluorescence intensities is produced, giving a floating-point 
value for every timestep and fluorophore color combination. (2) These raw sequencing intensity vectors (raw reads) must 
then be classified as particular peptides from a reference database. This step is the primary concern of this paper. (3) 
Identified peptides can then be used to identify and quantify the proteins in the original biological sample. 
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photobleaching or chemical destruction can destroy fluorophores in the middle of a fluorosequencing 64 

run. At some low rate, peptides may detach from the flow-cell during sequencing, and Edman 65 

degradation can skip a cycle. These error rates, while individually small (approximately 5% each in 66 

published analyses [2]), collectively add difficulty to peptide identification, necessitating computational 67 

methods to process these data. 68 

Currently, there are no published algorithms for mapping fluorosequencing reads to a reference 69 

proteome to identify the proteins in a sample. The first analyses of fluorosequencing data used Monte 70 

Carlo simulations to generate realistic simulated data as a guide for data interpretation and fitting of 71 

experimental error rates [1] [2]. While this strategy did not scale well computationally to full proteomes, 72 

it suggested that probabilistic modeling of the fluorosequencing process could provide a powerful 73 

strategy for interpreting these data. In this paper, we explore the application of machine learning to 74 

develop a classifier that correctly accounts for the characteristic fluorosequencing errors but is 75 

computationally efficient enough to scale to the full human proteome. 76 

Viewing this as a machine learning problem is challenging due to the large numbers of possible peptides 77 

in many biological experiments. For example, in the human proteome, there are about 20,000 proteins, 78 

which when processed with an amino-acid specific protease such as trypsin can correspond to hundreds 79 

of thousands or even millions of distinct peptides, each of which can potentially vary due to post-80 

translational modifications or experiment-specific processing. This puts fluorosequencing data analysis 81 

squarely in the realm of Extreme Classification problems, which are known to be challenging to handle in 82 

practice [9]. 83 

To analyze these data, we took advantage of the ability to generate simulated fluorosequencing data 84 

using Monte Carlo simulations [1] [2] to test k-Nearest Neighbors (kNN) classification and found it gave 85 

results of poor quality but is able to scale efficiently to the full human proteome while maintaining 86 
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reasonable runtimes. These initial explorations motivated the developments presented in this 87 

manuscript, which focuses on the specific challenge of matching fluorosequencing reads to peptides 88 

from a reference proteome (peptide-read matching). 89 

Here, we propose a specialized classifier which combines heavily optimized Hidden Markov Models 90 

(HMMs) to model the peptide chemical transformations during fluorosequencing, in combination with 91 

kNN pre-classification to reduce runtime. We call this tool whatprot, compare it with kNN and a 92 

classifier which uses HMMs without the kNN based runtime reduction, and demonstrate that the hybrid 93 

HMM-kNN approach offers a powerful and scalable approach for interpreting protein fluorosequencing 94 

data with the use of a reference proteome.  95 

Methods 96 

Monte Carlo simulation 97 

To generate training and testing data typical of fluorosequencing experiments, we performed Monte 98 

Figure 2. Nomenclature for different stages of fluorosequencing data analysis. The whatprot algorithm maps raw single-
molecule protein sequencing reads to peptides and their parent proteins in the reference proteome (black arrows) by 
comparing experimental data (at bottom) to synthetic data generated using a Monte Carlo simulation (gray arrows). 
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Carlo simulations based on the model and parameters described in [1] [2]. These parameters are the dye 99 

loss rates 𝑝𝑐, which differ for each color 𝑐, the missing fluorophore rates 𝑚𝑐, the Edman cycle failure 100 

rate 𝑒, the peptide detachment rate 𝑑, the average fluorophore intensity 𝜇𝑐, and the standard deviation 101 

of fluorophore intensity 𝜎𝑐. We additionally model a background standard deviation 𝜎𝑐
′. Based on prior 102 

estimates for the dye Atto647N ( [1] [2]), we used the following values unless otherwise noted: 𝑝𝑐 =103 

.05, 𝑚𝑐 = .07, 𝑒 = .06, 𝑑 = .05, 𝜇𝑐 = 1.0 (arbitrary rescaling of intensity values), 𝜎𝑐 = 0.16, 𝜎𝑐
′ =104 

.00667. Although the code permits different values for different colors 𝑐, for our simulations, we 105 

modeled each color of fluorophore with identical error values for simplicity. 106 

An overview of the process with definitions for key terms is provided in Figure 2. We generate simulated 107 

data in two formats. The first of these formats we refer to as a dye track, and it indicates the number of 108 

remaining fluorophores of each color at each time step after considering sequencing errors. Thus, each 109 

copy of one particular peptide sequence may give rise to a different specific dye track in a sequencing 110 

experiment depending on the details of the labeling schemes and sequencing efficiencies. To simulate a 111 

dye track, we randomly alter (with a pseudo random number generator) a representation of a dye 112 

sequence in a series of timesteps, writing to memory the count of each color of fluorophore as we 113 

progress until we reach a pre-set number of timesteps. In this simulation, we initially remove 114 

fluorophores with a probability of 𝑚𝑐 before beginning sequencing. We then additionally perform a 115 

series of random events after logging fluorophore counts for each timestep: we remove the entire 116 

peptide and all fluorophores with a probability of 𝑑 to simulate peptide detachment from the flow cell, 117 

we remove the last amino acid (and any attached fluorophore) with a probability of (1 − 𝑒), and we 118 

remove each fluorophore with a probability of 𝑝𝑐, where 𝑐 is the color of the fluorophore, to simulate 119 

fluorophore destruction. Each fluorophore count is stored as a two-byte numeric value. 120 

The other format of data we consider is a raw read, which consists of radiometry data for each 121 

fluorescent color and Edman cycle. Raw reads result experimentally from signal processing and 122 
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radiometry of the microscope imaging data from a fluorosequencing experiment. To simulate a raw 123 

read, we first simulate a dye track, and then we convert each fluorophore count into a double-precision 124 

floating point value indicating the fluorescent intensity. When we have a dye track entry indicating Λc 125 

fluorophores for a given fluorophore color 𝑐, we sample a normal distribution with a mean of Λ𝑐𝜇𝑐 and 126 

a variance of 𝜎𝑐
′2 + Λ𝑐𝜎

2. We perform this calculation for each channel at each time-step to simulate a 127 

raw read. 128 

These radiometry raw reads simulate the fluorescent intensity data we would expect to collect from 129 

processing raw single molecule microscope images, a process currently performed for experimental data 130 

using the algorithm SigProc (Part of Erisyon’s tool Plaster, https://github.com/erisyon/plaster_v1), as in 131 

[10] [11]. 132 

Bayesian classification with HMMs 133 

Whatprot builds an independent HMM for each peptide in a provided reference proteome dataset. Each 134 

state in this HMM represents a potential condition of the peptide, including the number of successfully 135 

removed amino acids, and the combination of fluorophores which have not yet photobleached or been 136 

destroyed by the chemical processing (Figure 3). Transition probabilities between these states can be 137 

approximated using previously estimated success and failure rates of each step of protein 138 

fluorosequencing. 139 

We can use the HMM forward algorithm to associate a specific peptide to each raw read (a series of 140 

observed fluorescence intensities over time and across different fluorescence channels). We obtain the 141 

probability of the peptide given the raw read in two steps. First, we compute the HMM forward 142 

algorithm using each possible peptide in the dataset to obtain the probability of the raw read given each 143 

peptide. This uses the forward algorithm formula 144 

𝒇(𝑡+1) = 𝑶(𝑡+1)𝑻𝒇(𝑡) (1) 145 
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Where 𝒇(𝑡) represents the cumulative probabilities for each state at timestep 𝑡, where 0 ≤ 𝑡 ≤ 𝑇, 𝑶(𝑡) 146 

represents the diagonal emission matrix for the observation seen at timestep 𝑡, and 𝑻 represents the 147 

transition matrix which is the same at every timestep. The entries in each 𝒇(𝑡), 𝑶(𝑡), and in 𝑻, represent 148 

the following probabilities: 149 

𝒇𝑖
(𝑡) = 𝑝(𝑌1:𝑡 = 𝑦1:𝑡 , 𝑋𝑡 = 𝑖|𝑍 = 𝑧) (2) 150 

Where 𝑌1:𝑇 are the random variables for the observations, 𝑦1:𝑇 are their true values, 𝑋1:𝑇 are the 151 

random variables for the state in the HMM and 𝑍 is the random variable representing the peptide, and 𝑧 152 

is a value it can take. We also have diagonal matrices 𝑶(𝑡) defined as: 153 

 

Figure 3. Illustration of the states and transitions of the HMM for an example peptide. For the amino acid sequence 
RKKAY, we illustrate the case where the lysine (K) residues are labeled with fluorescent dyes of one color (blue stars) and 
the tyrosine (Y) residue is labeled by a second color (green star). 
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𝑶𝑖𝑖
(𝑡)
= 𝑝(𝑌𝑡 = 𝑦𝑡|𝑋𝑡 = 𝑖, 𝑍 = 𝑧) (3) 154 

And : 155 

𝑻𝑖𝑗 = 𝑝(𝑋𝑡+1 = 𝑖|𝑋𝑡 = 𝑗, 𝑍 = 𝑧) (4) 156 

We start from an initial state 𝒇(0) which we compute by taking into account the missing fluorophore 157 

rate 𝑚𝑐. Applying (1) repeatedly starting with the initial state 𝒇(0) yields a value for 𝒇(𝑇), and we can 158 

sum the entries to compute: 159 

𝑝(𝑌1:𝑇 = 𝑦1:𝑇|𝑍 = 𝑧) =∑𝑝(𝑌1:𝑇 = 𝑦1:𝑇 , 𝑋𝑇 = 𝑖|𝑍 = 𝑧)

𝑖

=∑𝒇𝑖
(𝑇)

𝑖

(5) 160 

Then, by using Bayesian inversion to normalize the data, we compute the probability of the peptide 161 

given the raw read, as given by: 162 

𝑝(𝑍 = 𝑧|𝑌1:𝑇 = 𝑦1:𝑇) =
𝑝(𝑌1:𝑇|𝑍 = 𝑧)𝑝(𝑍 = 𝑧)

∑ 𝑝(𝑌1:𝑇 = 𝑦1:𝑇|𝑍 = �̃�)𝑝(𝑍 = �̃�)�̃�
(6) 163 

We implemented several algorithmic optimizations to this approach to reduce runtime. These included 164 

reducing the num er of states in the HMMs, factorin  the HMMs’ transition matrices into a product of 165 

matrices with higher sparsity, pruning the HMM forward algorithm to consider only reasonably likely 166 

states at each timestep, and combining the HMM classifier with a kNN pre-filter that can rapidly select a 167 

short-list of candidate peptides for re-scoring by the HMM. We implemented the linear algebra and 168 

tensor operations being performed in a manner that makes productive use of spatial and temporal 169 

locality of reference. We describe these optimizations in more detail in the following sections and in the 170 

supplemental Appendices. 171 
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HMM state space reduction  172 

We combine states of certain peptide conditions into more inclusive states in our model. For peptide 173 

conditions to be combined into these more inclusive states, they must have experienced the same 174 

number of successful Edman degradation events (so that they will have the same number of amino acids 175 

remaining), and they must have the same numbers of fluorophores of all colors. An example of the 176 

resulting HMM for a sample peptide is shown in Figure 4. 177 

A similar state reduction to ours was previously described by Messina and colleagues in [12]. The 178 

reduction requires fluorophores to behave independently of each other, so that the status of one 179 

fluorophore is uncorrelated with the status of any other. While this is not true in practice due to FRET 180 

 

Figure 4. Illustration of HMM state space reduction for the peptide of Figure 3. States are combined that have both the 
same number of amino acids remaining and the same fluorophore counts for each color of fluorophore.  
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(Förster resonance energy transfer) and other dye-dye interactions, quantification of this effect in the 181 

imaging conditions used for fluorosequencing suggests that these effects are negligible enough to ignore 182 

[2]. The authors of [12] also require the fluorophores to be indistinguishable to reduce the numbers of 183 

states. This is not true in our case because we use Edman degradation and because we use multiple 184 

colors of fluorophores. 185 

Nonetheless, we demonstrate in Appendix A1 that despite these complications, this state space 186 

reduction incurs no loss in the theoretical accuracy of the model. Further, we demonstrate that this 187 

reduces the algorithmic complexity from what would otherwise be exponential with respect to the 188 

number of fluorophores, to instead be tied to the product of the counts of fluorophores of each color.  189 

Transition matrix factoring 190 

In the HMM forward al orithm, a vector of pro a ilities with one value for each state in the HMM’s 191 

state space is repeatedly multiplied by a square transition matrix. This operation is the dominant 192 

contribution to the algorithmic complexity of the HMM forward algorithm. Therefore, by making 193 

multiplication by the transition matrix more algorithmically efficient, we can improve the theoretical 194 

complexity of our computational pipeline. 195 

 

Figure 5. An illustration of the factoring of the transition matrix for the peptide from Figure 4. Note especially the 
reduction in the total number of transitions (arrows) when the transition matrix is factored.  At left, black arrows represent 
non-zero entries in the unfactored transition matrix. At right, colored arrows (see key) represent non-zero entries in each of 
the matrices in the factored product. In both diagrams, arrows from a state to itself are omitted for visual clarity. 
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We factor this transition matrix into a product of highly sparse matrices. This factorization is done by 196 

creating a separate matrix for each independent effect under consideration, including loss of each color 197 

of dye (where each color is factored separately), Edman degradation, and finally, peptide detachment 198 

(Figure 5). As with the state space reduction, this optimization incurs no loss in the accuracy of the 199 

model, and furthermore, these matrix factors, even in combination, are far sparser than the original 200 

transition matrix when computed for larger peptides. This greater sparsity can be leveraged to achieve 201 

superior algorithmic complexity results (see Appendix A2).  202 

HMM pruning 203 

Despite significant improvements in the algorithmic complexity of an HMM for one peptide given so far 204 

from state space reduction and matrix factorization, performance can be improved if we consider 205 

 

Figure 6. Illustration of the effects of HMM pruning for the peptide of Figure 5. 
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approximations. Intermediate computations contain mostly values close to zero, which will have 206 

inconsequential impact on the result of the HMM forward algorithm. The most significant contribution 207 

to this occurs for the HMM emission calculations. While there may be many states of a peptide which 208 

have a significant probability of producing a particular observation value, in most states (particularly for 209 

larger peptides) the observed value is extremely unlikely. 210 

Emission computations can be viewed as multiplication by a diagonal matrix, different for each emission 211 

in a raw read. The entries represent the probability of the indexed state producing the known emission 212 

value for that timestep. We prune this matrix by setting anything below a threshold to zero, which 213 

increases the sparsity of the matrix. Although use of a naïve, but standard, sparse matrix computational 214 

scheme would reduce runtime, we show that better algorithmic complexity can be achieved with a more 215 

complicated bi-directional approach in Figure 6 and Appendix A3. While we did not implement this 216 

approach precisely, a consideration of this effect served as inspiration for a technique combining 217 

pruning with matrix factoring, as described next. 218 

Combining transition matrix factoring with HMM pruning 219 

Both transition matrix factoring and HMM pruning appear, at first glance, to be incompatible 220 

improvements. These approaches can be combined, but the bi-directional sparse matrix computational 221 

scheme introduces significant additional difficulties. 222 

We view the various factored matrices as tensors and propagate contiguous blocks of indices forwards 223 

and backwards before running the actual tensor operations to avoid unnecessary calculations (Figure 7). 224 

Contiguous blocks of indices are needed because propagating lists of indices across the various factors 225 

of the matrices has the same computational complexity as multiplying a vector by these matrices. This 226 

may make the pruning operation seem less optimal in a sense, as some values that get pruned may be 227 
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bigger than some that are kept due to this form of indexing. Nevertheless, we found the tradeoff to be 228 

favorable in practice (Appendix A4).  229 

Of note, instead of pruning by the raw values, we prune all states such that the known emission value is 230 

outside of their pre-configured confidence interval. In this way we provide some confidence that the 231 

fraction of true data inadvertently zeroed out is negligible. 232 

k-Nearest Neighbors classification 233 

Most traditional machine learning classifiers have an algorithmic complexity which scales proportionally 234 

or worse to the number of classification categories. The Bayesian classifier we have so far described is 235 

no exception; each raw read must be compared against every peptide in the reference dataset to be 236 

 

Figure 7. Illustration of HMM pruning combined with transition matrix factoring for the peptide of Figure 5. We 
emphasize that this is an anecdotal example; while there are more arrows here than in Figure 6, this strategy provides an 
improvement in asymptotic complexity, as described in Appendix A4 and shown in experiments with simulated data. 
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classified. There are many problems in biology which require large reference datasets, human proteomic 237 

analysis being one example. The human proteome has 20,000 proteins, which when trypsinized 238 

generate hundreds of thousands of peptides. Classification against these many categories is 239 

computationally intractable with a fully Bayesian approach. 240 

In contrast, the algorithmic complexity of kNN scales logarithmically with the number of training points 241 

used. For this reason, tree-based methods are common in other Extreme Classification applications [9], 242 

where similarly massive numbers of categories are under consideration. Unfortunately, the resulting 243 

faster runtimes come at a significant cost; kNN often gives far worse results in practice than a more 244 

rigorous Bayesian approach. 245 

For purely kNN based classification, we simulate 1000 raw reads per peptide in the reference to create a 246 

training dataset and put these into a custom KD-Tree implementation for fast and easily parallelizable 247 

nearest neighbor lookups. We do not allow edits in our KD-Tree after it is built so as to allow parallelized 248 

lookups to occur without any concern for locks or other common issues in parallel data structures. We 249 

also reduce the memory footprint of the KD-Tree through an unusual compression scheme. For our 250 

training data, we use dye tracks instead of raw read radiometry data; this alone reduces the memory 251 

footprint of the KD-Tree by a factor of four (dye tracks have a two-byte numeric value for every 252 

timestep/color combination, while radiometry data have an eight-byte double-precision floating point 253 

number). But this allows another further compression technique; we find all identical dye tracks and 254 

merge them into one entry. With these dye tracks entries in the KD-Tree we store lists of peptides that 255 

produced the dye track when we simulated our training data, along with how many times each peptide 256 

produced that dye track. 257 

To classify an unknown raw read, the 𝑘 nearest dye track neighbors to a raw read query are retrieved. 258 

These neighbors then vote on a classification, with votes weighted using a Gaussian kernel function, 259 
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exp (−
𝛿2

2𝜎𝑘𝑁𝑁
2 ), where 𝛿 is the Euclidean distance between the query raw read and the neighbor, and 260 

𝜎𝑘𝑁𝑁 is a parameter of the algorithm. A neighbor is also weighted proportionally to the number of times 261 

it occurred as a simulation result and will split its voting weight among all of the peptides that produced 262 

that dye track proportionally to the numbers of times each peptide produced the dye track during 263 

simulation of training data. 264 

Once voting is complete, the highest weighted peptide is then selected as the classification, with its 265 

classification score given as a fraction of its raw score over the total of all the raw scores. We have 266 

explored multiple choices of 𝑘 and 𝜎 values to optimize the performance.  267 

Hybridizing kNN with Bayesian HMM classification 268 

To combine the computational efficiency of kNN with the accuracy of the HMM model, we defined a 269 

classifier which hybridizes these two disparate methods. We use a kNN classifier to reduce the reference 270 

dataset, for each raw read, down to a smaller shortlist of candidate peptides. These candidates can then 271 

be used in the Bayesian classifier by building HMMs to compare them against the specific raw read. 272 

While this can result in the true most likely peptide not being in the shortlist and therefore not being 273 

selected by this hybrid classifier, with a sufficiently long shortlist this is highly unlikely. A larger problem 274 

is in performin  Bayes’ rule, as in (6).  n e act formula for Bayes’ rule requires an e haustive set of 275 

probability values for every potential outcome, which are summed in the denominator. Avoiding 276 

determining every probability makes this impossible. Instead, we can estimate Bayes’ rule as follows: 277 

𝑝(𝑍 = 𝑧|𝑌1:𝑇 = 𝑦1:𝑇) =
𝑝(𝑌1:𝑇|𝑍 = 𝑧)𝑝(𝑍 = 𝑧)

∑ 𝑝(𝑌1:𝑇 = 𝑦1:𝑇|𝑍 = �̃�)𝑝(𝑍 = �̃�)�̃�∈𝜁ℎ

 278 

Where 𝜁ℎ is the set of up to ℎ peptides selected by the kNN method; we require 𝑧 ∈ 𝜁ℎ. Although we 279 

lose theoretical guarantees of optimal accuracy given the model, this change provides a considerable 280 

improvement to the algorithmic complexity. The algorithmic complexity to classify one raw read using a 281 
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fully Bayesian approach is 𝑂(𝑅𝑊), where 𝑅 is the number of peptides in the reference dataset, and 𝑊 282 

is the average amount of work needed to run an HMM for one peptide fluorophore combination. In 283 

comparison, with the hybridized classifier, the algorithmic complexity is 𝑂(log(𝑅𝑄) + ℎ𝑊) where 𝑄 is 284 

the number of raw reads in the training dataset simulated for each possible peptide. 285 

We chose specific values for ℎ, 𝜎, and 𝑘, by comparing the runtime and PR curves on simulated datasets.   286 

Maintaining spatial locality of reference 287 

Spatial and temporal locality of reference is the tendency of some computer programs to access nearby 288 

data points at similar times. Modern CPUs are designed to make this extremely efficient through multi-289 

level batch caching schemes which cache data from RAM that is nearby a memory address being 290 

accessed, so that nearby data can be read more quickly. Programs which exploit this in read-write 291 

intensive pieces of code can often achieve significant runtime acceleration compared to programs which 292 

do not. 293 

We wrote highly optimized kernel functions to perform our structured matrix/tensor operations which 294 

exploited the sparse nature of the problem while also iterating over elements in what we believe to be 295 

an optimal or near optimal fashion for most computer architectures. We believe this provided 296 

considerable improvements in performance, though this has not been rigorously tested. 297 

Results 298 

We simulated the fluorosequencing of peptides to obtain labeled training and testing data (Figure 2). 299 

We generated several datasets, each with a randomized subset of the proteins in the human proteome. 300 

We selected 20 proteins (.1% of the human proteome), 206 proteins (1% of human proteome), 2,065 301 

proteins (10%), and 20,659 proteins (the full human proteome). We repeated this randomized selection 302 

scheme to examine several protease and labeling schemes. These were (1) trypsin (which cleaves after 303 
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lysine (K) and arginine (R) amino acids) with fluorescent labels for aspartate (D) and glutamate (E) (these 304 

share a fluorophore color due to their equivalent reactivities), cysteine (C), and tyrosine (Y), (2) 305 

cyanogen bromide (which cleaves after methionine (M) amino acids) with D/E, C, Y, and K, (3) EndoPRO 306 

protease (which cleaves after alanine (A) and proline (P) amino acids) with D/E, C, and Y, (4) EndoPRO 307 

with D/E, C, Y, and K, (5) EndoPRO with D/E, C, Y, K, and histidine (H). Thus, in the schemes examined, of 308 

the 20 canonical amino acid types found in most proteins, either one or two were recognized by the 309 

protease and up to 6 additional amino acids were labeled by fluorescent dyes.  310 

These databases of peptides were used to generate databases of idealized dye sequences, dye tracks, 311 

and raw reads, used for training and testing purposes for the various models. For our test data for each 312 

dataset, we generated 10,000 raw sequencing reads by randomly selecting peptides with replacement 313 

from the dataset and simulating sequencing on them using the methods described in the Monte Carlo 314 

simulation section of this paper. For both dye tracks and simulated fluorescent intensity measurements, 315 

results where there were zero fluorophores throughout sequencing were discarded, as these would fail 316 

to be observed in an actual sequencing experiment. 317 

We collected and compared runtime data and precision-recall curves for several different purposes. 318 

With the trypsinized 3-color dataset, we performed a parameter sweep of the pruning cut-off for the 319 

HMM Bayesian classifier (Figure B1). Losses in precision and recall performance were negligible for cut-320 

off values of 5 and greater, though the precision recall curves grew worse at smaller values. Runtimes 321 

shrank rapidly as the cut-offs were decreased. The pruning cut-off parameter sweep was also performed 322 

on the 20-protein cyanogen bromide dataset (Figure B2). We saw that in this second dataset, runtime 323 

improvements for lower cut-offs were even more extreme; a speed-up factor of about 1000 could be 324 

achieved with minimal effects on the precision recall plots. From these two simulations, we chose a 325 

cutoff value of 5 as providing the optimal trade-off between runtime and precision recall performance. 326 
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On the trypsinized dataset (full human proteome), we also swept 327 

the 𝑘 and 𝜎𝑘𝑁𝑁 parameters of the NN classifier (Figures B3, B4). 328 

Here large values of 𝑘 introduce modest reductions in precision 329 

recall performance, while the model is extremely sensitive to the 330 

selection of 𝜎𝑘𝑁𝑁. Based on this analysis, we suggest that good 331 

choices of these parameters are 𝑘 = 10 and 𝜎𝑘𝑁𝑁 = 0.5. 332 

We swept all parameters of the hybrid classifier for the trypsinized 333 

dataset as well (hybrid ℎ parameter, 𝑘, 𝜎𝑘𝑁𝑁, and cut-off) (Figures 334 

B5-8). Here, the HMM cut-off parameter had less impact on runtime 335 

than for the pure HMM Bayesian classifier, but we still found a cut-336 

off of 5 to be optimal. Higher values of 𝑘 improved precision recall 337 

performance for the hybrid 338 

model, contrary to the results 339 

of the NN classifier on its own, and we therefore suggest setting 𝑘 340 

to 10000. 𝜎𝑘𝑁𝑁 had minimal impact of any kind, in contrast to its 341 

significant impact on the precision recall of the NN classifier; we 342 

nevertheless chose to set it to 0.5 in light of the data from 343 

parameter tuning for the NN classifier on its own. We also found 344 

that higher values of ℎ improved performance, though the impact 345 

plateaus after ℎ of about 1000, and we used that value for later 346 

experiments.  347 

After tuning parameters, we compared the performance of the 348 

different classifiers when applied to 10,000 simulated 349 

fluorosequencing reads of peptides drawn randomly from all tryptic 350 

 

Figure 8. Comparison of the HMM 
(Bayesian), hybrid, and NN classifiers 
on a dataset of 10K reads from 
peptides chosen randomly from all 
20,659 human proteins trypsinized 
and labeled on D/E, C, and Y. (A) The 
precision recall curves. (B) Runtimes. 
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Figure 9. Comparison of the hybrid 
classifier on a dataset of 10K reads 
from peptides chosen randomly 
from all 20,659 human proteins 
cleaved with EndoPRO and labeled 
with three different labeling 
strategies. (A) The precision recall 
curves. (B) Runtimes. 
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peptides in the human proteome (Figure 8). The hybrid classifier 351 

achieved similar precision recall curves to the Bayesian HMM 352 

classifier, which was much better than the precision recall curve of 353 

the NN classifier. The hybrid classifier also achieved runtimes of the 354 

same order of magnitude as the NN classifier, which was 355 

significantly faster than the runtime of the Bayesian HMM classifier. 356 

We also studied how the number of fluorophore colors affected the 357 

runtime and precision/recall of the hybrid classifier (Figure 9). We 358 

found that improvements in precision recall were possible with 359 

each additional color of fluorophore, but this did come at the cost 360 

of longer runtimes. 361 

We also investigated the effect of varying sizes of reference 362 

proteomes on the hy rid classifier’s performance, using the three 363 

color trypsinized dataset (Figure 10). We found that significantly better performance was possible when 364 

the reference database was smaller. 365 

The precision/recall curves plotted above (Figures 8-10) show the actual precision/recall scores based 366 

on data with known peptide classifications. When working with real data this will typically not be 367 

possible, because the real classifications will not be known. It is therefore important that the assignment 368 

probabilities produced by the classifier be well-calibrated, so that an estimate of the precision/recall (or 369 

as is more often the case in protein mass spectrometry, the false discovery rate (FDR)) can be computed 370 

in the absence of known labels. We verified that the probabilities output by the hybrid HMM classifier 371 

were indeed well-calibrated relative to the true assignment probabilities (Figure 11A). This in turn 372 

allowed us to compute a predicted precision/recall curve assuming that each classification is fractionally 373 

 

Figure 10. Comparison of the hybrid 
classifier across datasets of 10K 
reads each from peptides chosen 
randomly from different numbers of 
proteins treated with the same 
protease and labeling scheme. (A) 
The precision recall curves. (B) 
Runtimes. 
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correct with a probability given by its classification score. A comparison of this predicted P/R with the 374 

actual precision/recall curve for the same set of reads shows excellent agreement (Figure 11B). 375 

Whatprot specifically attempts to assign each raw fluorosequencing read to one or more peptides from 376 

the reference database, i.e., to identify and score peptide-read matches (PRMs), a process highly 377 

analogous to analytical interpretation of shotgun mass spectrometry (MS) proteomics data in which a 378 

key step is comparing experimental peptide mass spectra to a reference proteome (finding peptide-379 

spectral matches, or PSMs [13]). However, observing multiple reads mapping to the same peptide will 380 

tend to increase the confidence that peptide is present in the sample, just as observing multiple 381 

peptides from the same protein will similarly increase confidence in that protein being present. Thus, we 382 

asked if considering the PRMs collectively led to performance increases for identifying peptides and 383 

proteins. 384 

 

Figure 11. Analysis of the accuracy of probability estimates given as scores by the classifier. Based on 10K reads from 
peptides chosen randomly from all 20,659 human proteins cleaved with EndoPRO and labeled on D/E,C,Y,K,H. (A) 
Classification results were sorted by their predicted accuracy scores, and then equally distributed between 100 buckets. 
The average predicted and true accuracy scores were then computed for each bucket and plotted. (B) The true result 
precision/recall curve was computed as normal, while the predicted result precision/recall curve was plotted assuming 
each classification was fractionally correct according to its predicted accuracy score. 
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As shown in (Figure 12), proteins can 385 

be identified correctly at much higher 386 

rates than peptides, which are similarly 387 

identified at higher rates than 388 

individual reads. In fact, provided that 389 

a protein possesses some well-390 

identified peptides that are unique, it 391 

can typically be identified with very 392 

high accuracy. For this test, we used a 393 

very simple protein inference scheme. 394 

First each peptide was scored to the 395 

maximum score of all reads identifying 396 

it, while penalizing reads which 397 

identified more than one peptide 398 

(dividing by 𝑛 if 𝑛 peptides were 399 

identified). Second each protein was 400 

scored as the maximum score of all peptides it contains, penalizing peptides which are associated with 401 

more than one protein (again dividing by 𝑛 if 𝑛 proteins were associated). However, the problem of 402 

integrating peptide level observations to protein observations has been studied extensively for MS [14] 403 

[15], and it is likely that these techniques will offer similarly strong interpretive power to the case of 404 

single molecule protein sequencing.  405 

Figure 12. Precision and recall are improved for proteins by integrating 
identifications across peptides. The example shows 10K reads from 
peptides derived from 100 proteins randomly selected from the human 
proteome, considering trypsin digestion and labels on D/E, C, and Y. 
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Discussion 406 

We developed an HMM for interpreting single molecule protein fluorosequencing data and showed that 407 

a hybrid HMM/kNN model can achieve a high precision and recall comparable the HMM alone while 408 

maintaining a runtime comparable to the much faster kNN.  409 

It is worth emphasizing that these analyses were performed on datasets of 10,000 raw fluorosequencing 410 

reads. In practice, users will likely want to analyze millions to billions of reads, so runs that completed in 411 

a seemingly reasonable amount of time might still be intractable in these scenarios with larger datasets, 412 

or at a minimum require computing clusters with high parallelization. For analyzing the current datasets 413 

in the runtime charts (Figures 8-10), note that the blue part of the bar graphs indicates the classify time, 414 

which will scale with the number of reads being classified (if all else remains equal), and the orange part 415 

of the graph indicates setup time, which should remain constant regardless of the number of reads 416 

(though it changes depending on the model and the size of the reference set). 417 

It is also interesting that the HMM pruning operation is more necessary with longer peptides and more 418 

colors of fluorophores; with the trypsinized dataset labeling D/E, C, and Y, omitting pruning had little 419 

consequence, but in moving to cyanogen bromide with D/E, C, Y, and K, we observed a runtime speedup 420 

of about 1000-fold. 421 

Finally, our data demonstrates that with a proper selection of parameter values, the hybrid model can 422 

achieve precision and recall performance virtually identical to the HMM Bayesian approach alone, while 423 

providing those results in a fraction of the time. Similarly, the pruning operation employed in the HMMs 424 

has no noticeable positive or negative effect on the precision recall curves while providing a 425 

considerable improvement in runtime performance. 426 
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A number of analytical techniques common in related fields were not explored. In tandem mass 427 

spectrometry (MS/MS), peptide spectral mapping is typically done either through database lookups 428 

and/or the use of simulated outcomes. Simulated mass spectra, consisting of ion pairs for the C- and N- 429 

terminal fragments for each potential breakage point, can be compared to the real data collected from 430 

the instrument [13]. Recent advances have been achieved by using deep learning to predict 431 

fragmentation behavior with higher quality than is possible with more traditional methods [16][24]. 432 

While we use the notion of matching fluorosequencing reads to a reference database, the specific 433 

algorithms are distinct. 434 

Nevertheless, of possible relevance from the field of MS/MS is the analysis of the false discovery rate 435 

(FDR) [25][26]. The FDR is affected by two distinct sources: a peptide may be misattributed to the wrong 436 

peptide, even when the true peptide is present in the reference dataset, and MS/MS datasets contain 437 

significant amounts of modified peptides or contaminants, whose spectra may be mistakenly assigned to 438 

peptides in the reference set [27]. FDR is typically evaluated using a decoy database, such as is 439 

generated using reversed proteins from the target database. The FDR can then be set by referring to the 440 

number of hits in the decoy database given a particular score, as the decoy database is designed such 441 

that it should in theory never have hits for the biological sample being analyzed [17]. While an estimate 442 

of FDR based in theoretical analysis of the problem could find the misattribution rate of true peptides, 443 

even this estimate would be incomplete, because there are errors in mass spectra of peptides that 444 

cannot be accounted for by existing theory; furthermore, any effect of modifications or contaminants 445 

would likely be omitted. 446 

The utility of a similar decoy database strategy for estimating FDR for fluorosequencing is unknown and 447 

remains to be established. We note however that, due to the rigorous probabilistic nature of our 448 

analysis, a reasonable estimate of FDR can be performed by subtracting the sum of PRM scores from the 449 

number of PRMs. This is the same as one minus the precision in a predicted precision/recall curve, and 450 
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the proximity of our predicted precision/recall curve to the real curve for a known dataset demonstrates 451 

the feasibility of this approach (Figure 11). This analysis likely fails to account for the contributions of 452 

modifications and contaminants. We therefore plan to explore this problem more extensively in future 453 

work. 454 

We also considered techniques for DNA sequence reconstruction. In general, DNA sequencing provides 455 

de novo sequence reconstructions and does not use reference database matching, and therefore is not a 456 

good model for fluorosequencing. Nevertheless, base calling strategies may have some relevance. For 457 

example, methods for base-calling from conventional (e.g. Illumina style) DNA sequencing are 458 

straightforward [18] [19], and although errors occur, they are rare [20]. Analysis of errors in DNA 459 

sequencing is typically performed using multiple sequence alignment or k-mer based methods [21]. 460 

Because the error rates are typically much lower in DNA sequencing than in fluorosequencing, we 461 

believe existing software is unlikely to be effective in this new domain. 462 

Nanopore DNA sequence analysis methods could also be considered. Nanopores, similar to 463 

fluorosequencing, deal with single molecule data and the concomitant statistical noise that process 464 

involves. However, nanopore data is on a real time continuum, with a DNA fragment which may move 465 

through the nanopore at variable rates during sequencing. Base-calling, the assignment of nucleic acid 466 

bases to chunks of sequencing information, is again the step most analogous to fluorosequencing. State 467 

of the art base-calling methods for nanopore sequencing typically use either HMMs or recurrent neural 468 

networks (RNNs). Comparisons of existing approaches suggest that RNNs slightly outperform HMMs in 469 

this domain [22]. While this suggests that RNNs are worth exploring for fluorosequencing data, we have 470 

avoided this approach for two reasons. First, RNNs are a deep learning technique, which invariably 471 

requires access to massive amounts of data; this is not currently feasible with fluorosequencing unless 472 

that data is simulated. Second, our approach suggests the possibility of direct estimation of parameters 473 
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using some variant of the Baum-Welch algorithm adapted to our use case, which we believe would be 474 

significantly more difficult in an RNN based approach [23]. 475 

Conclusions 476 

We have developed a powerful computational tool for the analysis of protein fluorosequencing data, 477 

which significantly increases the complexity of applications available to this new technology. This tool 478 

includes critically important optimizations which make our approach feasible in practice. 479 

In future work we plan to implement a variation of the Baum-Welch algorithm to fit the parameters to 480 

data from a known peptide. We also wish to explore peptide and protein inference methods using 481 

peptide data classified using these methods. We may also explore de novo recognition of labels without 482 

use of a reference database. 483 
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Appendix A – detailed 562 

descriptions and proofs of 563 

algorithms 564 

A0 – crib sheet for variables used 565 

throughout appendix A 566 

  567 

Variable crib sheet 

𝒇(𝑡) Cumulative probabilities for each state at timestep 
𝑡 

𝓯(𝑡) Tensor form of 𝒇(𝑡) 

𝑶(𝑡) HMM Emission matrix for timestep 𝑡 

𝓞(𝑡) Tensor form of 𝑶(𝑡) 

�̂�(𝑡) A pruned approximation of 𝓞(𝑡) 

𝑻 The HMM transition matrix 

𝓣 Tensor form of 𝑻 

�̂�(𝑡) A pruned approximation of 𝓣 at timestep 𝑡 

𝑇 The number of timesteps 

𝑌1:𝑇 Random variables representing the series of 
observations 

𝑦1:𝑇  The true values of 𝑌1:𝑇  

𝑋1:𝑇 Random variables representing the state of the 
HMM across time 

𝑍 Random variable representing the peptide 

𝑧 True value of 𝑍 

𝑠 The number of states of a fluorophore 

Λ The number of fluorophores 

𝐶 The number of colors of fluorophore 

Λ𝑐  The number of fluorophores of color 𝑐 

𝜌 Number of amino acids successfully removed by 
Edman degradation 

𝑐̅ Color of N-terminal amino acid 

𝜆𝜌,𝑐 Number of amino acids which can accept a label 
of color 𝑐 when 𝜌 amino acids have been removed 
from the peptide 

𝜙𝑐 Number of functioning fluorophores of color 𝑐 
remaining for the peptide 

𝛼 Number of amino acids in the peptide (before 
sequencing) 

𝑝𝑐 Fluorophore loss rate for color 𝑐 

𝓑(𝑐) A factored component of 𝓣 representing loss of 
fluorophores of color 𝑐 

�̂�(𝑡,𝑐) A pruned approximation of �̂�(𝑐) at timestep 𝑡 

𝑒 Edman cycle failure rate 

𝓔 A factored component of 𝓣 representing Edman 
degradation success and failure 

�̂�(𝑡) A pruned approximation of 𝓔 at timestep 𝑡 

𝑑 Peptide detachment rate 

𝓓 A factored component of 𝓣 representing peptide 
detachment 

�̂�(𝑡) A pruned approximation of 𝓓 at timestep 𝑡 

𝑟 Number of values of 𝓞 kept during pruning 

𝑟𝑐 Number of fluorophore counts of color 𝑐 kept 
during pruning 

𝑟𝑐
(𝑡)

 𝑟𝑐 at time 𝑡 

�̅� Number of amino acid counts kept during pruning 

�̅�(𝑡) �̅� at time 𝑡 

ℎ The number of peptides selected by the kNN in 
the hybrid model 

𝜁ℎ  The set of peptides selected by the kNN in the 
hybrid model 
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A1 – HMM state space reduction 568 

The basics 569 

For fluorophores that are distinguishable and dependent on each other, where 𝑠 is the number of states 570 

of one fluorophore, and Λ is the number of fluorophores, the number of states of the whole system is 571 

given as in [12] by: 572 

𝑠Λ (7) 573 

In contrast, if the fluorophores are indistinguishable and independent of each other, the number of 574 

states in the system is instead given by the combinatoric equation from [12]: 575 

(
Λ + 𝑠 − 1

𝑠 − 1
) (8) 576 

Imaging is typically performed with high concentrations of the antioxidant Trolox [2] and for relatively 577 

short time intervals (100 msec); reversibly photobleached fluorophores do not occur frequently in our 578 

data and we ignore them as a first approximation. Therefore, we take 𝑠 to be 2, with one state for a 579 

functioning fluorophore, and another for a missing, photobleached, or chemically destroyed 580 

fluorophore. This reduces (8) to Λ + 1 states given Λ indistinguishable and independent fluorophores. 581 

More colors 582 

Obviously, a red fluorophore is distinguishable from a blue one. But we would still like to benefit from 583 

the indistinguishability of red fluorophores from red fluorophores, and of blue fluorophores from blue 584 

fluorophores. This is modeled by first considering the states for each color of fluorophore 585 

independently, and then taking the cartesian product of these state spaces. For 𝐶 colors of fluorophore, 586 

where Λ𝑐 is the number of fluorophores of color 𝑐, this results in the number of states given by: 587 

∏(Λ𝑐 + 1)

𝐶

𝑐=1

(9) 588 
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Each state then represents the number of remaining active fluorophores for each of our 𝐶 colors of 589 

fluorophore. 590 

Edman degradation 591 

Our second challenge is the inclusion of Edman degradation in the HMM. Sequential removal of the N-592 

terminal amino acid from each peptide breaks the assumption of indistinguishable fluorophores, which 593 

is the basis for the state reduction performed in [12]. However, through inductive reasoning we show 594 

that our model meets a weaker criterion, which can be used to merge states together as desired: 595 

 Any two states with the same numbers of fluorophores of each color and the same 

number of amino acids are equally likely. 

 

(10) 

 

If we ignore Edman degradation, this follows directly from the assumed indistinguishability property of 596 

fluorophores of the same color; if two fluorophores behave identically, they are equally likely to be 597 

missing, photobleached, or chemically destroyed, thus it follows by symmetry that any two states with 598 

the same numbers of indistinguishable fluorophores of each color are equally likely. If we consider 599 

Edman degradation, then (10) is true for all states where no amino acids have yet been successfully 600 

removed. Let 𝜌 indicate the number of amino acids removed from the original peptide. We have then 601 

shown that (10) is true when 𝜌 = 0. 602 

If states with identical fluorophore counts are equally probable for all states with 𝜌 amino acids 603 

removed, it can be shown that all states with equal fluorophore counts are equally probable for all 604 

states with 𝜌 + 1 amino acids removed. For removal of an amino acid that can’t accept fluorophores 605 

under the experimental setup this is trivial, so consider a peptide with 𝜌 removed amino acids, an N-606 

terminal amino acid which accepts fluorophores of color 𝑐̅, and 𝜆𝜌,𝑐̅ amino acids total which can accept a 607 
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label of color 𝑐̅. Then let 𝜙𝑐̅ represent the number of remaining functional fluorophores for the peptide, 608 

satisfying 0 ≤ 𝜙𝑐̅ ≤ 𝜆𝜌,𝑐̅. 609 

There are several conditions of the peptide with  𝜙𝑐̅ functioning fluorophores scattered among the 𝜆𝜌,𝑐̅ 610 

amino acids that can accept a label. When we remove the N-terminal amino acid, we may or may not 611 

remove with it a functioning fluorophore. The states which do have a functioning fluorophore in the N-612 

terminal position (only possible when 𝜙𝑐̅ > 0) will have their other 𝜙𝑐̅ − 1 fluorophores distributed 613 

between the 𝜆𝜌,𝑐̅ − 1 remaining amino acids which can be labeled. Furthermore, these states are 614 

equally likely, as they are a subset of the equally likely states with 𝜙𝑐̅ fluorophores. Since trivially 𝜆𝜌,𝑐̅ −615 

1 = 𝜆𝜌−1,𝑐̅, these states map one-to-one with the states for the peptide with one less amino acid 616 

remaining, when it has 𝜙𝑐̅ − 1 dyes. 617 

When 𝜙𝑐̅ < 𝜆𝜌,𝑐̅, there are states with no fluorophore in the N-terminal position, even though the N-618 

terminal amino acid can accept one. Then the 𝜙𝑐̅ fluorophores will be distributed with equal 619 

probabilities among the  𝜆𝜌,𝑐̅ − 1 = 𝜆𝜌−1,𝑐̅ remaining amino acids which can be labeled. Similarly to the 620 

other case, these states map one-to-one with the states for the peptide less one amino acid when it has 621 

𝜙𝑐̅ dyes. 622 

The equally distributed probabilities and one-to-one correspondence between states across this amino 623 

acid removal ensures that these transformations do not break our guarantees of equal probabilities for 624 

𝜌 + 1 amino acids removed. Iteratively applying this reasoning, starting with 𝜌 = 0, until we prove that 625 

states where 𝜌 = 𝛼 are equally likely if they have the same fluorophore counts, demonstrates that (5) is 626 

true under the assumptions we have taken. 627 

This proves (10), which allowed us to safely merge states that share both the same fluorophore counts 628 

by color and the same numbers of amino acids. 629 
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Transition probabilities 630 

We also need to know the transition probabilities for our new reduced state space. To deal with peptide 631 

detachment is trivial. Dye-loss, either for dyes missing before sequencing begins, or from chemical 632 

destruction during sequencing, can be modeled with a binomial distribution. This follows from the 633 

assumption that the fluorophores behave independently of each other. 634 

For Edman degradation, there is of course a probability of success or failure of the degradation step, 635 

which we model as a Bernoulli random variable. In the case of success, we employ an additional 636 

Bernoulli random variable to model the probability of losing or not losing a functioning fluorophore. 637 

Because the true states within a merged state are equally likely, we can use combinatorics to count the 638 

num er of states which will lose a dye, and the num er that won’t. Together these values can be used 639 

to find the probability of losing a fluorophore given a successful Edman degradation, as shown in the 640 

following formula, which conveniently reduces to a simple fraction: 641 

(
𝜆𝜌,�̅�−1

𝜙�̅�−1
)

(
𝜆𝜌,�̅�
𝜙�̅�
)
=
𝜙𝑐̅
𝜆𝜌,𝑐̅

(11) 642 

State reduction conclusions 643 

This state reduction provides a considerable algorithmic complexity improvement to the HMM forward 644 

algorithm. The complexity of the forward algorithm is 𝑂(𝑆2𝑇), where 𝑆 is the number of states, and 𝑇 is 645 

the number of timesteps. Then, if implemented with the true state space of a labeled peptide, the 646 

number of states 𝑆 is 𝑂(𝛼2Λ), and we get a complexity of 𝑂(𝛼24Λ𝑇) for the HMM forward algorithm, 647 

where 𝛼 is the number of amino acids and Λ is the total number of fluorophores (of any color). 648 

However, if we use the reduced state space, then 𝑆 is 𝑂(𝛼∏ Λ𝑐
𝐶
𝑐=1 ), giving an algorithmic complexity of 649 

𝑂(𝛼2(∏ Λ𝑐
2𝐶

𝑐=1 )𝑇) for the forward algorithm, where 𝐶 is the number of fluorophore colors being used 650 

and Λ𝑐 is the number of fluorophores of color 𝑐. The scaling in either case is dominated by values of Λ or 651 
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Λ𝑐, which ranges from 1 to about 25 for human tryptic peptides, though in rare cases Λ𝑐 can exceed 652 

100. 653 

A2 – Transition matrix factoring 654 

The concept 655 

Multiplication by sparse matrices is far more efficient than with dense matrices. Matrix vector 656 

multiplication with a dense matrix is 𝑂(𝑆2) where 𝑆 is the size of the vector; for this application vectors 657 

with thousands of entries are not uncommon, and even larger vectors are possible, although this 658 

depends on the protease and labeling scheme used. For a sparse matrix, matrix vector multiplication can 659 

be made to be 𝑂(𝑉), where 𝑉 is the number of non-zero entries in the matrix. For highly sparse 660 

matrices this can be a significant improvement. 661 

Since peptides cannot gain amino acids or functioning fluorophores during sequencing, a basic transition 662 

matrix for fluorosequencing has zeros except for entries for transitions in which the numbers of 663 

fluorophores of each color is decreasing or staying the same. While this does reduce the number of 664 

necessary operations, it only does this by a constant factor, with no effect on the asymptotic behavior in 665 

the limit. Additionally, the number of amino acids either stays the same, decreases by one (from a 666 

successful Edman degradation), or decreases to zero (from a peptide detachment event). This did 667 

improve the asymptotic behavior in the number of non-zero entries of the transition matrix, reducing 668 

this from 𝑂(𝛼2∏ Λ𝑐
2𝐶

𝑐=1 ) to 𝑂(𝛼∏ Λ𝑐
2𝐶

𝑐=1 ). 669 

However, we did better by factoring this matrix (Figure 4). We used the independence of our different 670 

forms of error, with one matrix in the factored product for each type of error. To demonstrate this 671 

factorization, we reformulated our problem in tensor notation. The vector for the state space of a 672 

peptide with 𝐶 colors not undergoing Edman degradation or peptide detachment can be viewed as a 673 

tensor of order 𝐶. Each index of the tensor maps to the fluorophore counts of a different color, and the 674 
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value of an index 𝑖𝑐 indicates the number of functioning fluorophores of color 𝑐, and satisfies 0 ≤ 𝑖𝑐 ≤675 

Λ𝑐. We also have indices 𝑗𝑐 which are similarly defined. Since the transition matrix is a linear mapping 676 

from and to this tensor of order 𝐶, it is necessarily of order 2𝐶. We use the Einstein summation 677 

convention, and three multi-indices 𝒊 = 𝑖1𝑖2… 𝑖𝐶  and 𝒋 = 𝑗1𝑗2…𝑗𝐶  and 𝒌 = 𝑘1𝑘2…𝑘𝐶  for convenience. 678 

the matrix vector multiplication operation for one step of the HMM forward algorithm is then given by: 679 

𝓯𝒌
(𝑡+1) = 𝓞𝒌𝒋

(𝑡+1)𝓣𝒋𝒊𝓯𝒊
(𝑡) (12) 680 

Where (𝑡) and (𝑡 + 1) indicate the timestamp of the values in the order 𝐶 tensor 𝓯(𝑡), which is indexed 681 

by the numbers of working fluorophores for each color and is the tensor form of 𝒇 from (1), 𝓣 is the 682 

transition matrix 𝑻 converted into tensor form, 𝓞 is the emission matrix 𝑶 converted into tensor form.  683 

Considering fluorophore loss only 684 

Assuming no interactions between different fluorophores and ignoring Edman degradation and peptide 685 

detachment, 𝓣 satisfies the following equation: 686 

𝓣𝒋𝒊 = {
∏(

𝑖𝑐
𝑗𝑐
)𝑝𝑐

𝑖𝑐−𝑗𝑐(1 − 𝑝𝑐)
𝑗𝑐

𝐶

𝑐=1

, if 𝒋 ≤ 𝒊

0, otherwise

(13) 687 

Where 𝑝𝑐 is the per cycle dye loss rate of the fluorophores for color 𝑐. This is simply the product of the 688 

binomial distributions for each indexed color of fluorophore. To improve the sparsity of this 689 

representation, we can factor 𝓣 into second order tensors 𝓑(1)𝓑(2)…𝓑(𝐶) such that: 690 

𝓑𝑗𝑖
(𝑐) = {

(
𝑖

𝑗
)𝑝𝑐

𝑖−𝑗(1 − 𝑝𝑐)
𝑗, if 𝑗 ≤ 𝑖

0, otherwise

(14) 691 

This produces a factorization of 𝓣: 692 

𝓣𝒋𝒊 = 𝓑𝑗1𝑖1
(1) 𝓑𝑗2𝑖2

(2) …𝓑𝑗𝐶𝑖𝐶
(𝐶) (15) 693 
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We can plug this into (12) and find: 694 

𝓯𝒋
(𝑡+1)

= 𝓑𝑗1𝑖1
(1)
𝓑𝑗2𝑖2
(2)

…𝓑𝑗𝐶𝑖𝐶
(𝐶)

𝓯𝒊
(𝑡) (16) 695 

This reduces the algorithmic complexity in this simple case from 𝑂(∏ Λ𝑐
2𝐶

𝑐=1 ) to 696 

𝑂 ((∏ Λ𝑐
𝐶
𝑐=1 )(∑ Λ𝑐

𝐶
𝑐=1 )). 697 

Fluorophore loss and Edman degradation 698 

We can expand on this to consider the Edman degradation: In that case we need more indices for the 699 

number of remaining amino acids. We modify (12) with additional indices 𝑢 and 𝑣 which satisfy 0 ≤700 

𝑢 ≤ 𝛼 and 0 ≤ 𝑣 ≤ 𝛼, indicating the number of successful amino acid removals, or alternatively the 701 

position of an amino acid in the peptide (i. e., the amino acid at the N-terminus of the peptide when 𝑢 702 

amino acids have been removed). This gives: 703 

𝓯𝑣𝒌
(𝑡+1)

= 𝓞𝒌𝒋
(𝑡+1)

𝓣𝒗𝒋𝑢𝒊𝓯𝑢𝒊
(𝑡) (17) 704 

Note that the emission tensor 𝓞 is unaffected by the amino acid count, and depends only on the 705 

fluorophore counts, so it does not need to be modified. 706 

We modify 𝓣 from (13) to model Edman degradation, and the exact form of 𝓣 will depend on the 707 

peptide under consideration. Let 𝑐�̅� be a number indicating the color of fluorophore at position 𝑢 in the 708 

peptide, with a value of 0 indicating no fluorophore, and let 𝜆𝑢,𝑐�̅� indicate the number of fluorophores 709 

of color 𝑐�̅� remaining when 𝑢 − 1 amino acids have been removed from the peptide. Then 𝓣 is defined 710 

by: 711 

𝓣𝑣𝒋𝑢𝒊 =

{
 
 

 
 
𝑒𝛽(𝒊, 𝒋), if 𝒋 ≤ 𝒊 and 𝑣 = 𝑢
(1 − 𝑒)𝛽(𝒊, 𝒋), if 𝒋 ≤ 𝒊 and 𝑣 = 𝑢 + 1 and 𝑐�̅� = 0

(1 − 𝑒)((1 −
𝑖𝑐�̅�
𝜆𝑢,𝑐�̅�

)𝛽(𝒊, 𝒋) + (
𝑖𝑐�̅�
𝜆𝑢,𝑐�̅�

) �̅�(𝒊, 𝒋, 𝑢)) , if 𝒋 ≤ 𝒊 and  𝑣 = 𝑢 + 1 and 𝑐�̅� > 0   

0, otherwise

(18) 712 
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Where: 713 

𝛽(𝒊, 𝒋) =∏(
𝑖𝑐
𝑗𝑐
) 𝑝𝑐

𝑖𝑐−𝑗𝑐(1 − 𝑝𝑐)
𝑗𝑐

𝐶

𝑐=1

(19) 714 

And: 715 

�̅�(𝒊, 𝒋, 𝑢) = (
𝑖𝑐�̅� − 1

𝑗𝑐�̅�
)𝑝𝑐�̅�

𝑖�̅�𝑢−1−𝑗�̅�𝑢(1 − 𝑝𝑐�̅�)
𝑗�̅�𝑢  ∏ (

𝑖𝑐
𝑗𝑐
) 𝑝𝑐

𝑖𝑐−𝑗𝑐(1 − 𝑝𝑐)
𝑗𝑐

1≤𝑐≤𝐶
𝑐≠𝑐�̅�

(20)
 716 

The probability of an Edman degradation failure is essentially the same as in (13), but multiplied by 𝑒 to 717 

account for the probability of failure. The probability for a transition involving a successful Edman 718 

degradation event which removes an unlabelable amino acid is similarly just like in (13) but multiplied 719 

by (1 − 𝑒), the probability of success. If the amino acid in question is labelable by a color 𝑐�̅�, then we 720 

may or may not remove a fluorophore of that color in the transition, so we need to take the sum of both 721 

possibilities. 𝛽 in (19) gives the standard product of binomials formula from (13), but needs to be 722 

multiplied by the probability of no dye loss, which in (18) is (1 −
𝑖�̅�𝑢
𝜆𝑢,�̅�𝑢

). This is then summed with �̅� 723 

from (20) which gives the product of binomial probabilities starting with one less fluorophore of the 724 

color 𝑐�̅�, which in (18) is multiplied with the probability of losing a fluorophore with the Edman 725 

degradation, 
𝑖�̅�𝑢
𝜆𝑢,�̅�𝑢

. The sum of these two possibilities is then multiplied by the probability of an Edman 726 

degradation success, given by (1 − 𝑒). 727 

To make this more efficient, we introduce a new tensor 𝓔 which represents a transformation for Edman 728 

degradation. We define tensor 𝓔 as: 729 
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𝓔𝑣𝒌𝑢𝒋 =

{
 
 
 

 
 
 
𝑒, if 𝑣 = 𝑢 and 𝒌 = 𝒋
1 − 𝑒, if 𝑣 = 𝑢 + 1 and 𝒌 = 𝒋 and 𝑐�̅� = 0

(1 − 𝑒)(1 −
𝑗𝑐�̅�
𝜆𝑢,𝑐�̅�

) , if 𝑣 = 𝑢 + 1 and 𝒌 = 𝒋 and  𝑐�̅� > 0

(1 − 𝑒)(
𝑗𝑐�̅�
𝜆𝑢,𝑐�̅�

) , if 𝑣 = 𝑢 + 1 and 𝑘𝑐�̅� = 𝑗𝑐�̅� − 1 and  𝑘𝑐 = 𝑗𝑐∀𝑐 ≠ 𝑐�̅� and  𝑐�̅� > 0

0, otherwise

(21) 730 

This provides the following factorization of 𝓣: 731 

𝓣𝑣𝒌𝑢𝒊 = 𝓔𝑣𝒌𝑢𝒋𝓑𝑗1𝑖1
(1)
𝓑𝑗2𝑖2
(2)

…𝓑𝑗𝐶𝑖𝐶
(𝐶) (22) 732 

By substituting into (17) and adding an additional multi-index 𝒍 = 𝑙1𝑙2… 𝑙𝐶  we get: 733 

𝓯𝑣𝒍
(𝑡+1) = 𝓞𝒍𝒌

(𝑡+1)𝓔𝑣𝒌𝑢𝒋𝓑𝑗1𝑖1
(1) 𝓑𝑗2𝑖2

(2) …𝓑𝑗𝐶𝑖𝐶
(𝐶) 𝓯𝑢𝒊

(𝑡) (23) 734 

Despite its high dimensionality, 𝓔 is highly sparse, with no more than three non-zero entries per column 735 

(here, meaning column in the original non-tensor form matrix). This reduces the algorithmic complexity 736 

from 𝑂(𝛼∏ Λ𝑐
2𝐶

𝑐=1 ) to 𝑂 (𝛼(∏ Λ𝑐
𝐶
𝑐=1 )(∑ Λ𝑐

𝐶
𝑐=1 )). We note that while the extraction of the Edman 737 

degradation tensor appears to have little direct effect on the algorithmic complexity reduction, which is 738 

because it has a sparsity effect on the original transition tensor, properly handling Edman degradation is 739 

critical to this decomposition. We feel this is the easiest way to do this while also factoring the 740 

fluorophore loss effects into separate tensors. 741 

Everything all together 742 

Handling peptide detachment is simpler. We modify 𝓣 to be: 743 

𝓣𝑣𝒋𝑢𝒊 =

{
  
 

  
 
(1 − 𝑑)𝑒𝛽(𝒊, 𝒋, 𝑝), if 𝒋 ≤ 𝒊 and 𝑣 = 𝑢

(1 − 𝑑)(1 − 𝑒)𝛽(𝒊, 𝒋), if 𝒋 ≤ 𝒊 and 𝑣 = 𝑢 + 1 and 𝑐�̅� = 0

(1 − 𝑑)(1 − 𝑒)((1 −
𝑖𝑐�̅�
𝜆𝑢
) 𝛽(𝒊, 𝒋) + (

𝑖𝑐�̅�
𝜆𝑢
) �̅�(𝒊, 𝒋, 𝑢)) , if 𝒋 ≤ 𝒊 and  𝑣 = 𝑢 + 1 and 𝑐�̅� > 0   

𝑑, if 𝑗𝑐 = 0∀𝑐 and 𝑣 = 𝛼
0, otherwise

(24) 744 
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 his creates a new “empty” state which can always  e transitioned to with pro a ility 𝑑 of detachment. 745 

The probability of avoiding this state is (1 − 𝑑). The functions 𝛽 and �̅� are the same as before in (19) 746 

and (20). The matrix vector multiplication step of the HMM forward algorithm has not changed from 747 

(17). We can then construct a new tensor 𝓓 for peptide detachment which satisfies: 748 

𝓓𝑤𝒉𝑣𝒌 = {
1 − 𝑑, if 𝒉 = 𝒌 and 𝑤 = 𝑣 ≤ 𝛼
𝑑 if ℎ𝑐 = 0∀𝑐 and 𝑤 = 𝛼 + 1

(25) 749 

Then we find that: 750 

𝓣𝑤𝒍𝑢𝒊 = 𝓓𝑤𝒍𝑣𝒌𝓔𝑣𝒌𝑢𝒋𝓑𝑗1𝑖1
(1)
𝓑𝑗2𝑖2
(2)

…𝓑𝑗𝐶𝑖𝐶
(𝐶) (26) 751 

Substituting into (17) with another multi-index 𝒎 = 𝑚1𝑚2…𝑚𝐶 provides: 752 

𝓯𝑤𝒎
(𝑡+1) = 𝓞𝒎𝒍

(𝑡+1)𝓓𝑤𝒍𝑣𝒌𝓔𝑣𝒌𝑢𝒋𝓑𝑗1𝑖1
(1) 𝓑𝑗2𝑖2

(2) …𝓑𝑗𝐶𝑖𝐶
(𝐶) 𝓯𝑢𝒊

(𝑡) (27) 753 

𝓓 is clearly highly sparse, with two entries in each column of the original matrix in non-tensor form. 754 

Thus, 𝓓 has no impact on the algorithmic complexity of this operation. Although 𝓓 and 𝓔 could be 755 

combined to achieve this same algorithmic improvement, we found that this separation made our 756 

model easier to reason about and work with. 757 

Transition matrix factoring conclusions 758 

One of the benefits of this approach to algorithmic complexity reduction is that this factorization 759 

provides no loss to the theoretical accuracy of the forward algorithm. No theoretical approximations 760 

were necessary, aside from the unavoidable differences in floating-point round-off errors. This allows 761 

for highly accurate results with much more efficient runtime characteristics than a naïve 762 

implementation. 763 
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A3 – HMM pruning 764 

Because the emission matrix is diagonal, it is equivalent to the diagonal part of its Singular Value 765 

Decomposition (SVD), but with a reordering of its indices. This makes sparsification of this matrix 766 

equivalent to the Eckart-Young-Mirsky theorem; we can keep the largest 𝑟 values for some chosen value 767 

of 𝑟, and replace the rest of the matrix entries with zeros, having the minimum possible impact on the 768 

spectral and Frobenius norms for the chosen value of 𝑟. 769 

Furthermore, we can propagate this sparsification to the transition matrix. Consider the forward 770 

algorithm, with 𝑻 representing the transition matrix, and 𝑶(𝑡) representing the diagonal emission matrix 771 

for time 𝑡. Then if 𝒇(𝑡) represents the vector of intermediate probabilities at time 𝑡, we have: 772 

𝒇(𝑡+1) = 𝑶(𝑡+1)𝑻𝒇(𝑡) (28) 773 

Now we sparsify each 𝑶(𝑡) as discussed above, to get a series of �̂�(𝑡). This gives: 774 

𝒇(𝑡+1) = �̂�(𝑡+1)𝑻𝒇(𝑡) (29) 775 

Note that we have many copies of 𝑻, which are equal. For our next improvements we need these to be 776 

different for each timestep, so we can rewrite (29) with 𝑻(𝑡) for each timestep 𝑡, giving 777 

𝒇(𝑡+1) = �̂�(𝑡+1)𝑻(𝑡)𝒇(𝑡) (30) 778 

Here the values of many rows and columns of each 𝑻(𝑡) have been made unnecessary by the 779 

sparsification of its neighboring �̂�(𝑡+1) and �̂�(𝑡), as any vector product with �̂�(𝑡) will necessarily have 780 

zeros except for the 𝑟 entries retained, such that we need only keep the corresponding 𝑟 columns of 781 

𝑻(𝑡). Similarly, any entry in the vector product with 𝑻(𝑡) which is not multiplied by one of the 𝑟 entries  782 

retained in �̂�(𝑡+1) is multiplied by zeros, and is thus unnecessary, so we need only keep the 783 

corresponding 𝑟 rows of 𝑻(𝑡). Calling these approximations �̂�(𝑡), we get 784 
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𝒇(𝑡+1) = �̂�(𝑡+1)�̂�(𝑡)𝒇(𝑡) (31) 785 

This allows significant sparsity to be used (Figure 5). Previously this formula would have been 786 

𝑂(𝛼2𝑇∏ Λ𝑐
2𝐶

𝑐=1 ) to compute, while this reduces the algorithmic complexity to 𝑂(𝑟2𝑇). This 787 

improvement is beyond what is possible in a more traditional usage of sparse matrix multiplication. For 788 

sparse matrix multiplication, we would need to first multiply �̂�(𝑡) by �̂�(𝑡) or multiply �̂�(𝑡+1) by �̂�(𝑡). This 789 

will only permit you to sparsify your operations on the rows or the columns of 𝑻 but not both, giving a 790 

complexity of 𝑂(𝑟𝛼𝑇∏ Λ𝑐
𝐶
𝑐=1 ). While this is better than not using this inherent sparsity at all, 791 

preprocessing the transition matrix in consideration of the emission matrices on either side gives better 792 

results in algorithmic complexity. 793 

In practice, we use a more complicated pruning scheme, as detailed next. 794 

A4 – Combining transition matrix factoring with HMM pruning 795 

By making 𝑟 suitably small, HMM pruning can exhibit better algorithmic complexity than if we factor the 796 

transition matrix. However, we believe it is much better to combine these algorithmic enhancements 797 

(Figure 6). To do this, we need to switch into tensor notation, replacing our matrices and vectors with 798 

the tensor equivalents we constructed previously. This yields: 799 

𝓯𝑣𝒌
(𝑡+1) = �̂�𝒌𝒋

(𝑡+1)�̂�𝑣𝒋𝑢𝒊
(𝑡) 𝓯𝑢𝒊

(𝑡) (32) 800 

We also want to use the factorization from (26), using timestamp specific sub-tensors of each of the 801 

factored pieces. The factorization of (26) becomes: 802 

�̂�𝑤𝒍𝑢𝒊
(𝑡) = �̂�𝑤𝒍𝑣𝒌

(𝑡) �̂�𝑣𝒌𝑢𝒋
(𝑡) �̂�𝑗1𝑖1

(𝑡,1)�̂�𝑗2𝑖2
(𝑡,2)…�̂�𝑗𝐶𝑖𝐶

(𝑡,𝐶) (33) 803 

Substituting into (32) gives: 804 

𝓯 𝑤𝒎
(𝑡+1) = �̂�𝒎𝒍

(𝑡+1)�̂�𝑤𝒍𝑣𝒌
(𝑡) �̂�𝑣𝒌𝑢𝒋

(𝑡) �̂�𝑗1𝑖1
(𝑡,1)�̂�𝑗2𝑖2

(𝑡,2)…�̂�𝑗𝐶𝑖𝐶
(𝑡,𝐶)𝓯𝑢𝒊

(𝑡) (34) 805 
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Suppose we were to use standard sparse tensor multiplication techniques and carry this operation out 806 

from right to left. Each tensor �̂�𝑗𝑐𝑖𝑐
(𝑡,𝑐) can introduce any entry of input (index 𝑖𝑐) into as many as Λ𝑐 807 

indices of output (index 𝑗𝑐). The resulting computational complexity of the forward algorithm, even with 808 

the given sparsity, is then 𝑂(𝑟𝛼𝑇∏ Λ𝑐
𝐶
𝑐=1 ). 809 

If we preprocess the computation, pruning each operation now from both directions, the algorithmic 810 

complexity does not improve the way it does in the matrix case, although likely this would behave faster 811 

in practice. The problem is that the pruning operation itself needs to determine which rows to 812 

propagate forwards, which requires accessing every non-zero entry reachable in the forward direction. 813 

Many of these values are later pruned in the backwards direction, so the computation itself has much 814 

better sparsity, but the time to prune then dominates the algorithmic complexity result. 815 

To improve this further, we add structure to the pruning of �̂�(𝑡). Instead of keeping the 𝑟 largest values 816 

in �̂�(𝑡), we prune each index of �̂�(𝑡) independently. For additional convenience, we limit each index to a 817 

contiguous range of values. Then we let each index for any fluorophore color 𝑐 have 𝑟𝑐 values and allow 818 

�̅� values to index the number of amino acids. These simplifications may cause the pruning to be non-819 

optimal, but we accept this trade-off. 820 

We can then prune our tensors using their known structures (for example, the tensors �̂�(𝑡,𝑐) correspond 821 

to an upper triangular matrix). This time when we propagate the pruning results in both directions, the 822 

time required is only 𝑂(𝐶2) (the number of minimum and maximum indices to be propagated through 823 

each tensor scales with 𝐶, as does the number of tensors to be pruned). For the runtime of the tensor 824 

operations, consider each tensor individually. �̂�(𝑡) and �̂�(𝑡) are both highly sparse, so they contribute a 825 

constant modification to the number of rows or columns when propagating in either direction.  �̂�(𝑡) 826 

requires special handling. We track the detached state separately from the ordinary range, to avoid 827 

unnecessarily includin  a lar e ran e of states which don’t need to  e. 828 
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Then each �̂�(𝑡,𝑐) operates on an independent index, and therefore can be considered on its own. This 829 

tensor after pruning will have dimensions that are 𝑂(𝑟𝑐
2), and should have a constant effect on the 830 

number of elements input vs output. Therefore, each of these tensors will require an algorithmic 831 

complexity of 𝑂(𝑟𝑐�̅� ∏ 𝑟𝑐̃
𝐶
𝑐̃=1 ). Bringing this all together we get an algorithmic complexity of 832 

𝑂 (𝐶2 + �̅�(∑ 𝑟𝑐
𝐶
𝑐=1 )(∏ 𝑟𝑐

𝐶
𝑐=1 )) for processing one timestep. The full forward algorithm then has a 833 

complexity of 𝑂 (𝑇 (𝐶2 + �̅�(∑ 𝑟𝑐
𝐶
𝑐=1 )(∏ 𝑟𝑐

𝐶
𝑐=1 ))). 834 

One remaining clarification is the manner of choosing 𝑟𝑐 and �̅�. In fact, these values should not be kept 835 

constant; let us refer to the values for time 𝑡 as 𝑟𝑐
(𝑡)

 and �̅�(𝑡). �̅�(0) = 1 and �̅�(𝑡+1) = �̅�(𝑡) + 1, due to the 836 

possibility of amino acid removal. These on average are proportional to 𝛼. To get 𝑟𝑐
(𝑡), we keep all index 837 

values where a fluorophore count of that value has the observed fluorescence intensity for color 𝑐 at 838 

time 𝑡 within a specified confidence interval – perhaps within 3𝜎 of the mean, where 𝜎 is the standard 839 

deviation of the distribution. These will necessarily be contiguous. The number of indices kept is then 840 

𝑟𝑐
(𝑡). 841 

The standard deviation of a normal distribution scales with the square root of the intensity, and the 842 

number of possible index values is limited by the total possible number of fluorophores of color 𝑐. It 843 

follows that any removal of index values proportional to the standard deviation will satisfy 𝑟𝑐
(𝑡) < 𝛾√Λ𝑐 844 

for some constant 𝛾 dependent on the cutoff. Then the algorithmic complexity is given by 845 

𝑂 (𝑇 (𝐶2 + 𝛼(∑ √Λ𝑐
𝐶
𝑐=1 )(∏ √Λ𝑐

𝐶
𝑐=1 ))). 846 

We chose a specific pruning cut-off by sweeping this parameter and balancing the experimental runtime 847 

effects and the precision-recall curves which result from simulated data. 848 

  849 
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Appendix B – Supporting figures  850 

 851 

 852 

  853 

 

Figure B2. Tuning the pruning 
parameter of the Bayesian HMM 
classifier. Here we show a more 
extraordinary case than Figure B2. A: 
Precision/recall curves. B: Runtimes. 
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Figure B1. Tuning the pruning 
parameter of the Bayesian HMM 
classifier. Setting this parameter to 5 
(i. e., 5 𝜎) appears to provide the best 
trade-off. A: Precision/recall curves. 
B: Runtimes. 
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Figure B3. Tuning the k parameter of 
the kNN classifier. Setting 𝑘 to 10 
seems to provide the best trade-off 
A: Precision/recall curves. B: 
Runtimes. 
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Figure B4. Tuning the 𝝈 parameter 
of the kNN classifier. Setting 𝜎 to 0.5 
seems to provide the best trade-off. 
All settings showed a classify time of 
about 35 seconds, and a setup time 
of about 140 seconds. 
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 854 

 

Figure B7. Tuning k for the hybrid 
classifier. A k of 1000 or 10000 
provided the best results. A: 
Precision/recall curves. B: Runtimes. 
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Figure B8. Tuning the 𝝈 parameter 
of the hybrid classifier. Setting 𝜎 to 
0.5 seemed to provide the best 
trade-off. All settings had a classify 
time of about 50 seconds, and a 
setup time of about 140 seconds. 
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Figure B6. Tuning h for the hybrid 
classifier. An h of 1000 provided the 
best trade-off. A: Precision/recall 
curves. B: Runtimes. 
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Figure B5. Tuning the pruning 
parameter of the hybrid classifier. A 
value of 5 appeared to provide the 
best trade-off. A: Precision/recall 
curves. B: Runtimes. 
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