1 **RH: BIOGEOGRAPHY OF THE BLUE-SPOTTED SALAMANDER** 2 Historical Demography and Climate Driven Range Shifts in the Blue-3 spotted Salamander Under the Climate Change Scenarios 4 5 6 UTKU PERKTAŞ1 7 Department of Biology (Biogeography Research Lab.), Faculty of Science, Hacettepe University, 06800, 8 Beytepe, Ankara, Turkey: Department of Ornithology, American Museum of Natural History, New York, NY: 9 Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, 10 Kansas, 66045 11 AND CAN ELVERICI AND ÖZGE YAYLALI 12 13 Department of Biology (Biogeography Research Lab.), Faculty of Science, Hacettepe University, 06800, 14 Beytepe, Ankara, Turkey 15 16 ABSTRACT.- This study integrates phylogeography with distributional analysis 17 to understand the demographic history and range dynamics of a limited dispersal 18 capacity amphibian species, Blue-spotted Salamander (Ambystoma laterale), under 19 several climate change scenarios. For this we used an ecological niche modeling 20 approach, together with Bayesian based demographic analysis, to develop inferences 21 regarding this species' demographic history and range dynamics. The current model 22 output was mostly congruent with the present distribution of the Blue-spotted 23 Salamander. However, under both the Last Interglacial and the Last Glacial

¹ Corresponding E-mail: <u>perktas@hacettepe.edu.tr</u>, <u>uperktas@amnh.org</u>, <u>uperktas@ku.edu</u>

24	Maximum bioclimatic conditions, the model predicted a substantially narrower
25	distribution than the present. These predictions showed almost no suitable area in
26	the current distribution range of the species during almost the last 22.000 y before
27	present (ybp). The predictions indicated that the distribution of this species shifted
28	from eastern coast of northern North America to the southern part of the current
29	distribution range of the species. The Bayesian Skyline Plot analysis, which provided
30	good resolution of the effective population size changes over the Blue-spotted
31	Salamander history, was mostly congruent with ecological niche modeling
32	predictions for this species. This study provides the first investigation of the Blue-
33	spotted Salamander's late-Quaternary history based on ecological niche modeling
34	and Bayesian-based demographic analysis. In terms of the main result of this study,
35	we found that the species' present genetic structure has been substantially affected
36	by past climate changes, and this species has reached current distribution range
37	almost from nothing since the Last Glacial Maximum.
38	
39	INTRODUCTION
40	The effects of late-Quaternary climate changes on North American
41	biodiversity are considered to be dramatic (Pielou, 1991). Recent distribution
42	patterns must have occurred from glacier-free regions during the Last Glacial
43	Maximum (LGM). These recolonization events generally took place rapidly to
44	preglaciated regions (G. Hewitt, 2000). It is generally accepted that these refugia
45	were located in the south because evidence from palynological studies (Webb <i>et al.</i> ,
46	2003) shows that large changes in plant communities were also occurring rapidly.

47	Some recent studies have also shown that the distribution areas of some North
48	American species have changed almost completely, and their distribution has shifted
49	from south to north due to the changing climate (Perktaş and Elverici, 2020).
50	Therefore, many northern taxa have lower genetic diversity than their southern
51	counterparts. This is probably due to the fast post-glacial re-colonization, partial
52	extinction, and the fast colonization events in a short time (Hewitt, 1996). Until
53	recently, this low genetic variability has hampered our ability to detect the unique
54	genetic structure that can be found in taxa at higher latitudes.
55	The evaluation of mitochondrial DNA (mtDNA) diversity gives an
56	opportunity to understand species' demographic history from the recent past to the
57	present (Freeland, 2005) Integrating mtDNA diversity with distributional analyses
58	offers novel opportunities to understand such complex biogeographic stories (e.g.,
59	Klicka et al., 2011). The Blue-spotted Salamander (Ambystoma laterale) has one of the
60	northern-most distributions in North America with very limited dispersal ability
61	(Conant and Collins, 1991). During the Last Glacial Maximum (LGM, approx. 22,000
62	years before present), ice coverage extended over almost the entire current
63	distribution range of the Blue-spotted Salamander (Fig. 1). Hence, in this paper, we
64	aim to develop an integrative biogeographic survey on the Blue-spotted Salamander
65	to evaluate its demographic history under the climate change scenarios. This study
66	can be considered as an integration and continuation of the work of Demastes <i>et</i>
67	al. (genotype; 2007) with distributional projections derived from ecological niche
68	models (ENMs).
(0)	

69

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.26.509446; this version posted September 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

70	Methods
71	ECOLOGICAL NICHE MODELLING
72	Input data – We analyzed species occurrence data from GBIF (<u>www.gbif.org</u>),
73	ranging from 1964 to 2020 (n = 2561 after 781 duplicated occurrence records
74	removed), before checking for sampling bias and spatial autocorrelation (Brown,
75	2014) for occurrence records. We spatially filtered all records to eliminate multiple
76	records, leaving single 20 km records across the species' distribution. For this we
77	considered the low dispersal capacity of the Blue-spotted Salamander (see Ryan and
78	Calhoun, 2014; Vanek et al., 2019 for details). This yielded 553 unique occurrence
79	records for ecological niche modelling.
80	We downloaded bioclimatic data from the WorldClim database (Hijmans et
81	al., 2005, <u>http://www.worldclim.org</u>) for the Last Interglacial, three global climate
82	models (CCSM4, MIROC-ESM, and MPI-ESM-P) for the Last Glacial Maximum (~22
83	kybp), the mid-Holocene (~6 kybp), the present (~1960-1990), and future conditions
84	based on the RCP4.5 and RCP8.5 greenhouse gas scenarios (2050 and 2070) at a
85	spatial resolution of 2.5 arc-minutes. Bioclimatic data included 19 bioclimatic
86	variables derived from monthly temperature and precipitation values. Previous
87	studies (Campbell et al., 2015; Escobar et al., 2014) detected a number of apparent
88	artifacts in some of the climate datasets: mean temperature of the wettest quarter,
89	mean temperature of driest quarter, precipitation of the warmest quarter, and
90	precipitation of the coldest quarter (BIO8-9, BIO18-19, respectively). Therefore, we
91	excluded these variables from the pool of selected variables to build a model (for
92	details, also see Simoes et al., 2020). Since the Blue-spotted Salamander is one of the

93	rarest amphibian species in northeastern North America (Fig. 1; Ryan and Calhoun,
94	2014), all variables were masked to include all North America (-170° to 13° W and -
95	$50^{\rm o}$ to $84^{\rm o}$ N). We then inspected correlations between these bioclimatic variables to
96	produce three different climatic data sets based on different inter-variable
97	correlation coefficients (0.6, 0.7, 0.8, and 0.9). These included mean diurnal range
98	(BIO2), isothermality (BIO3), maximum temperature of warmest month (BIO5),
99	annual temperature range (BIO7), precipitation of wettest month (BIO13) and driest
100	month (BIO14) and precipitation seasonality (BIO15).
101	
102	DEMOGRAPHIC HISTORY
103	We applied the Bayesian Skyline Plot (BSP) method, implemented in BEAST
104	version 1.10.4 (Suchard et al., 2018), to explore the Blue-spotted salamander
105	demographic history. Since earlier studies have not reported any structure
106	(Demastes et al., 2007), we combined all mtDNA sequences before running the BSP
107	analysis, and this approach made the demographic history more comparable with
108	ecological niche modelling. Before the BSP runs, the best-fit substitution models
109	were identified for the mtDNA control region sequences in MEGA X (Kumar et al.,
110	2018). These were the Hasegawa-Kishino-Yano (HKY, AICc = 1775.424) for the
111	control region. Multiple independent Bayesian Skyline Plot runs were performed
112	using the following parameters: linear models, 10 million steps, parameters sampled
113	every 1000 steps, and a burn in of 10%. For the control region sequences, we used the
114	strict clock model with a default mutation rate under normal prior distribution [for
115	vertebrates, the widely-used 2% -6% substitutions/site/million years (Allio <i>et al.</i> ,

116 2017; for different examples, *see* also Brito, 2005; Pereira and Baker, 2006)]. The

117 effective sample size values of the parameters were over 200 for each run.

- 118
- 119

RESULTS

120	We evaluated 2108 candidate models using combinations of 31 feature classes,
121	17 regularization multipliers, and 4 climatic data sets. The best model for the Blue-
122	spotted Salamander was provided by the third climatic data set which was had a
123	correlation threshold of 0.8 (Set 3: BIO3, BIO5, BIO7, BIO13, BIO14 and BIO15),
124	which was significantly different from random (P < 0.001) and had the lowest
125	Akeike information criteria set. The model had a regularization multiplier of 10 and
126	included one feature class (threshold). Projections for past, present, and future
127	performed better than a random prediction with moderate training AUC = 0.708
128	with small standard deviation (sd = 0.022) that indicated the robust model
129	performance. Three bioclimatic variables contributed the most to the model
130	(together 66.5%): BIO5 (30.5%), BIO15 (19%) and BIO7 (17%).
131	Under present bioclimatic conditions, the model's predictions were mostly
132	congruent with the present and recent historical distribution of Blue-spotted
133	Salamander (see Fig.1 for the present distribution, also see IUCN, 2015). The model
134	primarily predicted areas of high suitability across habitats for the species in North
135	America. Under the Last Glacial Maximum bioclimatic conditions, the model
136	predicted substantially narrower distribution than the present and mid-Holocene
137	(Fig. 2). Interestingly, predictions for the Last Glacial Maximum indicated almost no
138	distribution in the east-coast of North America. However, predictions for the Last

139	Interglacial indicated a distribution east coast of North America. For both 2050 and
140	2070, the model predicted that the range will most likely shift slightly northward
141	with a wider distribution than either the past or present (Fig. 2).
142	Based on a strict molecular clock (mean 2%-4% substitutions/site/million
143	years), the BSP result provided a good resolution of the effective population size
144	changes over the Blue-spotted Salamander history (Fig. 3). The BSP indicated a
145	recent demographic expansion starting after the Last Interglacial based on both
146	mutation rates (starting approximately after 60,000 y before present).
147	
148	DISCUSSION
149	This study focuses on the dynamics of range shifts of the Blue-spotted
150	Salamander from the past, the present and the near future under climate change
151	scenarios. Accordingly, this study is therefore a continuation of the work of
152	Demastes et al. (2007) with the first investigation of the late-Quaternary history of the
153	Blue-spotted Salamander based on ecological niche modelling and Bayesian based
154	demographic analysis.
155	The Blue-spotted Salamander showed substantially low-level genetic
156	diversity based on 534 nucleotides of non-coding mtDNA gene region (Demastes et
157	al., 2007). During the Last Glacial Maximum, north-eastern North America was
158	almost completely covered by ice (Pielou, 1991) and there is no fossil evidence to
159	suggest that salamanders were present south of the ice sheet. Therefore, lack of
160	mtDNA differentiation in the Blue-spotted Salamander across its distribution range
161	suggests that populations arose recently (after the Last Glacial Maximum) from a

162	relatively homogeneous ancestral population. Phylogenetic relationships among
163	haplotypes (see Fig. 2 in Demastes et al., 2007) indicated most haplotypes are closely
164	related, yet are geographically localized. The western clade separated from the east
165	coast and central clades with high bootstrap values. All these signals suggest that
166	populations are historically connected, but most probably due to behavioral reasons,
167	populations are sundered by firm, and it supports recent and continuing genetic
168	differentiation. This situation can be discussed as the absence of a long-term
169	biogeographical barrier, but depends on the limitations in dispersal capacity of this
170	species. The current pattern is compatible with phylogeographic category III
171	(shallow gene tree, allopatric lineage) specified by Avise et al. (1987) and (Avise,
172	2000).
173	Empirical examples that support this phylogeographic pattern from different
174	species that spread out of the glacial line, along the southeastern coastline of North
175	America (eg Deer Mouse, Peromyscus polionotus, Avise et al., 1979, 1983), South
176	America (White-Tailed Deer, Odocoileus virginianus, Moscarella et al., 2003) has been
177	published. However, it is well known that northeast North America has undergone
178	remarkable topographic change because of past climatic changes, including climatic
179	fluctuations during the last 130.000 ybp, and repeated expansion/recession of
180	continental ice sheets during especially 22.000 ybp, and therefore habitat changes in
181	the same time period. All these events have had dramatic effects on the genetic
182	structuring of flora and fauna in the region (e.g. Pielou, 1991); and hence the genetic
183	structure of Blue-spotted Salamander showed tight association with past climate
184	change events.

185 The past distributional predictions of the Blue-spotted Salamander indicated 186 substantial range-shifts from the Last Interglacial to the Present. The predicted Last 187 Interglacial range limited to the east coast of northern North America, then the 188 predicted Last Glacial Maximum range limited to the southern range of the 189 distribution range of the species. Therefore, the range of Blue-spotted Salamander 190 slided from east to south, and expanded to the north and reached the current 191 distribution. Species looks like it experienced an almost complete extinction in its 192 present distribution range during the Last Glacial Maximum. According to Lindsay 193 et al. (2016), habitat suitability for the Blue-spotted Salamander in the Last Glacial 194 Maximum, as ecological niche modelling approach predicts, is mostly Taiga and 195 partly Montane Mosaic. IUCN states that there are two main suitable habitats for the 196 species, forests and wetlands. Suitable forests are boreal (taiga) and temperate 197 forests, so the Last Glacial Maximum vegetation model agrees with our niche 198 modelling results. The Southern Appalachian Region was found to be a refugium for 199 many species (Hewitt, 2004). However, this type of biogeographic pattern has not 200 been reported for any terrestrial vertebrate species so far although some similar 201 examples have been reported for widespread North American vertebrates (e.g. 202 Klicka et al., 2011; van Els et al., 2012; Barrowclough at al., 2018; Perktas and Elverici, 203 2020). The Bayesian Skyline Plot analysis showed a population increase before the 204 Last Glacial Maximum in the ice free areas in North America, and this makes this 205 study outputs interesting. The species, however, reached its present distribution 206 gradually during the Holocene. Therefore, the species' demographic history 207 supports the ecological niche modelling results. In contrast to phylogeographic

208	research on other vertebrate species (e.g. Sharp-tailed Grouse), we found no evidence
209	of a large refugium in the ice free range of North America for this species. However,
210	the Blue-spotted Salamander has almost completely changed its distribution since
211	the last glacial period; that is, this species has reached current distribution range
212	almost from nothing since the Last Glacial Maximum.
213	
214	AcknowledgmentWe thank the remaining members of the Biogeography
215	Research Laboratory for their support and assistance in various phases of this
216	project.
217	
218	Author Contributions UP conceived the study; UP developed methods and
219	UP, CE, ÖY analyzed data; CE visualized the distributional predictions, UP wrote
220	the paper with discussion with CE and ÖY. All authors read and approved the final
221	manuscript.
222	
223	LITERATURE CITED
224	Allio, R., S. Donega, N. Galtier, and B. Nabholz. (2017). Large Variation in the
225	Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications
226	for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular
227	Marker. Molecular Biology and Evolution, 34(11), 2762–2772.
228	https://doi.org/10.1093/MOLBEV/MSX197
229	AVISE, J. C., R. A. LANSMAN, AND R. O. SHADE (1979). The use of restriction
230	endonucleases to measure mitochondrial DNA sequence relatedness in

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.26.509446; this version posted September 27, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 231 natural populations. I. Population structure and evolution in the genus
- 232 *Peromyscus. Genetics*, **92(1)**, 279–295.
- 233 https://doi.org/10.1093/GENETICS/92.1.279
- 234 AVISE, J. C., J. F. SHAPIRA, S. W. DANIEL, C. F. AQUADRO, AND R. A. LANSMAN (1983).
- 235 Mitochondrial DNA differentiation during the speciation process in
- 236 *Peromyscus. Molecular Biology and Evolution*, **1(1)**, **38–56**.
- 237 https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040301
- 238 AVISE, J.C., J. ARNOLD, R. M. BALL, E. BERMINGHAM, T. LAMB, J. E. NEIGEL, AND N. C.
- 239 SAUNDERS (1987). Intraspecific Phylogeography: The Mitochondrial DNA
- 240 Bridge Between Population Genetics and Systematics. Annual Review of
- 241 *Ecology and Systematics*, **18(1)**, 489–522.
- 242 https://doi.org/10.1146/annurev.es.18.110187.002421
- AVISE, JOHN C. (2000). *Phylogeography*□: the history and formation of species. Harvard
 University Press.
- 245 BARROWCLOUGH, G. F., J. G. GROTH, E. K. BRAMLETT, J. E. LAI, J. E AND W. M. MAUCK
- 246 (2018). Phylogeography and geographic variation in the Red-bellied
- 247 Woodpecker (*Melanerpes carolinus*): characterization of mtDNA and plumage
- 248 hybrid zones. *The Wilson Journal of Ornithology*, **130(3)**, 671–683.
- 249 https://doi.org/10.1676/17-070.1

250	BRITO, P. H. (2005). The influence of Pleistocene glacial refugia on tawny owl genetic
251	diversity and phylogeography in western Europe. Molecular Ecology, 14(10),
252	3077-3094. https://doi.org/10.1111/j.1365-294X.2005.02663.x
253	BROWN, J. L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic,
254	biogeographic and species distribution model analyses. Methods in Ecology and
255	<i>Evolution</i> , 5(7) , 694–700. https://doi.org/10.1111/2041-210X.12200
256	CAMPBELL, L. P., C. LUTHER, D. MOO-LLANES, J. M. RAMSEY, R. DANIS-LOZANO, AND A.
257	T. PETERSON. (2015). Climate change influences on global distributions of
258	dengue and chikungunya virus vectors. Philosophical Transactions of the Royal
259	Society B: Biological Sciences, 370 (1665), 1–9.
260	https://doi.org/10.1098/RSTB.2014.0135
261	CONANT, R. AND J. T. COLLINS. (1991). A field guide to reptiles and amphibians of the
262	USA and Canada. Houghton Mifflin Harcourt.
263	DEMASTES, J. W., J. M. EASTMAN, AND J. S. EAST. (2007). Phylogeography of the Blue-
264	spotted Salamander, Ambystoma Laterale (Caudata: Ambystomatidae). Am.
265	Midl. Nat., 157(1), 149–161. <u>https://doi.org/10.1674/0003-</u>
266	0031(2007)157[149:POTBSA]2.0.CO;2
267	ESCOBAR, L. E., A. LIRA-NORIEGA, G. MEDINA-VOGEL, AND A. TOWNSEND PETERSON.
268	(2014). Potential for spread of the white-nose fungus (Pseudogymnoascus
269	<i>destructans</i>) in the Americas: use of Maxent and NicheA to assure strict model

- transference. *Geospatial Health*, **9(1)**, 221–229.
- 271 https://doi.org/10.4081/gh.2014.19
- 272 Freeland, J. R. (2005). Molecular Ecology. Chichester, UK: John Wiley & Sons.
- 273 Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. *Nature*, **405**(6789),
- 274 907–913. https://doi.org/10.1038/35016000
- 275 Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in
- divergence and speciation. *Biological Journal of the Linnean Society*, 58(3), 247
- 277 –276. https://doi.org/10.1006/BIJL.1996.0035
- 278 HIJMANS, R. J., S. E. CAMERON, J. L. PARRA, P. G. JONES, AND A. JARVIS. (2005). Very
- high resolution interpolated climate surfaces for global land areas.
- 280 International Journal of Climatology, **25(15)**, 1965–1978.
- 281 https://doi.org/https://doi.org/10.1002/joc.1276
- 282 IUCN SSC Amphibian Specialist Group. (2015). Ambystoma laterale.
- 283 https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2015-
- 284 4.RLTS.T59060A56459409.en
- 285 KLICKA, J., G. M. SPELLMAN, K. WINKER, V. CHUA, AND B. T. SMITH. (2011). A
- 286 Phylogeographic and Population Genetic Analysis of a Widespread,
- 287 Sedentary North American Bird: The Hairy Woodpecker (*Picoides villosus*).
- 288 The Auk, 128(2), 346–362. https://doi.org/10.1525/auk.2011.10264

289	KUMAR, S., G. STECHER, M. LI, C. KNYAZ, AND K. TAMURA. (2018). MEGA X: Molecular
290	Evolutionary Genetics Analysis across Computing Platforms. Molecular
291	Biology and Evolution, 35(6), 1547. https://doi.org/10.1093/MOLBEV/MSY096
292	LINDSAY, K., J. F. GOBEIL, J. L. LAWLER, C. SCHLOSS, K. F. BEAZLEY, AND T. J. BEECHEY.
293	(2016). Wildlife Conservation, Protected Areas and Climate Change in
294	Canada: Implications of Projected Species Range Shifts. CCEA Occasional
295	Paper No. 21. Canadian Council on Ecological Areas, CCEA Secretariat,
296	Ottawa, Ontario, Canada.
297	MOSCARELLA, R. A., M. AGUILERA, AND A. A. ESCALANTE. (2003). Phylogeography,
298	Population Structure, and Implications for Conservation of White-Tailed
299	Deer (Odocoileus virginianus) in Venezuela. Journal of Mammalogy, 84(4), 1300–
300	1315. https://doi.org/10.1644/BRB-028
301	PEREIRA, S. L. AND A. J. BAKER. (2006). A Mitogenomic Timescale for Birds Detects
302	Variable Phylogenetic Rates of Molecular Evolution and Refutes the Standard
303	Molecular Clock. <i>Molecular Biology and Evolution</i> , 23(9) , 1731–1740.
304	https://doi.org/10.1093/MOLBEV/MSL038
305	PERKTAŞ, U. AND C. ELVERICI. (2020). Climate-Driven Range Shifts of the Sharp-
306	Tailed Grouse Tympanuchus phasianellus. Acta Ornithologica, 54(2), 213–222.
307	https://doi.org/10.3161/00016454AO2019.54.2.007
308	PIELOU, E. C. (1991). After the Ice Age : the return of life to glaciated North America.
309	University of Chicago Press.

310	RYAN, K. J. AND A. J. K. CALHOUN. (2014). Postbreeding Habitat Use of the Rare, Pure-
311	Diploid Blue-spotted Salamander (Ambystoma laterale). Journal of Herpetology,
312	48 (4), 556–566. https://doi.org/10.1670/13-204
313	SIMOES, M., D. ROMERO-ALVAREZ, C. NUÑEZ-PENICHET, L. JIMÉNEZ, AND M. COBOS.
314	(2020). General Theory and Good Practices in Ecological Niche Modeling: A
315	Basic Guide. Biodiversity Informatics, 15(2), 67–68.
316	https://doi.org/10.17161/BI.V15I2.13376
317	SUCHARD, M. A., P. LEMEY, G. BAELE, D. L. AYRES, A. J. DRUMMOND, AND A.
318	RAMBAUT. (2018). Bayesian phylogenetic and phylodynamic data integration
319	using BEAST 1.10. Virus Evolution, 4(1). https://doi.org/10.1093/VE/VEY016
320	VAN ELS, P., C. CICERO, AND J. KLICKA. (2012). High latitudes and high genetic
321	diversity: Phylogeography of a widespread boreal bird, the gray jay
322	(Perisoreus canadensis). Molecular Phylogenetics and Evolution, 63(2), 456–465.
323	https://doi.org/10.1016/J.YMPEV.2012.01.019
324	VANEK, J. P., R. B. KING, AND G. A. GLOWACKI. (2019). Landscape and management
325	factors influence the occupancy dynamics of sympatric salamanders in an
326	urban preserve system. Global Ecology and Conservation, 20, e00742.
327	https://doi.org/10.1016/J.GECCO.2019.E00742
328	WEBB, T., B. SHUMAN, AND J. W. WILLIAMS, (2003). Climatically forced vegetation
329	dynamics in eastern North America during the late Quaternary Period.

- 330 Developments in Quaternary Science, 1(C), 459–478.
- 331 https://doi.org/10.1016/S1571-0866(03)01021-2
- 332
- 333 FIGURE LEGENDS:
- 334 Figure 1.-- Approximate distribution range of the Blue-spotted Salamander.
- 335 Sampling localities for ingroup taxa (1–19) are indicated based on Demastes *et al.*
- 336 (2007). Dashed line depicts the approximate extent of the last glacial maximum
- 337 Figure 2.- Ecological niche model-based distributional predictions for the Blue-
- 338 spotted Salamander under the different bioclimatic conditions [*i.e.* the LGM and the
- 339 Future (2050 and 2070)]
- 340 Figure 3.- The effective population size fluctuation of the Blue-spotted Salamander
- 341 based on the Bayesian Skyline Plot analysis

Figure 1 bioRxiv preprint doi: https://doi.org/10.1101/2022.09.26.509446; this version posted Septer Septer

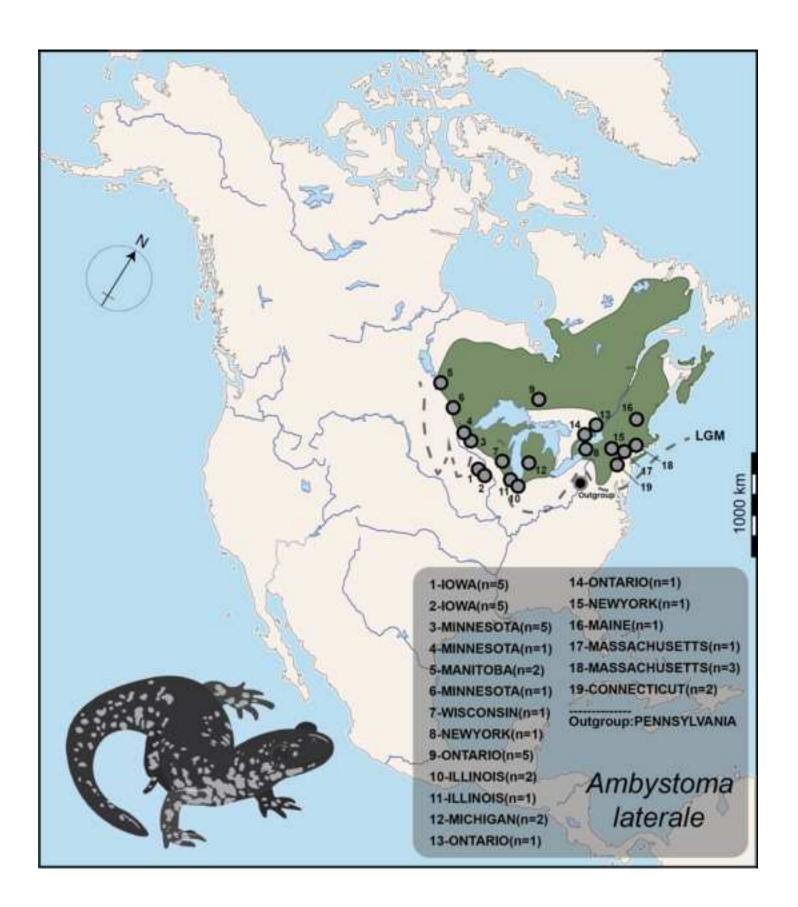
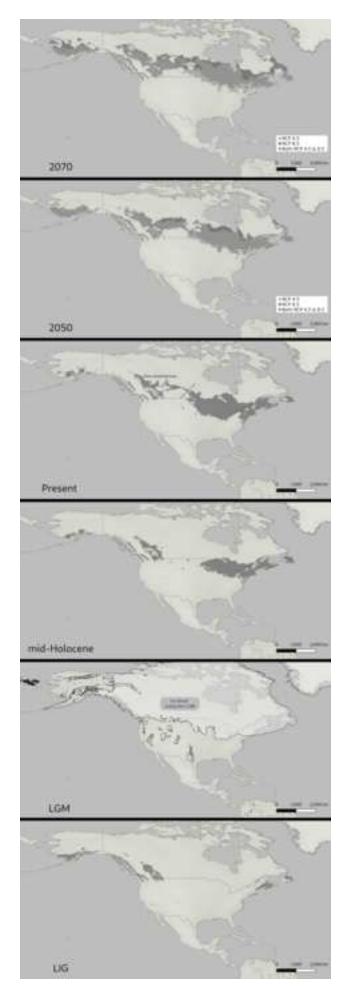
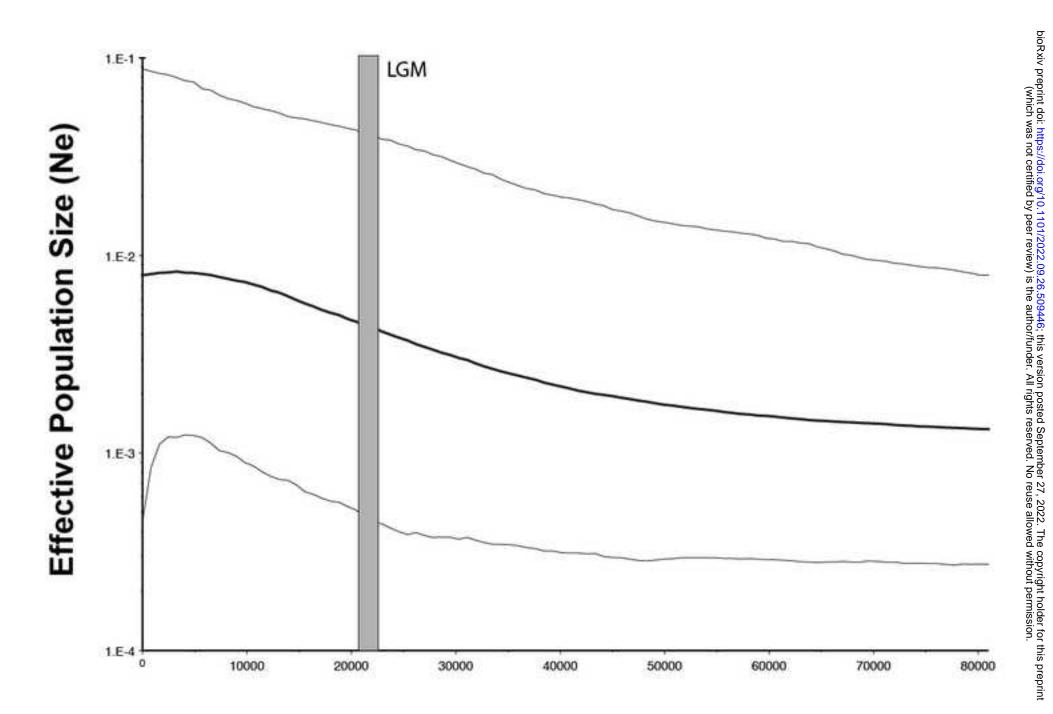




Figure 2 bioRxiv preprint doi: https://doi.org/10.1101/2022.09.26.509446; this version posted Septen Bick 7h 2022to Taccopysight but det add, trig prepring ure 2.png the way of the author/funder. All rights reserved. No reuse allowed without permission.

