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Abstract

Diseases  can  be  caused  by  molecular  perturbations  that  induce  specific  changes  in

regulatory interactions and their coordinated expression, also referred to as network rewiring.

However, the detection of complex changes in regulatory connections remains a challenging task

and would benefit from the development of novel non-parametric approaches. We developed a

new  ensemble  method  called  BoostDiff  (boosted  differential  regression  trees)  to  infer  a

differential  network  discriminating  between  two  conditions.  BoostDiff  builds  an  adaptively

boosted (AdaBoost) ensemble of differential trees with respect to a target condition. To build the

differential  trees, we propose differential  variance improvement as a novel splitting criterion.

Variable importance measures derived from the resulting models are used to reflect changes in

gene  expression  predictability  and  to  build  the  output  differential  networks.  BoostDiff

outperforms existing differential network methods on simulated data evaluated in two different

complexity  settings.  We then  demonstrate  the  power  of  our  approach  when  applied  to  real

transcriptomics  data  in  COVID-19 and Crohn’s  disease.  BoostDiff  identifies  context-specific

networks that are enriched with genes of known disease-relevant pathways and  complements

standard  differential  expression  analyses.  BoostDiff  is  available  at

https://github.com/gihannagalindez/boostdiff_inference.
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Author Summary

Gene  regulatory  networks,  which  comprise  the  collection  of  regulatory  relationships

between  transcription  factors  and  their  target  genes,  are  important  for  controlling  various

molecular processes. Diseases can induce perturbations in normal gene co-expression patterns in

these  networks.  Detecting  differentially  co-expressed  or  rewired  edges  between  disease  and

healthy biological states can be thus useful for investigating the link between specific disease-

associated molecular alterations and phenotype. We developed BoostDiff (boosted differential

trees), an ensemble method to derive differential networks between two biological contexts. Our

approach applies a boosting scheme using differential trees as base learner. A differential tree is

a new tree structure that is built from two expression datasets using a splitting criterion called the

differential variance improvement. The resulting BoostDiff model learns the most differentially

predictive features which are then used to build the directed differential  networks. BoostDiff

outperforms other differential network methods on simulated data and outputs more biologically

meaningful results when evaluated on real transcriptomics datasets. BoostDiff can be applied to

gene expression data to reveal new disease mechanisms or identify potential therapeutic targets.
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1. Introduction

Gene  regulation  is  a  fundamental  biological  process  that  underlies  various  cellular

functions,  including  developmental,  environmental,  and  disease  contexts.  The  regulatory

relationships in a biological sample can be represented by gene regulatory networks (GRNs),

where  two  gene  nodes  with  a  regulatory  relationship  are  connected  by  an  edge  [1].  GRN

inference  remains  a  challenging  task  because  of  the  inherent  complexity  of  transcriptional

regulation,  as  well  as the high dimensionality  and noise in  biological  datasets.  Furthermore,

GRNs are dynamic and context-specific  [2,3], i.e. some regulatory processes are active only in

certain  cell  types,  tissues,  conditions,  or  in  response  to  specific  stimuli.  Changes  in  these

pairwise  dependencies  have  been  associated  with  the  development  of  complex  diseases  [4].

Differential  network  analysis,  which  aims  to  detect  altered  connectivity  between  different

conditions  or  disease  states,  has  recently  emerged  as  a  powerful  complement  to  standard

differential expression (DE) analysis and is more suitable for detecting context-specific GRNs

[4,5].  Exploring  how  GRN  structures  are  rewired  between  two  different  states  can  reveal

molecular  mechanisms  that  drive  disease  development  and  progression  and  identify  more

relevant therapeutic targets. 

Various  approaches  for  deriving  differential  networks  have  been  the  focus  of  recent

studies [6–8]. Representative methods are shown in Table 1. The z-score method performs Fisher

transformation of Pearson’s correlation coefficients between two conditions.  The resulting z-

scores are modeled as a normal distribution, followed by a z-test to detect significant pairwise

edges  [9]. Diffcoex first builds an adjacency matrix and subsequently finds differentially co-

expressed gene clusters using the topological  overlap measure as a dissimilarity  metric  [10].

Another approach, the Gaussian graphical model (GGM)-based method, learns the differential

network from conditional associations  [11]. EBcoexpress relies on empirical Bayes’ estimation
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to estimate the posterior probability that an edge is differentially co-expressed [12,13]. 

Table 1. Overview of differential network methods used for comparison (adapted from Bhuva et

al. [7]).

Differential 
network 
method

Algorithmic 
approach

Test Directiona
lity

No. of 
conditions

Reference

BoostDiff Tree-based – Yes Two This paper

z-score Correlation-based z-test No Two [9]

EBcoexpress Empirical Bayes + 
correlation

– No Two [12]

Diffcoex Correlation-based Permutation 
test

No Multiple [10]

GGM-based Gaussian graphical 
model + posterior 
odds

– No Two [11]

chNet Gaussian graphical 
model + differential 
expression analysis

t-test No Two [14]

The differential network methods described above measure linear relationships or rely on

joint normality assumptions, which may not hold in practice  [15]. In real biological datasets,

complex, higher-order dependencies may be difficult to detect using correlation- or GGM-based

methods. As discussed in a recent review, new methods for differential network analysis for non-

Gaussian data are needed [15]. In this respect, tree-based strategies offer the advantage of more

relaxed model assumptions. While examples such as GENIE3 and derived tools continue to be

successfully  applied  in  various  biological  settings  [16,17],  they  cannot  be  used  to  compare

different biological conditions.
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We  introduce  BoostDiff,  a  non-parametric  approach  for  reconstructing  directed

differential networks (Fig 1). We modified standard regression trees to identify gene pairs that

show  changes  in  regulatory  dependencies  between  two  biological  conditions.  To  build  the

differential trees, we use a novel splitting criterion called the differential variance improvement

(DVI), which measures the difference in predictive value of a feature on gene expression levels

between  two conditions.  We demonstrate  that  boosting  the  differential  trees  with  respect  to

samples belonging to a target condition is an important step for promoting condition specificity

of the output networks. Tree-based variable importance measures can then be used to obtain a

ranking of regulators. 

2. Methods

2.1 Overview of the differential network inference approach 

The  differential  network  inference  problem  can  be  decomposed  into  p independent

regression  subproblems,  where  p is  the  total  number  of  genes  in  the  expression  data.  Our

strategy  assumes  that,  in  a  given  biological  context,  the  expression  level  of  a  gene  can  be

modeled as a function of the expression levels of other genes (Fig 1). This overall principle has

been described in GENIE3 [16].  

The crucial difference between BoostDiff and GENIE3 is that we simultaneously take

into  account  two datasets  for  inferring  a  differential  network.  More  precisely,  our  approach

requires  the  availability  of  (1)  gene  expression  data  matrix   for  

measurements  from  a  disease  condition  and  (2)  the  matrix  for  

measurements from a control condition, both having p total genes (columns). The inference task

can be viewed as a feature selection problem that aims to find features that are more predictive of
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expression levels in a target condition than in the baseline condition. In other words, differential

network  analysis  is  performed by solving  the  regression  problem while  taking  into  account

information  from two distinct  labels.  To achieve this,  we employed the AdaBoost algorithm

using differential trees as base learners to drive the improved prediction of expression levels in

the target condition. The trained model provides a ranking of the edges by deriving a feature

importance weight for each regulator. 

A  higher  feature  importance  value  means  that  the  gene  is  more  predictive  and  thus

provides evidence of a stronger regulatory effect in one condition relative to the other. For each

gene  ,  we  define  regression  problems   and

.  The  design  matrices   and   are  obtained  by deleting  the  

columns from  and , respectively, and the target variables are set to the deleted columns.

The inference is performed as follows:

1. For :

a. Generate the learning samples of input-output pairs  and  for gene .

b. Use a feature selection technique on  and  to calculate weights for all

predictor genes except for  itself. Here, an AdaBoost ensemble of differential 

trees is used as the feature selection technique.

2. Aggregate and sort the  individual gene rankings to obtain a global ranking of all 

differential regulatory edges.
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Fig. 1. Overview of the BoostDiff algorithm. As input, we require two gene expression matrices

corresponding to a target condition (e.g. disease) and a baseline condition (e.g. control).  For

each of  total genes, a learning subsample (LS) is drawn from the two datasets, after which an

AdaBoost ensemble of differential trees is built to identify the features that are more predictive

of the gene expression levels in the target condition. By setting a target condition, BoostDiff can

be  used  to  identify  regulatory  relationships  that  are  more  pronounced  in  condition  A  (e.g.

disease state) and condition B (e.g. control/healthy), thereby providing a differential network

capturing context-specific regulatory changes. In the overall workflow, the BoostDiff algorithm

is  run  twice,  one  with  condition  A  as  target  condition  and  subsequently  with  B  as  target

condition. The results are then combined to obtain the final differential network. Most notably,

while existing approaches aim for the reconstruction of whole genome-scale GRNs, BoostDiff

concentrates on maximizing the precision for those parts of the regulatory network that actually

predict the difference between the two phenotypes.

2.2 Growing a differential tree

In the following, we describe the steps to build a single differential tree, assuming we

start with the learning samples   and   as input. A differential tree is built through

binary recursive partitioning. The key difference to standard regression trees is that, to determine

the features (i.e., genes) used for splitting the samples at the inner nodes of our trees, we use a

novel  split  criterion  called  differential  variance  improvement  (DVI)  instead  of  variance

reduction. 

At  each  node  of  the  differential  tree,  we  maintain  subsets   and

 of  the  rows  of   and   corresponding  to  the  disease  and  control

samples, respectively. Given a possible split feature (i.e., candidate predictor gene) , we define
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 as follows:

DVI (g ')=maxτ VarRed (g ' , τ , S
D , LSg , D)−maxτVarRed (g' , τ , S

C , LSg, C)

For fixed  and splitting threshold τ ,the variance reduction for the disease samples is given by:

MSE is the mean squared error from the sample mean used as the impurity measure, xS , g
D  is the 

restriction of the target variable to the disease samples (rows) contained in a set of samples S, 

and  and  are the subsets of 

disease samples that fall to the left and right children of the candidate node, respectively. 

Variance reduction for the control samples is defined analogously. A positive value of the  

hence means that the gene  is more predictive of ’s expression level in the disease condition 

than in the control condition, whereas a negative  value indicates that the opposite is the 

case.

Given training  sets  LSg , D and LSg ,C for the disease and control conditions, respectively, 

we construct a differential regression tree whose nodes are 5-tuples  , 

where  is the split gene,  is the split threshold for the disease samples, and   is the split 

threshold for the control samples.  Note that we use two different thresholds, since using a single 

threshold for both conditions while optimizing the  will lead to a skewed expression 

distribution in each side of the split, with one side favoring disease samples and the other side 

favoring control samples. The construction is done as follows:

1. Initialize root as  , where “ ” is a 

placeholder for not yet defined split genes and thresholds.  

2. Starting at the root, recursively construct a differential tree via binary partitioning as 

follows:
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3. At the current node  of the tree under construction, do the following:

a. If a suitable termination criterion (maximum depth or minimum number of target 

or baseline samples) has been reached or , label v as leaf and 

traceback.

b. Otherwise, set the node v’s split gene to  , its disease 

threshold to , and its control threshold

to .

c. Initialize v’s left child as   and its right 

child as  and continue with processing vL 

and vR.

Ultimately,  the  differential  tree  learns  a  hypothesis  ,  where  .  In  the

regression  trees  described  by  Breiman  [18],  the  prediction  for  a  sample  is  determined  by

traversing the tree until a leaf node is reached. Here, we are more interested in predicting the

expression values of the samples in the target condition; thus, prediction is performed only for

target samples using the identified splitting thresholds  . The final prediction is calculated as

the expected value of the expression levels of the target samples assigned to the leaf nodes after

fitting the differential tree. 

2.3 Boosted differential trees

Inspired by GRNBoost2 [17], we implemented a boosting algorithm that derives a strong

prediction model by sequentially training a pool of differential trees as weak learners. AdaBoost

for regression is typically used for solving problems where the output is a continuous variable

(i.e. expression levels) without explicitly considering the class of the samples. Here, we adapted

the AdaBoost.R2 algorithm [19] to handle the regression problem given labels from two classes
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(i.e. conditions). Using the differential trees as base learners, the modified algorithm performs

the boosting with respect to samples belonging to the specified target condition. The algorithm is

described in detail  in  S1 Text. In this way, BoostDiff attempts  to find a model that is more

predictive of the target condition compared to the baseline condition. In each tree, only the target

samples  are  re-weighted  in  subsequent  boosting  iterations,  while  samples  from the  baseline

condition retain uniform weight. In particular, target samples that are more difficult to predict are

selected with higher weights during the bootstrapping step and will always be compared to a

uniform sample from the baseline condition. To avoid overfitting, we set a low number of trees

and in practice find that 50 to 100 differential trees in the ensemble is sufficient for real datasets.

2.4 Variable importance measure

Tree-based methods allow for the calculation of a variable importance measure that can

be used to rank the features according to their relevance for predicting the output. In GENIE3,

the importance of a predictor gene  is calculated as the sum of the variance reduction across all

nodes where   is used as the splitting feature, averaged over all trees in the ensemble. In the

context  of  differential  trees,  we  can  derive  a  similar  measure  by  considering  the  samples

belonging to the target condition (i.e. disease samples). The importance attributed to a predictor

gene  can be calculated as the weighted variance reduction across M  trees in the ensemble:

here  m is the boosting iteration, αm is the weight of the differential tree returned by AdaBoost,

V g' , m is  the  set  of  nodes  in  the  tree  where   was  used  as  the  splitting  feature,

is the variance reduction given , the disease threshold τ v
D, and the

set of disease samples samples Sv
D at node  (see S1 Text).
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Notably,  because  each  node  in  a  differential  tree  has  two  independent  thresholds,

interpreting  the  tree  becomes  more  abstract  with  increasing  depth.  Boosting  using  shallow

differential trees (e.g. differential tree stumps) thus favors greater interpretability of the variable

importance measure.

2.4 Edge ranking and filtering from boosted differential trees

Each modified AdaBoost model yields a separate ranking of the regulators.  However,

simply ordering the regulatory links according to the weights leads to a bias for highly variable

predictor genes. To avoid this, we first scale the expression levels of each target gene to unit

variance, similarly implemented in GENIE3 [16]. 

Boosting with respect to a target condition does not necessarily produce a model that

predicts  a gene’s expression in the target condition better  than its  expression in the baseline

condition. To illustrate, sample plots of the training progression are shown in S2 Fig. To restrict

the  results  to  differential  edges,  we  recommend  examining  the  distributions  of  the  mean

difference in prediction error. Sample distributions of these values from the simulated and real

transcriptomics data are shown in S3 and S4 Figs, respectively. Based on these generated plots,

users can filter for target genes with lower mean prediction error in the target condition than the

baseline condition by applying a threshold. Alternatively, users can select the top edges with the

lowest mean difference in prediction error or input a user-defined percentile. After filtering, the

edges are re-ranked based on the variable importance measure used as the edge weight. The top n

edges are then output as the final context-specific network. 

3. Results and Discussion
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3.1 Compared methods

To verify the condition specificity of the output networks, we first compared the boosted

differential trees to a baseline random forest of differential trees, as well as two popular GRN

inference  methods,  GENIE3  and  ARACNE  [20].  GENIE3  infers  a  network  by  building  an

ensemble of regression trees (i.e.  random forest)  [16].  It  was run using the corresponding R

package.  ARACNE calculates  the  mutual  information  (MI)  between all  pairs  of  genes  [20].

Afterwards, based on the data processing inequality (DPI) [21], it goes through all gene triplets

and removes the edge with the weakest MI value. ARACNE was run using the implementation

provided  in  the  R  package  minet  [22].  For  both  GENIE3  and  ARACNE,  only  the  disease

expression  matrix  was  used  as  input.  For  details,  an  AIMe  report  is  available  at

https://aime.report/656I3Z/2 [23].

Next, we compared the performance of BoostDiff  to other differential network methods.

The  benchmarking  study  conducted  by  Bhuva et  al. indicated  that  the  z-score  method  and

EBcoexpress perform well in detecting differential edges compared to other methods [7]. Thus,

we compared BoostDiff  to z-score and EBcoexpress,  as well  as Diffcoex and a GGM-based

method. Additionally, we run the more recently proposed chNet algorithm [14], which considers

significant changes in both partial correlations of edges and differential expression. To facilitate

comparability  and  given  that  only  BoostDiff  provides  directionality  information  among  the

methods examined here, we converted directed edges to undirected edges [7].

3.2 Evaluation using simulated data

Gene expression data for disease and control conditions were simulated by adapting the

SimulatorGRN  approach  [7],  which  simulates  differential  co-expression  by  knocking  down

nodes in the reference GRN by reducing their expression levels. In the original SimulatorGRN
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framework,  a  sample  can  have  multiple  genes  knocked  down,  even  though  the  evaluation

considers each knockdown gene separately. To eliminate the confounding effect of additional

knockdown  genes  in  our  experiments,  we  generated  the  expression  data  in  the  perturbed

condition such that exactly one randomly selected input gene is knocked down. We evaluated the

different tools based on two scenarios, namely, using networks with 150 nodes and 300 nodes,

with 500 simulations per scenario. In each simulation, 100 samples were generated per condition.

The final disease samples were those which have a gene knocked down, whereas the control

samples  are  wild-type.  We measured  the  performance  of  the  algorithms with  respect  to  the

association  network  of  the  SimulatorGRN  framework.  The  hyperparameter  settings  for

generating the simulated data are shown in S1.

In all analyses on simulated data, all genes except for the target gene were considered as

potential regulators. The z-score method, EBcoexpress, chNet, Diffcoex, and the GGM-based

method were run with the default  parameters.  The parameters used for the random forest  of

differential trees and BoostDiff are provided in S2 Table. For the COVID-19 dataset, 50 trees

were used, while 100 trees were used for the Crohn’s disease dataset because of the low sample

size available for inference.  For each simulation, we filtered for the target genes belonging to the

3rd percentile based on the mean difference in prediction  errors (S3 and S4 Figs).

BoostDiff  is  designed to identify the predictive regulatory relationships  that are more

pronounced  in  a  target  condition  relative  to  the  baseline  condition.  Thus,  to  obtain  a  more

complete differential network, the algorithm is run twice, once using the disease condition as the

target condition (with control as the baseline condition) and another using the control condition

as the target condition (with disease as baseline condition). In general, combining the two results

performs  better  than  the  individual  sub-analyses,  indicating  that  each  run  can  contribute

meaningful  edges  to  the  output  (S1  Fig).  For  subsequent  comparisons  with  other  inference
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methods, the combined results are presented. 

The different  tools  have  different  statistical  methods  and cutoffs  for  determining  the

differentially  coexpressed  edges  depending  on  how  the  algorithm  works.  To  facilitate

comparability,  we show the top k predicted edges output by each method (except for chNet,

wherein  the  number  of  predicted  differential  edges  depends  on  the  tuning  parameter  and is

variable  for each simulation;  thus,  extracting  the top k edges  cannot  be consistently  applied

across simulations). For visualization,  we show results based on the top 100 predicted genes

output by each method. We report the performance using precision, recall, and F1 score as the

evaluation metrics. Results were similar for varying cutoffs of k=50, 100, 150 and 200 (S6 Fig).

As expected, compared to GENIE3 and ARACNE, both of which infer a static network,

BoostDiff can better identify the differential edges (Fig 2). The boosting scheme also performs

significantly  better  than  the  random  forest  of  differential  trees.  Importantly,  BoostDiff

outperforms the other differential network methods in all three metrics in both settings with 150

and 300 nodes. 
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Fig. 2. Performance of differential trees and boosted differential trees compared to the standard

GRN inference methods and other differential network methods using simulated data comprising

a) 150 genes and b) 300 genes. A total of 500 simulations were generated per evaluation setting.

BoostDiff  outperforms  all  other  methods  in  both  scenarios  and  can  better  identify  the

differentially co-expressed genes.
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3.3 Evaluation using real datasets

We evaluated BoostDiff using a publicly available COVID-19 RNA-Seq dataset. Raw

gene counts were downloaded from the Gene Expression Omnibus (GEO) database under the

accession number GSE156063  [24].  We used data  generated  from nasal  swab samples  from

COVID-19  (n=93)  and  uninfected  patients  (n=100).  Count  data  were  normalized  using  the

DESeq2 package in R with the variance stabilizing transformation (vst) function. We also ran

BoostDiff  on a  Crohn’s disease (CD) dataset.  Normalized  microarray data  were downloaded

from the GEO database under the accession GSE126124 [25] using data generated from colon

biopsies of individuals with Crohn’s disease (n=37) and healthy controls (n=19). Illumina IDs

were  converted  to  HGNC  symbols  using  the  R  package  biomaRt  [26].  Expression  levels

corresponding  to  probes  mapped  to  the  same  gene  symbol  were  averaged.  Differentially

expressed  genes  (DEGs) were  obtained  using  DESeq2 for  the  COVID-19 dataset  and using

limma for the Crohn’s disease dataset [27,28].

The z-score method and EBcoexpress were run with default parameters. The parameters

used for the BoostDiffs run are provided in S2 Table. For the Crohn’s disease dataset, a higher

number of trees (100 estimators) were used because of the lower number of samples available for

inference.  The  list  of  human  transcription  factors  downloaded  from

http://humantfs.ccbr.utoronto.ca/ were used as the candidate regulators [29]. For the COVID-19

dataset, data were already normalized with the vst function, so we set normalize=False. All the

outputs from the different methods were filtered for the top 1000 edges (except for chNet). For

BoostDiff, the final network thus comprised the top 500 edges from the run where the disease

condition was set as the target condition, and the top 500 edges from the run where the control

condition was set as the target condition. Genes whose mean difference in prediction error of the

models  were  more  extreme  than  the  threshold  identified  from  the  3rd  percentiles  of  the
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distributions  were retained.  The enrichr  module of  the gseapy package was used to  identify

enriched KEGG pathways in the output networks  [30,31]. The Louvain community detection

algorithm was  applied  using  the  python-louvain  package  (https://github.com/taynaud/python-

louvain).

Fig. 3.  Enriched KEGG pathways in the network inferred by BoostDiff for the a) COVID-19
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dataset and b) Crohn’s disease dataset. 

3.3.1 COVID-19

The  differential  network  output  by  BoostDiff  is  enriched  with  pathways  that  are

consistent with known COVID-19 pathophysiology. In addition to various pathogenic infections,

such as “Herpes simplex I infection”, “Human T-cell leukemia virus,” “Influenza A,” “Epstein-

Barr virus infection”, and “Measles”, the output network was significantly enriched in COVID-

19-relevant  pathways,  such  as  “Coronavirus  disease,”  “Th17  cell  differentiation,”  “IL-17

signaling pathway,” “NF-kappa B signaling pathway,” “NOD-like receptor pathway,” “Toll-like

receptor signaling pathway,” and “TNF signaling pathway” (Fig 3). Toll-like receptors (TLRs)

are  involved  in  the  innate  immunity  and  function  in  pathogen  recognition  and  cytokine

regulation.  Infection by SARS-CoV-2 particularly triggers TLR2. TNF is a key cytokine that

drives inflammatory macrophage phenotype and tissue damage in severe COVID-19 [32]. The

NF-κB pathway activation contributes to the cytokine storm that affects critically ill  patients.

Both NF-κB and TNF signaling have been proposed as  therapeutic  targets  to prevent  organ

damage  in  COVID-19  [33].  Viral  infections  activate  NOD-like  receptors,  which  lead  to

inflammasome assembly [34]. Th17 signaling participates in the cytokine response characteristic

of the “cytokine storm” and leads to the production of IL-17 [35,36]. Th17 cells were found to

undergo more clonal expansion in the lungs of severe COVID-19 patients [37]. Imbalance in the

Th1 and Th2 signaling has also been associated with COVID-19 mortality risk [38]. Examining

the differential edges when considering the two sub-analyses separately shows generally similar

results, indicating enrichment of infection related pathways (S10 Fig). The differential network

output by the z-score method did not show the enrichment of COVID-19-specific pathways (S8

Fig), whereas all edges in the EBcoexpress output showed zero posterior probabilities.
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We also compared the BoostDiff network to the list of DEGs. While the overlap between

the  differential  network  and DEGs is  significant,  it  is  quite  low (Jaccard  similarity=0.125).

Further, removing the DEGs from the genes in the differential network retained the enrichment

of COVID-19-related pathways (S11 Fig), indicating that these dysregulated genes identified by

BoostDiff are missed by standard DE analysis. Performing enrichment analysis separately for the

targets  and  regulators  of  the  predicted  edges  showed  similar  results,  demonstrating  the

effectiveness of the feature selection approach (S12 Fig).

 To further examine the differential network output by BoostDiff, we applied the Louvain

community detection algorithm  [39], which produced a total  of 84 modules. We identified a

dysregulated  cluster  comprising  59 genes  that  showed enrichment  in  the  terms  “Chemokine

signaling  pathway,”  “Viral  protein  interaction  with  cytokine  and  cytokine  receptor”,

“Coronavirus disease,” “Toll-like receptor pathway,” and “Th1 and Th2 cell differentiation” (Fig

4). Notable coronavirus disease-related genes in this module include CXCL10, DDX58, STAT1,

STAT2, EIF2AK2,  and  ISG15. Other additionally known genes involved in pathogen response

include IFIT1, IFIT2, IFIT3, CXCL11, CXCL9 and CCR1. Chemokines are produced in response

to  a  range of  viral  infections.  In  COVID-19,  chemokine  signaling  has  been linked  to  acute

respiratory distress syndrome [40]. DDX58 (RIG-1) is involved in the production of interferons

in response to COVID-19  [41]. Interferon signaling mediated by  STAT1  and  STAT2  is a key

antiviral defense mechanism. The chemokines CXCL9, CXCL10 and CXCL11 are known to be

upregulated in the COVID-19 response  [42].  EIF2AK2  is an interferon-induced protein kinase

that plays a role in inhibiting viral replication  [43].  IFIT1, IFIT2,  and IFIT3 form a functional

complex and participate in interferon-induced broad viral response[44,45]. ISG15 is a ubiquitin-

like  protein  whose  activation  triggers  the  release  of  various  pro-inflammatory  cytokines  and

chemokines  [46].  Polymorphisms  in  HLA-DRB1  have  been  reported  in  severe  COVID-19
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patients [47]. The expression of the antigen presentation gene HLA-DQA2 has been reported to

be downregulated in severe cases [48]. Based on these results, further experimental validation in

this  module  would  be  of  interest  to  uncover  a  more  detailed  mechanistic  understanding  of

COVID-19 disease pathogenesis. 

Fig. 4.  Dysregulated  module identified  from the COVID-19 differential  network inferred by

BoostDiff using the Louvain algorithm. Notable genes in the module include CLCL9, CXCL10,
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CXCL11, DDX58, STAT1, IFIT1, IFIT2, IFIT3, EIF2AK2, HLA-DRB1, and HLA-DQA2, which

are highlighted in blue.

3.3.2 Crohn’s disease

Crohn’s disease (CD) and ulcerative colitis (UC) are the two main types of inflammatory

bowel diseases (IBDs). CD is an autoimmune disease characterized by chronic inflammation of

the gastrointestinal tract and impaired intestinal barrier function. IBDs are thought to be caused

by  a  complex  interplay  between  the  gut  microbiome,  the  host  immune  system,  and  the

environment. Using a Crohn’s disease dataset derived from CD patients and healthy controls, we

derived  differential  networks  using  the  z-score-based  method  and  EBCoexpress.  Although

sample sizes were relatively low for this dataset, the CD-specific differential network output by

BoostDiff  was  enriched  in  CD-relevant  pathways,  including  “Inflammatory  bowel  disease,”

“Th17 cell differentiation,” “IL-17 signaling pathway”, “NF-κB signaling,” “Antigen processing

and presentation”, “TGF-β pathway,” and “TNF signaling pathway” (Fig 4 and S2 Table). Toll-

like  receptors  (TLRs)  play  a  role  in  host  defense  and  homeostasis  by  acting  as  sensors  of

microbial pathogens. IBD has been associated with abnormal gut microbiota composition and

TLR overstimulation, which in turn promotes NF-κB signaling and downstream inflammatory

responses [49]. TGF-β signaling plays an immunosuppressive role in mucosal inflammation, and

impaired signaling can lead to intestinal fibrosis  [50,51]. NF-κB is a transcription factor that

functions in maintaining intestinal homeostasis, and dysregulation of the NF-κB pathway leads

to sustained inflammatory state characteristic of IBD patients  [52]. NF-κB signaling activation

has been associated with more severe clinical manifestations in CD patients  [52,53]. The Th17

subset of CD4+ T cells have well recognized roles in IBD pathogenesis. In CD, IL-17 signaling

mediates the activation of Th17 cells,  which further drive pro-inflammatory cascades via the
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production of IL-21, IL-22, IFN-γ and TNF [54]. The differential edges obtained from the sub-

analysis where the control state was used as the target condition showed enrichment of further

CD-relevant pathways (S13  Fig). Such cases may reveal  more subtle differences in terms of

differential predictivity of expression in two different disease states and motivate more refined

downstream analysis by independently examining the results from the two sub-analyses. 

Notably,  the  z-score  method,  while  based  on the  correlation  measure,  did  not  return

strong enrichment  of disease-relevant  pathways compared to BoostDiff.  The z-score network

was enriched in only one term, “Tryptophan metabolism.” While the output of EBcoexpress also

identified the enrichment of several inflammatory pathways (S9 Fig), the differential network

output by BoostDiff showed stronger enrichment based on the p-values. EBcoexpress on the full

dataset took more than two weeks, whereas BoostDiff took less than one day (S2 and S3 Tables),

thus  limiting  the  applicability  of  EBcoexpress  on  real  transcriptomics  datasets.  The

parallelization of BoostDiff allows for more reasonable runtimes. 

Differential expression analysis of the CD data identified ten DEGs, out of which only

one  was  also  present  in  the  differential  network  identified  by  BoostDiff;  consequently,

enrichment results after removal of DEGs were similar to the original network (S14  Fig). We

further performed enrichment analysis separately on the targets and regulators of the directed

edges output by BoostDiff. As shown in S15 Fig, both the list of regulators and the list of targets

from the differential edges were enriched in pathways related to Crohn’s disease, demonstrating

the value of the DVI-based feature selection approach.

We applied the Louvain algorithm on the differential network output by BoostDiff, which

identified a total of 326 modules. One interesting dysregulated module was enriched in multiple

autoimmunity-related  terms,  including  “allograft  rejection,”  “graft-versus-host  disease,”  and

“autoimmune thyroid disease” (Fig 5). Notable genes in the module include  HLA-A, HLA-B,
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HLA-G, HLA-H, and HLA-J. The human leukocyte antigen (HLA) is a genomic region that has

been  genetically  linked  to  the  susceptibility  to  autoimmune  diseases  and  IBD  [55].  The

involvement  of  HLA-G  in  various  autoimmune  diseases,  including  UC  and  CD,  are  well

documented [56]. The associations of HLA-A, HLA-B, HLA-G, HLA-H, and HLA-J with CD have

been previously reported in eQTL and genome-wide association studies  [57].  TRIM21  (Ro52)

has also been implicated in various autoimmune conditions [58]. In IBD, TRIM21 is involved in

regulating Th1/Th17 cell differentiation and mucosal inflammation [59]. E2F2 belongs to the E2

family of transcription factors that plays a role in cell differentiation.  E2F2  expression in the

colon is dysregulated in CD patients [60].
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Fig. 5.  Dysregulated Louvain module identified from the Crohn’s disease differential network

output by BoostDiff. Notable genes, namely, HLA-A, HLA-B, HLA-G, HLA-H, HLA-J, TRIM21,

and E2F2, are highlighted in blue.

3.3.3 Correlation distributions

We  also  examined  the  Pearson  correlations  of  the  top  edges  from  the  differential

networks  identified  by  BoostDiff  using  the  original  expression  data.  This  procedure  was
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performed separately for the results of the two sub-analyses, namely, when the disease condition

is used as the target condition, and when the control condition is used as the target condition. As

shown in Fig 6, for the same edges, we observe a unimodal distribution of correlation values in

the  non-target  condition  and  a  bimodal  distribution  where  BoostDiff  identified  stronger

associations in the target condition, where strong positive correlation values suggest activating

regulator-target  relationship  in  the target  condition,  while  negative values  indicate  inhibitory

relationships. These results are consistent with the goal of identifying differential co-expression

between genes. This striking observation cannot be reproduced when compared to all pairwise

edges from the list of DEGs or randomly selected edges. Differential edges in either condition

tend to have highly correlated expression levels, indicating dysregulation based on disease status.
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Fig. 6.  Violin plots  showing that  the top 500 edges in  the differential  network predicted by

BoostDiff tend to exhibit changes in correlation distributions between the disease and control

expression  data,  indicating  dysregulation  in  pairwise  relationships.  Correlations  between

predicted differential edges are compared to correlations between all pairwise combinations of

DEGs, as well as randomly selected edges. Results are shown for a) the COVID-19 RNA-Seq

dataset b) the Crohn’s disease microarray dataset.

4. Conclusions

Gene regulation is a complex process that changes under different biological contexts.

Differential network biology explores the rewiring of these regulatory interaction landscapes that

are  fundamentally  distinct  from the  static  networks  that  are  inferred  in  most  standard  GRN

inference methods [3]. By additionally considering the regulatory dependencies from a baseline

condition, we can uncover a more refined picture underlying the molecular processes that are

perturbed in a condition of interest, such as disease.

Inference of networks from biological expression data is a challenging task. The novelty

of  BoostDiff  is  twofold:  1)  We  employ  differential  variance  improvement  as  the  splitting

measure in a tree-based algorithm that can explicitly compare two datasets with a continuous

output variable; 2) BoostDiff adapts the AdaBoost algorithm to use differential trees as the base

learner. Boosting the differential trees with respect to samples belonging to the target condition

is a crucial step that significantly improves the detection of differential edges.

BoostDiff outperformed existing differential network methods on simulated data and can

better handle the simulated datasets  with higher dimensionality.  BoostDiff yields biologically

meaningful results and is more practically applicable on real-world transcriptomics datasets. We

showed  that  the  differential  networks  inferred  by  BoostDiff  are  consistent  with  the  known
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pathophysiology  of  COVID-19  and  Crohn’s  disease.  The  performance  of  BoostDiff  can  be

attributed  to  the  tree-based nature of the algorithm,  which performs inference of differential

networks without assuming parametric distributions of gene expression. In particular, BoostDiff

has  more  relaxed  model  assumptions  and  can  better  capture  complex  changes  in  gene

dependencies in biological contexts, which could be missed by tools that employ correlation-

based measures. BoostDiff is also scalable since it builds one model for each gene and can hence

easily be parallelized. 

Nevertheless, our method has several limitations. First, BoostDiff can only compare two

conditions  at  a time.  Moreover,  BoostDiff  is  similar  to GENIE3 in that  it  does not perform

statistical  testing.  Instead,  scores  are  assigned  to  individual  edges  by  calculating  tree-based

variable importance measures; thus, only the ranking of the edge weights is considered. Further,

the AdaBoost algorithm can be prone to overfitting, although this can be avoided by setting a

low number of base differential trees. 

The application of BoostDiff is not limited to gene expression data; the proposed feature

selection approach can be generalized to other omics datasets. For instance, BoostDiff can be

applied  to  proteomics  or  metabolomics  data  that  aim  to  detect  changes  in  dependencies  of

proteins or metabolites. Moreover, the simple but effective strategy implemented in BoostDiff is

an algorithmic advancement that can be further extended to other problems that aim to extract

differentially predictive features. Adapting BoostDiff for analyzing time-series datasets is also a

promising research direction.
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