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Abstract 
Mammalian aging is accompanied by low-grade chronic inflammation (CI), termed 

inflammaging, commonly regarded as a proximal cause of aging-related dysfunction. 
Inflammaging is thought to lie downstream of core drivers of aging consisting of cellular and 
molecular changes and damage forms, such as aberrant epigenomes and transcriptomes. Here 
we test the reverse hypothesis, that CI itself causes multiple aging-related changes at the 
transcriptional level – and thus that inflammation is a core driver of aging and some of the 
transcriptional changes are downstream of it. By analyzing bulk and single-cell RNA 
sequencing data, we find that interventions in lung, liver, and kidney that cause CI in young 
mice partially recapitulate the gene expression signature of aging mice in the same organs. 
This recapitulation occurs in most measured cell populations, including parenchymal, 
immune and stromal cells, and consists of both inflammation signals themselves and non-
inflammation related genes. We find that senolytic treatment reverses the shared gene 
expression component of aging and CI. The results point to the potential role of age-
dependent CI as a core driver of aging. 

Main 

Aging is defined by progressive loss of function and increased vulnerability to illness 
and death. One of the pervasive features of mammalian aging is a low-grade chronic 
inflammatory status, termed “inflammaging”, occurring in the absence of overt infection 1. 
Inflammaging entails high levels of circulating cytokine and pro-inflammatory factors, as 
well as tissue-localized inflammation. Whereas acute inflammation is crucial to defend 
against invading pathogens and during tissue trauma, long-term inflammation is often 
deleterious, associated with increased mortality 2 and with age-correlated pathologies, 
including cardiovascular disease, cancer, diabetes and atherosclerosis 3. 

Several possible sources of inflammaging have been proposed 4, including pro-inflammatory 
self-debris such as damaged macromolecules and dying cell fractions, free radicals from 
oxidative stress, and the buildup of senescent cells 5, cells that underwent stress-mediated 
irreversible cell-cycle arrest and secrete a cocktail of immunostimulatory molecules called 
senescence-associated secretory profile (SASP). These factors accumulate with age due to 
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increased production and/or inadequate elimination by diminishingly effective resilience 
mechanisms (e.g. the immune system) 6. 

The proposed etiology of inflammaging thus consists of molecular events which are 
associated with normal aging. The influential hallmarks of aging 7 paper describes 
inflammaging as a high-level phenotype of aging which is a net result of more primary 
causes. While it is widely recognized that inflammaging may constitute a proximal cause of 
tissue dysfunction and pathology in aging, its potential role in reinforcing lower-level cellular 
and molecular aging hallmarks is seldom explored. Understanding the causal 
interconnections of inflammaging with other core changes of aging, e.g., gene expression 
changes, is crucial in order to realize the potential of inflammaging as a target for treating 
aging and age-related morbidity. 

Here we aim to test a hypothesis that runs counter to the prevailing view that inflammaging 
lies only downstream of other hallmarks of aging. Instead, we propose that CI drives many 
age-related molecular changes, including age-related changes in non-immune cells. 

To test this hypothesis, we compare the gene expression profile of aging to the gene 
expression profile of CI in the young. We utilize published datasets of bulk and single-cell 
RNA sequencing (scRNA-seq) for murine aging and for interventions that induce CI in 
young animals in three organs - pulmonary fibrosis of the lungs, non-alcoholic steatohepatitis 
of the liver, and obstructive nephropathy of the kidney. We find that CI sizably recapitulates 
the transcriptional features of aging in these organs at the whole-tissue-level and the 
individual cell population level, including non-immune cell populations. Shared features 
include both inflammation signals themselves but also many genes not traditionally 
connected with inflammation, demonstrating a broader “aging” effect of CI. We further show 
that senolytic treatment, which reverses some aspects of aging by reducing senescent cell 
load, also reverses the gene expression changes shared between aging and CI. These results 
suggest that instead of merely being caused by molecular changes related to aging, CI is 
(also) an upstream driver of aging that causes some of the cellular and molecular changes of 
aging. This underscores the therapeutic potential of targeting CI to counter aging-related 
phenotypes. 

Results 
1. Chronic inflammation in the young recapitulates age-related transcriptome 

changes in lung, liver and kidney 

To test if CI recapitulates aspects of aging, we first compared bulk gene expression profiles 
of aging mice organs to the gene expression profiles of the same organs from young mice 
exposed to CI-eliciting interventions. We use publicly available data from 4 independent 
studies, covering aging and CI in 3 organs: lung, liver and kidney. 

The CI models used were (1) idiopathic pulmonary fibrosis, characterized by the thickening 
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Table 1: Data sources for bulk RNA sequencing of aging and chronic 
inflammation in mice. 
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and stiffening of lung tissue and inflammation, induced by bleomycin instillation8; (2) non-
alcoholic steatohepatitis (NASH), a liver disease characterized by excessive fat build-up and 
inflammation, induced by a high-fat, low-chlorine diet 9; (3) obstructive nephropathy, a 
kidney disease characterized by progressive fibrosis and inflammation, induced by unilateral 
ureter obstruction 10 (Table 1). 

Aging data for these 3 organs was retrieved from the Tabula muris senis project 11. Together, 
the data comprise 12 experimental groups (3 organs x 2 studies x 2 experimental conditions). 

To compare gene expression profiles of aging and CI, we identified differentially expressed 
genes (DEGs) separately in each study using DESeq2 12 (Supplementary Table 1). Within 
each organ, there was a larger-than-expected-by-chance overlap between aging-related and 
CI-related sets of DEGs (hypergeometric test 𝑝𝑝 < 1.0 × 10−16) (Fig 1 a). 

Next, we correlated the ranked gene expression fold-change vectors of old/young, hereinafter 
O/Y, and CI/control, hereinafter CI/CTL, for aging-related DEGs, using spearman 
correlation. All three organs show a positive correlation coefficient (𝜌𝜌 = 0.29, 0.32, 0.61 for 
lung, liver and kidney respectively, 𝑝𝑝 < 1.0 × 10−16 for all three). The correlation is 
visualized by a density map which shows high density along the diagonal (Fig 1 b). 
Additionally, examining the overlapping set of O/Y and CI/CTL DEGs, we find that most are 
correlated (O/Y up & CI/CTL up, O/Y down & CI/CTL down) rather than anti-correlated 
(O/Y up & CI/CTL down, O/Y down & CI/CTL up) in all three organs (Fig 1 c). These 
correlations indicate that a sizable fraction of the gene expression changes that occur in aging 
are recaptured by CI. 

Figure 1 
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Fig. 1: Chronic inflammation recapitulates age-related bulk transcriptomic 
changes in lung, liver and kidney. 
a, Euler diagram depicting overlap of DEG sets for O vs. Y and CI vs CTL for lung, liver and kidney. 
Hypergeometric test for overlap 𝑝𝑝 < 1.0 × 10−16 for all. b, Ranked mean fold-changes for CI/CTL (x-axis) and 
O/Y (y-axis) gene expression for aging DEGs shown on a density map for lung, liver and kidney. Spearman 
correlation coefficient 0.29, 0.32 and 0.61 respectively. 𝑝𝑝 < 1.0 × 10−16 for all.  c, DEGs from the 3 overlap 
regions of the Euler diagrams, divided into DEGs that change in correlated (++, --) or anti-correlated (+-, -+) 
manners (bottom), and the correlated DEGs to inflammation- and non-inflammation-related (top). d, Selected 
enriched gene sets for correlated DEGs from the overlap regions of the Euler diagrams. Heatmap is color-coded 
for −𝑙𝑙𝑙𝑙𝑙𝑙10(𝐹𝐹𝐹𝐹𝐹𝐹). Red designates increasing genes, blues decreasing. e, Transcription factors and secreted 
factors upregulated in aging and CI in at least two organs, and top-FC non-inflammation factors. Color code 
depicts fold-change in expression, circle size depicts −𝑙𝑙𝑙𝑙𝑙𝑙10(𝐹𝐹𝐹𝐹𝐹𝐹) and circle fill signifies statistical 
significance. 
 

In order to characterize the biological processes shared by aging and CI, we used MetaScape 
14 to test for enrichment of gene sets in the shared correlated DEGs (up- and downregulated) 
in each organ (Fig. 1 d, Supplementary Table 2, also see methods). The shared upregulated 
DEGs were enriched for immune system processes and signaling pathways in all 3 organs. 
Immune processes included both innate and adaptive immunity, i.e., antigen presentation, 
Type I/II interferon signaling, neutrophil degranulation and phagocytosis, as well as T cell 
and B cell activation. Implicated signaling pathways include MAPK/ERK, NF-KappaB and 
TNF. In addition, in liver and kidney, cell death related pathways and endocytosis are 
upregulated, as well as extracellular matrix related pathways. 

Downregulated pathways are dominated by metabolic processes, and specifically lipid and 
fatty acid metabolism (Fig. 1 d). 

Importantly, the shared DEGs consist not only of inflammation-related genes (Fig 1 c, 
Methods), but also of metabolic, structural and signaling genes, implying a broader “aging” 
effect of CI on gene expression beyond inflammation itself. 

Finally, we ask particularly which secreted/extracellular, transcription factors and non-
inflammation-related genes are shared between aging and CI. We find that secreted factors 
and TFs changing in at least two organs in both aging and CI are all upregulated (Fig. 1 e). 
Secreted factors include several immunoglobulin genes, suggesting B lymphocytes are either 
activated or recruited to the tissue in aging and CI. Mmp12, upregulated in all three organs, 
may be SASP-related 15. TFs are enriched for immune modulators, including Irf7/8, Ikzf1/3, 
Pou2f2 and Pou2af1. 

Overall, we observed broad pan-organ and some organ-specific gene expression changes 
shared by aging and CI. The upregulation of immune-related pathways in aging and CI in all 
organs implies either infiltration of immune cells into the organ or activation of resident 
immune cells, which accords well with expectation. However, distinguishing activation from 
infiltration is a non-trivial task using bulk RNA sequencing data, which represents a mixture 
of multiple cell populations comprising the organ. To resolve changes at the cell population 
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Table 2: Data sources for single-cell RNA sequencing of mouse aging and 
chronic inflammation. 
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level, scRNA-seq techniques are more suitable. We next turn to analysis of scRNA-seq 
datasets for aging and CI. 

2. CI recapitulates age-related gene expression changes at the level of individual 
cell populations analyzed by scRNA-seq 

To examine cell population-specific changes shared by aging and CI in lung, liver and 
kidney, we analyzed scRNA-seq data for aging and for CI-inducing interventions (similar to 
the bulk analysis). CI data in young mice was retrieved from 3 independent studies: (1) a 
study by Strunz et al. 16 charting the cellular dynamics of bleomycin-mediated lung injury, 
which induces fibrosis and CI, comprising 63,872 cells from 64 mice; (2) a study by Xiong et 
al. 17, which sequenced 33,168 cells from the livers of 3 mice that were on 6 weeks amylin 
diet, which recapitulated key features of human NASH, and 3 controls; (3) atlas of kidney 
disease by Conway et al. 18, comprising 8,410 cells from 3 mice that underwent unilateral 
ureter obstruction for 7 days, and 3 sham-treated controls.  

Aging data was retrieved from (4) atlas of murine lung aging by Angelidis et al. 19, 
comprising 14,813 cells collected from 15 mice; (5) The tabula muris senis project 20, which 
sequenced 5,924 cells from mouse liver and 10,280 cells from mouse kidney in different 
ages. All data sources are described in Table 2. The cells from each organ are depicted in a 2-
dimensional t-distributed stochastic neighbor embedding (t-SNE) plot color coded for cell 
population or experimental group (Supplementary Fig. 1 a-c, methods). 

Broad cell population annotations are adopted from original publications and merged, or re-
established here using the Seurat V4 21 package suite (see methods). We retained a coarse-
grained annotation in order to simplify the cross-dataset-matching process (Supplementary 
fig 1 d-f). 

A total of 28, 19, and 26 cell populations were identified in lung, liver and kidney, 
respectively (Supplementary Fig. 1 a-c, Supplementary Table 3-8). Due to biological factors 
and to different tissue-processing protocols implemented in the studies, studies differ in the 
fraction of cells from each population. A population that is abundant in one dataset may be 
absent from another. We therefore focused on cell populations where at least 10 cells are 
present from each of the four experimental groups, namely O, Y, CI and CTL. In lung, a total 
of 19 cell populations met this criterion (Table 2), covering parenchymal tissue (alveolar type 
2 pneumocytes (AT2)), epithelial tissue (ciliated cells, club cells, goblet cell), lymphocytes (T 
cells, natural killer cells (NK) B cells, plasma cells), myeloid cells (circulating macrophages, 
alveolar macrophages (AM), dendritic cells (DC), granulocytes, stromal cells (capillary, 
vascular and lymphatic endothelial cells (C/V/LEC), fibroblasts, mesothelial cells) and 
smooth muscle cells (SMC). In the liver, 3 populations met this criterion (Table 2): Kupffer 
cells, hepatocytes, and hepatic sinusoid endothelial cells (HSEC). In Kidney, 11 cell 
populations met the criterion (Table 2): capillary endothelial cell (CEC), cortex artery cells 
(CAC), distal convoluted tubule epithelial cell (DCTEC), fenestrated cells, loop of Henle 
limb epithelial cell (LHLEC), mesangial cell, proximal convoluted tubule epithelial cell 
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(PCTEC), proximal straight tubule epithelial cell (PSTEC), podocytes, T cell, and 
macrophages (Table 2). 

First, we removed ambient mRNA (see Methods) to avoid spurious DEGs. Next, we 
performed differential gene expression analysis on old vs. young and CI vs. healthy, using 
MAST 22 on log-normalized expression values controlled for sex (|𝑙𝑙𝑙𝑙𝑙𝑙2 𝑓𝑓𝑙𝑙𝑙𝑙𝑓𝑓 − 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎| >
0.32, 𝐹𝐹𝐹𝐹𝐹𝐹 < 0.05, methods).  

Consistent with bulk analysis, we observe positive spearman correlations in the range of 0.2-
0.8 between the ranked gene expression fold-change vectors (O/Y, CI/CTL) of aging-related 
DEGs. This applies to multiple cell populations (Fig. 2 a, Supplementary Fig. 1 g) in all three 
organs. There are more correlated than anti-correlated shared DEGs in almost all cell 
populations (Fig. 2 a, Supplementary Table 9). These results indicate CI in the young 
recapitulates of aging gene expression changes also at the cell population level. DEGs include 
both inflammation and non-inflammation-related genes, demonstrating that the recapitulation 
extends beyond inflammation signals themselves (Fig. 2 a, Supplementary Table 9). 

The most robust DEGs, shared by 4 or more cell populations, are presented in a heatmap 
(Fig. 2 b). There are more upregulated than downregulated shared DEGs, and few 
inconsistent DEGs (e.g., up in one cell population and down in another). The map is 
dominated by immune-related genes, which is the shares signal most robust across 
populations. Notably, alterations in antigen presentation are a common feature of aging and 
CI. B2m and H2-K1, encoding for the MHC class I protein complex, are upregulated in both 
immune (e.g., alveolar macrophage) or non-immune (e.g., AT2) cells. Genes encoding for the 
MHC class II protein complex (H2- Eb1/Ae/DMb1/Ab1, Cd74) are upregulated in alveolar 
macrophages, kupffer cells, kidney T cells and also in fenestrated cells. Endothelial cells are 
known to express MHC class II in some contexts 23. Interestingly, lung dendritic cells and 
renal macrophages seem to downregulate this antigen-presentation pathway. 

Three members of the pro-inflammatory circulating S100 family (a6/8/9) are upregulated in a 
number of cell populations. S100a9 is known to be elevated in mammalian aging 24. Several 
polymorphisms of ApoE, upregulated in Kupffer cells, DCTECs, CACs, PSTECs, and 
HLHECs, have been associated with Alzheimer's25 and with longevity 25, 26.  

Several genes are notably downregulated in multiple populations, including Inmt, Glul, 
Rnase4, Sult1a1, Gm9846 and Gm10263. Tmsb10 is upregulated in kidney endothelial cells 
and downregulated in immune cells. 

Consistent with results obtained from bulk data, pathway analysis applied to specific 
populations (Fig. 2 c, Supplementary Table 10) reveals upregulation of immune system 
processes, e.g., antigen presentation (class I and class II), phagosome, cytokine production, 
interferon-gamma/TNF/MAPK/ERK signaling, and neutrophil degranulation, as well as cell 
death. Uniquely to single cell analysis, we observe an upregulation of antigen presentation 
(class I and class II) in non-immune cells, as well as angiogenesis signals, cell adhesion, 
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growth arrest and cellular senescence, and oxidative stress and redox, which accords with 
redox imbalances often associated with aging 28 and with CI 29. 

Figure 2 

 

Fig. 2:  Chronic inflammation recapitulates age-related gene expression 
changes at the level of individual cell populations analyzed by scRNA-seq. 
a, From left to right: total number of DGEs in aging and CI studies combined; DGE fraction shared vs study 
specific; Spearman correlation of O/Y and CI/CTL ranked mean gene expression fold-changes for aging DEGs, 
where > 10 are present (otherwise denoted na); DEG correlation (black: ++, --, grey: +-, -+); inflammation and 
non-inflammation related fractions of correlated DEGs. Separated by organ and color coded. b, Aging/CI DEGs 
that are shared for 3 or more cell populations. Color coded for pattern. na = none of the above. c, Gene sets most 
consistently enriched in DEG lists across cell populations. Red designates increasing genes, blues decreasing. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.509471doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509471
http://creativecommons.org/licenses/by-nc-nd/4.0/


Also consistent with bulk data, lipid metabolism/catabolism is downregulated in four 
populations (Fig. 2 c). 

Overall, CI in young animals recapitulates multiple transcriptional changes observed in aging 
in different cell populations, including immune, parenchymal and stromal populations, in a 
pan-organ manner. Shared DEGs and gene sets include both inflammation signals themselves 
and non-inflammation-related factors. 

3. Senolytic treatment partially reverses age-related transcriptional changes that 
are shared with CI in lung, liver and kidney, and decreases transcriptional age  

To further test the hypothesis that CI recapitulates aspects of aging, we studied the effects of 
an intervention that reverses some aspects of aging in mice: a drug that remove senescent 
cells, known as a senolytic drug 30. We used data from Ovadya et al. 13 where the senolytic 
agent ABT-737 31 was administered to old (20 month) C57BL/6 Perf1-/- mice, followed by 
whole-tissue bulk RNA sequencing of lung, liver and kidney from the treated group, as well 
as old (20 months) and young (3 months) C57BL/6 Perf1-/- controls. 

ABT-737 treatment, which eliminates senescent cells by inhibiting the anti-apoptotic BCL-2 
family of proteins, attenuated transcriptional aging and prolonged lifespan of these mice 13. 
Consistent with this, ABT samples fall between Y and O in a PCA plot based on normalized 
gene expression (Fig 3 a). 

We sought to quantify how senolytic treatment affected the transcriptional changes shared by 
aging and CI. To do so, we computed for each organ the “rejuvenation vector”, given by the 
gene expression fold-changes between ABT-treated and untreated old mice, ABT/O. For 
aging related DEGs (Supplementary table 11), we correlated the rejuvenation vector with the 
“CI vector” of the effects of CI in young mice analyzed in section 1, given by fold changes 
CI/CTL. In all three organs the spearman correlation coefficient is negative (Fig. 3 b, 𝜌𝜌 <
 −0.4, 𝑝𝑝 < 1.0 × 10−16). This shows that ABT-737 senolytic treatment partially rejuvenates 
the CI-shared component of aging. 

Next, we examined the intersection of the DEG sets (Supplementary table 11) for aging, CI 
and ABT-737 treatment in each organ. Of 8 possible trends in this gene set (each gene can be 
up or down regulated in ageing, CI and ABT-373), we find that nearly all genes are either 
upregulated in aging and CI and downregulated in ABT-737 treatment, or vice versa (Fig. 3 
c). We conclude that this DEG set is mainly composed of genes "rejuvenated" by ABT-737 
treatment, with the majority being downregulated. 

We tested which of the enriched gene sets detected in our original analysis are rejuvenated by 
ABT-737 (Supplementary table 12). We find that multiple immune-related changes are 
diminished by the senolytic, as are cell death, TNF and MAPK signaling (Fig. 3 d). Some of 
the metabolic and biological oxidation pathways are increased. This is again consistent with 
the hypothesis that senolytic rejuvenates processes shared by CI and aging. Several secreted 
factors and TFs are rejuvenated, notably Tmsb4x, Ctss, Ccl5, and Irf7 are rejuvenated in both 
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liver and kidney. Leading non-inflammation-related aging/CI DEGs are slightly affected (Fig. 
3 d). 

Figure 3  

 

Fig. 3: Senolytic treatment rejuvenates age-related transcriptional changes 
that are shared with Chronic inflammation in lung, liver and kidney. 

a, PCA of samples based on normalized gene expression of young, old, and ABT-737-treated old Perf1-/- mice 
separately from three organs. b, Ranked mean fold-changes CI/CTL (x-axis) and ABT/O (y-axis) gene 
expression for aging DEGs shown on a density map for lung, liver and kidney. Spearman correlation coefficient 
-0.42, -0.60 and -0.71 respectively. 𝑝𝑝 < 1.0 × 10−16 for all. c, Euler diagram depicting overlap of DEG sets for 
O vs. Y and CI vs. CTL and ABT vs. O for lung, liver and kidney. Upset plot showing interaction of the gene 
sets. d, Enriched gene sets for rescued DEGs from c, color coded accordingly. e, Transcription factors, secreted 
factors, and non-inflammation-related factors rescued by ABT-737 in three organs, color coded as in d. 
 

Finally, we evaluated the RNA age of these samples by means of RNAAgeCalc 32, a 
transcriptional age calculator. RNAAgeCalc was calibrated for different human organs, so for 
the purpose of our analysis we converted mouse gene names to their human homologs and 
scaled the age readout. Interestingly, we observe that for all three tissues, the clock assigns 
higher RNA age to O compared to Y mice, and to CI compared to CTL, while ABT-treated 
animals fall between Y and O (Fig 4 a). These results match our expectation, notwithstanding 
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pan-species application. This underscores the notion that the shared component of aging and 
CI is a strong determinant of transcriptional age in mammals. 

  Figure 4 

 

Fig. 4: Chronic inflammation increases RNA age, and illustrated summary 
of results. 

a, RNAAgeCalc aging clock applied to data analyzed in this study and scaled. b, Illustration of the main results 
of the study. 
 

Discussion 
We tested the hypothesis that mammalian aging is recapitulated by CI in young 

organisms. To do so, we compared gene expression signature of aging mice to that of CI in 
young mice using bulk and single-cell gene expression datasets. We find that aging signature 
is correlated with CI signature. CI partially recapitulates age-related gene expression changes 
in both in immune and non-immune cells, and with respect to inflammation and non-
inflammation-related genes. Specific shared transcriptional programs include 
inflammation/cytokine production, interferon-gamma/TNF/MAPK/ERK signaling, neutrophil 
degranulation, cell death, antigen presentation (class I/II) in non-immune cells, growth arrest, 
oxidative stress and wound healing. Lipid metabolism is the only pathway that is consistently 
downregulated (Fig. 4 b). Together, these findings suggest that CI may cause aging 
phenotypes and not just be caused by molecular and cellular damage associated with ageing. 

Downregulation of lipid and fatty acid metabolism and associated PPAR signaling is a strong 
shared aspect of aging and CI in our analysis. Indeed, an emerging body of data suggests that 
lipid metabolism plays a role in the aging process. In humans, adiposity increases with age 33. 
In a range of model organisms, dietary, pharmacological, genetic, and surgical lipid‐related 
interventions extend lifespan 34. Studies in mice also demonstrated the other side of the coin, 
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that high-fat diet accelerates aging 35. It is thus notable that our analysis indicates that lipid 
metabolism decrease is also a salient feature of CI. 

Another notable process shared by aging and CI is an increase in class I and class II antigen-
presentation, which occurs in both immune subtypes and in endothelial and epithelial cells.  

While canonical cellular senescence markers Cdkn1a and Cdkn2a did not emerge as shared 
features of aging and CI, we find that other senescence associated genes, e.g., inflammatory 
cytokines and matrix metalloproteinases, are upregulated (Fig 1 e), and so are pathways 
relating to cell-cycle arrest and cellular senescence in the single-cell analysis (Fig 2 c). 24 of 
119 murine in vivo senescence-related genes curated in SenMayo gene set 36 are upregulated 
in kidney aging and CI in bulk analysis (supplementary Table 1), of which Jun and Spp1 are 
also upregulated specifically in fenestrated cells and in proximal straight/convoluted tubule 
epithelial cell (Fig 2 b). In addition, MAPK, upregulated in both whole-organ and in several 
specific cell-populations, and NF-κB signaling pathways, upregulated whole-organ levels, 
have been implicated as pro-senescence and as potential SASP regulators 37–40. TNF 
signaling, which is upregulated in the kidney on whole organ and cell population levels, is 
also associated with SASP 41.  

Consistent with our findings, a recent analysis of transcription factors regulatory activity 
based on TMS dataset 42 also reported upregulation of Nfkb1, TNF-signaling genes, and 
antigen processing machinery to be robust features of aging. Increased regulatory activity of 
Nfkb1 was experimentally verified in kidney using ChIP–seq. 

It is worth noting that age-related changes in gene expression likely consist of both (1) 
passive non-coordinated drift of the gene expression, and (2) a concomitant coordinated 
stress response meant to counter various damage types incurred to the organism and to restore 
homeostasis. Pathway analysis highlights the coordinated, responsive, changes. 

To further test the link between aging and CI, we analyzed an experiment in which a 
senolytic drug was used to remove senescent cells from aged mice. This treatment reversed 
much of the gene expression changes shared between aging and CI. Thus, removal of 
senescent cells can be interpreted as removing a major source of inflammaging. This accords 
well with a study showing systemic senolysis, by either genetic or pharmaceutic means, 
reduced brain microglial activation and SASP and alleviates cognitive impairment in mice 43. 

Finally, we observed an acceleration of transcriptional age in all three organs induced with 
CI, and that transcriptional age is decreased in aging by inflammation-reducing senolytic 
treatment. In humans, accelerated epigenetic aging (measured by DNA methylation clock 44) 
has been associated with tobacco use 45, HIV 46 and Covid-19 infection 47. Since these three 
conditions involve CI, and in light of our findings, it is reasonable to suggest that the reported 
DNA methylation age acceleration is at least in part inflammation-mediated. Along the same 
lines, it was recently shown that even transient inflammatory stimulus accelerates aging of 
hematopoietic stem cells, manifesting in increased epigenetic age and long-lasting impaired 
self-renewal 48. Another recent study has, however, shown that inflammation (measured using 
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blood borne factors) and epigenetic aging are largely independent markers of aging 49. More 
work is required to elucidate the relationship between these important aging markers.  

Although CI is well studied in the context of aging 1, and although it was shown previously 
that inflammation is a robust gene-expression hallmark of aging in different organs 50 and 
mammalian species 51, by directly comparing aging and CI in young, our approach offers new 
insights into the wide-ranging effect of CI. We show that CI affects the gene expression 
signature of immune and non-immune cells to look more like aged cells, with respect to 
inflammation-related and unrelated genes. Another study showed a similar overlap between 
aging and oncogenic gene signatures in human cancers 52. A potentially revealing future 
analysis can examine the nexus of aging, CI and cancer.  

A major technical challenge we faced was comparing datasets generated in different studies. 
Technical inter-study differences, e.g., protocols and batch effects, may mask biological 
correspondence. We note that the correlations found here, many exceeding 0.5, are at least as 
large as in a ‘positive control’ analysis comparing the same biological process - aging - from 
two different studies, in both bulk and single-cell levels (see Supplementary material, Figs. 2-
3). We thus both recognize this as a limitation of our methodology, and as a reminder that the 
actual correspondence between aging and CI may be even stronger than described. 

Another limitation of this study is that the senolytic treatment is only analyzed in bulk level 
(owing to lack of single-cell studies), which does not allow us to determine if the observed 
reversal of gene expression changes derives from compositional changes of the tissue, or 
changes in specific cell populations, or a combination (most likely option). 

The present findings relate to a fundamental question: Are there ultimate drivers of aging? An 
ultimate driver is a factor that increases over the lifespan, and which drives multiple proximal 
aspects of aging. The finding that CI partially recapitulates gene expression changes in aging 
may point towards one potential ultimate driver. This driver is the accumulation of cells in 
the body that secrete inflammatory signals. Such cells include senescent cells which secrete 
SASP, a cocktail of potent inflammatory signals. Other types of damaged cells may also 
participate and secrete inflammatory factors.  

Along these lines, it was recently shown that inflammation can decouple cancer risk and 
other aging phenotypes from chronological age. In young women carrying BRCA1/2 
germline mutations, known to cause susceptibility to breast cancer, breast tissue presents cell 
lineage fidelity loss concomitant with inflammatory markers, similar to breast tissue of older 
women 53. In this context, inflammation may perturb homeostatic cues, driving cells to 
explore cellular states conducive to clonal expansion, altered identities and progression of 
carcinogenesis 54. 

One may ask why do inflammation markers rise over the lifespan in the first place? What is 
the fundamental reason for the rise of the number of pro-inflammatory cells such as senescent 
cells? One plausible mechanism is the linear increase with age of alterations in stem cells, 
including epigenetic changes, mutations and retroviral events 55. In young humans and mice, 
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stem cells bear virtually no epigenetic changes or mutations, whereas as at old age (80y old 
humans, 2y old mice) each stem cell harbors several thousand mutations on average5657 and 
widespread epigenetic changes 56. Over time, more and more stem cells become altered in a 
way that disrupts genes expressed in their differentiated progeny. These alterations cause 
damage in the differentiated cells, driving the differentiated cells to become senescent and to 
secrete inflammatory signals.  

Senescent cell production thus rises with age, eventually saturating the senescent cell removal 
mechanisms 6. Once removal of senescent cells is saturated, senescent cell levels and their 
inflammatory secretions increase strongly with age. Mathematical modeling of this process 
indeed captures many quantitative hallmarks of aging and age-related diseases 58. 

To conclude, our findings support a hypothesis that inflammaging lies downstream of cellular 
changes associated with ageing, instead of being caused by them. Proposed drivers and 
hallmarks of aging that are commonly considered to cause inflammaging, may in fact also be 
caused by it. This explains why reduction of inflammaging by removal of senescent cells has 
wide-ranging beneficial effects on multiple dysfunctions of aging. The present findings also 
call for better understanding of the pathways by which chronic inflammation carries out its 
broad effects on organelles, cells and organs. Such pathways may serve as targets for 
interventions to mitigate age-related decline.  

Methods 
Bulk differential gene expression analysis: for differential gene expression analysis, we 
used DESeq2 standard workflow, which is based on the negative binomial distribution. Set 
interactions in figure 3 were visualized with R UpSetR code package 60. 

Bulk gene set analysis: shared DEG lists were analyzed with MetaScape web interface 14 for 
multiple gene lists with Min Overlap = 2, P Value Cutoff = 0.01, and Min Enrichment = 1.5. 

Sc clustering and cell-population annotation: cell-population annotations were adopted 
from original studies when applicable (lung:Strunz/Angelidis, kidney:TMS). Where 
published annotation was deemed too coarse-grained (lung:TMS, liver:Xiong/TMS, 
kidney:Conway), Seurat package (version 4.0) 61 standard workflow was used to cluster. 
Briefly, UMI matrix was log-normalize, highly variable genes were detected, and PCA was 
applied, followed by KNN graph construction on 50 leading components. Louvain algorithm 
was used for community detection using resolution parameter 1.5. Clusters were manually 
annotated based on marker genes and cross-reference with the pre-annotated dataset. Note 
that not all mice used for clustering are used for downstream analysis. 

All TMS data used for this and subsequent analysis was generated using microfluidic droplet 
technology (10X Genomics). 

Sc ambient RNA removal: ambient RNA is RNA present in the cell suspension that can be 
aberrantly counted along with a cell’s native mRNA. In most datasets, ubiquitous expression 
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of highly-expressed cell-type specific genes (e.g surfactant genes in lung tissue), suggested 
such cross-contamination. To overcome this, decontX() function from celda (V1.6.1) 62 was 
used with default parameters to remove contamination in individual cells. decontX is a 
Bayesian method that models the empirical expression of a cell is a mixture of counts from 
two multinomial distributions: (1) a distribution of native transcript counts from the cell’s 
actual population and (2) a distribution of contaminating transcript counts from all other cell 
populations captured in the assay.  

Sc 2-dimentional representation: For generating the tSNE maps of single-cells, the Seurat 
V4 61 RunTSNE() function was used with these parameters: dims = 1:50, reduction = "pca". 

Sc differential gene expression analysis: Two-sided MAST test implemented in Seurat V4 
was applied to decontaminated log-transformed normalized counts for each group and each 
cell-population individually. Genes were tested if they are expressed in > 0.01 of cells and 
with > 5 cells with > 1 UMIs. DGEs are selected to be |𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎|  >  1.25, 
Benjamini-Hochberg adjusted 𝑃𝑃 < 0.05. Tests were controlled for sex as a covariant.  

In order to avoid ambient RNA, in addition to using DecontX corrected data, we also 
discounted genes if they met both these criteria: 1. among the top 5 markers in another cell-
population and 2. among the top 50 most highly expressed genes in the dataset. 

We note that for Strunz et al. lung fibrosis study, who performed timecourse measurements, 
we used cells from 7 days post- bleomycin treatment onwards. 

For liver and kidney, tests were applied for old vs. young where “old” consists of cells pooled 
from 18-, 21-, 24- and 30-month-old mice, and “young” consisted of 3-month-old mice.  

Inflammation-related gene set: chosen as “inflammatory response” gene ontology term 
(GO:0006954), combined with genes prefixed: Irf, Ifi, H2-, C1q, Cd(digit), Igj, Igh, Igk, Igl. 

Sc gene set enrichment analysis: shared DEG lists were analyzed with MetaScape web 
interface for multiple gene lists with Min Overlap = 2, P Value Cutoff = 0.01, and Min 
Enrichment = 1.5. 

RNA age calculation: RNA age was calculated using RNAAgeCalc 32 trained on human data 
derived from GTEx V6 to construct our across-tissue and tissue-specific transcriptional age 
calculator. The algorithm was implemented in R following the guidelines described in 
https://www.bioconductor.org/packages/release/bioc/vignettes/RNAAgeCalc/inst/doc/RNAA
ge-vignette.html, with lung specific predictor used for lung and pan-tissue predictor used for 
liver and kidney, while supplying the counts matrix. Mouse genes are converted to human 
homologs by simple case-matching. The readout, given in human years, was scaled for 
presentation. 

Code availability 

Custom code will be supplied upon reasonable request. 
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