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ABSTRACT 

Previously, we showed that the Arabidopsis active demethylase ROS1 prunes DNA methyla-

tion at the promoters of a subset of immune-responsive genes to facilitate their transcriptional 

activation during antibacterial defence (Halter et al., 2021). In particular, ROS1 was shown to 

demethylate the RLP43 promoter in a region carrying a functional W-box cis-element, thereby 

ensuring a tight binding of WRKY transcriptional factors (TFs) onto DNA. Here, we first ex-

tend these findings by showing that DNA methylation at W-box elements decreases the binding 

of several Arabidopsis WRKY TFs in vitro. Furthermore, we provide evidence that DNA meth-

ylation at a single cytosine located in the W-box of the RLP43 promoter strongly repels DNA 

binding of an Arabidopsis WRKY TF in vitro. Using structural modelling, we demonstrate that 

this cytosine interacts through van der Waals contacts with the conserved tyrosine of WRKY 

DNA binding domains. Significantly, our model predicts steric hindrance when a 5-methyl 

group is present on this specific cytosine, thereby likely preventing tight binding of WRKY 

DNA binding domains. Finally, because the WRKY motif and the residues involved in DNA 

contacts are conserved, we propose that this methylation-dependent WRKY-DNA binding in-

hibitory mechanism must be widespread across plant species. 
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INTRODUCTION 

Transcription factors (TFs) are central regulators of gene expression and control a wide range 

of biological processes. They can bind to specific genomic DNA sequences through recogni-

tion of Transcription Factor Binding Site (TFBS) and further activate or repress a large reper-

toire of genes. In eukaryotic cells, transcription is known to be regulated in the context of chro-

matin, whereby TFs typically compete with nucleosomes for genomic DNA accessibility 

(Guertin and Lis, 2010; Klemm et al., 2019). Nevertheless, some TFs, referred to as “pioneer” 

TFs, have the ability to bind nucleosome-rich regions (Clapier and Cairns 2009; Magnani et 

al., 2011; Iwafuchi-Doi and Zaret, 2014; Iwafuchi-Doi and Zaret, 2016; Zaret et al., 2020; Lai 

et al., 2021; Jin et al., 2021; Yamaguchi, 2021). Besides nucleosome density, some DNA- or 

histone-based modifications can additionally modulate the accessibility of TFs on genomic 

DNA (Klemm et al., 2019).  This is notably the case of DNA methylation, a well-characterised 

epigenetic mark that resides in the methylation of the 5-position of cytosine in DNA, also 

known as 5-methylcytosine or 5mC. In mammals, almost all 5mC are in the CG context, 

whereas in plants cytosine methylation occurs in symmetrical (CG or CHG) and in asymmet-

rical CHH contexts (H = A, T, or C) (Law, J.A & Jacobsen, 2010). In Arabidopsis, methylation 

nearby a transcriptional start site (TSS) is generally associated with transcriptional gene silenc-

ing (Zhang et al., 2006; Ando et al., 2019), suggesting that it restricts DNA/chromatin accessi-

bility for TFs and/or components of the transcription machinery. It has been shown that DNA 

methylation often blocks TF-DNA binding (Yin et al., 2017; Gaston and Fried, 1995; Watt and 

Molloy, 1988; Iguchi-Ariga and Schaffner, 1989; Tate and Bird, 1993; Campanero et al., 2000; 

Comb et al., 1990; O’Malley et al., 2016). For example, a high-throughput TF binding site 

discovery method, named DNA Affinity Purification sequencing (DAP-seq), reported that 

~75% of Arabidopsis TFs (248 out of 327 TFs tested) are sensitive to DNA methylation, mean-

ing that methylation has an inhibitory effect on their DNA binding capacity (O’Malley et al., 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.26.509487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509487
http://creativecommons.org/licenses/by/4.0/


4 
 

2016). A more recent structural and molecular analysis revealed that methylation of the cyto-

sine from the core AAC cis-element inhibits DNA-binding of Arabidopsis WEREWOLF 

(WER) (Wang et al., 2020), a R2R3-MYB TF implicated in root hair patterning (Lee and Schie-

felbein, 1999). DNA methylation at the binding site of the Arabidopsis RELATIVE OF 

EARLY FLOWERING 6 (REF6), a Jumonji C-domain-containing H3K27me3 demethylase, 

was also shown to repel REF6 binding capacity in vitro and in vivo, providing further support 

for a negative impact of methylation on the association of a histone-modifying enzyme onto 

DNA/chromatin (Qiu et al., 2019). A systematic examination of the effect of methylation on 

the DNA binding of 542 human TFs also unravelled a large set of TFs that are sensitive to 

methylation (Yin al., 2017). However, this study also revealed that many human TFs, particu-

larly from the homeodomain family, preferred methylated DNA sites (Yin et al., 2017).   

 

We have recently shown that the Arabidopsis REPRESSOR OF SILENCING 1 (ROS1) ac-

tively demethylates the promoter of a subset of defence genes to facilitate their transcriptional 

activation during antibacterial immunity (Halter et al., 2021). In particular, ROS1 was shown 

to demethylate the promoter of the Arabidopsis Receptor Like Protein 43 (RLP43) to ensure a 

proper transcriptional activation of this gene in response to the flagellin-derived peptide flg22 

(Halter et al., 2021). Importantly, the RLP43 promoter DNA region subjected to ROS1-directed 

demethylation was shown to contain a functional W-box (Halter et al., 2021). This cis-regula-

tory element is the binding motif of WRKYs, a family of plant-specific TFs that play critical 

roles in the regulation of biotic and abiotic stress signalling (Eulgem et al., 2000; Birkenbihl et 

al., 2017; Birkenbihl et al., 2018). WRKY TFs all share at least one DNA binding domain of 

~60 amino acids, referred to as the WRKY domain, which contains an invariant WRKYGQK 

sequence that is essential for DNA binding (Maeo et al., 2001). By comparing DAP-seq versus 
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ampDAP-seq, in which DNA methylation were removed from the genomic DNA of the Ara-

bidopsis reference accession Columbia-0 (Col-0) by PCR amplification, AtWRKY TFs bind-

ing was found globally enriched in the absence of methylation (O’Malley et al., 2016; Halter 

et al, 2021). A locus-specific DAP-qPCR approach also revealed that the DNA binding of At-

WRKY18 and AtWRKY40, two well-characterised flg22-responsive AtWRKYs (Birkenbihl 

et al., 2017), was detected at the RLP43 promoter using Col-0 genomic DNA (Halter et al., 

2021). By contrast, this binding was almost fully abolished when genomic DNA from ros1 

mutants was used for this assay (Halter et al., 2021). This study therefore demonstrated that the 

hypermethylation occurring in the ros1 mutant background at the RLP43 promoter directly 

repels the binding of these AtWRKYs in vitro. However, the detailed mechanisms responsible 

for the repelling effect exerted by methylation at the DNA-WRKY interface, and the specific 

methylcytosine(s) involved in this process, remained elusive.  

 

Here, we used computational, DNA-protein affinity and structural modelling to address this 

issue. We first show that methylation decreases DNA binding of a subset of Arabidopsis 

WRKY TFs at their whole targeted genomic regions and at TFBS. Furthermore, we provide 

evidence indicating that DNA methylation at a single cytosine, located in a W-box element 

embedded in the RLP43 promoter, repels WRKY-DNA binding in vitro. Finally, we show that 

the conserved tyrosine of WRKY DNA binding domains interacts with a single cytosine from 

the W-box, and that the presence of a 5-methyl group at this cytosine alters binding through 

steric hindrance. Overall, this work describes the first detailed molecular mechanism by which 

cytosine methylation impedes DNA binding of WRKY TFs.  
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RESULTS 

 

An increased number of methylated cytosines in the whole bound genomic regions and in 

the TFBS of AtWRKYs reduces their DNA binding affinity 

A previous DAP-seq study reported that Arabidopsis WRKY TFs are sensitive to DNA meth-

ylation (O’Malley et al., 2016). We also recently demonstrated by DAP-qPCR analysis that the 

hypermethylation observed in ros1 mutants at the RLP43 promoter directly repels DNA bind-

ing of WRKY TFs (Halter et al., 2021). This was notably the case of AtWRKY40, a well-

characterised flg22-induced WRKY TF that was found to associate both in vitro and in vivo 

with the RLP43 promoter region that is regulated by ROS1 (Halter et al., 2021; Birkenbihl et 

al., 2017). To get further insights into the mechanisms by which DNA methylation could inhibit 

AtWRKY40-DNA binding, we made use of available DAP-seq and ampDAP-seq datasets 

(O’Malley et al., 2016; Lai et al., 2021). We first plotted the DAP/ampDAP signal ratio as a 

function of the methylation density in the whole AtWRKY40 bound genomic regions, as pre-

viously reported for other TFs (Lai et al., 2021). This first analysis revealed that the 

DAP/ampDAP signal ratio decreased with methylation density (Figure 1A), supporting a neg-

ative effect of DNA methylation on AtWRKY40-DNA binding. We further plotted the 

DAP/ampDAP signal ratio relative to the number of methylated cytosines within WRKY best 

binding sites, which were identified using position weight matrices in each bound region (Fig-

ure 1B; Lai et al., 2021). This analysis revealed that an increased number of methylated cyto-

sines in the TFBS also decreased AtWRKY40-DNA binding. Altered binding to both genomic 

regions and individual TFBS was also detected for six other AtWRKYs for which 

DAP/ampDAP datasets were available, namely AtWRKY14, 15, 22, 24, 25 and 27 (Figure 1 – 

Supplementary Figure 1). Collectively, these data confirm previous findings indicating that 

DNA methylation inhibits binding of AtWRKYs (O’Malley et al., 2016, Halter et al., 2021). 
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They also show that this binding inhibitory effect is not only detected at the whole bound ge-

nomic regions but also at the TFBS recognised by these TFs.  

 

DNA methylation at cytosines embedded in W-box cis-elements negatively regulates the 

binding affinity of AtWRKYs, with 5mC4 exhibiting the most significant inhibitory effects  

We next used a previously described procedure that computes the impact of individual cytosine 

methylation on TF-DNA binding by using DAP/ampDAP datasets (Lai et al., 2021). More 

specifically, we ran this computational approach on the TFBS of the seven Arabidopsis WRKY 

TFs for which sufficient reads were recovered from the DAP/ampDAP datasets. This analysis 

revealed that the methylation at different cytosines from the TFBS decreases DNA binding of 

these AtWRKYs (Figure 1D - Supplementary Figure 2). In particular, DNA methylation at the 

three cytosines embedded in the W-box motif systematically impacted WRKY-DNA binding, 

with the most pronounced inhibitory effects detected on cytosines at position 4 on the forward 

strands (5mC4, CHH context) for six out of the seven AtWRKYs studied (Figure 1D; Figure 1 

- Supplementary Figure 2). For example, we found that 5mC4, and cytosine methylation at 

position 2 on the reverse strands (5mC2, CHH or CHG contexts), exhibited significant inhibi-

tory effects on AtWRKY40-TFBS binding (r = -0.53 and -0.48, respectively), while methyla-

tion at position 1 on the reverse strands (5mC1, CHH context) showed milder negative effects 

(r = -0.26) (Figure 1D). Altogether, these results suggest that methylation at cytosines embed-

ded in the core W-box motif alters AtWRKY-DNA binding, with 5mC4 exhibiting the most 

significant DNA binding inhibitory effects.   
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DNA methylation of the cytosine at position 4 of a functional W-box cis-element severely 

reduces AtWRKY40-DNA binding affinity 

Although the above computational approach provides useful information on the possible ef-

fects of individual cytosine methylation on WRKY-DNA binding, it does not determine the 

causal role of each cytosine methylation in this process.  To address this issue, we used Bio-

Layer Interferometry (BLI), a label-free optical technique that measures the interference pat-

tern of white light reflected off a coated biosensor tip (bio-layer) and an internal reference 

surface. This method is increasingly employed to measure DNA-protein interactions as it can 

provide binding kinetics in real time, which is not the case of traditional DNA-protein binding 

assays (e.g. electrophoretic mobility shift assay –EMSA–). In particular, we used BLI to meas-

ure the binding capacity of AtWRKY40 at a functional W-box derived from the flg22-respon-

sive RLP43 promoter (Halter et al., 2021). For this end, we first synthesised two biotinylated 

single-stranded DNA sequences corresponding to a 16-mer region of the RLP43 promoter con-

taining the functional W-box, which were either unmethylated or methylated at the cytosine at 

position 4 on the forward strand of the W-box. The corresponding single-stranded unmethyl-

ated or methylated DNA sequences (reverse complementary sequences) were also synthesised 

and annealed to the above biotinylated sequences to generate DNA duplexes containing either 

single or combinatorial cytosine methylation at the W-box cis-element (Figure 2A). Each DNA 

duplex was further immobilised onto a streptavidin biosensor, and the resulting bio-layer was 

introduced into a solution containing different concentrations of a purified truncated At-

WRKY40 protein containing its DNA-binding domain (DBD) (Figure 2 – Supplementary Fig-

ure 1). We subsequently recorded changes in optical wavelength, which are correlated with the 

variation in the thickness of the bio-layer resulting from the association of the tested DNA 

duplex with AtWRKY40 molecules. We found strong wavelength shifts on the bio-layer con-

taining the unmethylated DNA duplex, a feature that was observed at the five AtWRKY40 
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protein concentrations tested (Figure 2B). These results demonstrate effective interactions be-

tween AtWRKY40 proteins and the unmethylated DNA duplex, which were further supported 

by a constant of dissociation (KD) value of 630 nM at the steady state level (Figure 2C). We 

next analysed the effect of DNA methylation at each cytosine of the W-box on the ability of 

AtWRKY40 to bind the DNA duplex. We found that methylation at the two cytosines, namely 

5mC1 and 5mC2 (both in CHH contexts), located on the reverse strand of the W-box did not 

alter DNA binding, as wavelength shifts and KD value were similar to the ones detected with 

the unmethylated DNA duplex (Figure 2). By contrast, the wavelength shifts were significantly 

reduced, and the KD value significantly higher (12 µM), when the cytosine at position 4 from 

the forward stand (5mC4, CHH context) of the W-box was methylated (Figure 2). When the 

same analysis was conducted side by side with a cytosine to thymine substitution at C4, which 

is known to abolish WRKY-DNA bindings (Ciolkowski et al., 2008), we found that the binding 

inhibitory effect triggered by 5mC4 was almost as strong as the one caused by this point muta-

tion (Figure 2 – Supplementary Figure 2). This result further supports a severe, albeit not com-

plete, negative impact of 5mC4 on AtWRKY40-DNA binding.  Furthermore, no additive ef-

fects on the wavelength shift, nor on the KD value (9.2 µM), were found when the C1 and C2 

nucleotides from the reverse strand of the W-box were methylated besides 5mC4 (Figure 2). 

Altogether, these in vitro data provide solid evidence that 5mC4 at a functional W-box cis-

element has a strong and specific inhibitory effect on the ability of AtWRKY40 to bind DNA.   

 

The tyrosine residue of the WRKY domains of AtWRKY40 and AtWRKY4 make van 

der Waals contacts with the cytosine at position 4 of the core W-box cis-element   

To further understand the detailed mechanism by which 5mC4 from the W-box repels At-

WRKY40-DNA binding, we sought to build a structural model of the AtWRKY40 DBD in 

complex with a W-box DNA duplex. For this end, we first generated a structural model of the 
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WRKY domain of AtWRKY40 (residues 131-207) using homology modelling with Swiss-

Model (Waterhouse et al., 2018; Figure 3 – Supplementary Figure 1 A, B). We then built the 

protein-DNA complex model, by superimposing the AtWRKY40 homology model onto the 

Nuclear Magnetic Resonance (NMR) structural ensemble of the C-terminal WRKY domain of 

AtWYRK4, in complex with a W-box DNA element (PDB code 2lex) (Yamasaki et al., 2012). 

The resulting bundle of structures was refined with a restrained simulated annealing protocol 

as described in material and methods. The 10 lowest energy structures of the protein-DNA 

complex were pooled (Figure 3 – Supplementary Figure 1D) and protein-DNA contacts were 

carefully analysed in this bundle (Figure 3). Importantly, we noticed that in all structures of the 

bundle, the aromatic ring of C4 makes van der Waals contacts with the side-chain of Y154 

(Figure 3B, D). Because our model is based on the structure of AtWRKY4 in complex with a 

core W-box element (Yamasaki et al., 2012), we also analysed the interface between At-

WRKY4 and the W-box DNA. We found that the binding mode of AtWRKY4 also involves 

van der Waals contacts between the aromatic ring of C4 in the W-box and the Y417 residue, 

the equivalent of Y154 in AtWRKY40 (Figure 3 – Supplementary Figure 2). These analyses 

therefore unveiled the presence of van der Waals interactions between the tyrosine residues of 

the WRKY domains of two Arabidopsis WRKYs and the C4 of the W-box DNA.  

 

The interaction between the tyrosine residues of the WRKY domains of AtWRKY40 and 

4 and the C4 of the W-box is incompatible with a 5-methyl group at this nucleotide 

We next modeled the impact of 5mC4 on the binding of the C4 nucleotide to the Y154 and 

Y417 residues of AtWRKY40 and AtWRKY4, respectively. Importantly, our model predicts 

that the presence of a 5-methyl group at this specific cytosine would prevent the β2-strand of 

the DNA-binding domains of both AtWRKY TFs to deeply enter into the DNA major groove 
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at the level of the W-box element (Figure 3A; Figure 3 – Supplementary Figure 2). This inter-

action mode is therefore incompatible with the presence of a 5-methyl group on this cytosine 

(Figure 3E; Figure 3 – Supplementary Figure 2). In addition, we found that both the WRKY 

motif in β2, and the residues involved in DNA contacts, are well conserved among different 

WRKY domains (Figure 3 – Supplementary Figure 3). The steric hindrance preventing optimal 

W-box DNA-binding by AtWRKY40 and 4 in the presence of a 5-methyl group (Figure 3E; 

Figure 3 – Supplementary Figure 2), is thus likely a feature shared by several WRKY domains. 

Overall, our model suggests that 5mC4 of the core W-box cis-element repels binding of WRKY 

TFs by preventing the occurrence of van der Waals interactions between the C4 nucleotide of 

the W-box and the conserved tyrosine residue of WRKY DNA binding domains.  

 

DISCUSSION 

In all organisms, the regulation of TF-DNA binding plays a central role in fine-tuning 

gene expression, and in turn governing biological functions. One layer of such regulation is 

directed by DNA methylation, an epigenetic mark that can negatively or positively control TF-

DNA binding (Yin et al., 2017; Gaston and Fried, 1995; Watt and Molloy, 1988; Iguchi-Ariga 

and Schaffner, 1989; Tate and Bird, 1993; Campanero et al., 2000; Comb et al., 1990; O’Malley 

et al., 2016). In humans, early studies conducted on individual loci demonstrated inhibitory 

effects of DNA methylation on the binding of several TFs (Gaston and Fried, 1995; Watt and 

Molloy, 1988; Iguchi-Ariga and Schaffner, 1989; Tate and Bird, 1993; Campanero et al., 2000; 

Comb et al., 1990). Using methylation sensitive SELEX (Systematic Evolution of Ligands by 

Exponential Enrichment), a more recent study broadened these findings by showing that a large 

set of human TFs are sensitive to DNA methylation (Yin et al., 2017). These TFs mostly belong 

to bHLH, bZIP and ETS families, and the repelling effects exerted by cytosine methylation at 
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their target sequences were found to be caused by steric hindrance (Yin et al., 2017). Intri-

guingly, many other human TFs, particularly from the homeodomain family, preferred meth-

ylated cytosines (Yin et al., 2017). These TFs were found to exhibit a preference for methylated 

cytosines through direct hydrophobic interactions with the 5-methyl group of methylcytosines 

(Yin et al., 2017). In Arabidopsis, a systemic examination of the effect of methylation on TF-

DNA binding has also been conducted (O’Malley et al., 2016). This DAP-seq analysis revealed 

that ~75% of the Arabidopsis TFs studied were sensitive to DNA methylation, while only ~5% 

preferred methylation (O’Malley et al., 2016). This study therefore indicates that the DNA 

binding of Arabidopsis TFs is mostly negatively regulated by methylation through poorly de-

fined mechanisms. 

 

WRKY proteins form one of the largest plant TF families that has been implicated in 

various processes, including growth, development and stress signalling (Hinderhofer and Zent-

graf, 2001; Johnson et al., 2002; Luo et al., 2005). The most extensively characterised function 

of WRKY TFs resides in the regulation of abiotic and biotic stress signalling (Ülker and 

Somssich, 2004; Eulgem and Somssich, 2007). Seminal studies on the mode of action of 

WRKYs have demonstrated that these TFs bind to the core W-box cis-element (TTGAC/T or 

G/ATCAA), which represents the minimal consensus motif required for specific DNA binding 

(de Pater et al., 1996; Ruhston et al., 1996; Wang et al., 1998; Chen and Chen et al., 2000; 

Cormack et al., 2002; Ulker and Sommssich 2004; Eulgem and Somssich 2007). Other studies 

provided evidence that each amino acid residue from the WRKY domain plays a central role 

in WRKY-DNA binding (Maeo et al., 2001; Duan et al., 2007; Ciolkowski et al., 2008). Ac-

cordingly, non-synonymous mutations in any of the amino acid from the WRKY domain, or 

substitutions in each of the nucleotide forming the core W-box sequence, fully abolish the abil-

ity of WRKY TFs to bind DNA (Ruhston et al., 1996; Chen and Chen et al., 2000; Cormack et 
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al., 2002; Ulker and Sommssich 2004; Eulgem and Somssich 2007; Maeo et al., 2001; Duan et 

al., 2007; Ciolkowski et al., 2008). Here, we have conducted an in-depth characterization of 

the impact that cytosine methylation could have on WRKY-DNA binding. Using 

DAP/ampDAP-seq datasets, we first showed that the DNA methylation density inhibited the 

binding of seven Arabidopsis WRKYs on their targeted genomic regions (Figure 1). This sup-

ports previous findings demonstrating that methylation inhibits WRKY-DNA binding (O’Mal-

ley et al., 2016, Halter et al., 2021). Furthermore, we showed that an increased number of 

methylated cytosines at TFBS negatively regulates the binding of these AtWRKYs (Figure 1). 

Using a recently described computational approach on DAP/ampDAP-seq datasets (Lai et al., 

2021), we further identified individual methylated cytosines from the WRKY TFBS that inhibit 

DNA binding (Figure 1). In particular, we found that the methylation of cytosines located in 

the core W-box cis-element had repelling effects on the DNA binding of the different At-

WRKYs (Figure 1C/D, Figure 1 – Supplementary Figure 1). Importantly, we found that 5mC4 

exhibited the most pronounced inhibitory effect on the binding of the different AtWRKY TFs 

studied, with the exception of AtWRKY22 (Figure 1C/D, Figure 1 - Supplementary Figure 1 

and 2). Furthermore, we noticed that some methylated cytosines surrounding the core W-box 

elements from the TFBS also exhibited inhibitory effects on WRKY-DNA binding (Figure 1; 

Figure 1 - Supplementary Figure 1). This was for instance the case of 5mC7, which systemati-

cally showed reduced binding of different AtWRKY TFs (Figure 1; Figure 1 - Supplementary 

Figure 1). Collectively, these observations suggest that the methylation environment into which 

the W-box is embedded might additionally influence WRKY-DNA binding. Because the core 

W-box sequences are conserved across WRKY target sequences (Eulgem et al., 2000), the 

number and methylation status of the surrounding cytosines might represent relevant features 

driving the binding selectivity of WRKY TFs. This would add another epigenetic-based layer 

of regulation compared to the classical nucleotide composition of the sequences neighbouring 
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the W-box, which has already been proposed to contribute to binding specificity (Ciolkowski 

et al., 2008). 

 

In both plants and mammals, active DNA demethylation fine-tunes the expression of genes 

involved in developmental processes and stress signalling (Deleris et al., 2016; Yu et al., 2013; 

Dowen et al., 2012; Halter et al., 2021; Khouider et al., 2021; Yamamuro et al., 2014; Kim et 

al., 2019). In particular, there is emerging evidence indicating that active DNA demethylation 

controls the expression of immune-responsive genes in the context of host-pathogen interac-

tions (Deleris et al., 2016; Yu et al., 2013; Dowen et al., 2012; Halter et al., 2021; Pacis et al., 

2015; Pacis et al., 2019; Lopez Sanchez et al., 2016; Le et al., 2014; Schumann et al., 2019; 

Huang et al., 2022). In human cells, earlier studies suggested a role for active demethylation in 

modulating the DNA/chromatin accessibility of TFs during bacterial infection or elicitation 

(Pacis et al., 2015). For example, a large set of genomic regions were found demethylated in 

human dendritic cells infected with Mycobacterium tuberculosis, leading to the chromatin re-

laxation at enhancers carrying stress-responsive cis-regulatory elements (Pacis et al., 2015). A 

more recent follow-up study suggested that active demethylation is unlikely required for the 

DNA/chromatin-based recruitment of TFs, but is more likely occurring as a consequence of 

TFs binding to these genomic regions (Pacis et al., 2019). However, the exact role that demeth-

ylation could play in the control of TF-DNA binding remains ambiguous, because this work 

has not been conducted in human cells lacking active DNA demethylases. In Arabidopsis, a 

seminal work showed that the active demethylase ROS1 facilitates the flg22-induced transcrip-

tional activation of the nucleotide binding leucine-rich repeat immune receptor RESISTANCE 

METHYLATED GENE 1 (RMG1), presumably by erasing cytosine methylation in a promoter 

region carrying W-box cis-regulatory elements (Yu et al., 2013). More recently, a causal effect 

of ROS1-directed demethylation on the binding of AtWRKYs to a discrete promoter region of 
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the surface immune receptor RLP43 has been demonstrated (Halter et al., 2021). More specif-

ically, the hypermethylation detected in the ros1 mutant background at the RLP43 promoter 

was found to repel the binding of AtWRKY18 and AtWRKY40, two well-characterised flg22-

responsive WRKY TFs (Halter et al., 2021; Birkenbihl et al., 2017). However, the detailed 

mechanism by which the hypermethylation at this RLP43 promoter region impinges WRKY-

DNA binding in the absence of ROS1 remained elusive. Here, we assessed whether cytosine 

methylation in the ROS1-targeted RLP43 promoter region carrying a functional W-box cis-

element could interfere with AtWRKY40-DNA binding. Using a BLI approach, we demon-

strated that the methylation at the cytosine at position 4 (5mC4) of this W-box severely reduced 

the ability of AtWRKY40 to bind DNA, an effect that was almost as strong as the one triggered 

by a point mutation in this specific cytosine (Figure 2, Figure 2 – Supplementary Figure 2). By 

contrast, methylation of the other cytosines, located on the opposite strand of this W-box se-

quence, did not trigger any repelling effect on AtWRKY40-DNA binding (Figure 2). Collec-

tively, these data support a strong and specific repelling effect of 5mC4 on the binding of At-

WRKY40 to this W-box DNA motif. They also further confirm, through an independent and 

complementary experimental approach to DAP/ampDAP analysis, that 5mC4 exerts a potent 

inhibitory effect on AtWRKY40-DNA binding. However, it is noteworthy that 5mC4 did not 

fully abolished TF binding, as previously observed when the whole promoter-regulatory region 

of RLP43 was hypermethylated (Halter et al., 2021). This suggests that the methylation of cy-

tosines flanking this functional W-box must additionally contribute to the DNA binding inhib-

itory effect (as discussed in the previous section).  Using structural modelling, we further 

showed that the cytosine at position 4 of the core W-box element makes van der Waals contacts 

with the tyrosine residue of the WRKY domain of AtWRKY40 (Figure 3). Our model also 

predicts that the negative effect triggered by 5mC4 at the W-box is caused by steric hindrance, 

that likely prevents the β2-strand of AtWRKY40 WRKY domain to deeply enter into the DNA 
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major groove at the level of the W-box element, thereby preventing tight binding to DNA (Fig-

ure 3). This prediction was also true when we analysed the interface between AtWRKY4, 

whose structure was used to build our AtWRKY40 model, and the W-box DNA (Figure 3 – 

Supplementary Figure 2). These observations suggest that steric hindrance caused by cytosine 

methylation is a general phenomenon that does not only dampen DNA binding of human TFs, 

as previously shown (Yin et al., 2017), but also of plant TFs (Wang et al., 2020; this study). In 

addition, we found that the WRKY motifs of the above AtWRKYs in β2, and residues involved 

in DNA contacts, were well conserved among different WRKY domains (Figure 3 – Supple-

mentary Figure 3). Based on these data, and on previous studies reporting a strong conservation 

of the WRKY domains and of the core W-box motifs (Eulgem et al., 2000), we propose that 

this methylation-dependent binding inhibitory mechanism must operate in all plant species ex-

pressing WRKY TFs.  

 

MATERIAL AND METHODS 

 

Genome wide effects of methylated cytosines on WRKY-DNA binding 

To assess the effect of cytosine methylation on the WRKY binding, we compared the binding 

intensity of AtWRKYs in a DNA Affinity Purification sequencing (DAP-seq) experiment and 

in an amplified DAP-seq experiment. In the latter experiment, methylation marks are erased 

during PCR-based amplification. We tested the correlation between the DAP/ampDAP signal 

ratio and the methylation levels at all bound regions, at the best TF binding site (TFBS) in the 

bound region, and at each position of the TFBS as previously described (Lai et al, 2021). In 

brief, DAP-seq and ampDAP-seq datasets of WRKY TFs (O’Malley et al, 2016) were mapped 

against the Arabidopsis TAIR10 genome assembly using bowtie2 (Langmead and Salzberg, 

2012). Resulting alignment files were used to identify genomic regions bound by the factor (so 
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called peaks) using MACS2 (https://www.biorxiv.org/content/10.1101/496521v1) and MSPC 

(Jalili et al., 2018). Binding intensity at each bound region is expressed as number of reads 

mapped per million of reads mapped in total bound regions. TFBSs were searched in bound 

regions using a position weight matrix (PWM) constructed for each TFs using MEME (Ma-

chanick and Bailey, 2011). The probability of cytosine methylation was taken from (Zhang et 

al., 2016). Methylation density (the number of methylated cytosines in a bound region) was 

defined as the number of cytosines with a probability of methylation greater than 50%. Asso-

ciation between the relative binding intensity and methylation levels was assessed using Pear-

son’s correlation test from R package “stats”. 

 

Production of recombinant AtWRKY40 DBD 

DBD AtWRKY40 was cloned in the pET28a destination vector that carries a 6His-tag in N-

terminal following classical digestion/ligation with NdeI and XhoI enzymes and T4 DNA lig-

ase and expressed in the E. coli strain BL21(DE3) codon plus (ThermoFisher, EC0114) in 1L 

of Terrific broth (TB) (Supplementary file 1). Cultures were grown at 37°C until they reached 

an OD600 of 2 and protein production was induced with 1 mM Isopropyl-β-D-thiogalactopy-

ranoside (IPTG), followed by overnight growth at 18°C. Bacterial cells expressing WRKY 

domain of AtWRKY40 were collected by centrifugation, resuspended in Lysis Buffer (1.5X 

PBS, 1 mM MgAc2, 0,1 % NP-40, 20mM imidazole, 10 % glycerol), and lysed by sonication 

during 4 min on ice. Lysate was clarified by high-speed centrifugation (18000 rpm) and then 

purified on 250 µL of Ni-NTA resin (Thermo Fisher Scientific, 88221). Resin was pre-equili-

brated in Lysis Buffer, and supernatant was incubated with resin for 2h at 4°C. His fusion 

proteins linked to the resin were washed once with Lysis Buffer, then once with Wash Buffer 

(1.5X PBS, 250 mM NaCl, 1 mM MgAc2, 0,1 % NP-40, 50 mM imidazole, 10 % glycerol), 

and finally with Lysis Buffer. Proteins were eluted in Elution Buffer (1.5X PBS, 1 mM MgAc2, 
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0,1 % NP-40, 150 mM imidazole, 10 % glycerol). Excess imidazole was removed by overnight 

dialysis using Spectrum™ Labs Spectra/Por™ 2 12-14 kD MWCO (FisherScientific, 

15310762) into Dialysis Buffer (1.5X PBS, 1 mM MgAc2, 10 % glycerol, 2 mM DTT) before 

storage at -80°C. Protein extracts recovered at different steps of the purification procedure were 

resolved by SDS-PAGE on a 15% acrylamide gel, which was stained with Coomassie blue. A 

band above 15 kDa, corresponding to AtWRKY40 DBD, was clearly visible (Figure 2 – Sup-

plementary Figure 1). 

 

Measurement of AtWRKY40-DNA interaction by Bio-Layer Interferometry  

BLI experiments were conducted using a FortéBio’s Octet® RED96e system (Sartorius) and 

Streptavidin (SA) Biosensors. BLI monitors wavelength shifts (nm) resulting from changes in 

the optical thickness of the sensor surface during association or dissociation of the analyte. All 

BLI experiments were performed at 25 ̊C under 1000 rpm stirring. The streptavidin biosensor 

was hydrated in a 96-well plate containing buffer (50mM Hepes pH7, 150mM NaCl) for at 

least 10 min before each experiment. The biotinylated oligonucleotide (50µM) was annealed 

to its non-biotinylated reverse complementary oligonucleotide (60µM) in an Hepes-NaCl 

buffer (Supplementary file 1). The mix was heated up to 95°C and hybridization occurred dur-

ing overnight cooling to 25°C. DNA duplexes at 40 nM were immobilised in buffer onto the 

surface of the SA biosensor through a cycle of Baseline (120 s), Loading (300 s), and Baseline 

(120 s). The sensors were immobilised one by one in order to obtain the same immobilisation 

rate (0.25 nm). A reference SA biosensor was prepared in parallel without biotinylated primer 

immobilised. The DBD of AtWRKY40 was diluted to the corresponding concentrations (10 

µM, 5 µM, 2 µM, 1 µM, 0.5 µM, 0.25 µM) in running buffer (50 mM Hepes pH7, 150 mM 

NaCl, 0.05% Tween20). Protein-DNA interactions were then monitored during 300 s in wells 

containing 200 µL samples of AtWRKY40 proteins at each concentration. At the end of each 
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binding step, the sensors were transferred into a protein-free binding buffer to follow the dis-

sociation kinetics for 900 s. Data were analysed using FortéBio Data Analysis 12.2 (Sartorius, 

FortéBio®). The resulting data were fitted into a 1:1 binding model from which Kon and Koff 

values were obtained, and then the equilibrium dissociation constant KD values were calculated. 

 

Modelling the interaction with the W-box DNA 

A homology model of the WRKY domain of AtWRKY40 was generated using Swiss-Model 

(Waterhouse et al., 2018), using the C-terminal WRKY domain of AtWRKY1 as a template 

(PDB code 2ayd) (Duan et al., 2007). The homology model of AtWRKY40 was then superim-

posed on the backbone atoms with each of the 20 refined structures of AtWRKY4-C in complex 

with a W-box DNA element (PDB code 2lex) (Yamasaki et al., 2012). This initial superposition 

allowed us to generate 400 starting structures of protein/DNA complexes between AtWRKY40 

and the W-box DNA, each of them built as a unique pair of conformers. Each individual struc-

ture was subjected to a refinement protocol with no experimental energy terms in CNS 1.21 

(Brunger et al., 2007), following previously described procedures (Barraud et al., 2014; Bar-

raud et al., 2012). First, the structures were energy minimised with a conjugate gradient mini-

mization, and subsequently a rigid body minimization with two rigid groups defined as one for 

the protein and one for the DNA. Second, these minimised structures were subjected to a re-

strained simulated annealing protocol in implicit water. It consisted of 6 ps of dynamics at 1000 

K followed by cooling to 25 K over 26 ps. Different types of restraint were applied for the 

interface and for the rest of the molecules; (i) the side chains of beta-strands 2 and 3 (152-157 

and 166-170) were set to unrestrained atoms; (ii) the backbone of beta-strands 2 and 3 (152-

157 and 166-170) were harmonically restrained to their initial position, allowing small motions 

for these parts; (iii) all the rest of the protein and the DNA were set to fixed atoms. The resulting 
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complexes were finally energy minimised and the 10 best energy structures were pooled as the 

refined ensemble and analysed with PYMOL. 

Acknowledgements 

This work was supported by the French funding research agency “L’Agence nationale de la 

recherche” ANR-18-CE20-0020-NEPHRON (to L.N.), ANR-17-CE20-0014-01-UBIFLOR 

(to F.P.). This work has also benefited from the PIM Facility of I2BC supported by French 

Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05. We also thank 

members of the Navarro Lab for the critical reading of the manuscript.  

 

Author contributions 

T.H., P.B., L.N. designed research; M.C., R.B-M, P.B., M A-N performed research, R.B-M., 

F.P. contributed to new bioinformatic analytic tool; M.C, T.H., R.B-M, P.B., L.N. analysed 

data; and T.H., L.N. wrote the paper.  

 
 
 

 
  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.26.509487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509487
http://creativecommons.org/licenses/by/4.0/


21 
 

REFERENCES 
 
Ando, M., Saito, Y., Xu, G., Bui, N.Q., Medetgul-Ernar, K., Pu, M., Fisch, K., Ren, S., Sakai, 
A., Fukusumi, T., Liu, C., Haft, S., Pang, J., Mark, A., Gaykalova, D.A., Guo, T., Favorov, 
A.V., Yegnasubramanian, S., Fertig, E.J., Ha, P., Tamayo, P., Yamasoba, T., Ideker, T., Mes-
ser, K., Califano, J.A., 2019. Chromatin dysregulation and DNA methylation at transcription 
start sites associated with transcriptional repression in cancers. Nat Commun 10, 2188. 
 
Barraud, P., Banerjee, S., Mohamed, W.I., Jantsch, M.F., Allain, F.H.-T., 2014. A bimodular 
nuclear localization signal assembled via an extended double-stranded RNA-binding domain 
acts as an RNA-sensing signal for transportin 1. Proceedings of the National Academy of Sci-
ences 111, E1852–E1861.  
 
Barraud, P., Heale, B.S.E., O’Connell, M.A., Allain, F.H.-T., 2012. Solution structure of the 
N-terminal dsRBD of Drosophila ADAR and interaction studies with RNA. Biochimie 94, 
1499–1509.  
 
Birkenbihl, R.P., Kracher, B., Roccaro, M., Somssich, I.E., 2017. Induced Genome-Wide Bind-
ing of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Im-
munity. Plant Cell 29, 20–38.  
 
Birkenbihl, R.P., Kracher, B., Ross, A., Kramer, K., Finkemeier, I., Somssich, I.E., 2018. Prin-
ciples and characteristics of the Arabidopsis WRKY regulatory network during early MAMP-
triggered immunity. The Plant Journal 96, 487–502.  
 
Brunger, A.T., 2007. Version 1.2 of the Crystallography and NMR system. Nat Protoc 2, 2728–
2733. 
 
Campanero, M.R., Armstrong, M.I., Flemington, E.K., 2000. CpG methylation as a mechanism 
for the regulation of E2F activity. Proceedings of the National Academy of Sciences 97, 6481–
6486.  
 
Chen, C., Chen, Z., 2000. Isolation and characterization of two pathogen- and salicylic acid-
induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42, 387–
396. 
  
Ciolkowski, I., Wanke, D., Birkenbihl, R.P., Somssich, I.E., 2008. Studies on DNA-binding 
selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. 
Plant Mol Biol 68, 81–92. 
  
Clapier, C.R., Cairns, B.R., 2009. The Biology of Chromatin Remodeling Complexes. Annual 
Review of Biochemistry 78, 273–304.  
 
Comb, M., Goodman, H.M., 1990. CpG methylation inhibits proenkephalin gene expression 
and binding of the transcription factor AP-2. Nucleic Acids Res 18, 3975–3982.  
 
Cormack, R.S., Eulgem, T., Rushton, P.J., Köchner, P., Hahlbrock, K., Somssich, I.E., 2002. 
Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-
induced WRKY transcription factors in parsley. Biochimica et Biophysica Acta (BBA) - Gene 
Structure and Expression 1576, 92–100.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.26.509487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509487
http://creativecommons.org/licenses/by/4.0/


22 
 

 
de Pater, S., Greco, V., Pham, K., Memelink, J., Kijne, J., 1996. Characterization of a zinc-
dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24, 4624–4631. 
 
Deleris, A., Halter, T., Navarro, L., 2016. DNA Methylation and Demethylation in Plant Im-
munity. Annu Rev Phytopathol 54, 579–603.  
 
Dowen, R.H., Pelizzola, M., Schmitz, R.J., Lister, R., Dowen, J.M., Nery, J.R., Dixon, J.E., 
Ecker, J.R., 2012. Widespread dynamic DNA methylation in response to biotic stress. Proc 
Natl Acad Sci U S A 109, E2183-2191.  
 
Duan, M.-R., Nan, J., Liang, Y.-H., Mao, P., Lu, L., Li, L., Wei, C., Lai, L., Li, Y., Su, X.-D., 
2007. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis 
thaliana WRKY1 protein. Nucleic Acids Res 35, 1145–1154.  
 
Eulgem, T., Rushton, P.J., Robatzek, S., Somssich, I.E., 2000. The WRKY superfamily of plant 
transcription factors. Trends Plant Sci 5, 199–206.  
 
Eulgem, T., Somssich, I.E., 2007. Networks of WRKY transcription factors in defense signal-
ing. Curr Opin Plant Biol 10, 366–371. 
 
Gaston, K., Fried, M., 1995. CpG methylation has differential effects on the binding of YY1 
and ETS proteins to the bi-directional promoter of the Surf-1 and Surf-2 genes. Nucleic Acids 
Res 23, 901–909.  
 
Guertin, M.J., Lis, J.T., 2010. Chromatin Landscape Dictates HSF Binding to Target DNA 
Elements. PLOS Genetics 6, e1001114.  
 
Halter, T., Wang, J., Amesefe, D., Lastrucci, E., Charvin, M., Singla Rastogi, M., Navarro, L., 
2021. The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA 
methylation at promoter-regulatory regions. eLife 10, e62994.  
 
Hinderhofer, K., Zentgraf, U., 2001. Identification of a transcription factor specifically ex-
pressed at the onset of leaf senescence. Planta 213, 469–473.  
 
Huang, M., Zhang, Y., Wang, Y., Xie, J., Cheng, J., Fu, Y., Jiang, D., Yu, X., Li, B., 2022. 
Active DNA demethylation regulates MAMP-triggered immune priming in Arabidopsis. Jour-
nal of Genetics and Genomics.  
 
Iguchi-Ariga, S.M., Schaffner, W., 1989. CpG methylation of the cAMP-responsive en-
hancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcrip-
tional activation. Genes Dev 3, 612–619.  
 
Iwafuchi-Doi, M., Zaret, K.S., 2016. Cell fate control by pioneer transcription factors. Devel-
opment 143, 1833–1837.  
 
Iwafuchi-Doi, M., Zaret, K.S., 2014. Pioneer transcription factors in cell reprogramming. 
Genes Dev. 28, 2679–2692.  
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.26.509487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509487
http://creativecommons.org/licenses/by/4.0/


23 
 

Jalili, V., Matteucci, M., Masseroli, M., Morelli, M.J., 2018. Using combined evidence from 
replicates to evaluate ChIP-seq peaks. Bioinformatics 34, 2338.  
 
Jin, R., Klasfeld, S., Zhu, Y., Fernandez Garcia, M., Xiao, J., Han, S.-K., Konkol, A., Wagner, 
D., 2021. LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral 
fate. Nat Commun 12, 626.  
 
Johnson, C.S., Kolevski, B., Smyth, D.R., 2002. TRANSPARENT TESTA GLABRA2, a tri-
chome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. 
Plant Cell 14, 1359–1375. 
 
Khouider, S., Borges, F., LeBlanc, C., Ungru, A., Schnittger, A., Martienssen, R., Colot, V., 
Bouyer, D., 2021. Male fertility in Arabidopsis requires active DNA demethylation of genes 
that control pollen tube function. Nat Commun 12, 410.  
 
Kim, J.-S., Lim, J.Y., Shin, H., Kim, B.-G., Yoo, S.-D., Kim, W.T., Huh, J.H., 2019. ROS1-
Dependent DNA Demethylation Is Required for ABA-Inducible NIC3 Expression. Plant Phys-
iol 179, 1810–1821.  
 
Klemm, S, L., Shipony, Z., Greenleaf, W, J., 2019. Chromatin accessibility and the regulatory 
epigenome. Nat Rev Genet 20, 207-220.  
 
Lai, X., Blanc-Mathieu, R., GrandVuillemin, L., Huang, Y., Stigliani, A., Lucas, J., Thévenon, 
E., Loue-Manifel, J., Turchi, L., Daher, H., Brun-Hernandez, E., Vachon, G., Latrasse, D., 
Benhamed, M., Dumas, R., Zubieta, C., Parcy, F., 2021. The LEAFY floral regulator displays 
pioneer transcription factor properties. Mol Plant 14, 829–837.  
 
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 
9, 357–359. 
 
Law, J.A., Jacobsen, S.E., 2010. Establishing, maintaining and modifying DNA methylation 
patterns in plants and animals. Nat Rev Genet 11, 204–220.  
 
Le, T.-N., Schumann, U., Smith, N.A., Tiwari, S., Au, P.C.K., Zhu, Q.-H., Taylor, J.M., Kazan, 
K., Llewellyn, D.J., Zhang, R., Dennis, E.S., Wang, M.-B., 2014. DNA demethylases target 
promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. 
Genome Biol. 15, 458.  
 
Lee, M.M., Schiefelbein, J., 1999. WEREWOLF, a MYB-related protein in Arabidopsis, is a 
position-dependent regulator of epidermal cell patterning. Cell 99, 473–483.  
 
López Sánchez, A., Stassen, J.H.M., Furci, L., Smith, L.M., Ton, J., 2016. The role of DNA 
(de)methylation in immune responsiveness of Arabidopsis. Plant J. 88, 361–374.  
 
Luo, M., Dennis, E.S., Berger, F., Peacock, W.J., Chaudhury, A., 2005. MINISEED3 (MINI3), 
a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are 
regulators of seed size in Arabidopsis. Proceedings of the National Academy of Sciences 102, 
17531–17536.  
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.26.509487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509487
http://creativecommons.org/licenses/by/4.0/


24 
 

Machanick, P., Bailey, T.L., 2011. MEME-ChIP: motif analysis of large DNA datasets. Bioin-
formatics 27, 1696–1697. 
 
Maeo, K., Hayashi, S., Kojima-Suzuki, H., Morikami, A., Nakamura, K., 2001. Role of con-
served residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. 
Biosci Biotechnol Biochem 65, 2428–2436.  
 
Magnani, L., Ballantyne, E.B., Zhang, X., Lupien, M., 2011. PBX1 Genomic Pioneer Function 
Drives ERα Signaling Underlying Progression in Breast Cancer. PLOS Genetics 7, e1002368.  
 
O’Malley, R.C., Huang, S.-S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., 
Gallavotti, A., Ecker, J.R., 2016. Cistrome and Epicistrome Features Shape the Regulatory 
DNA Landscape. Cell 165, 1280–1292.  
 
Pacis, A., Mailhot-Léonard, F., Tailleux, L., Randolph, H.E., Yotova, V., Dumaine, A., Gre-
nier, J.-C., Barreiro, L.B., 2019. Gene activation precedes DNA demethylation in response to 
infection in human dendritic cells. Proc. Natl. Acad. Sci. U.S.A. 116, 6938–6943.  
 
Pacis, A., Tailleux, L., Morin, A.M., Lambourne, J., MacIsaac, J.L., Yotova, V., Dumaine, A., 
Danckaert, A., Luca, F., Grenier, J.-C., Hansen, K.D., Gicquel, B., Yu, M., Pai, A., He, C., 
Tung, J., Pastinen, T., Kobor, M.S., Pique-Regi, R., Gilad, Y., Barreiro, L.B., 2015. Bacterial 
infection remodels the DNA methylation landscape of human dendritic cells. Genome Res. 25, 
1801–1811. 
  
Qiu, Q., Mei, H., Deng, X., He, K., Wu, B., Yao, Q., Zhang, J., Lu, F., Ma, J., Cao, X., 2019. 
DNA methylation repels targeting of Arabidopsis REF6. Nat Commun 10, 2063.  
 
Rushton, P.J., Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K., Somssich, I.E., 1996. 
Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the 
promoters of parsley PR1 genes. EMBO J 15, 5690–5700. 
 
Schumann, U., Lee, J.M., Smith, N.A., Zhong, C., Zhu, J.-K., Dennis, E.S., Millar, A.A., Wang, 
M.-B., 2019. DEMETER plays a role in DNA demethylation and disease response in somatic 
tissues of Arabidopsis. Epigenetics 14, 1074–1087.  
 
Tate, P.H., Bird, A.P., 1993. Effects of DNA methylation on DNA-binding proteins and gene 
expression. Curr Opin Genet Dev 3, 226–231.  
 
Ulker, B., Somssich, I.E., 2004. WRKY transcription factors: from DNA binding towards bio-
logical function. Curr Opin Plant Biol 7, 491–498.  
 
Wang, B., Luo, Q., Li, Y., Yin, L., Zhou, N., Li, X., Gan, J., Dong, A., 2020. Structural insights 
into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Research 48, 
460–471.  
 
Wang, Z., Yang, P., Fan, B., Chen, Z., 1998. An oligo selection procedure for identification of 
sequence-specific DNA-binding activities associated with the plant defence response. Plant J 
16, 515–522.  
 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.26.509487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509487
http://creativecommons.org/licenses/by/4.0/


25 
 

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., 
de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T., 2018. SWISS-MODEL: 
homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296–W303.  
 
Watt, F., Molloy, P.L., 1988. Cytosine methylation prevents binding to DNA of a HeLa cell 
transcription factor required for optimal expression of the adenovirus major late promoter. 
Genes Dev 2, 1136–1143. 
  
Yamaguchi, N., 2021. LEAFY, a Pioneer Transcription Factor in Plants: A Mini-Review. Fron-
tiers in Plant Science 12. 
 
Yamamuro, C., Miki, D., Zheng, Z., Ma, J., Wang, J., Yang, Z., Dong, J., Zhu, J.-K., 2014. 
Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA de-
methylation. Nat Commun 5, 4062.  
 
Yamasaki, K., Kigawa, T., Watanabe, S., Inoue, M., Yamasaki, T., Seki, M., Shinozaki, K., 
Yokoyama, S., 2012. Structural basis for sequence-specific DNA recognition by an Arabidop-
sis WRKY transcription factor. J Biol Chem 287, 7683–7691.  
 
Yin, Y., Morgunova, E., Jolma, A., Kaasinen, E., Sahu, B., Khund-Sayeed, S., Das, P.K., Kivi-
oja, T., Dave, K., Zhong, F., Nitta, K.R., Taipale, M., Popov, A., Ginno, P.A., Domcke, S., 
Yan, J., Schübeler, D., Vinson, C., Taipale, J., 2017. Impact of cytosine methylation on DNA 
binding specificities of human transcription factors. Science 356, eaaj2239.  
 
Yu, A., Lepère, G., Jay, F., Wang, J., Bapaume, L., Wang, Y., Abraham, A.-L., Penterman, J., 
Fischer, R.L., Voinnet, O., Navarro, L., 2013. Dynamics and biological relevance of DNA de-
methylation in Arabidopsis antibacterial defense. Proceedings of the National Academy of Sci-
ences 110, 2389–2394.  
 
Zaret, K.S., 2020. Pioneer Transcription Factors Initiating Gene Network Changes. Annual 
Review of Genetics 54, 367–385.  
 
Zhang, Q., Wang, D., Lang, Z., He, L., Yang, L., Zeng, L., Li, Y., Zhao, C., Huang, H., Zhang, 
Heng, Zhang, Huiming, Zhu, J.-K., 2016. Methylation interactions in Arabidopsis hybrids re-
quire RNA-directed DNA methylation and are influenced by genetic variation. Proc Natl Acad 
Sci U S A 113, E4248-4256.  
 
Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W.-L., Chen, H., Henderson, I.R., 
Shinn, P., Pellegrini, M., Jacobsen, S.E., Ecker, J.R., 2006. Genome-wide High-Resolution 
Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell 126, 1189–1201.  
 
 
 
 
 
  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.26.509487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509487
http://creativecommons.org/licenses/by/4.0/


26 
 

Figure legends 
 
 
Figure 1. Effect of cytosine methylation on AtWRKY40-DNA binding. (A) Biplot between 

the DAP/ampDAP signal ratio (peak normalised read coverage in the DAP experiment divided 

to that in the ampDAP experiment) in a log10 scale and methylation density (proportion of 

cytosines with a probability of methylation greater than 0.5) within TF bound regions. The 

increasing methylation density has a negative effect on AtWRKY40 binding. (B) Violin plots 

of DAP/ampDAP signal ratio in a log10 scale as a function of the number of methylated cyto-

sines in the best TF binding site (TFBS) of each bound region. AtWRKY40 binding is nega-

tively affected by the increased number of methylated cytosines. (C) Binding site sequence 

motif and the methylation effect on each individual position. The heatmap describes the Pear-

son's correlation coefficient (r) between the DAP/ampDAP signal ratio in a log10 scale and the 

probability of methylation at each position of the best TFBSs. Blank positions have a high false 

discovery rate (> 5%) and grey indicates positions with less than ten cytosines in the dataset. 

Correlations are tested on both sides. (D) Effect of methylation on individual positions at the 

core W-box on AtWRKY40 binding. Relation between methylation probability at a single nu-

cleotide position in the predicted best AtWRKY40 binding site within bound regions, and the 

log10-scaled relative binding intensity of a DAP-seq versus an ampDAP-seq experiment at 

bound regions for AtWRKY40 at the 3 different cytosine sites. P-values are adjusted for mul-

tiple testing using the Benjamini and Hochberg procedure. 

 

Figure 1 - Supplementary Figure 1. Effect of methylation on the DNA binding of At-

WRKYs. The impact of methylation density (upper panel), of the number of methylated cyto-

sines (middle panel) on WRKY binding and individual cytosines (lower panel) was tested for 

several AtWRKY TFs.  
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Figure 1 - Supplementary Figure 2. Effect of methylation at each cytosine in the core W-

box elements on the DNA binding of AtWRKYs. Effect of methylation on individual posi-

tions at the core W-box on the binding of each indicated AtWRKY. Relation between methyl-

ation probability at a single nucleotide position in the best predicted WRKY-binding site within 

bound regions, and the log10-scaled relative binding intensity of a DAP-seq versus an 

ampDAP-seq experiment at bound regions for indicated WRKYs at the 3 different cytosine 

sites. P-values are adjusted for multiple testing using the Benjamini and Hochberg procedure. 

 

Figure 2. Methylation at the cytosine C4 embedded in a functional W-box has a strong 

negative impact on AtWRKY40-DNA binding. (A) Biotinylated DNA duplexes used for the 

BLI experiments. (B) Binding curves of AtWRKY40 DBD with DNA duplexes containing W-

boxes with indicated methylation status. (C) BLI-derived steady state analysis representing 

binding responses of AtWRKY40 DBD (nM) to DNA duplexes as a function of AtWRKY40 

DBD concentration.  

 

Figure 2 – source data 1. Methylation at the cytosine C4 embedded in a functional W-box 

has a strong negative impact on AtWRKY40-DNA binding. 

 

Figure 2 - Supplementary Figure 1. Purification of WRKY40 WRKY domain. Coomassie-

blue stained gel showing protein content at different steps of WRKY40 WRKY domain puri-

fication. P: Pellet after sonication; S: Supernatant; FT: Supernatant after incubation with Ni-

NTA beads; W: Supernatant after washing; E: Elution; D: Elution after dialysis. An arrow 

indicates the His-WRKY40 WRKY domain. 

 

Figure 2 – Supplementary Figure 1 – source data 1 
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Coomassie blue stained gel showing purification of WRKY40 WRKY domain 

 

Figure 2 – Supplementary Figure 1 – source data 2 

Original picture of the coomassie blue stained gel of WRKY40 WRKY domain 

 

Figure 2 - Supplementary Figure 2. The DNA binding inhibitory effect detected in the 

presence of 5mC4 is almost as strong as the one observed with a point mutation at this 

specific cytosine. BLI-derived steady state analysis representing binding responses of At-

WRKY40 DBD (nM) to DNA duplexes as a function of AtWRKY40 DBD concentration.  

 
 
Figure 2 – Supplementary Figure 2 – source data 1. The DNA binding inhibitory effect 

detected in the presence of 5mC4 is almost as strong as the one observed with a point 

mutation at this specific cytosine. 

 

Figure 3. Structural model of the AtWRKY40 DBD in complex with a W-box DNA du-

plex. (A) Lowest energy structure from the ensemble of models of the complex between At-

WRKY40 and the W-box element of panel C. The protein is shown as a cartoon in light blue, 

the five β-strands are labelled, and the zinc ion is shown as a grey dot. The DNA backbone is 

shown as a cartoon in yellow and the base-pairs are shown with the ladder representation in 

grey. (B) Close-up view of the WRKY motif of β2 (W151-K157). The protein is shown in light 

blue with the side chains represented as sticks. The C4-G4’ DNA base-pair is shown as sticks 

in yellow. The β2 strand enters deeply into the DNA major groove at the level of the C4-G4’ 

base-pair. In particular, the aromatic ring of C4 makes van der Waals contacts with the side-

chain of Y154. (C) Sequence of the DNA W-box element used for modelling the interaction of 

AtWRKY40 with DNA. (D) The position 5 of C4 makes van der Waals contacts with Y154.  
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(E) Modelling a methyl group (in green) onto unmodified C4 from the W-box core reveals 

steric hindrance (indicated with red strips) with Y154. 

 

Figure 3 - Supplementary Figure 1: Modelling the interaction of AtWRKY40 with a W-

box element. (A) Sequence alignment of the WRKY domain of AtWRKY40 with the C-ter-

minal WRKY domain of AtWRKY1. The alignment is coloured by amino acid conservation 

and properties. The two domains share 47% of sequence identity. Residue numbering corre-

sponds to that of AtWRKY40. The secondary structure elements of AtWRKY1 (PDB code 

2ayd) (Duan et al., 2007) are shown above the alignment. The CCHH zinc-binding motif is 

indicated by stars below the alignment. (B) Superposition of the C-terminal WRKY domain of 

AtWRKY1 (in red) with the homology model of the WRKY domain of AtWRKY40 (in light 

blue). Protein domains are show as cartoons and the five β-strands are labelled. Zinc ions are 

shown as grey dots. (C) Sequence of the DNA W-box element used for modelling the interac-

tion of AtWRKY40 with DNA. This element corresponds to the W-box element in the structure 

of the C-terminal WRKY domain of AtWRKY4 in complex with DNA (PDB code 2lex) (Ya-

masaki et al., 2012). (D, E) Overlay of the 10 lowest energy structures of the AtWRKY40/W-

box element model shown in two orientations. The protein is shown as a ribbon in light blue. 

The DNA is shown in yellow and grey. 

 

Figure 3 - Supplementary Figure 2: Analysis of the interaction of AtWRKY4 with a W-

box element. (A) NMR ensemble of the AtWRKY4/W-box element structure (PDB code 2lex) 

(Yamasaki et al., 2012). The protein is shown as a ribbon in green. The DNA is shown in 

yellow and grey. (B) Close-up view of the WRKY motif of β2 (W414-K420). The protein is 

shown in green with the side chains represented as sticks. The C4-G4’ DNA base-pair is shown 

as sticks in yellow. The β2 strand enters deeply into the DNA major groove at the level of the 
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C4-G4’ base-pair. In particular, the aromatic ring of C4 makes van der Waals contacts with the 

side-chain of Y417. (C) The position 5 of C4 makes van der Waals contacts with Y417. (D) 

Modelling a methyl group (in green) onto unmodified C4 from the W-box core reveals steric 

hindrance (indicated with red strips) with Y417. 

 

Figure 3 - Supplementary Figure 3: Residues involved in DNA contacts are conserved 

among different WRKY domains. Sequence alignment of different WRKY domains, namely 

WRKY domains of AtWRKY1, AtWRKY4, AtWRKY14, AtWRKY15, AtWRKY22, At-

WRKY24, AtWRKY25, AtWRKY27 and AtWRKY40. The alignment is coloured by amino 

acid conservation and properties. Residue numbering corresponds to that of AtWRKY40. The 

secondary structure elements of AtWRKY1 (PDB code 2ayd) (Duan et al., 2007) are shown 

above the alignment. The CCHH zinc-binding motif is indicated by stars below the alignment. 

Residues involved in DNA contacts in both the NMR structure of AtWRKY4 in complex with 

DNA (PDB code 2lex) and our structural model of AtWRKY40 in complex with DNA (Figure 

3) are indicated by arrows below the alignment. 

 

Supplementary file 1. DNA oligonucleotides used in this study 
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Figure 1. Effect of cytosine methylation on AtWRKY40-DNA binding
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Figure 1 – supplemental figure 1. Effect of methylation on the DNA binding of AtWRKYs 
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Figure 1 – Supplemental figure 2. Effect of methylation at each cytosine of the core W-box elements on the 
DNA binding of AtWRKYs

G1 r: -0.22 P: 0 N:924 G2 r: -0.32 P: 0 N:1297 C4 r: -0.37 P: 0 N:2046

G1 r: -0.3 P: 0 N:464 G2 r: -0.37 P: 0 N:835 C4 r: -0.47 P: 0 N:1377

G1 r: -0.41 P: 0,00165 N:56 G2 r: -0.34 P: 0 N:461 C4 r: -0.48 P: 0 N:717

G1 r: -0.42 P: 0 N:224 G2 r: -0.39 P: 0 N:599 C4 r: -0.46 P: 0 N:968

G1 r: -0.52 P: 0 N:257 G2 r: -0.46 P: 0 N:981 C4 r: -0.49 P: 0 N:1641

G1 r: -0.2 P: 0 N:552 G2 r: -0.24 P: 0 N:1555 C4 r: -0.29 P: 0 N:2591
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Figure 2 - Supplementary Figure 1: Purification of the WRKY domain of WRKY40
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Figure 3. Structural model of the AtWRKY40 DBD in complex with a W-box DNA duplex

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.26.509487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509487
http://creativecommons.org/licenses/by/4.0/


AtWRKY40/131-207
AtWRKY1/294-367

140 150 160 170 180 190 200

E

C

D

A

B

5'

5'

3'

3'

N

C

5’-TGGTCAAAGG-3’

3’-ACCAGTTTCC-5’

W-box core

1 2 3 4 5 6

90°

N

Zn

Zn

C
N Zn

C

β1β2

β2

β3 β4

β5
β1

β2

β3β4β5

β1 β2 β3 β4 β5

* * * *

N

C

5'

5'
3' 3'

β2

Figure 3 - Supplementary Figure 1. Modelling the interaction of AtWRKY40 with a W-box element
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Figure 3 - Supplementary Figure 2. Analysis of the interaction of AtWRKY4 with a W-box element
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Figure 3 - Supplementary Figure 3. Residues involved in DNA contacts are conserved among different 
WRKY domains
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