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Abstract 14 

 15 
When we internally generate mental images, we need to combine multiple features into a whole. 16 
Direct evidence for such feature integration during visual imagery is still lacking. Moreover, 17 
cognitive control mechanisms, including memory and attention, exert top-down influences on the 18 
perceptual system during mental images generation. However, it is unclear whether such top-down 19 
processing is content-specific or not. Feature integration and top-down processing involve short-20 
range connectivity within visual areas, and long-range connectivity between control and visual 21 
areas, respectively. Here, we used a minimally constrained experimental paradigm wherein 22 
imagery categories were prompted using visual word cues only, and we decoded face versus place 23 
imagery based on their underlying connectivity patterns. Our results show that face and place 24 
imagery can be decoded from both short-range and long-range connections. These findings suggest 25 
that feature integration does not require an external stimulus but occurs also for purely internally 26 
generated images. Furthermore, control and visual areas exchange information specifically tailored 27 
to imagery content.  28 

 29 
Teaser 30 
 31 
Decoding visual imagery from brain connectivity reveals a content-specific interconnected neural 32 
code for internal image generation. 33 
 34 
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Introduction 47 
 48 
Our brain has a remarkable capacity to internally generate vivid mental representations in the 49 
complete absence of external sensory stimulation. Imagery is very useful whenever we need to 50 
process information that is not accessible in the present. For example, imagery allows us to re-51 
instantiate information encountered in the past or to anticipate information that we will encounter 52 
in the future, without constantly requiring an external reference. In particular, visual imagery 53 
involves the internal generation of mental images 1. We can generate rich, vivid, and detailed 54 
images in our mind’s eye, which can contain precise color and shape information. For example, we 55 
can internally visualize a well-known place or a familiar person’s face. In both cases, the imagined 56 
percept may involve visual details with particular shapes, colors, hues, textures, and shading. This 57 
implies that multiple visual features have to be integrated to yield a complex and coherent visual 58 
representation 2.  59 
  60 
Feature integration requires communication between brain areas that locally represent specific 61 
visual features of the imaginandum. Various areas need to communicate in order to combine 62 
dispersed feature representations into a coherent visual percept. Information integration is at the 63 
core of a cortical processing model proposed by Tononi and colleagues 3. This model is supported 64 
by computer simulations suggesting that reciprocal information exchange across areas in the visual 65 
cortex is the basic computational mechanism for information integration 4. This computation is 66 
biologically plausible insofar as areas in the visual cortex are strongly interconnected 5. There is 67 
also empirical evidence for the fact that patterns of neuronal synchronization reflect information 68 
integration during visual perception 6. However, it is unknown whether the same feature integration 69 
mechanisms are also employed when generating mental images internally, in the absence of any 70 
sensory stimulation. Neuroimaging studies have shown that areas that locally represent specific 71 
features during visual perception also represent the same features during visual imagery. For 72 
example, the primary visual cortex represents spatiotopic information 7, area MT represents motion 73 
8, while specialized areas in the inferior-temporal cortex represent faces and places, respectively 9. 74 
Therefore, the cross-talk between visual areas may be the very basis of complex mental image 75 
formation. 76 
  77 
Short-range connections between visual areas alone are presumably not sufficient to achieve 78 
feature integration when there is no external stimulus. Instead, visual areas may be supported by 79 
cognitive control mechanisms, such as memory and attention, exerting top-down influences during 80 
imagery, as suggested in the model proposed by Sakai and Miyashita 10. In particular, their model 81 
suggests that different objects or parts of a scene must be retrieved from a memory storage and are 82 
visualized using focal attention during imagery. This model is supported also by neuroimaging 83 
evidence suggesting that not only visual areas but also frontal and parietal areas associated with 84 
top-down processing are activated during imagery 11. There is also evidence that occipital and 85 
temporal areas receive top-down inputs from frontal and parietal areas through long-range 86 
connections during imagery 12. However, it is unknown whether top-down signals are specific to 87 
different imagery targets (e.g., faces versus places) or not. Functional connectivity patterns can be 88 
specific in strength, spatial destinations, or both. Watrous and colleagues 13 have shown that 89 
connectivity strength between temporal, parietal and frontal areas during visual perception is 90 
associated with better subsequent spatio-temporal memory retrieval. Moreover, Baldauf and 91 
Desimone 14 observed connectivity patterns having specific spatial destinations - from the inferior 92 
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frontal junction to either the fusiform face area or the parahippocampal place area - depending on 93 
whether participants were instructed to pay attention to faces or places during visual perception. 94 
Collectively, these studies suggest that top-down signals exerted through long-range connections 95 
may vary also depending on the content of visual imagery. 96 
  97 
Neural decoding is an excellent tool to address questions about content-specific representations 15. 98 
It uses machine learning algorithms to read out different stimulus categories from brain signals. 99 
Content specific information has been successfully decoded during visual perception, for example, 100 
by deciphering single visual features (e.g., orientation, shape, color) but also more complex object 101 
information from recorded brain signals 16, 17, 18. Similar approaches have been used to try to decode 102 
visual imagery, too. For instance, previous studies tried to decode different types of content specific 103 
information (e.g., perceptual, conceptual) during visual imagery from the sparse activation of 104 
various brain areas over time 19, 20,21. 105 
  106 
In this magnetoencephalography (MEG) study, we test the hypothesis that different imagery 107 
categories are associated with distinct functional connectivity patterns reflecting content-specific 108 
feature integration and top-down processing. Participants were asked to imagine two different types 109 
of targets: faces and places. In contrast to previous studies, we instructed the two imagery 110 
categories by using word cues only, rather than showing any concrete pictorial aids. The rationale 111 
was that - in the absence of any pictorial references - participants have to internally generate mental 112 
images purely based on memory and attentional control. Consequently, any differences between 113 
imagery categories would be fully attributable to an internally driven effort to (re-)instantiate 114 
mental images rather than being confounded with low-level visual information artificially 115 
introduced by a pictorial aid. We hypothesized that the imagery of faces and places involves distinct 116 
feature integration and top-down processes, associated with distinct connectivity patterns of 117 
different strength, spatial destination, or both. To test this hypothesis, we used neural decoding to 118 
read out imagined categories from the connectivity patterns measured across MEG sensors as well 119 
as the reconstructed cortical sources. To achieve that goal, we used a connectivity decoding method 120 
based on spatial covariance that was originally applied to motor imagery for brain computer 121 
interface (BCI) applications 22. This decoding method was designed to capitalize on relative 122 
changes in brain activity measured from M/EEG sensor pairs. Here, we tested whether it will allow 123 
us to capture connectivity patterns distinguishing face versus place imagery, i.e. a type of internal 124 
signal that is notoriously hard to decode with classic time-domain decoders due to the temporal 125 
misalignment across trials. Moreover, in order to disentangle the contributions of feature 126 
integration and top-down processing, we test to what extent the decoding is driven by short-range 127 
and long-range connections. 128 

 129 
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Results  139 
 140 
Decoding performance evaluation on simulated data 141 
 142 
To test our predictions we scanned participants using magnetoencephalography (MEG) while they 143 
performed a visual imagery task. The task (Fig. 1A) consisted in the internal generation of a mental 144 
image of either a face or a place, randomly intermixed and cued by a word cue on a trial-by-trial 145 
basis. Participants were instructed to imagine a familiar instance of the cued category for several 146 
seconds while keeping their eyes fixated at the center of the screen. At the end of each trial, 147 
participants had to rate the vividness of their imagination and to confirm the imagined category of 148 
the present trial.  149 
 150 

 151 
 152 
Figure 1. Experimental procedure, decoding methods and simulated data. The experimental 153 
procedure (A) was structured as follows: each trial began with a visual word cue instructing one 154 
category as the imagery target; then, a jittered time delay ensued after which the subject had to 155 
imagine a familiar instance of the cued category while a dynamic phase-scrambled mask was 156 
presented on the screen for 6s. At the end of each trial, participants were asked to rate the vividness 157 
of their imagination and confirm the category they had imagined during the trial. In a computer 158 
simulation (B-H) we tested whether relevant information is captured by covariance-based decoding 159 
or classic time-domain decoding. For this purpose, we simulated time series belonging to two 160 
different conditions (B) (here, we show only 5 representative trials in 3 simulated channels). Each 161 
trial contained a signal simultaneously embedded in noise of different channels. However, the 162 
onsets (and offsets) of the signal were misaligned across trials and across channels. To prepare 163 
input data for time-domain decoding (C-E), we concatenated the time series of various channels 164 
into one single vector for each simulated condition (C). The distance between an exemplar vector 165 
(Ei; i.e., single trial) and a prototype vector (Pi; i.e, average across trials) for each simulated 166 
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condition can be estimated using an Euclidean metric (δ) (D). Dimensionality reduction (E) of all 167 
exemplar vectors - corresponding to all simulated trials - shows that simulated conditions are not 168 
linearly separable when using time-domain decoding. To prepare input data for covariance-based 169 
decoding (F-H) we estimated spatial covariance matrices for each condition (F), measuring the 170 
interdependence between channel pairs. The distance between an exemplar matrix (Ri) and a 171 
prototype matrix (Pi) on a Riemannian manifold (M) can be estimated using a Riemannian metric 172 

(Ⲅ). Then, the covariance matrix can be projected to an Euclidean tangent space (TxM) obtaining a 173 

tangent vector (G). After that, the distance between an exemplar tangent vector (Ei; single trial) 174 
and a prototype tangent vector (Pi; average across trials) for each simulated condition can be 175 
estimated using an Euclidean metric (δ). Dimensionality reduction (H) of all tangent vectors - 176 
corresponding to all simulated trials - shows that simulated conditions are linearly separable when 177 
using covariance-based decoding. 178 
 179 
First, we ran a simulation to investigate whether relevant information is captured by covariance-180 
based decoding or classic time-domain decoding (see Fig.1B-H). There are major challenges 181 
associated with visual imagery signals - or, more in general, with any internally generated brain 182 
signal: On the one hand, information is temporally misaligned because there is a high variability in 183 
the onsets and offsets of imagination events across trials. On the other hand, information is 184 
presumably encoded in the reciprocal interconnections between channel pairs that give rise to 185 
specific spatial configurations. To account for these two aspects we simulated data as follows. We 186 
generated time series for one hundred trials in three different simulated channels. Each time series 187 
consisted of a combination of signal and noise. To account for temporal misalignment, we added 188 
random delays to signal onsets and offsets. To account for specific spatial configurations, we 189 
simulated data such that trials belonging to the first simulated condition had higher amplitude 190 
modulation in the first and the second channel while trials belonging to the second simulated 191 
condition had higher amplitude modulations in the first channel and the third channel (see Fig.1B). 192 
Then, we prepared input data for linear classification by using two different vectorization 193 
procedures. To prepare data for classic time-domain decoding, we concatenated time series 194 
corresponding to different channels into one single vector (Fig.1C). To prepare data for covariance-195 
based decoding, we estimated a spatial covariance matrix measuring the interdependence between 196 
channel pairs, we estimated its position in a Riemannian manifold and we projected it on an 197 
Euclidean tangent space obtaining a tangent vector (Fig.1F-G). Finally, we used dimensionality 198 
reduction (t-distributed Stochastic Network Embedding, tSNE) to show that tangent vectors that 199 
are used as input for  covariance-based decoding are linearly separable, while concatenated vectors 200 
that are used as input for classic time-domain decoding are not linearly separable (Fig.1E and H). 201 
Overall, this simulation revealed that the covariance-based decoding has a specific advantage in 202 
decoding temporally misaligned and reciprocally interconnected signals, like the ones driven by 203 
cognitive processes such as visual imagery. 204 
 205 
Decoding performance evaluation on MEG data  206 
 207 
Then, we used both the covariance-based decoding method and the classic time-domain decoding 208 
method to read out imagined categories from MEG signals. Both decoding methods included a 209 
single subject level and a group level statistical test. At the single subject level, we computed cross-210 
validated Area Under the Receiver Operating Characteristic Curve (ROC AUC) scores using a 211 
sliding window approach. At the group level, we tested whether classification scores were 212 
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significant across subjects regardless of different amounts of trials used for classification. This 213 
second step is necessary because participants presented a different amount of trials after 214 
preprocessing (e.g., noise, eye movement, rating trial exclusion). In line with our expectations 215 
based on the simulations, the results obtained on empirical data show a stark difference in 216 
performance between the two decoding methods. Classic time-domain decoding did not perform 217 
significantly above chance level across subjects, in any time window (Fig.2A). In contrast, 218 
covariance-based decoding achieved correct classifications significantly above chance level 219 
(p<0.05, BF>3) across subjects, in three time windows spanning from 2.5 to 5.5 s (Fig.2B). To test 220 
whether these results were determined by the choice of the time window size we also tested shorter 221 
time windows. We obtained similar results when using 100 ms time windows for classic time-222 
domain decoding and 500 ms time windows for covariance-based decoding (Fig.2C-D). This 223 
suggests that decoding performance is not strictly dependent on the time window size. Even though 224 
significant time windows are more sparse when using a shorter sliding window because the 225 
temporal misalignment problem is then more pronounced.  226 
 227 

 228 
 229 
Figure 2. Time-domain decoding and covariance-based decoding applied to visual imagery 230 
MEG data.  Left panels (A and C) show group level decoding results obtained from the classic 231 
time-domain decoding method in sensor space (including gradiometers and magnetometers), using 232 
1 s (A) or 100 ms (C) sliding windows, respectively. Classification score is at chance level and not 233 
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statistically significant in any section of the trial epoch. Right panels (B and D) show Group level 234 
decoding results obtained from the covariance-based decoding method, using 1 s (B) and 500 ms 235 
(D) sliding windows, respectively. Classification score is above chance and statistically significant 236 
in three (or four) time windows spanning from 2.5 to 5.5 s. The solid line indicates the mean, while 237 
the shaded area indicates the standard error of the mean (s.e.m.). 238 
 239 
Relationship between decoding performance and vividness ratings 240 
 241 
Next, we tested whether covariance-based decoding performance correlated with participants’ 242 
subjective evaluation of the vividness of visual imagery.  We tested the relation between decoding 243 
performance and subjective ratings both across and within subjects (Fig.3). Across subjects, 244 
decoding performance (i.e., ROC AUC scores) correlated with self-reported individual differences 245 
in the general vividness of visual imagery (r=0.57, p<0.05, Fig.4A), as assessed by the Vividness 246 
of Visual Imagery Questionnaire (VVIQ). Moreover, within subjects, we split the MEG dataset 247 
into trials associated with high vividness reports (scores >=3 in the vividness rating provided at the 248 
end of the trial, see Fig.1A) and trials associated with low vividness reports (scores<=2), to contrast 249 
the decoding performance associated with different subjective vividness ratings. We reasoned that 250 
if covariance-based decoding relies on information that contributes to the perceived vividness of 251 
visual imagery then high vividness ratings will be associated with higher ROC_AUC scores. 252 
Indeed, decoding scores were higher and significant in the time windows from 2.5 to 5.5 s when 253 
using only trials with high vividness ratings (>=3, Fig.4B) while the decoding scores were lower 254 
and not significantly above chance level (at any time) when using only trials with low vividness 255 
ratings (<=2). Importantly, there were no significant differences in vividness ratings between 256 
imagination categories (mean face rating = 2.94, mean place rating = 3.01, t = -0.48, p = 0.63) 257 
suggesting that participants’ imagination was equally vivid in faces and places trials. 258 
 259 

 260 
 261 
Figure 3. Relation between covariance-based decoding performance and subjective vividness 262 
ratings. (A) Correlation between vividness of visual imagery questionnaire (VVIQ) scores and 263 
ROC_AUC scores obtained using covariance-based decoding. (B) We obtained higher and 264 
significant covariance-based decoding performance when using only trials associated with high 265 
vividness ratings (>=3, purple line), compared to lower and not significant covariance-based 266 
decoding performance when using only trials with lower vividness ratings (<=2, gray line). The 267 
solid line indicates the mean, while the shaded area indicates the standard error of the mean (s.e.m.). 268 
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 269 
Detection and elimination of predictive saccades and microsaccades 270 
 271 
In addition, we ran a control analysis to rule out the possibility that the decoding was driven by 272 
systematic differences in eye movements associated with face and place imagery. This is a general 273 
concern for any neural decoding study, and the covariance-based decoding approach offers a 274 
straightforward and clean solution to rule out this potential confound. Although participants were 275 
instructed to keep their eyes fixated at the center of the screen during the imagination task, co-276 
registered eye-tracking revealed some residual but systematic micro-saccadic activity that was 277 
related to the imagination targets (Fig.4A and B), even after excluding trials with supra-threshold 278 
eye-movements (saccades). Therefore, we used covariance-based decoding to read out imagination 279 
categories from eye-tracking data that survived the threshold-based exclusion. By visual inspection 280 
of eye-tracking data, we observed systematic differences in the eye movement position covariance 281 
that may contribute to the classification of face versus place imagery, at least partially for some 282 
participants in some time windows (Fig. 4A-B). At the group level, eye movement decoding was 283 
statistically significant (p<0.05, BF=3) from 3.5-4.5 s (Fig. 4C). In order to correct for that, we 284 
cleaned the MEG dataset from all trials containing any such predictive microsaccades, by training 285 
a linear classifier on the eye tracking dataset and estimating the predictive probabilities for each 286 
trial. All trials with increased classification probability were excluded from further analyses on the 287 
MEG dataset. After predictive microsaccade removal, eye tracking decoding was no longer 288 
significant (Fig.4D-F). 289 
 290 

 291 
 292 
Figure 4. Detection and removal of trials containing predictive microsaccades. (A, B) 293 
Examples of left and right eye movements in a trial in which the micro-saccade activity contained 294 
information about the imagination target (faces, red line, versus places, blue line). (C) Group-level 295 
decoding based on eye-tracking data only before microsaccade removal (mean and s.e.m). At this 296 
level, only trials containing overt saccades exceeding a rejection threshold were excluded. Trials 297 
containing sub-threshold, but predictive micro-saccade activation still contributed to the 298 
decodability of the imagination target. (D and F) After removing all trials with increased decoding 299 
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probabilities, only trials, in which eye-movement traces did not contain information about the 300 
imagination target, remained in the sample. (F) Resulting group-level decoding after microsaccade 301 
removal. 302 
 303 
The functional connectivity network distinguishing face vs. place imagery  304 
 305 
One major advantage of the covariance-based decoding approach for the purpose of this study is 306 
that it is inherently based on a functional connectivity measure, i.e. the degree of interaction 307 
between node pairs. This allows us to map the most informative connectivity patterns underlying 308 
covariance-based decoding. In the following, we use two different types of visualization: edge 309 
maps and hub maps (see Fig.5). While the edge map allows us to visualize what sensor pairs are 310 
more informative to distinguish face and place imagery, the hub map allows us to visualize what 311 
individual nodes are most informative to distinguish face and place imagery. Edge maps are based 312 
on the normalized absolute difference in covariance, averaged across trials. Hub maps are based 313 
on a cluster-based permutation test between covariance matrices collapsed along one dimension 314 
(we refer to this metric as mstat, i.e., matrix statistics, for details see Methods).  315 
To allow for a better localization of these connectivity patterns we applied covariance-based 316 
decoding both in sensor space and in source space, which was reconstructed from the MEG 317 
recordings using Minimum Norm Estimates (MNE) in combination with 3D models of the 318 
subjects’ individual brain anatomies (based on their MRI scans). The reconstructed sources were 319 
subsequently parcellated into cortical areas using an atlas. In sensor space, we obtained significant 320 
covariance-based decoding (p<0.05, BF>3, Fig. 5A) from 2.5 to 5.5 s using all sensors (i.e., both 321 
gradiometers and magnetometers) also after removing trials with predictive microsaccades. The 322 
hub map estimated for this time window showed that most informative connectivity hubs 323 
distinguishing face and place trials are in the posterior sensors (Fig. 5D). The edge map estimated 324 
for this time window - including all connections within the highest 2 percentiles of normalized 325 
absolute differences in covariance - showed that the most informative connections include not only 326 
short-range connections within both anterior and posterior sensors but also long-range connections 327 
between anterior and posterior sensors (Fig.5C).  In source space, we obtained significant 328 
covariance-based decoding (p<0.05, BF>3, Fig. 5B) from 1.5 to 5.5 s using all parcellated sources 329 
also after removing trials with predictive microsaccades. The hub map estimated for this time 330 
window showed that the most informative connectivity hubs distinguishing face and place trials 331 
are in the occipital and parietal cortices but also in temporal and frontal regions, albeit weaker (Fig. 332 
5F). The edge map estimated for this time window - including all connections within the highest 2 333 
percentiles of normalized absolute differences in covariance - showed that the most informative 334 
connections include not only short-range connections within both occipital and parietal areas but 335 
also long-range connections between occipital, parietal, temporal and frontal areas (Fig. 5E).  336 
Overall, these results suggest that imagined faces and places involve differences in functional 337 
connectivity spanning a broad network of brain areas including not only short-range connections 338 
within posterior and anterior areas but also long-range connections between posterior and anterior 339 
areas. 340 
 341 
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 342 
 343 
Figure 5. Whole-brain visualization of the connectivity patterns underlying covariance-based 344 
decoding in sensor and source space. Decoding results obtained using all sensors (i.e., both 345 
gradiometers and magnetometers) (A) and all reconstructed sources parcellated using the Glasser 346 
atlas (B), after removing trials with predictive microsaccades. Edge maps represent the normalized 347 
absolute difference in covariance (purple color map). Hub maps represent the output of a cluster-348 
based permutation test between face and place covariance matrices collapsed along one dimension 349 
(red color map). (C) Edge map showing the most informative connections between sensors 350 
distinguishing face and place trials (highest 2 percentiles). Each gray dot represents a sensor and 351 
each purple line represents the covariance between two sensors. (D) Hub map showing the most 352 
informative individual sensors distinguishing face and place trials. (E) Edge map showing most 353 
informative connections between parcellated areas distinguishing face and place trials (highest 2 354 
percentiles). Each gray dot represents a parcellated area and each purple line represents the 355 
covariance between two parcellated areas. (F) Hub map showing most informative individual 356 
sources distinguishing face and place trials.  357 
 358 
 359 
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Sub-networks contribution to overall decoding performance 360 
 361 
Finally, we tested the contribution from task-relevant sub-networks - including specific regions of 362 
interest (ROIs) - to covariance-based decoding. ROIs were selected based on previous literature 363 
and included: occipital areas (i.e., dorsal and ventral streams), parietal areas (i.e., inferior and 364 
superior parietal), temporal areas (i.e., inferior and medial temporal) and frontal areas (i.e., inferior 365 
frontal) (for a complete list see Methods). In particular, the aim of this sub-network analysis was 366 
to further disentangle the contribution of short-range and long-range connections to overall 367 
decoding performance. By restricting the decoding analysis to subsets of the covariance matrices, 368 
we tested the relative contributions of short-range connections (e.g, including distributed nodes 369 
within the visual areas) and long-range connections (e.g., including distributed nodes between 370 
parietal and visual areas, temporal and visual areas, frontal and visual areas). In this case, since we 371 
tested multiple sub-networks at the same time we performed multiple comparisons correction (see 372 
Methods). When testing the contribution of short-range connections (Fig. 6A), we obtained 373 
significant decoding results (p<0.01, BF>8) using connections within the visual areas (from 2.5 to 374 
5.5 s, light blue line) and within the parietal areas (from 2.5 to 3.5 s, light green line). Decoding 375 
within the temporal areas (purple line) and within the frontal areas (orange lines) was not 376 
significant. When testing the contribution of long-range connections (Fig. 6B), we obtained 377 
significant decoding results (p<0.01, BF>8) between parietal and visual areas (from 1.5 to 3.5 s, 378 
cyan line), between temporal and visual areas (from 1.5 to 3.5 s, yellow line), and between frontal 379 
and visual areas (from 3.5 to 5.5s, fuchsia line). Decoding between temporal and frontal areas was 380 
not significant. We also observed that the decoding was significant when using short-range 381 
connections within posterior cingulate areas and long-range connections between posterior 382 
cingulate and visual areas (see Fig. S1). This sub-network analysis revealed that both short-range 383 
and long-range connections are incremental to overall decoding performance. 384 
To test how spatially specific these contributions from different sub-networks were, we ran a 385 
control analysis (Fig. S2) consisting in selecting task-irrelevant sub-networks that were little or not 386 
at all involved in the current visual imagery tasks, such as motor areas (i.e., premotor and motor) 387 
and auditory areas (i.e., primary and secondary auditory). We observed no significant decoding 388 
results for any of the short-range connections within these areas (Fig. S2 A) as well as the long-389 
range connections between these areas (Fig. S2 B). This control analysis revealed that covariance-390 
based decoding relies on spatially specific connectivity patterns associated with task-relevant sub-391 
networks only. 392 
 393 
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 394 
 395 
Figure 6. Task-relevant sub-networks contribution to covariance-based decoding. (A-B) 396 
Task-relevant sub-networks. (A) Decoding results obtained using short-range connections within 397 
visual (light blue line), parietal (light green line), temporal (purple line) and frontal (orange line) 398 
areas.  (B) Decoding results obtained using long-range connections between visual and parietal 399 
areas (cyan line), between visual and temporal areas (yellow line), between visual and frontal areas 400 
(fuchsia line) and between temporal and frontal areas (dark green line). For each sub-network, 401 
representative connections are shown on a lateral brain view using the same color coding scheme. 402 
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Discussion  428 
 429 
We investigated whether imagined faces and places are associated with distinct connectivity 430 
patterns reflecting content-specific feature integration and top-down processing. To do so, we used 431 
an experimental paradigm wherein vivid and detailed visual representations were generated 432 
internally, in the absence of any external stimulus. Such endogenous neural processes are 433 
challenging to decode due to their temporal misalignment across trials and because they involve 434 
the cooperation of different brain areas. To address these methodological and theoretical issues we 435 
introduced a covariance-based connectivity decoding method, originally designed for brain 436 
computer interface (BCI) applications. In particular, we used covariance-based decoding to read 437 
out endogenous functional connectivity changes associated with the mental imagery of faces and 438 
places. Our results demonstrate the potential and suitability of this decoding approach to answer 439 
key questions about the neural mechanisms underlying endogenous brain signals in visual imagery. 440 
 441 
One novelty of this study is the use of a minimally constrained experimental paradigm. Previous 442 
imagery studies often used a retro-cue paradigm, in which a pictorial cue is displayed on the screen, 443 
and participants are instructed to internally recreate that exact mental image, usually in a short 444 
amount of time. This paradigm assumes that imagery is similar to visual working memory 23, 445 
namely the internal replay and maintenance of a recently encountered image. Even though imagery 446 
events are better time-locked across trials when triggered by a pictorial cue, there are some 447 
methodological issues associated with the retro-cue paradigm. For instance, merely retrieving a 448 
recently presented visual stimulus is more constrained and arguably easier as it induces low–level 449 
visual features which a decoder can rely on. In contrast, we conceived of mental imagery as a 450 
constructive process based on the internal generation of images 24 as opposed to a reproductive 451 
process based on a replay of recently seen images. Therefore, we did not use any pictorial aid as 452 
external reference but word cues only. To preclude the possibility that our decoder could rely on 453 
visual signals evoked by visual word cue presentation, the cueing period was separated in time 454 
from the subsequent imagination period by a jittered interval of about one second, and furthermore 455 
any remaining afterimages were eliminated by a dynamic phase scrambled mask. Moreover, we 456 
provided participants with a long imagery time window (6 s), assuming that truly internally re-457 
constructing an image requires time. All these design choices were made to emphasize the 458 
internally generated aspects and to minimize potential stimulus-driven aspects. However, the costs 459 
of these experimental choices are high in terms of the methodological challenges thereby 460 
introduced. In particular, the temporal misalignment of endogenous signals across trials often 461 
renders classic time–domain decoding largely ineffective. 462 
 463 
We demonstrate a novel methodological approach that can effectively read out purely endogenous 464 
signals which, until now, have been challenging to decode from electrophysiological data. Previous 465 
studies have investigated the temporal dynamics of visual imagery using time-domain decoding 466 
methods that were optimally tuned to decode fast transient changes in brain activity driven by 467 
external stimuli 19. However, since classic time-domain decoding methods are dramatically 468 
impeded by temporal misalignment across trials in mental imagery paradigms, it is necessary to 469 
identify methodological solutions. For example, probabilistic decoding models based on latent state 470 
dynamics (e.g., Hidden Markov Models) have recently been proposed to deal with the 471 
misalignment problem 25. The covariance-based decoding approach that we used here is an 472 
alternative option to decode temporally misaligned signals. Our simulations showed that temporal 473 
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misalignment prevents classic time–domain decoding, whereas the covariance–based decoding 474 
approach is less susceptible to this challenge and achieves reliable classification across trials. 475 
Another important advantage of the covariance-based decoding method is its focus on functional 476 
connectivity. Recent fMRI studies using MVPA decoding have shown that imagined categories 477 
can be decoded from the sparse co-activation of frontal, parietal and occipital areas 26. This was an 478 
important step to understand the variety of cognitive processes underlying visual imagery. 479 
However, communication across brain areas was not taken into account in this prior work. In 480 
contrast, spatial covariance relies on the reciprocal interconnections between brain regions. 481 
Decoding methods based on spatial covariance, such as Common Spatial Filter (CSP) 27, have been 482 
used to decode motor commands from electrophysiological signals for brain computer interface 483 
(BCI) applications. This method relies on spatial filters to decode motor commands involving 484 
different motor effectors (e.g., left-hand vs. right-hand 28). Here, we used an improved version of 485 
the CSP method that capitalizes on the geometric properties of spatial covariance matrices.  486 
Importantly, we extend the covariance-based decoding approach to generate both sensor space and 487 
source space visualizations of the most informative connectivity patterns, which allows for a 488 
meaningful interpretation of contributing hubs and edges all over the cortical fold. In other words, 489 
since the signal our decoder is based on directly reflects fluctuations in functional connectivity, we 490 
can now pinpoint which functional connections contribute information to solve the cognitive task 491 
at hand. The study of functional connectivity networks provides an optimal theoretical framework 492 
to answer critical neuroscience questions that are relational in nature 29, 30. Measures of statistical 493 
interdependence (e.g., correlation) have been previously used to investigate large-scale network 494 
dynamics during cognitive tasks. For instance, previous studies successfully decoded different 495 
internally driven cognitive states (e.g., free recall, mathematical calculation) from whole-brain 496 
connectivity using fMRI 31. 497 
In general, the covariance-based decoding method has many advantages including simplicity, 498 
interpretability and computational parsimony. The method is mathematically simple because it 499 
doesn’t require specific assumptions about frequency and phase, unlike other connectivity 500 
measures (e.g., coherence). It is interpretable because it provides information about the 501 
connectivity patterns that allows to discriminate between two classes. Information about reciprocal 502 
interconnections is also indirectly captured by more complex decoding methods, for instance neural 503 
networks. However, neural networks require parameter tuning that is often difficult to interpret. 504 
There are also specific types of neural networks models that were specifically designed to capture 505 
information encoded in connectivity patterns (i.e., graph neural networks 32). However, this 506 
network architecture requires a large number of trials which is often prohibitive for neuroscience 507 
experiments. In contrast, covariance-based decoding is computationally parsimonious because it 508 
requires a smaller number of trials; for instance, here we used 240 trials per participant or less after 509 
preprocessing. One limitation is that covariance estimation requires many timepoints to be 510 
sufficiently accurate. We obtained significant decoding results using a sliding window of as few as 511 
500 ms. MEG temporal resolution is better than fMRI where covariance estimation would require 512 
minutes of task-based recording, which is hardly feasible. However, even covariance-based 513 
decoding from MEG might not be enough to decode faster cognitive processes. 514 
 515 
To test the validity of the covariance-based decoding method for cognitive neuroscience 516 
applications, we performed a series of control analyses to ensure that decoding performance was 517 
related to the imagery task and was not driven by potential confounds (e.g. eye movements). A 518 
potential confound for every neural decoding study involving a visual task is that classification 519 
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might be (at least partially) driven by eye movements. There is evidence for the fact that visual 520 
imagery, too, may be accompanied by oculomotor activation. For instance, when participants are 521 
instructed to imagine a recently seen grid pattern while looking at a blank screen, they produce 522 
oculomotor patterns which resemble the oculomotor patterns observed during perception of the 523 
actual grid pattern 33. Systematic differences in eye movements associated with different imagery 524 
categories may affect neural decoding. Previous studies investigating visual perception, visual 525 
imagery and visual working memory used co-registered eye-tracking data to rule out potential eye 526 
movements confounds 19, 34. In contrast, when eye movements are not controlled, there is evidence 527 
that they can partially explain neural decoding performance 35. The effect of eye movements on 528 
neural decoding performance can be explained by the overlap of their underlying neural generators 529 
with visual processing. For instance, there is evidence for an extensive overlap between brain areas 530 
activated by peripheral oculomotor activity and visual attention 36. In order to rule out potential eye 531 
movements confounds, we ran a control analysis using co-registered eye-tracking data. We first 532 
detected all trials associated with a high predictive probability based on the eye tracking data and 533 
then we removed all these trials with predictive eye movements from the MEG dataset. This control 534 
analysis is also important for the interpretation of the most informative connectivity patterns 535 
associated with covariance-based decoding since it ensures that these connections cannot be 536 
explained by systematic differences in eye movements.  537 
Another important step was to show that classification accuracy correlates with participants’ 538 
performance in the imagery task. Since there was no direct behavioral measure to assess whether 539 
participants performed well or not, we collected subjective vividness ratings for each trial. We 540 
expected to obtain better decoding results for those trials in which participants reported having a 541 
highly vivid mental image. In line with this conjecture, we observed that higher vividness ratings 542 
were associated with higher decoding performance. Moreover, we assessed how well participants 543 
considered themselves able to internally generate vivid images in their mind’s eye using the VVIQ. 544 
There is evidence for the fact that there are important individual differences in visual imagery 37, 545 
38. In particular, the ability to generate mental images ranges from poorly vivid, almost absent 546 
imagery (i.e., aphantasia) to highly vivid, almost realistic imagery (hyperphantasia). We expected 547 
to obtain better decoding results for participants who considered themselves able to internally 548 
generate vivid mental images. In line with this prediction, we observed a significant positive 549 
correlation between decoding performance and VVIQ scores (Fig. 3). 550 
 551 
Our results have theoretical implications that advance an understanding of the neural mechanisms 552 
underlying visual imagery. We asked whether information integration is involved during visual 553 
imagery in a way that is similar to visual perception, regardless of whether an external stimulus is 554 
presented or not. Since faces and places involve different visual features and different neural 555 
generators, we hypothesized that imagining these two different categories will be associated with 556 
distinct functional connectivity patterns. In particular, we expected that short-range connections 557 
within dorsal and ventral streams - including different brain areas representing specific visual 558 
features - will be associated with feature integration during visual imagery. In line with our 559 
predictions, we obtained significant decoding results when using short-range connections within 560 
visual areas. Our results are consistent with previous studies suggesting that face and scene 561 
perception are associated with distinct brain networks 39, 40. Indeed, our sub-network analysis 562 
included brain areas that are considered to be part of both the face perception network (e.g., the 563 
fusiform or occipital face areas) and the scene perception network (e.g., the parahippocampal place 564 
area, the retrosplenial cortex, or the occipital place area). We also obtained significant decoding 565 
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results when using short-range connections within parietal areas. Previous studies have shown that 566 
parietal areas are involved in feature integration during visual perception 41. There is also evidence 567 
from patients with parietal lesions who experience the clinical condition ‘hemispatial neglect’ that 568 
is associated with the incapability to visualize a visual hemifield both during perception and 569 
imagery 42. In line with this literature, we interpret content-specific short-range connections within 570 
the parietal areas as reflecting manipulation of spatial information that is necessary to achieve 571 
feature integration. These findings, taken together, suggest that information integration does not 572 
necessarily require constant monitoring of an external stimulus. In contrast, content-specific 573 
coordination between different brain areas associated with feature integration is a basic 574 
computation deeply rooted in the nervous system that can be deployed even in the absence of an 575 
external stimulus.  576 
A second question we sought to answer was whether top-down processing exerted from cognitive 577 
control mechanisms can be specific for different imagination categories. Previous studies have 578 
shown local activation during visual imagery in temporal areas associated with memory retrieval 579 
43, 44, in parietal areas associated with visuospatial attention 45, 46, and in frontal areas associated 580 
with focal attention 11, 47. These control areas do not only work individually but rather they 581 
coordinate with each other in broad networks (e.g., default mode network 48 and multiple-demand 582 
network 49) during cognitive tasks such as memory recall, daydreaming and attentional control. 583 
Moreover, there is evidence that, according to the global workspace theory 50, control areas 584 
constantly exchange information with sensory areas during effortful cognitive tasks 51. In line with 585 
this view, we expected long-range connections between temporal and visual areas, parietal and 586 
visual areas, frontal and visual areas to be associated with top-down processing during imagery. 587 
However, it was still unclear whether the contributions from control areas depend on the precise 588 
content of imagery or not. We tested whether information contained in long-range connections can 589 
be used to distinguish the imagined categories (e.g, face versus place). It is important to point out 590 
that we cannot tell apart top-down and bottom-up information flow associated with long-range 591 
connections because covariance is a bi-directional functional connectivity measure. Nevertheless, 592 
there is evidence suggesting that information is flowing predominantly top-down during imagery 593 
and bottom-up during perception 52, 53. Our results suggest that long-range connections between 594 
temporal and visual areas, parietal and visual areas, as well as frontal and visual areas contain 595 
specific information that is captured by covariance-based decoding to distinguish face and place 596 
imagery. The specificity of these long-range connections suggests that cognitive control 597 
mechanisms do not provide generalized support to visual cortex but rather content-specific 598 
information that is tailored to imagined categories (i.e., imagery/attentional templates, see 14). 599 
 600 
The theoretical and methodological implications of this study extend well-beyond visual imagery. 601 
Mental imagery is one example of a purely internally driven cognitive process but there are many 602 
others: for instance, endogenous visual attention and visual working memory. All such internally 603 
driven cognitive processes are not time-locked to an external stimulus and the endogenous brain 604 
activity associated with them is hard to detect because there is no overt behavior. Moreover, 605 
internally driven cognitive processes are typically associated with reciprocal interconnections 606 
between control areas and perceptual areas. We showed the suitability of the covariance-based 607 
decoding approach to answer questions about visual imagery. In addition, we suggest that the same 608 
method would be appropriate to also answer research questions about visual attention and visual 609 
working memory. Our findings also have implications for visual prediction. Indeed, endogenous 610 
signals involving reciprocal interconnections across multiple areas play an important role in visual 611 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2023. ; https://doi.org/10.1101/2022.09.26.509536doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509536
http://creativecommons.org/licenses/by-nc-nd/4.0/


Science Advances                                                                                                                                                                 Page 17 of 
30 
 

prediction, as suggested by analysis-by-synthesis 54 and predictive coding 55 theories. For instance, 612 
there is evidence from psychophysics that cueing upcoming images with visual and auditory word 613 
cues enhances subsequent visual detection 56. However, it is difficult to detect endogenous signals 614 
associated with visual prediction. We suggest that the covariance-based decoding approach also 615 
offers promising applications in that direction. 616 
 617 
Taken together, we showed that imagined faces and places can be decoded from MEG signals using 618 
spatial covariance as a measure of functional connectivity. This finding has two implications for 619 
the understanding of visual imagery. On the one hand, we show that feature integration in the visual 620 
cortex also occurs when there is no external stimulus, and that it is specific to imagery categories. 621 
On the other hand, we show that reciprocal interconnections between cognitive control areas and 622 
perceptual areas are content-specific, i.e., different for imagined faces and places. To arrive at these 623 
conclusions, we used a minimally constrained experimental design that was structured to 624 
emphasize the internal generation of mental images. We proposed the application of a covariance-625 
based decoding method originally designed for brain computer interface (BCI) to answer this 626 
cognitive neuroscience question. We suggest that our successful application of covariance-based 627 
decoding to endogenous signals associated with visual imagery paves the way for future 628 
applications to other internally driven cognitive processes, such as visual attention, visual working 629 
memory, and visual prediction. 630 
 631 
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Materials and Methods 658 
 659 

Participants 660 
  661 
Eleven healthy participants (mean age = 28.45, range 24-33, 4 female) with no history of 662 
psychiatric or neurological disorders took part in this MEG experiment. All of them reported 663 
normal or corrected-to-normal vision. Participants signed an informed consent form before the 664 
recording session. Ethical approval to conduct the study was provided by the University of Trento 665 
ethical committee. 666 
  667 
Vividness of Visual Imagery Questionnaire 668 
  669 
The Vividness of Visual Imagery Questionnaire (VVIQ) is a psychometric test that has been 670 
designed to measure individual differences in the vividness of visual imagery 57. The VVIQ 671 
consists of 16 experimental items organized into four groups. For each group, participants are 672 
instructed to imagine a scenario like a familiar person, a familiar shop, or a natural landscape. For 673 
each item, participants provide vividness ratings reflecting the visual resolution that they can 674 
achieve when they imagine specific details for each scenario (e.g., face contour, characteristic 675 
poses, clothes color). Vividness ratings range on a scale from 1 (poor imagination) to 5 (vivid 676 
imagination).  677 
Before taking part in the MEG experiment, we asked participants to complete the VVIQ online on 678 
an open-source survey platform (LimeSurvey, GmbH, Hamburg, Germany).  679 

 680 
Experimental Procedure 681 
  682 
We used the Psychophysics Toolbox 58 (PTB-3), MATLAB release R2017b, for stimulus 683 
generation and stimulus delivery. The stimuli were projected on a translucent whiteboard using a 684 
DLP LED projector (ProPixx, VPixx Technologies Inc., Saint-Bruno, Canada) at a 120 Hz refresh 685 
rate. The whiteboard was located at 1 m distance from the participant and it provided a projection 686 
area of 51x38 cm (width x height) and 1440x1080 pixel resolution. 687 
The experimental paradigm is shown in Figure 1A. Each trial began with an instruction screen 688 
(“Imagine a…”). Then, participants were presented with a visual word cue (“Face” or “Place”) 689 
instructing a category for imagination. After that, a fixation cross was shown in the middle of the 690 
screen and there was a 600-1600 ms jittered time delay. At this point, the trial epoch started and 691 
lasted for 6 seconds. A 15x25 cm picture frame containing a dynamic phase-scrambled mask 692 
centered around the fixation cross was displayed on the screen. The picture frame was meant to 693 
constrain participants’ imagination to a constant portion of the screen such that the size of the 694 
imagined object was consistent across trials and across imagery conditions. Participants were 695 
instructed to fill the picture frame with their visual imagination. In particular, they were asked to 696 
imagine a familiar face or place of their choosing. Even though participants were allowed to choose 697 
the object of their imagination, they were instructed to always imagine the same face and the same 698 
place throughout the experiment in order to reduce within-subject variability. Following the trial 699 
epoch, participants were asked to rate the vividness of their imagination on a scale from 1 (poor 700 
imagination) to 4 (vivid imagination). Finally, we presented participants with a catch question (i.e., 701 
“Did you imagine a face or a place?”) in order to make sure they were following the instructions. 702 
We used an MEG-compatible response collection system (ResponsePixx Dual Handheld, VPixx 703 
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Technologies Inc., Saint-Bruno, Canada) to keep track of participants’ responses. Before starting 704 
the experiment, participants performed 10 practice trials in order to familiarize themselves with the 705 
task. The experiment consisted of 240 trials evenly distributed over 4 blocks. The presentation 706 
order of the instructed categories was randomized. 707 

 708 
Data Acquisition 709 
  710 
Prior to data acquisition, individual head shapes were digitized with a Polhemus Fastrak digitizer 711 
(Polhemus, Vermont, USA), including fiducial landmarks (nasion, right and left pre-auricular 712 
points) and about 200 additional points spread out all over the scalp. Five Head Position Indicator 713 
(HPI) coils were placed on participant’s mastoid bones and forehead to keep track of participant’s 714 
head position inside the dewar through electromagnetic induction before and after each recording 715 
block. Landmarks and HPI coils were digitized twice in order to ensure that their spatial accuracy 716 
was less than 1mm. 717 
MEG recordings were obtained in a magnetically shielded room (AK3B, Vacuum Schmelze, 718 
Hanau, Germany) using a 306-channel (204 first order planar gradiometers, 102 magnetometers) 719 
VectorView MEG system (Neuromag, Elekta Inc., Helsinki, Finland). The MEG signal was 720 
sampled at 1 kHz, with a low-pass anti-aliasing filter at 330 Hz and a high-pass filter at 0.1 Hz. 721 
Before entering the experiment room, we ensured that participants were not wearing or carrying 722 
any metallic object and other potential sources of electromagnetic interference. Participants 723 
performed the task in a seated position. When positioning participants in the MEG scanner, we 724 
ensured tight contact with the dewar. Participants were instructed to avoid head, body and limb 725 
movements during the trial epoch. 726 
Moreover, participants were instructed to avoid eye blinks and keep strict eye fixation as much as 727 
possible during the trial epoch. Binocular pupil size and eyes’ position were continuously 728 
monitored by an MEG-compatible eye-tracking device (Eyelink 1000 Plus, SR-Research Ltd. 729 
Mississauga, Ontario, Canada). In the beginning of each experimental session, participants 730 
performed an eye-tracking calibration task aimed at verifying the correspondence between pupil 731 
position in the image recorded from the camera and gaze position on the screen. Calibration was 732 
repeated if drift was noticed in the course of the experimental session. 733 
  734 
Eye-Tracking Analysis 735 
  736 
To rule out potential confounds, we removed all trials in which we measured oculomotor noise. In 737 
particular, we identified three types of oculomotor noise associated with potential confounds at the 738 
brain level: eye blinks, saccades. Eye blinks consist in the rapid opening and closure of the eyelids. 739 
Saccades are fast, voluntary eye movements whose amplitude can be up to 15-20 degrees.  740 
We used co-registered eye-tracking data to exclude trials contaminated by oculomotor noise. The 741 
eye-tracker measured left and right pupil size (i.e., pupillometry) as well as left and right, horizontal 742 
(x) and vertical (y) gaze coordinates. Thus, the eye-tracking output consisted of 6 channels. The 743 
analog output was in voltage (-5V to +5V range). The raw eye-tracking signal was sampled at 1 744 
kHz. We segmented eye-tracking data around the trial epoch (0-6 sec). Moreover, we downsampled 745 
the raw signal to 250 Hz and applied a notch filter to remove 50 Hz power-line noise. Then, we 746 
converted the analog output (in voltage) to digital units (pixels) and we used the physical 747 
specificities of the eye tracking device (i.e., data range, voltage range, screen proportion, screen 748 
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distance) to convert pixels to millimeters. Binocular pupil size was measured in mm2. Vertical and 749 
horizontal (x, y) binocular gaze coordinates were measured in mm. 750 
For eye blink detection, we used an automatic artifact rejection method based on a pupil size 751 
threshold. During blinks the eye-tracking device loses track of the pupil, resulting in missing values 752 
in the output file. However, eye blinks are preceded and followed by a sharp decrease in pupil size 753 
measurements, because the closure and opening of the eyelids is not instantaneous. For each 754 
subject, we computed the absolute value and z-normalized (mean subtracted and divided by 755 
standard deviation) pupil area measured from left and right eye. We defined 3 standard deviations 756 
from the mean as a threshold for eye blink detection. Trials in which pupil size measurements 757 
exceeded the threshold were excluded from further analysis. 758 
For saccade detection, we used an automatic artifact rejection method based on a velocity-threshold 759 
identification (VT-I) algorithm 59. This algorithm separates fixations and saccades based on their 760 
point-to-point velocities using binocular x, y gaze coordinates. We computed the tangent of the 761 
rotation angle of the eye relative to the head and we used that measure to calculate eye movement 762 
velocities (degrees/second). Velocity profiles typically show two distributions: low velocities for 763 
fixations (i.e., <100 deg/sec), and high velocities for saccades (i.e., >300 deg/sec). Trials exceeding 764 
the high velocity threshold (i.e., >300 deg/sec) were excluded from further analysis. 765 
Moreover, we tested whether even after we applied the velocity-threshold there were trials 766 
containing subthreshold eye movements (i.e., microsaccades) which were highly predictive for one 767 
of the imagination categories. Microsaccades are short-range, involuntary eye movements whose 768 
amplitude varies from 2 to 120 arcminutes (1 arcminute = 1/60 of one degree). For predictive 769 
microsaccade detection, we ran the covariance-based decoding pipeline (see below) on sub-770 
threshold (<300 deg/sec) binocular x, y gaze coordinates. For each trial and each subject, we 771 
estimated predictive probabilities for the two imagination categories and we removed all trials with 772 
predictive probabilities exceeding a certain threshold. We did not use a fixed probability threshold 773 
for every participant, instead we adjusted the probability threshold for each participant (range 65-774 
90%) depending on the average difference in covariance between face and place trials. Trials 775 
containing predictive microsaccades in the eye-tracking dataset were excluded from further 776 
analysis in the MEG dataset. Finally, we ran the covariance-based decoding pipeline again to test 777 
whether predictive microsaccade detection was working properly. To avoid overfitting due to 778 
selection bias we used nested cross validation. We divided the eye-tracking dataset in training and 779 
test set. We detected trials with predictive microsaccades using the training set and we removed 780 
predictive trials from the test set. Then, we divided the portion of data that we previously used as 781 
a test set in training and test sets again. We trained the decoding model using the training set and 782 
we tested it using the test set. When trials containing microsaccades with high predictive 783 
probabilities were removed for each subject, classification scores were at chance level in every 784 
time window at the group level (Fig. 4F). 785 
  786 
MEG pre-processing 787 
          788 
MEG pre-processing was performed using MNE-Python 60 (v0.18.1), Python release 3.6.7, 789 
combined with custom routines. First, we removed external and internal sources of noise from the 790 
MEG signal. Then, we performed basic signal processing operations like filtering and epoching. 791 
External noise (e.g., environmental noise, stationary noise) was removed from MEG recordings 792 
offline using a MaxFilter software 61 (tsss-filters). In particular, we used a temporally non-extended 793 
spatial Signal Source Separation (SSS) algorithm in order to suppress external sources of magnetic 794 
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interference. Whenever head movements exceed 1 cm within or between blocks, we used the 795 
MaxMove algorithm to spatially co-register MEG recordings across blocks to the median head 796 
position. HPI movement correction was applied to MEG data collected from 6 over 11 subjects. 797 
Then, continuous data was visually inspected for system related artifacts (e.g., SQUID jumps), and 798 
contaminated sensors were interpolated. Up to 10 sensors per experimental block were interpolated. 799 
Internal noise was reduced using independent component analysis 62 (ICA)  while preserving 800 
signals originating from the brain. Among the potential sources of internal noise there are heartbeat, 801 
muscular activity and any residual oculomotor activity (e.g., eye blinks, eye movements) that was 802 
not removed based on the eye-tracking data. We used a fixed-point algorithm to estimate 15 803 
independent components in the trial epoch time window (0-6 sec). Up to 5 components per block 804 
were excluded based on visual inspection of spatial topographies and latent sources’ time course.  805 
A two-pass zero-phase infinite impulse response (IIR) band-pass filter was applied to raw data 806 
between 1 and 150 Hz. This IIR filter was based on a Butterworth forward-backward filter. Time 807 
series were downsampled to 250 Hz in order to reduce memory load and speed up algebraic 808 
operations (e.g., matrix multiplication). Then, we segmented trial epochs from picture frame onset 809 
to picture frame offset (0-6 seconds). We further segmented the trial epoch using different time-810 
window segmentation schemas. In particular, we used a short segmentation scheme (100 ms time-811 
windows), an intermediate segmentation scheme (500 ms time-windows) and a long segmentation 812 
scheme (1 sec time-windows).   813 
  814 
Trial Exclusion 815 
  816 
Trials were excluded from further analyses according to different criteria. We excluded all trials in 817 
which the vividness rating was poor (<=2) or participants provided a wrong answer to the catch 818 
question about which category they had just imagined. In both cases, the entire trial epoch was 819 
discarded. Moreover, we excluded all trials containing oculomotor noise (eye blinks, saccades, 820 
predictive microsaccades). In this case, we discarded only noisy time-windows rather than the 821 
entire trial epoch. Importantly, the remaining number of trials for each time window was not 822 
systematically different between experimental conditions (face vs. place) after trial exclusion.  823 
  824 
Covariance Estimation  825 
  826 
We used the pyRiemann toolbox for covariance estimation. We estimated covariance as a measure 827 
of joint variability between a pair of time series using Equation 1: 828 
 829 
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 831 
Where xi and xj are time series recorded from different sensors summed across multiple timepoints 832 
t divided by the total number of timepoints N.  833 
Spatial covariance matrices (SCMs) were computed as the set of pairwise covariance estimates 834 
between all sensors (i.e., 306 x 306 sensors, including both gradiometers and magnetometers), all 835 
reconstructed sources (i.e., 5124 x 5124 sources), and all parcellated sources (i.e., 360 x 360 836 
parcels). Covariance estimation can be unstable when the sample size (i.e., trial number) is small 837 
and the number of variables (i.e., sensors or sources) is large. Therefore, we used a shrinkage 838 
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method for covariance estimation 63 (OAS) that improves numerical stability and ensures that the 839 
matrix is symmetric, positive definite, and thus invertible. 840 
 841 
Data Simulation 842 
 843 
Simulated data was generated to compare the performance of different decoding methods using a 844 
model of electrophysiological data as close as possible to MEG recordings. We generated time 845 
series by summing up three different components. (1) Sinusoidal waves representing endogenous 846 
brain signals associated with the experimental task. (2) Band-limited noise representing 847 
uncorrelated background brain activity was simulated by summing 50 sinusoids having random 848 
frequencies ranging from 1 Hz to 125 Hz, and random phases ranging from 0 to 2π. (3) Pink noise 849 
representing the typical 1/f spectral signature of electrophysiological signals was simulated by 850 
constructing a power spectral density function for which power is inversely proportional to 851 
frequency and applying an inverse fourier transform.  852 
Moreover, we simulated data such that it reflected two main characteristics of endogenous brain 853 
signals associated with internally driven cognitive processes, like visual imagery. On the one hand, 854 
we added random delays to signal onsets and offsets to account for the fact that endogenous brain 855 
signals are not time-locked across trials. On the other hand, We simulated data in 100 trials and 3 856 
recording channels for two different conditions. The two conditions were associated with different 857 
spatial configurations that we artificially created by changing the signal to noise (SNR) ratio in the 858 
three recording channels. In particular, we simulated data such that the first and the second channel 859 
were associated with higher SNR in one condition, while the first and the third channel were 860 
associated with higher SNR in another condition.  861 

 862 
Baseline Correction 863 
 864 
To rule out the possibility that decoding performance was driven by task-irrelevant individual 865 
differences in brain activity and/or brain connectivity we performed a baseline correction. For 866 
classic time-domain decoding, the mean of the signal measured in the baseline period was 867 
subtracted from the signal measured during the trial epoch. For covariance-based decoding, we 868 
used a whitening transformation to remove the covariance measured in the baseline period from 869 
the covariance measured during the trial epoch. 870 
  871 
Decoding Analysis 872 
  873 
We used two different decoding methods: classic time-domain decoding and covariance-based 874 
decoding. From a methodological point of view, these two decoding methods differ in terms of the 875 
brain features used for classification. Time-domain decoding features were obtained by 876 
concatenating the raw MEG time-series measured from different sensors into a vector . Covariance-877 
based decoding features were obtained by using a kernel transformation to project spatial 878 
covariance matrices from a Rimannian manifold to a locally homeomorphic Euclidean tangent 879 
space.  880 
We built a decoding pipeline using scikit-learn toolbox 64. This decoding pipeline was applied to 881 
MEG data collected from individual subjects. Trial epochs were segmented using a sliding time-882 
window. For each time window, we obtained a classification score. We used three different time-883 
window sizes: 100 ms, 500 ms, 1 s. For time-domain decoding, we standardized the MEG signal 884 
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by estimating the mean and the standard deviation for each trial and each time-window.  For 885 
covariance-based decoding, we estimated the spatial covariance matrices for each trial and each 886 
time-window. After that, we vectorized our input features following two alternative approaches. 887 
For time-domain decoding, we concatenated MEG time series from different recording channels 888 
into a single vector for each trial. For covariance-based decoding, we approximated geodesic 889 
distances in the Riemannian manifold to Euclidean distances in the tangent space (see Fig. 1G) 890 
obtaining a tangent vector for each trial. Then, we used a logistic regression model for binary 891 
classification of imagined faces and places trials. In this model, the probabilities of the possible 892 
outcomes for each trial are modeled using a logistic function. L2 regularization was applied in 893 
order to improve numerical stability. Optimization was performed using a coordinate descent (CD) 894 
algorithm that minimizes the cost function by adjusting weights and regularization parameters. 895 
Finally, we used the Area Under the Receiver Operating Characteristic Curve (ROC AUC) as a 896 
scoring metric. This scoring metric takes into account the tradeoff between true and false positive 897 
rates. 898 
  899 
MRI-Based Source Reconstruction 900 
  901 
High-resolution T1-weighted anatomical scans were acquired for most of participants (seven over 902 
eleven) in a 4T Bruker MedSpec Biospin MR scanner with an 8-channel birdcage head coil (MP-903 
RAGE; 1x1x1 mm; FOV, 256 x 224; 176 slices; TR = 2700 ms; TE = 4.18 ms; inversion time (TI), 904 
1020 ms; 7-degrees flip angle). When the anatomical scans were not available (four over eleven 905 
participants) we used a template brain to perform source reconstruction 65.  This template brain was 906 
the average of the anatomical scans collected from 40 subjects (‘fsaverage’). The template brain 907 
was deformed to match the headhape of the participants that we measured using the Polhemus 908 
Fastrak digitizer (Polhemus, Vermont, USA). For group analysis, we computed a linear 909 
interpolation (i.e., morphing) between the individual source model and the template brain for each 910 
subject. 911 
The anatomical scans were 3D reconstructed using Freesurfer software 66. A Boundary Element 912 
Model (BEM) was estimated using the watershed algorithm. MRI and MEG coordinate systems 913 
were co-registered by manually matching digitized anatomical fiducial landmarks on the 914 
participant’s T1 scan. The resulting whole brain surface reconstruction (5124 vertices; 6.2 mm 915 
average source spacing), the BEM model and the aligned coordinate frames were used to compute 916 
the 3D forward model for MEG source reconstruction. The inverse operator was estimated using 917 
the noise-covariance matrix, the forward solution and the source covariance matrix. We used the 918 
Minimum-norm Estimates 67 (MNE) for reconstruction of neuronal sources. We used a loose 919 
orientation constraint for source reconstruction. In particular, for each source location we estimated 920 
a gain matrix having three columns corresponding to magnetic fields 𝑥, 𝑦, and 𝑧 orientations. Then, 921 
we computed the norm of these three vectors to obtain one single vector for each source location.  922 
 923 
Cortical Parcellation 924 
 925 
To obtain a fine-grained spatial definition of cortical areas and link our results to previous 926 
neuroscience literature, we subdivided the reconstructed sources into cortical areas using a 927 
multimodal parcellation atlas 68. This atlas identifies 360 cortical areas (180 per hemisphere) based 928 
on cortical architecture, function, connectivity, and topography. For task-relevant and task-929 
irrelevant sub-network analysis we grouped multiple parcels into larger regions following atlas 930 
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definitions. Each region included a set of spatially contiguous cortical areas sharing common 931 
properties, based on architecture, task-fMRI activity profiles, and functional connectivity. In 932 
particular, we selected five larger groups of regions for the task-relevant sub-network analysis: (1) 933 
visual regions including the following 24 areas for each hemisphere: V1, V2, V3, V3A, V3B, 934 
V3CD, V4, V4t, V6A, V7, V8, VMV1, VMV2, VMV3, ProS, PH, FST, IPS1, MST, MT, LO1, 935 
LO2, LO3; (2) parietal regions including the following 13 areas for each hemisphere: AIP, MIP, 936 
VIP, LIPd, LIPv, IP0, IP1, IP2, 7AL, 7Am, 7PC, 7PL, 7Pm; (3) temporal regions including the 937 
following 10 areas for each hemisphere: EC, FFC, H, PHA1, PHA2, PHA3, PIT, PeEC, PreS, 938 
VVC; (4) frontal regions including the following 7 areas for each hemisphere: 44, 45, IFJa, IFJp, 939 
47l, IFSp, IFSa, p47r; (5) posterior cingulate regions including the following 7 areas for each 940 
hemisphere: DVT, RSC, PCV, POS1, POS2, 7m, v23ab. In addition we selected three larger groups 941 
of regions for the tark-irrelevant sub-network analysis: (1) motor regions including the following 942 
10 areas for each hemisphere: 4, 55b, 6a, 6d, 6ma, 6mp, 6r, 6v, PEF, SCEF; (2) primary auditory 943 
regions including the following 5 areas for each hemisphere: A1, LBelt, MBelt, PBelt, RI; (3) 944 
secondary auditory regions including the following 8 areas for each hemisphere: A4, A5, STGa, 945 
STSda, STSdp, STSva, STSvp, TA2.  946 
  947 
Statistical Analysis 948 
  949 
Decoding performance was evaluated using statistical tests to establish whether classification was 950 
significant both at the single subject level and at the group level. 951 
At the single subject level, we used cross-validation and permutation tests to assess the decoding 952 
performance for each time window. In particular, we used a stratified k-fold cross-validation 953 
procedure. Data were divided into five folds and classification scores were obtained for each fold. 954 
Then, cross-validated decoding performance was estimated by averaging the scores obtained for 955 
each fold. Moreover, we ran a permutation test to evaluate the statistical significance of cross-956 
validated scores. This test consisted in repeating the cross-validated classification procedure 1000 957 
times permuting condition labels. We computed the p-value as the percentage of tests for which 958 
the classification score obtained with un-permuted labels was greater than the classification score 959 
obtained with permuted labels. 960 
At the group level, we evaluated cross-validated decoding performance across multiple subjects 961 
using Bayesian hypothesis testing 69. To account for the different number of trials per participant 962 
resulting from trial exclusion, we used a statistical test that weighs the classification scores for each 963 
participant depending on the amount of trials used to train and test the classifier. When we 964 
performed more than one test for one single decoding analysis (e.g., sub-network analysis) we 965 
corrected for multiple comparisons using False Discovery Rate (FDR) correction.  966 
To investigate which nodes provided most information to covariance-based decoding, we ran a 967 
cluster-based permutation test 70 (CBPT) both in sensor space and source space. CBPT consists of 968 
two different stages: a cluster formation stage and an inferential stage.  969 
In the cluster formation stage, the unit-level statistic is computed for each sensor or source. We 970 
used a two-sample covariance matrix 71 unit-level statistic that was estimated as follows: first, we 971 
estimated the spatial covariance matrices for each trial; then, we computed the element-wise mean 972 
covariance matrix and the element-wise variance covariance matrix for each condition; finally, we 973 
computed an M (i.e., matrix) standardized statistic that is defined as the squared difference of the 974 
mean covariance matrices divided by the sum of the variance covariance matrices. The test statistic 975 
is reported in Equation 2: 976 
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  979 
Where M is a sxs (i.e., sensors-by-sensors or sources-by-sources) matrix, c bar is the averaged 980 
element-wise covariance estimated between recording channels i and j belonging to either 981 
condition y1 or condition y2, and sigma squared is the averaged element-wise variance divided by 982 
the number of trials N in each condition. Once we obtained the M matrix, we summed across rows 983 
to obtain one single score for each sensor or source measuring the difference in covariance between 984 
the two conditions. Given that the distribution of the M standardized statistic is unknown, we run 985 
a permutation test under the null hypothesis of exchangeability. We computed the unit-level test 986 
statistic 1000 times. For each iteration, assignment to experimental conditions was randomized. 987 
Then, the original M values were compared to permuted M values yielding uncorrected p-values. 988 
Sensors or sources were selected according to an a priori defined alpha criterion (i.e., p < 0.05) and 989 
adjacent sensors or sources not exceeding this value were grouped together into clusters. Finally, 990 
we summed all the M values within each cluster (i.e., maxsum) obtaining one single number. 991 
Minimum cluster size was set to 5 sensors or 50 vertices. A spatial adjacency matrix containing 992 
information about sensors or sources proximity was taken into account in the cluster formation 993 
stage.  994 
In the inferential stage, the stored unit-level permutation values summed within clusters were used 995 
to compute the cluster-level statistical distribution under the null hypothesis of exchangeability. 996 
We calculated the percentage of clusters for which the un-permuted cluster-level statistic was larger 997 
than the permuted cluster-level statistic. If the cluster p-value was smaller than 0.05 then we 998 
assumed that the data in the two experimental conditions were significantly different. 999 
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