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Abstract 

Paleobiologists often employ network-based methods to analyze the inherently complex data 
retrieved from geohistorical records. Because they lack a common framework for designing, 
performing, evaluating, and communicating network-based studies, reproducibility and 
interdisciplinary research are hampered. The high-dimensional and spatiotemporally resolved data 
also raise questions about the limitations of standard network models. They risk obscuring 
paleontological patterns by washing out higher-order node interactions when assuming independent 
pairwise links. Recently introduced higher-order representations and models better suited for the 
complex relational structure of geohistorical data provide an opportunity to move paleobiology 
research beyond these challenges. Higher-order models can represent the spatiotemporal constraints 
on the information paths underlying geohistorical data, capturing the high-dimensional patterns more 
accurately. Here we describe how to use the Map Equation framework for designing higher-order 
models of geohistorical data, address some practical decisions involved in modeling complex 
dependencies, and discuss critical methodological and conceptual issues that make it difficult to 
compare results across studies in the growing body of network paleobiology research. We illustrate 
multilayer networks, hypergraphs, and varying Markov time models for higher-order networks in 
case studies on gradient analysis, bioregionalization, and macroevolution, and delineate future 
research directions for current challenges in the emerging field of network paleobiology. 
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1. Current challenges and opportunities for network-based paleobiology research 

Network science is transforming scientific research and thinking in the twenty-first century. Many 
natural and social phenomena can be described as networks, where nodes represent individual 
components, and links indicate their interactions. Network science studies high-dimensional, 
heterogeneously structured, complex systems and their underlying processes (Barabási and Pósfai 
2016). In recent years, standard network models based on pairwise or direct interactions between 
individual components have been applied to almost every area of paleontological research, including 
biostratigraphy (Muscente et al. 2019), biogeography (Dunhill et al. 2016; Kiel 2017; Rojas et al. 
2017; Kocsis et al. 2018; Jeon et al. 2021), macroecology (Roopnarine 2010), and macroevolution 
(Muscente et al. 2018; Kocsis et al. 2021). However, methodological inconsistencies and conceptual 
issues in the emergent interdisciplinary field of network paleobiology make it challenging to 
reproduce experiments and compare outcomes across studies, for instance macroevolutionary 
patterns delineated using standard (Muscente et al. 2018) and higher-order models (Rojas et al. 
2021). The complexity of the high-dimensional and spatiotemporally resolved data retrieved from 
geohistorical records also raises questions about the limitations of the standard network models: How 
accurately do they represent the complex local (outcrops, stratigraphic sections), regional (geological 
basins), and global scale systems examined in paleobiology? 

Although network science provides methods for statistical analysis and machine learning of relational 
data (Brandes et al. 2013; Lambiotte et al. 2019), paleobiologists often describe network analysis as a 
tool for visualization and qualitative assessment (Huang et al. 2016; Penn-Clarke and Harper 2020; 
Ye et al. 2021). While network visualization techniques are powerful tools for exploratory data 
analysis (Perri and Scholtes 2020), this misrepresentation reflects a need to adapt research practices 
in quantitative paleobiology based on theoretical and methodological advances of network science. 
Recent studies on the deep-time fossil record (Eriksson et al. 2021; Rojas et al. 2021) suggest that the 
most critical conceptual issue in the growing body of network paleobiology is ignoring the extent to 
which the choice of network model impacts the results. There are also methodological 
inconsistencies, including inadequate descriptions of the input network, incomplete explanations of 
the clustering approach, and uncritical acceptances of the network partition without validation. The 
lack of a common framework obstructs interdisciplinarity, reproducibility, and communicability, and 
calls for standardized research practices in the emergent field of network paleobiology: how to 
design, perform, communicate, and evaluate network studies.  

In this overview, we describe how to use the Map Equation framework (Rosvall and Bergstrom 2008; 
Edler et al. 2017) to identify important patterns in geohistorical data with higher-order network 
models. Specifically, we describe the concept of higher-order interactions in networks, address some 
practical decisions involved in network-based modeling of geohistorical data, and illustrate 
alternative network models, including multilayer networks, hypergraphs, and varying Markov time 
models for higher-order networks, with cases studies on depth gradient analysis, bioregionalization, 
and macroevolution. In addition, we delineate future research directions for current challenges in 
network paleobiology. We focus on the Map Equation framework and its applications in 
paleobiology research because it is an increasingly popular alternative to the standard statistical 
approaches currently used in paleobiology research (Kocsis et al. 2021; Rojas et al. 2021; Pilotto et 
al. 2022; Viglietti et al. 2022). The associated software called Infomap for finding community 
structure in standard and higher-order networks is also widely used in natural and social sciences  
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(Law et al. 2022; Lazaridis et al. 2022; Martins et al. 2022). The Map Equation framework for 
higher-order networks combines sedimentological, ecological, morphological, taxonomic, and any 
other data retrieved from geohistorical records, enabling an integrated investigation of the complex 
interactions between plate tectonics, global climate change, and evolution of life. 

2. The Map Equation framework for higher-order networks 

Research in network paleobiology has focused on delineating community structure that reveals, for 
example, biozones, bioregions, or evolutionary faunas, based on statistical regularities (Figure 1A-
D). This unsupervised learning task known as community detection makes up a whole subfield of 
network science: network scientists have developed various methods for different purposes and 
research questions (Schaub et al. 2017). The Map Equation framework uses random walks on a 
network as a proxy for chains of interdependencies or flows of some sort in the underlying system. It 
consists of an objective function – the map equation – and its search algorithm Infomap. The map 
equation measures the quality of community structure through the modular description length of the 
flows (Rosvall and Bergstrom 2008). Minimizing the map equation over possible network partitions 
with Infomap identifies how network flows organize in communities and helps explain geohistorical 
systems because modular network flows capture their important components. Flow-based methods 
for community detection, such as the Map Equation Framework (Rosvall et al. 2019), are attractive 
for geoscientists also because they can explore the biosedimentary record at multiple scales (Eriksson 
et al. 2021) and capture movement patterns across nodes, such as species moving over their 
geographic ranges (Lambiotte and Rosvall 2012). Previous research has found that the Map Equation 
outperforms other approaches when operating on various benchmark networks (Lancichinetti and 
Fortunato 2009; Aldecoa and Marín 2013; Kheirkhahzadeh et al. 2016; Ghasemian et al. 2019). 

 

 

 

 

 

 

Figure 1. Network representations of geohistorical data are abstracted fossil records. A. The physical 
fossil record. These brachiopod shells aim to represent the benthic macrofauna from the R/V 
Pillsbury program in the Caribbean. Modified from  Rojas et al. (2022, fig. 2). B. The abstracted 
fossil record. This abstracted record is a bipartite network representation of the underlying data 
(sampling stations × taxa matrix) (Rojas et al. 2022)(Supplementary Data 1). The brachiopod 
Tichosina, the larger component of the Cenozoic brachiopod faunas in the Caribbean, is indicated. C. 
Modular structure delineated via community detection with the Map Equation framework and using a 
Markov Time = 2 (Kheirkhahzadeh et al. 2016) (Supplementary Data 2). Modules include sampling 
stations and taxa. Nodes are rearranged in the circular layout by their module affiliation. Only the 
two larger modules are displayed; they represent 98% of the network flow. D. Modules mapped on a 
Detrended Correspondence Analysis (DCA) ordination space. E. Small example network showing a 
two-module partition. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2022.09.26.509538doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 PAGE 22 

   Higher-order networks in paleobiology 

 

2.1. The map equation 

The map equation models a diffusion process on a network with a random walk, a succession of 
random steps between nodes (Rosvall and Bergstrom 2008). The random walk starts from a 
randomly selected sample (Figure 1E), continues to a randomly selected taxon present in the sample, 
and then to a randomly selected sample where the taxon is present, and so on repeatedly. The map 
equation uses these network flows' long-term node and link visit rates to capture the network 
structure in a principled way (see Rosvall and Bergstrom 2008; Rosvall et al. 2009). For example, if 
the network has communities of highly interconnected samples and taxa representing different 
biofacies, the network flows will persist for relatively long times within those communities.  
The map equation employs the minimum description length principle, a central concept in 
information theory stating that the best hypothesis is the one that compresses the data the most by 
using its regularities (Rissanen 1978). The map equation specifies the theoretical lower limit of how 
concisely we can describe the trajectory of a random walk, given a partition of the network’s nodes 
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into modules (Rosvall and Bergstrom 2008; Rosvall et al. 2009). Our modular description uses 
codewords for node visits and transitions between modules. Like in Morse code, frequently visited 
nodes use shorter codewords for best compression. For a modular description that can capitalize on 
community structure, we assign each node a unique codeword in its module and reuse short 
codewords between modules. A uniquely decodable modular code also requires an index codebook 
with codewords for entering each module and an exit codeword in each module codebook for 
switching to the index codebook. If the random walker steps within the module, only a single 
codeword is required, whereas if it steps between modules, we need three: First the exit codeword 
from the old module codebook, then the enter codeword for the new module from the index 
codebook and last the node codeword from the new module codebook. When the partition matches 
significant community structure in the network such that the module exit rates are low, the extra cost 
of describing module transition events is lower than the gain in describing steps within modules with 
shorter codewords. The map equation quantifies this tradeoff between efficient descriptions within 
many small modules and short descriptions between a few large modules. While we use codewords 
to explain the machinery of the map equation, the average per-step theoretical lower limit of the 
modular codelength given by the map equation is all we need to measure how good we are at 
identifying modular structure. From Shannon's source coding theorem (Shannon 1948), each 
Shannon entropy term of the map equation sets the lower bound on the per-step codelength of the 
index and module codebooks. With probability 𝑝𝑝𝛼𝛼 for codeword 𝛼𝛼 in a codebook with the set of 
codewords 𝑃𝑃, the Shannon entropy 𝐻𝐻(𝑃𝑃) = −∑𝑝𝑝𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝛼𝛼. For a two-level partition using one index 
codebooks and one set of 𝑚𝑚 module codebooks, the map equation is  

𝐿𝐿(𝑀𝑀) = 𝑞𝑞𝐻𝐻(𝑄𝑄) + �𝑝𝑝𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝐻𝐻�𝑃𝑃𝑖𝑖� 

where the first term is the average length of codewords in the index codebook and the second term is 
the average length of codewords in the module codebooks, both weighted by their rates of use 
(Rosvall and Bergstrom 2008). 𝑄𝑄 is the normalized enter rates 𝑞𝑞𝑖𝑖/𝑞𝑞 for each module, where 𝑞𝑞 =
∑ 𝑞𝑞𝑖𝑖𝑚𝑚
𝑖𝑖=1  is the total rate at which the index codebook is used. For module 𝑖𝑖, 𝑃𝑃𝑖𝑖 is the normalized visit 

rates for each node in the module plus the exit rate, and 𝑝𝑝𝑖𝑖 is the rate of use for the module codebook. 

In general, sample-based geohistorical data form an undirected network because the relationship 
between sampling units and taxa is symmetric: a random walker can move along links between 
samples and taxa in both directions. In an undirected network, node 𝛼𝛼‘s visit rate is the total weight 
𝑤𝑤𝛼𝛼 of its links divided by the total link weight of all 𝑁𝑁 nodes in the network,𝑊𝑊 = ∑𝑁𝑁

𝛼𝛼=1 𝑤𝑤𝛼𝛼. In the 
small example, we treat all fossil occurrences as equally important, and the network is unweighted 
with all link weights equal to 1. Therefore, node 𝛼𝛼’s visit rate is its number of links divided by two 
times the total number of links in the network, since counting each node’s link-end double-counts the 
number of undirected links. Similarly, the exit and enter rates of a module are the total number of 
links that crosses its boundary divided by 𝑊𝑊. In the small example networks (Figures 1E), one link 
with weight 1 crosses each boundary such that all enter and exit rates are 1

18
. With a compressed 

notation for the entropy, 𝐻𝐻(𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑚𝑚) = −∑ 𝑤𝑤𝑖𝑖

𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙2
𝑤𝑤𝑖𝑖
𝑤𝑤

𝑚𝑚
𝑖𝑖=1  where 𝑤𝑤 = ∑ 𝑤𝑤𝑖𝑖𝑚𝑚

𝑖𝑖=1 , the total 

codelength for the two-module partition is 

𝐿𝐿(𝑀𝑀) =
2

18
𝐻𝐻(1,1) +

10
18

𝐻𝐻(2,2,2,3,1) +
10
18

𝐻𝐻(2,2,2,3,1) = 2.61 𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏. 

This partition minimizes the map equation (Figure 2). Overall, small modules enable short 
descriptions within modules because they require little information to specify the visited nodes but 
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may lead to long descriptions between modules from frequent and expensive module exits and 
entries. In contrast, large modules enable short descriptions between modules because between-
module steps are rare and cheap but have long descriptions within modules from the many nodes to 
differentiate. Small modules where random walks persist long compress the network flows 
maximally and reveal the most modular regularities for the modeled network flows (Rosvall and 
Bergstrom 2008; Rosvall et al. 2009). 

The map equation generalizes straightforwardly to multiple hierarchical levels (Rosvall and 
Bergstrom 2011), to higher-order network models, including so-called memory networks (Rosvall et 
al. 2014), multilayer networks (De Domenico et al. 2015), and hypergraphs (Eriksson et al. 2021, 
2022), and to varying Markov time models (Kheirkhahzadeh et al. 2016). Recent Bayesian 
generalizations of the Map Equation deal with incomplete data in a theoretically founded way 
(Smiljanić et al. 2020, 2021). 
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Figure 2. Input and output formats. -The Map 
Equation framework understands different 
formats. A. Input file in Pajek format. B. Output 
file. The resulting partition is written to a file 
with the extension .tree (plain text file). The 
formats described here correspond to the small 
example network in Figure 1E. 

 

2.2. The search algorithm Infomap  

For a network with n nodes assigned to m modules, there are on the order of nm possible partitions. 
Even for moderately-sized networks, it is impractical to test all possible partitions to guarantee that 
we have found the best one. Because small changes in the network can slightly improve a partition, 
for practitioners it is more informative to investigate good partitions rather than focusing on finding 
the very best. The Map Equation framework uses a fast stochastic search algorithm called Infomap to 
minimize its objective function over possible node assignments (Rosvall and Bergstrom 2008). The 
algorithm consists of multiple search procedures (Edler et al. 2017). The core algorithm starts by 
assigning each node to its own module. Then it repeatedly loops through each node in random order 
and moves it to the module that reduces the codelength the most. Infomap repeats this procedure until 
no move decreases the codelength, rebuilds the network with the modules forming nodes at a coarser 
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level, moves these nodes into even coarser modules, and so on until no move reduces the codelength 
further. 

To improve this two-level solution, Infomap alternates between a fine-tuning and a coarse-tuning 
procedure by moving individual nodes or sub-modules between modules. To find a hierarchical 
solution, Infomap starts from the two-level solution and iteratively builds super-module levels that 
compress the description of movements between modules. Then it clears the structure under each of 
the coarsest modules and recursively and in parallel builds sub-modules within each module until it 
cannot find a finer structure that decreases the hierarchical codelength. In this way, the resulting 
hierarchical structure of the network may have branches of different depths. 

When modeling network dynamics on standard networks through random walks, a single node type 
usually simultaneously represents a physical component of the system and describes the flows with 
the nodes’ links (Figure 3A-B). In contrast, the Map Equation framework for higher-order networks 
distinguishes physical nodes, representing the system’s components, from state nodes, describing the 
system’s internal flows (Edler et al. 2017)(Figure 3C). State nodes in the Map Equation framework 
can represent, for instance, memory of previous steps, layers in multilayer network representations 
(Rojas et al. 2021), lumped states, or any other complex relationship in the underlying geohistorical 
data.  To capture the higher-order nature of flows on networks with state nodes, Infomap applies the 
same procedures to the state nodes with aggregated visit rates for all state nodes of the same physical 
node assigned to the same community.  

 

Figure 3. Network representations of geohistorical data. A. Temporal occurrence data. B. Standard 
bipartite network representation created by aggregating fossil occurrences (sp. 1) into arbitrary 
spatiotemporally explicit units (g1 to g4). This standard network uses the same nodes to represent 
the physical components of the system as well as to describe system’s flows. A random walk as the 
simplest information flow model forms paths across independent pairwise links on this network 
washing out higher-order node interactions. C. Multilayer network representation. The Map 
Equation framework for higher-order networks distinguishes physical nodes that represent the 
system’s components from state nodes describing the system’s internal flows. This higher-order 
network better captures the constraints on the information paths and thus flows tend to stay among 
units from each layer. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2022.09.26.509538doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.26.509538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 PAGE 21 

   Higher-order networks in paleobiology 

1. Higher-order network models in paleobiology 

1.1. The complex relational structure of the geohistorical data 

Geohistorical records, either stratigraphic sections, boreholes, ice cores, or archaeological sites, are 
inherently complex. Despite their limitations (Kidwell and Holland 2002; Kidwell and Tomasovych 
2013), the high-dimensional and spatiotemporally resolved data retrieved from individual 
geohistorical records allow for evaluation of past biotic responses to natural and human-induced 
environmental changes at local to regional scales (Council 2005; Scarponi and Kowalewski 2007; 
Dietl and Flessa 2011; Durham and Dietl 2015). Although high-precision chronological studies have 
improved our understanding of past biotic crises (Smith et al. 2018), compilations of individual 
geohistorical records are central for studies at larger spatiotemporal scales. Fossil occurrences of the 
benthic marine invertebrates in the Paleobiology Database (PaleoDB)(Peters and McClennen 2016) 
have become the benchmark data for network-based research on macroevolution, macroecology, and 
biogeography (Rojas et al. 2017, 2021; Kocsis et al. 2018; Muscente et al. 2018). In most cases, 
PaleoDB collections have geographic information and are assigned to a geological stage, enabling the 
modeling of temporal constraints. PaleoDB collections also have lithostratigraphic and 
sedimentological information and sometimes include taphonomy and body-size data. Each fossil 
occurrence in PaleoDB belongs to one collection, has a name with a specific taxonomic resolution, 
and is linked to an independent taxonomic classification with associated ecological information. 
These complex relational data describe the structure of the Phanerozoic life at multiple taxonomic 
levels and spatiotemporal scales. 

There are also numerous databases covering specific taxonomic groups, time intervals, or geographic 
regions (Williams et al. 2018; Community 2020). For instance, The Strategic Environmental 
Archaeology Database compiles high-resolution archaeological and paleontological data (Buckland 
and Eriksson 2014). In most cases, the sample's age is a value taken from the original literature 
sources and obtained from a range of dating methods varying in precision and accuracy (Buckland 
2014). Because samples may have an age range larger than the length of the preferred bin interval, 
modeling temporal constraints of high-resolution data using multilayer networks is challenging. This 
question has been approached using the Map Equation framework to investigate the recent fossil 
record of European beetles (Pilotto et al. 2022). Their multilayer network analysis relaxes the 
temporal constraints, allowing a random walker to move toward neighboring layers without 
exceeding the age limits of the samples in the data. In practice, with ordered layers representing 500-
year time intervals and an accepted age range of 2000 years in the filtered samples, authors allowed a 
random walker to relax toward the first two layers in each direction. This approach accounts for the 
age uncertainty inherent to the samples, making it possible to explore high-resolution geohistorical 
data using multilayer representations. 

1.1. Higher-order networks capture the complexity of the geohistorical data 

One of the major conceptual changes in modern paleobiology research has been the distinction 
between the physical fossil record, consisting of in-situ or ex-situ specimens, and abstracted 
representations based on data retrieved from this physical record (Sepkoski 2013; Allmon et al. 
2018). We capitalize on this idea by explicitly considering improved network representations of 
geohistorical data. Intuitively, a good model of the physical fossil record should be maximally 
parsimonious yet sufficiently complex to capture the complex interactions of spatiotemporally 
resolved and high-dimensional geohistorical data. Researchers designing network representations of 
geohistorical data must recognize that their choices make various assumptions about the 
spatiotemporal structure and dynamics of the biosedimentary record, such as whether or not to 
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describe temporal constraints. These assumptions impact the outcome, such as whether or not the 
solutions capture larger-scale patterns. In paleobiology, researchers tacitly assume that using 
benchmark data guarantees reproducibility, ignoring that different network representations and 
modeling decisions may impact the observed patterns. Here we argue that setting benchmarks is 
required to improve reproducibility and communicability in network paleobiology. This challenge is 
also an opportunity to move beyond standard network representations, toward higher-order models 
(Benson et al. 2016) that better capture the complexity of the geohistorical data.  

Network representations of geohistorical data are usually standard models based on pairwise 
connections between taxa (e.g., species, genus) and sampling units (e.g., collections, localities, grid 
cells) (Figure 3A). This standard approach consists of modeling dynamical processes on these 
networks with first-order flows, using a memory-less random walker whose movements are 
determined only by its current node. This approach oversimplifies the dynamics of the system 
because it ignores higher-order node interactions, or dependencies, in the underlying geohistorical 
data (Figure 3B). Such dependencies can be modeled by equipping the random walker with memory, 
letting it choose its steps based on its current node but also on the previously visited node or nodes. 
Whereas standard models use a single node type to represent the physical components of the system, 
including taxa and sampling units, and model flows through one-step dynamics on their links, the 
Map Equation framework for higher-order networks introduces abstract nodes to describe the 
different states in which the physical nodes can be in the system, so-called state nodes (De Domenico 
et al. 2015)(Figure 3C). For instance, the multilayer network representation of the benchmark data on 
the Phanerozoic fossil record is a higher-order model in which a physical node representing a given 
taxon contains several state nodes carrying information on the geological stage where this taxon 
occurs (Rojas et al. 2021). Therefore, this higher-order representation created through the Map 
Equation framework is a form of memory network (Edler et al. 2017). First-order models of the 
Phanerozoic benthic marine faunas without memory ignore the temporal constraints inherent to the 
underlying system and obscure the macroevolutionary pattern (Figure 4). When comparing 
unipartite, bipartite, and multilayer representations of this benchmark data, the multilayer network 
achieves the shortest codelength and the best compression (Table 1). 

 

 

Figure 4. Different network representations 
capture different aspects of the benchmark data 
on the Phanerozoic benthic marine faunas 
(Peters and McClennen 2016). Bipartite and 
unipartite representations ignore the temporal 
constraints inherent to the biosedimentary 
record. *Unipartite projection obtained from the 
bipartite network by rescaling the Markov time 
(Kheirkhahzadeh et al. 2016). Alluvial diagram 
representing 98% of the network flow in each 
case (Supplementary Data 3-7). 
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Table 1. Comparison of the modular structure of different network representations of the 
benchmark data on the Phanerozoic marine faunas. The multilayer representation achieves the 
shortest codelength and the best compression. For each partition, we measure the compression by 
using the corresponding one-level partition as a baseline. *Unipartite projection obtained from the 
bipartite network by rescaling the Markov time (Kheirkhahzadeh et al. 2016).  

1.1. Alternative higher-order network models for geohistorical data 
1.1.1. Multilayer networks 
Multilayer networks are models used to represent complex systems with multitype interactions. In the 
Map Equation framework, multilayer networks can be used to model temporal and non-temporal 
data. Temporal constraints in real geohistorical systems include ordered geological stages (Rojas et 
al. 2021)(Figure 3), arbitrary temporal bins (Pilotto et al. 2022), and biostratigraphic frameworks 
(Viglietti et al. 2022). Interlayer dynamics in multilayer networks are often modeled based on the 
intralayer information (Eriksson et al. 2022). For instance, when layers represent geological stages, 
intralayer link structure describes the constraints on the network dynamics at a given stage, whereas 
interlayer link structure is created through neighborhood flow coupling between state nodes of the 
same physical node (Rojas et al. 2021). In practice, the Map Equation framework can generate 
interlayer links using a relax rate (r), with a random walker moving between nodes within a given 
layer guided by intralayer links with probability 1−r and relaxing to adjacent layers guided by links 
between state nodes of the same physical node with a probability r (Edler et al. 2017). Previous 
studies show that a relax rate equal to 0.25 is large enough to capture temporal structures but small 
enough to preserve intralayer information (Aslak et al. 2018). Limiting the relaxing to the nearest 
layers gives multilayer networks a bidirectional geohistorical time arrow. 

Multilayer networks can also be used to model geohistorical data lacking temporal constraints. In 
general, a geohistorical record with its multiple biotic and abiotic components can be conceptualized 
as a complex system with a multilayered structure, where each layer describes a particular interaction 
between sampling units, for instance, those resulting from the fossil composition and 
sedimentological features, independently. Physical nodes in this two-layered network can represent 
sampling units of any scale (e.g., samples, beds, members, formations), taxa of any resolution (e.g., 
species, genus), and sedimentologically defined groups (e.g., textural classes). Whereas each 
sampling unit in this multilayer network would be represented by a number of state nodes equal to 
the number of multitype interactions considered in the study, other physical components would be 
represented by a single state node because they occur only in one layer. In this network, movements 
between state nodes within each layer represent pairwise interactions, whereas movements between 
nodes across layers represent higher-order interactions (De Domenico et al. 2015). Our first example 
illustrates this approach in a case study based on the marine invertebrate fossil record (Holland and 
Patzkowsky 2004). 
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1.1.1. Varying Markov time models for higher-order networks 
The fossil record does not have a unique and optimal level of description but instead multiple levels 
representing different scales in the organization of life. Flow-based community detection approaches 
usually assume one-step dynamics on the links, corresponding to Markov time 1. Modeling network 
dynamics at shorter or longer Markov times captures the modular structure at different resolutions 
(Delvenne et al. 2010). These Markov time models can be used to explore structure and dynamics in 
both first- and higher-order networks (Kheirkhahzadeh et al. 2016). They are especially useful when 
the modular structure of an empirical network does not show a hierarchical organization (e.g., Penn-
Clarke and Harper 2020) or for two-level solutions in the Map Equation framework. Exploring 
various time scales to reveal finer or coarser partitions allows connecting time scales of the dynamics 
to the structural scales present in the network (Lambiotte et al. 2014). Recently, varying Markov time 
models were used to explore larger-scale modular patterns of the Holocene succession and present-
day nearshore seabed of the Adriatic Sea (Scarponi et al. 2022). In networks representing the deep-
time fossil record, the specific relationship between the Markov time and time scales of the evolution 
of the Earth-Life system has not been explored.  

In the Map Equation framework, the discrete (Kheirkhahzadeh et al. 2016) and continuous (Schaub et 
al. 2012) time evolution of a Markov process on the network is defined by the parameter Markov 
time. Intuitively, when using shorter Markov times than 1, the average transition rate of a random 
walk is lower than the encoding rate (see Map Equation section), the same node is encoded multiple 
times in its trajectory, and smaller modules are delineated. In contrast, when using longer Markov 
times than1, the average transition rate is higher than the encoding rate, only some nodes on its 
trajectory are encoded, and larger modules are delineated. In practice, using Markov time 2, we 
explicitly explore the two-step dynamics on the network. In the second example, we illustrate varying 
Markov time models using a case study on the mid-Devonian biogeography of the brachiopods where 
one-step dynamics on the links (Markov time 1) in a relatively small bipartite network does not 
capture a hierarchical nested organization. 

1.1.1. Hypergraphs 
Hypergraphs are network models used to study complex systems in which an arbitrary number of its 
components can interact. These so-called multigroup interactions, represented through hyperedges 
connecting all the nodes involved in the interaction, differ from binary contacts represented through 
links in conventional network models (Carletti and Fanelli 2022). A recent study provides the first 
hypergraph representation of data derived from the fossil record (Eriksson et al. 2021). This network 
analysis employs the Map Equation framework to model global occurrences of the benthic marine 
animals from Cambrian (541 MY) to Cretaceous (66 MY), sourced from the PaleoDB, as a 
hypergraph where physical nodes are fossil taxa linked through weighted hyperedges that connect all 
taxa occurring at each stage. Because this network explicitly models temporal constraints in the 
underlying paleontological data as hyperedges, it captures large-scale temporal structure and 
dynamics of system, especially when spatial data are lacking (Figure 5).  

A recent study derived unipartite, bipartite, and multilayer network representations of hypergraph 
flows and evaluated how the choice of both network representation and specific random-walk model 
impacts the number, size, depth, and overlap of multilevel communities in geohistorical data 
(Eriksson et al. 2022). To create each different network model, this study represents hyperedges as 
nodes in the bipartite network, projected the bipartite flow to create a unipartite flow representation 
(i.e., two-step dynamics obtained with a Markov time = 2)(Kheirkhahzadeh et al. 2016), and created 
state nodes for each hyperedge to which a node belongs to construct the multilayer network, showing 
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that the Map Equation framework can be used to model multigroup interactions. Overall, the results 
illustrate the advantages of using multilayer network representations of data derived from the fossil 
record over bipartite and unipartite representations to quantify macroevolutionary patterns, with 
different random walk models, including and excluding self-links, providing similar solutions. 

 

Figure 5. Schematic diagram illustrating a 
hypergraph representing temporal occurrence 
data. In this diagram, physical nodes are fossil 
taxa connected through hyperlinks. Hyperlinks 
are depicted with different colors and connect 
taxa from the same time interval. Taxa recorded 
in different time intervals are represented by 
state nodes, depicted with different shades of 
grey. 

3. Visualizing higher-order multiscale structure in networks 

Network visualizations are essential tools for understanding the modular structure and dynamics of 
higher-order networks describing geohistorical data. However, standard graphic tools developed to 
represent first-order interactions among network components fail to capture higher-order and 
multiscale community structure and depend on the arbitrary scale of analysis  (Peixoto and Rosvall 
2017; Perri and Scholtes 2020). To overcome these limitations, the Map Equation framework 
provides graphic tools for mapping higher-order and multiscale community structure in network 
partitions. They are freely available as a client-side web application at https://www.mapequation.org.  

3.1. Infomap Network Navigator  

Higher-order networks representing geohistorical systems are usually complex with hierarchical 
modular structures. The Network Navigator tool was developed to explore such complex structures in 
real networks. The tool creates interactive maps of hierarchical network partitions with aggregated 
inter-module links. These, possibly directed, links are drawn with lengths inversely proportional -- 
and width and color saturation proportional to the flow volume between modules. Weakly connected 
modules are placed further apart with narrower links between them than strongly connected modules. 
Circles represent the modules, with areas proportional to the contained flow volume and border 
thicknesses proportional to the exiting flow (Figure 6). Like Google Maps, the modules can be 
explored by zooming in and highlighting more detail until the lowest-level leaf nodes are shown. The 
Network Navigator was recently used to visualize the multiscale organization of the Phanerozoic 
benthic marine faunas, highlighting how the large-scale evolutionary faunas are built up from lower-
scale biogeographic entities (Rojas et al. 2021). 
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Figure 6. Aggregated inter-module links used 
by the Network Navigator.  Modules and nodes 
as circles with areas proportional to flow and 
border widths proportional to exiting flow. 
Bidirectional links with width proportional to 
inter-module flow 

3.2. Alluvial diagrams 

When comparing network partitions, researchers are interested in comparing changes in the overall 
modular structure rather than the link structure. Alluvial diagrams are visualization tools that 
highlight changes in modular structure across different network partitions, including, for instance, 
optimized, bootstrapped, suboptimal, and planted solutions. In the paleobiology literature, alluvial 
diagrams have been used primarily to compare alternative partitions obtained from bootstrapping 
(Rojas et al. 2021) and sensitivity analysis (Pilotto et al. 2022). Recently, alluvial diagrams have been 
used to compare solutions representing alternative biostratigraphy models for the late Permian-mid 
Triassic Beaufort Group in South Africa (Viglietti et al. 2022).Because it is impractical and typically 
unnecessary to represent all individual nodes, an alluvial diagram highlights changes in the most 
important nodes’ module assignment across partitions. In the Map Equation framework, the flow 
volume determines node importance and is calculated when Infomap searches for the optimal 
partition (Rosvall and Bergstrom 2008)(see Figure 2). 

The alluvial diagram is constructed by grouping nodes with the same module assignment to simplify 
and highlight changes between network partitions (Figure 7A). Shown side-by-side, each partition is 
represented by a vertical stack of modules in the order we choose. To highlight the nodes that change 
module assignment between partitions, we draw so-called streamlines between all modules in 
adjacent partitions that contain the same node. The modules’ flow volume determines their heights, 
and the streamlines’ heights are proportional to the flow of the nodes that the connected modules 
have in common (Figure 7B-C). The alluvial diagram showing the macroevolutionary patterns 
obtained from different network representations of a large paleontological dataset (Figure 4) 
illustrates how this graphic tool helps to better understand changes in the modular structure between 
partitions. 

 

Figure 7. Visualizing change in network partitions using alluvial diagrams. To compare networks 
with the same sets of nodes, we assemble at least two network partitions (a). Then, we group nodes 
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in the same module in stacked bars with height proportional to the node's flow volume and connect 
corresponding nodes with streamlines (b). Finally, to highlight how the partitions change, we 
aggregate the nodes into modules (c). To compare additional network partitions, we add more 
stacks of bars to the right and repeat the procedure b-c. 

4. Robustness evaluation 

4.1.  Identifying significant assignments in network partitions 

To assess the support of network modules in the underlying data, it is convenient to construct a set of 
bootstrapped networks through resampling of the data in a standard manner (Efron and Tibshirani 
1993). This approach enables calculating summary statistics such as mean values and standard 
deviations and identifying features that occur in a large enough proportion of bootstrapped networks 
to be considered robust. The Map Equation framework includes a method (significance clustering 
(Rosvall and Bergstrom 2010), that identifies sets of nodes that are significantly assigned to a module 
in a reference partition. For a given module in the reference partition, the largest subset of nodes 
clustered together in at least 95% of all bootstrap partitions represents its significant core. The 
significance clustering of the Map Equation framework has been used to distinguish gradual from 
abrupt biotic transitions in the fossil record, with abrupt events interpreted when temporally adjacent 
modules are significant and standalone (Pilotto et al. 2022). In addition, different aspects of a 
network partition can be evaluated across a set of bootstrap networks using set-theoretic measures 
such as the Jaccard index and measures built upon concepts from information theory (Vinh et al. 
2009). The resampling procedure can also consider the underlying data  by, for example, considering 
a discrete distribution if the data represent counts, and also a truncated distribution to avoid false 
negatives (Rojas et al. 2021). 

4.2. Exploring alternative solutions 

Finding the best network partition is generally a non-convex optimization problem and the 
practitioner therefore needs to consider the possibility of multiple solutions. To this end, methods 
exploring the solutions and their quality have been developed. One such method estimates the 
minimum number of searches required by the search algorithm Infomap to map the complete solution 
landscape, ensuring that the best solution is obtained and that alternative solutions of lesser quality 
can be explored (Calatayud et al. 2019). We illustrate this approach with the multilayer network 
representing the Phanerozoic fossil record of the benthic marine faunas, where alternative partitions 
are embedded using a dimension reduction technique (McInnes et al. 2018)(Figure 8), and the 
distance between partitions is calculated using a weighted version of the Jaccard distance. In this 
example, the codelength varies between the partition clusters, with the best partition in the middle 
cluster. In practice, these variations have minimal impact on the large-scale patterns, with only a few 
nodes alternating between modules.  

Although the approach to explore the solution landscape was developed for practitioners to find an 
optimal modular description when using the Map Equation framework, it highlights the importance 
of exploring sub-optimal partitions when dealing with real geohistorical systems, which can provide 
a better understanding of complex patterns. For instance, the extinction at the end of the Cretaceous, 
despite being a significant and abrupt event, is not captured at the resolution of the landscape 
illustrated in Figure 7. To find a solution showing a Cretaceous-Neogene global transition at the 
highest hierarchical level, we have to study less optimal solutions (Rojas et al. 2021). Overall, by 
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looking at a range of solutions ordered from highest to lowest quality, we can get some insights about 
the relative importance of the different events shaping the Phanerozoic life history. 

 

Figure 8. Quality of alternative partitions of the 
multilayer network representing the Phanerozoic 
fossil record of the benthic marine faunas 
mapped in a two-dimensional space. Circles 
represent clusters of network partitions, located 
at the cluster center, with size proportional to 
the number of partitions grouped into the 
cluster. Map isolines are constructed using the 
Jaccard distance between partitions. Despite 
differences in their quality (codelength), all 
partition clusters identified at the selected scale 
show a modular structure with four modules 
representing the Phanerozoic evolutionary 
faunas. At the selected scale, there is not a 
cluster of solutions representing a three-tier 
model (Sepkoski 1981). 

5. Case studies on the fossil record 

5.1. Delineating litho-biofacies by using multilayer networks 

Understanding how the distribution of organisms along environmental gradients changes through 
time is a primary research area in paleobiology (Patzkowsky and Holland 2012). Indirect ordination 
techniques applied to species occurrence data have been successfully employed to recover 
environmental gradients in the sedimentary record. In general, environmental gradients are 
interpreted from mapping taxa or samples, coded by external factors (e.g., life habit for taxa and 
depositional environment for samples), into the reduced ordination space. Here we provide a 
multilayer network analysis that combines taxon abundance and sample attributes into the modeling. 
Specifically, we conceptualize the biosedimentary record as a complex system with a multilayered 
structure by creating a network representation with two layers, one describing taxonomic 
composition and the other sedimentologically-defined relationships between sampling units (Figure 
9A). The underlying data were obtained from a basin-scale study carried out on Late Ordovician 
outcrops in central Kentucky (Holland and Patzkowsky 2004). 

Physical nodes in this two-layered network represent sampling units, taxa, and sedimentological 
groups. Layers in this representation independently capture fossil assemblages (biofacies) and 
sedimentological groups (lithofacies) in the geohistorical record. However, the multilayer network 
reveals the so-called litho-bio facies (Figure 9B). This higher-order approach directly interprets the 
gradients obtained via ordination analysis in two ways, delineating modules that comprise strongly 
connected taxa, samples, and sedimentological descriptors, and partitioning the gradient into discrete 
regions (Figure 9C). Although the sedimentological information underlying this case study is 
relatively simple, our network model can be easily extended to represent geochemical, taphonomic, 
and any other complex relationship between sampling units, as well as relationships between taxa 
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(i.e., ecology, body size). Although beds are the fundamental units of both stratigraphy and 
paleontology (Patzkowsky and Holland 2012), sampling units in this multilayer framework can 
represent stratigraphic units of any scale. In practice, depending on the stratigraphic resolution of the 
underlying geohistorical data, this multilayer network model can be used to capture multitype 
relationships between samples, beds, members, or broader units. 

 

Figure 9. A. A multilayer network representing litho-biofacies from Late Ordovician outcrops in 
central Kentucky. In this higher order network, one layer describes the biotic component (samples 
× taxa matrix) and the other describes the abiotic component (samples × environments matrix) of 
the geohistorical record (Supplementary Data 8). B. Litho-biofacies delineated via community 
detection using the Map Equation framework. Modules in the multilayer solution include taxa, 
samples, and environments, and can be directly interpreted as litho-biofacies (Supplementary Data 
9). C. Detrended Component Analysis (DCA) on the samples × taxa matrix. Network modules 
mapped in a DCA ordination space indicating their distribution along the depth water gradient. 
Background colored based on the module affiliation. Data from Holland and Patzkowsky (2004). 

5.2. Validating marine bioregionalization using varying Markov time models 

Research employing network-based approaches to describe biogeography in the fossil record is 
overwhelmingly focused on describing one-step dynamics (Markov time 1) in relatively small 
bipartite networks derived from the relatively limited fossil data (Penn-Clarke and Harper 2020; Ye 
et al. 2021), to reveal continental to global scale marine bioregions. Although first-order network 
representations of fossil occurrences have been shown to capture a biogeographic signal at some 
geological stages in the Phanerozoic (Rojas et al. 2017; Kocsis et al. 2018), these studies are unable 
to identify transition zones, provide a single-scale description of the bioregions and obscure larger-
scale patterns. Overall, conventional approaches ignore that bioregions do not have a unique level of 
description but multiple levels reflecting the complex spatial structuring of marine biodiversity.  

Here we describe how to use varying Markov time models through the Map Equation framework to 
overcome some of the limitations of the standard models currently used in paleobiology research. 
This case study is based on a standard bipartite network relevant for Devonian biogeography, but the 
approach can be applied directly to higher-order networks (Calatayud et al. 2021). We use varying 
Markov time models to re-examine the bioregionalization of the Middle Devonian Brachiopods from 
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the Old-World Realm (Penn-Clarke and Harper 2020). This approach reveals the larger-scale 
biogeographic structure at different resolutions. Results provide new insights into the biogeographic 
affinities of the brachiopod faunas from Southern Peru, which remains an open question (Figure 10). 
However, this case study shows that we can reveal the spatially nested hierarchical organization of 
marine biodiversity through varying Markov time models. 
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Figure 10. Bioregionalization of the Middle Devonian Old World Realm. A. Varying Markov time 
models on the biogeographic network constructed from brachiopod occurrence data (Penn-Clarke 
and Harper 2020). Network partitions at different Markov times reveal the larger-scale 
biogeographic structures obtained at different resolutions. B. Network partition obtained at the 
Markov time 1 (7 modules). Circles represent the seven modules delineated when exploring the 
one-step dynamics on the assembled network. C. Modules obtained from partitions at Markov 
times 1.30 and 1.35 (3 modules) mapped on those obtained at the Markov time 1. These two 
partitions differ in the affiliation of the Southern Peru locality, placed alternatively into the 
modules representing higher (white) and lower (orange) latitudes. Overall, coarser partitions 
contain fewer clusters as the Markov time increases. 

6. Recommendations for future research directions 

Higher-order network modeling of geohistorical data holds considerable promise for paleobiology 
research because it provides a framework for revealing the complex interactions between biotic and 
abiotic components of the sedimentary record at multiple scales. Higher-order network 
representations better capture the spatiotemporal constraints on the information paths underlying 
geohistorical data, providing more accurate descriptions of paleontological patterns: Employing the 
Map Equation framework for higher-order networks also improves reproducibility and 
communicability. Our analysis has focused on regional and global-scale examples, but the Map 
Equation framework can be applied to geohistorical data at any scale, ranging from individual beds 
up to the global sedimentary record. Establishing higher-order benchmark networks from widely 
used compendia of paleontological data (e.g., The Paleobiology Database, NOW database) enables 
researchers to compare results from different studies and methods.  

The standard formulation of the map equation implicitly assumes complete data. It reveals the large-
scale structure of a system given the observed data (Ghasemian et al. 2019). This general approach 
dominates network-based research in paleobiology. However, geohistorical records are incomplete – 
not every species that ever lived is preserved, and not all environmental conditions of every region in 
the globe are recorded in the sediments (Kidwell and Flessa 1996; Council 2005). Sampling also 
varies due to variations in exposure and collection effort (Holland 2016). The overall effect is an 
abstracted fossil record partially observed, a network involving links that exist but are not 
represented in the model because they have not been observed (false negatives). Distinguishing 
missing links (true positives) from non-edges (true negatives) within the unobserved connections, a 
task known as link prediction, allows to improve the abstracted fossil record. Such missing links 
could alter conclusions when delineating network community structure and modeling network 
dynamics (Ghasemian et al. 2019; Blöcker et al. 2022) 

In cases where we expect data to be incomplete, we should use a community-detection approach that 
can handle this: the Bayesian map equation models missing data with an empirical Bayes approach 
(Smiljanić et al. 2021). It helps resolve the important question about which of the links not present in 
a network are true and which are false negatives. Using the minimum description length principle 
(Rissanen 1978) underlying the Map Equation Framework, it is possible to use a modular partition to 
measure the description length of links (Blöcker et al. 2022). Assuming that links with a shorter 
description are more likely, we can rank the non-existing links in a network and select the best 
candidates for false negatives, those links that are most consistent with the network dynamics and 
thus most likely to exist. In practice, it is up to the researchers to examine and interpret those 
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predicted links in the face of the specific question at hand. Geologists and paleontologists can use 
this approach for stratigraphic placement of isolated samples, refining biostratigraphic models, and 
improving the overall description of bioregions. We believe these methodological efforts lay the 
ground for a fertile research direction in the emergent field of network paleobiology. 
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Data for this study are available in the Dryad Digital Repository: 
https://doi.org/10.5061/dryad.sj3tx967z. 

Figures captions 

Figure 1. Network representations of geohistorical data are abstracted fossil records. A. The physical 
fossil record. These brachiopod shells aim to represent the benthic macrofauna from the R/V 
Pillsbury program in the Caribbean. Modified from  Rojas et al. (2022, fig. 2). B. The abstracted 
fossil record. This abstracted record is a bipartite network representation of the underlying data 
(sampling stations × taxa matrix) (Rojas et al. 2022)(Supplementary Data 1). The brachiopod 
Tichosina, the larger component of the Cenozoic brachiopod faunas in the Caribbean, is indicated. C. 
Modular structure delineated via community detection with the Map Equation framework and using a 
Markov Time = 2 (Kheirkhahzadeh et al. 2016) (Supplementary Data 2). Modules include sampling 
stations and taxa. Nodes are rearranged in the circular layout by their module affiliation. Only the 
two larger modules are displayed; they represent 98% of the network flow. D. Modules mapped on a 
Detrended Correspondence Analysis (DCA) ordination space. E. Small example network showing a 
two-module partition. 

Figure 2. Input and output formats. -The Map Equation framework understands different formats. A. 
Input file in Pajek format. B. Output file. The resulting partition is written to a file with the extension 
.tree (plain text file). The formats described here correspond to the small example network in Figure 
1E. 

Figure 3. Network representations of geohistorical data. A. Temporal occurrence data. B. Standard 
bipartite network representation created by aggregating fossil occurrences (sp. 1) into arbitrary 
spatiotemporally explicit units (g1 to g4). This standard network uses the same nodes to represent the 
physical components of the system as well as to describe system’s flows. A random walk as the 
simplest information flow model forms paths across independent pairwise links on this network 
washing out higher-order node interactions. C. Multilayer network representation. The Map Equation 
framework for higher-order networks distinguishes physical nodes that represent the system’s 
components from state nodes describing the system’s internal flows. This higher-order network better 
captures the constraints on the information paths and thus flows tend to stay among units from each 
layer. 

Figure 4. Different network representations capture different aspects of the benchmark data on the 
Phanerozoic benthic marine faunas (Peters and McClennen 2016). Bipartite and unipartite 
representations ignore the temporal constraints inherent to the biosedimentary record. *Unipartite 
projection obtained from the bipartite network by rescaling the Markov time (Kheirkhahzadeh et al. 
2016). Alluvial diagram representing 98% of the network flow in each case (Supplementary Data 3-
7). 

Figure 5. Schematic diagram illustrating a hypergraph representing temporal occurrence data. In this 
diagram, physical nodes are fossil taxa connected through hyperlinks. Hyperlinks are depicted with 
different colors and connect taxa from the same time interval. Taxa recorded in different time 
intervals are represented by state nodes, depicted with different shades of grey. 

Figure 6. Aggregated inter-module links used by the Network Navigator.  Modules and nodes as 
circles with areas proportional to flow and border widths proportional to exiting flow. Bidirectional 
links with width proportional to inter-module flow 
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Figure 7. Visualizing change in network partitions using alluvial diagrams. To compare networks 
with the same sets of nodes, we assemble at least two network partitions (a). Then, we group nodes in 
the same module in stacked bars with height proportional to the node's flow volume and connect 
corresponding nodes with streamlines (b). Finally, to highlight how the partitions change, we 
aggregate the nodes into modules (c). To compare additional network partitions, we add more stacks 
of bars to the right and repeat the procedure b-c. 

Figure 8. Quality of alternative partitions of the multilayer network representing the Phanerozoic 
fossil record of the benthic marine faunas mapped in a two-dimensional space. Circles represent 
clusters of network partitions, located at the cluster center, with size proportional to the number of 
partitions grouped into the cluster. Map isolines are constructed using the Jaccard distance between 
partitions. Despite differences in their quality (codelength), all partition clusters identified at the 
selected scale show a modular structure with four modules representing the Phanerozoic evolutionary 
faunas. At the selected scale, there is not a cluster of solutions representing a three-tier model 
(Sepkoski 1981). 

Figure 9. A. A multilayer network representing litho-biofacies from Late Ordovician outcrops in 
central Kentucky. In this higher order network, one layer describes the biotic component (samples × 
taxa matrix) and the other describes the abiotic component (samples × environments matrix) of the 
geohistorical record (Supplementary Data 8). B. Litho-biofacies delineated via community detection 
using the Map Equation framework. Modules in the multilayer solution include taxa, samples, and 
environments, and can be directly interpreted as litho-biofacies (Supplementary Data 9). C. 
Detrended Component Analysis (DCA) on the samples × taxa matrix. Network modules mapped in a 
DCA ordination space indicating their distribution along the depth water gradient. Background 
colored based on the module affiliation. Data from Holland and Patzkowsky (2004). 

Figure 10. Bioregionalization of the Middle Devonian Old World Realm. A. Varying Markov time 
models on the biogeographic network constructed from brachiopod occurrence data (Penn-Clarke and 
Harper 2020). Network partitions at different Markov times reveal the larger-scale biogeographic 
structures obtained at different resolutions. B. Network partition obtained at the Markov time 1 (7 
modules). Circles represent the seven modules delineated when exploring the one-step dynamics on 
the assembled network. C. Modules obtained from partitions at Markov times 1.30 and 1.35 (3 
modules) mapped on those obtained at the Markov time 1. These two partitions differ in the 
affiliation of the Southern Peru locality, placed alternatively into the modules representing higher 
(white) and lower (orange) latitudes. Overall, coarser partitions contain fewer clusters as the Markov 
time increases. 

Table captions 

Table 1. Comparison of the modular structure of different network representations of the benchmark 
data on the Phanerozoic marine faunas. The multilayer representation achieves the shortest 
codelength and the best compression. For each partition, we measure the compression by using the 
corresponding one-level partition as a baseline. *Unipartite projection obtained from the bipartite 
network by rescaling the Markov time (Kheirkhahzadeh et al. 2016). 
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