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ABSTRACT

We hypothesize that high-level visual representations contain more than the representation of individual categories:
they represent complex semantic information inherent in scenes that is most relevant for interaction with the
world. Consequently, multimodal models such as Contrastive Language-Image Pre-training (CLIP) which construct
image embeddings to best match embeddings of image captions should better predict neural responses in
visual cortex, since image captions typically contain the most semantically relevant information in an image
for humans. We extracted image features using CLIP, which encodes visual concepts with supervision from
natural language captions. We then used voxelwise encoding models based on CLIP features to predict brain
responses to real-world images from the Natural Scenes Dataset. CLIP explains up to R2 = 78% of variance in
stimulus-evoked responses from individual voxels in the held out test data. CLIP also explains greater unique
variance in higher-level visual areas compared to models trained only with image/label pairs (ImageNet trained
ResNet) or text (BERT). Visualizations of model embeddings and Principal Component Analysis (PCA) reveal
that, with the use of captions, CLIP captures both global and fine-grained semantic dimensions represented within
visual cortex. Based on these novel results, we suggest that human understanding of their environment form an
important dimension of visual representation.
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Introduction

Recently the ability to account for neural responses associated with high-level vision has rapidly advanced due to
the use of features derived from state-of-the-art neural networks1. Heretofore unaccounted for neural responses
associated with tasks in both visual and semantic processing can now be well predicted by deep neural networks1, 2.
As suggested by Yamins and DiCarlo3, these dramatic improvements in prediction performance may be driven by
the fact that models sharing task goals with natural systems learn representations also shared with such systems.
This is true not only at the highest levels of behavior, but also for specific mid-level tasks within our perceptual
systems4. However, almost all neural networks for vision are trained on purely visual tasks. In contrast, human vision
is an active process that, to support complex behaviors such as scene interpretation and navigation, incorporates
information from diverse sources, for instance, conceptual knowledge or verbal descriptions. In this context, one
impediment to unraveling the representational basis of visual pathways in the brain may be the failure to consider
complex training signals that capture human-relevant information in most vision models. One way to capture this
information is to learn from multiple modalities simultaneously, as the confluence of information from different
sources can help determine what is important. This is especially true if one of the modalities is language, since
language is behaviorally generated by humans and highlights aspects that are important. In this paper we investigate
this hypothesis and demonstrate that state-of-the-art neural network models trained on more multimodal human-like
task goals yield further improvements in predicting high-level visual regions, indicating that these regions represent
complex, behaviorally important semantics.

Higher-level visual representations are thought to reflect the structure of the visual world and semantics beyond
object identity; for example, non-perceptual associations such as function or linguistic meaning5, 6. Similarly, in
ongoing work7, a searchlight analysis using an embedding model based on text captions for viewed images suggests
that higher-level visual cortex represents semantic information related to those images. Supporting this point,
the influence of language on vision is evident in the acquisition of visual categories during development where
visual learning occurs concurrently with language and conceptual learning8, 9. In the early development of object
perception during infancy, the presence of language labels has been found to be crucial in the emergence of the
holistic perception of objects, as well as in the differentiation of objects parts and objects themselves10. Similarly,
there is evidence that language also plays an important role in the acquisition of semantics9, 11. Thus, under the view
that language and semantics influence the high-level organization of visual information, we propose that multimodal
neural-network models incorporating visual and linguistic inputs will better predict neural responses to semantically
complex visual inputs such as real-world scenes.

One attractive multimodal neural network for testing this prediction is a state-of-the-art model with “Contrastive
Language-Image Pre-training” or “CLIP”12. CLIP successfully leverages supervision from natural language (image
captions) for vision and from vision for language. The CLIP model, trained with real-world image/associated caption
pairs, learns separate image and text encoders that encode each image/caption pair of training data with similar
representations at the final layer. Different than earlier multimodal models (e.g., VisualBERT13, LXMERT14),
multimodal loss signals in the final layer of CLIP are propagated through all earlier layers of both the visual and
language encoders, and, therefore, learning in CLIP may be more similar to human visual learning, where top-down
knowledge has been found to influence even the earliest layers of the visual pathway15, 16. Of particular interest, as a
multimodal model, CLIP excels at current zero shot benchmark tests in computer vision – outperforming vision
models that do not include natural language supervision. At the same time, CLIP relies on a model architecture that is
similar to prior successful vision and language models used for brain activity prediction1, 2 and is trained on a similar
distribution of natural images and language data. As such, brain activity prediction using CLIP representations is
expected to be at least as good as earlier single-task neural-network models and, based on our characterization of
high-level visual tasks, better than earlier models due to CLIP’s multimodal structure.

To test this hypothesis, we extracted network representations from CLIP (using each image or its associated
caption) and from several single modality task-optimized models: ImageNet17 pretrained ResNet18 (which we
refer to as “ResNetI”) and BERT19 (using the caption associated with each image). We then constructed voxelwise
encoding models to explain whole brain responses arising from viewing natural images from Allen et al.’s Natural
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Scenes Dataset (NSD)20. Our goal was to use this extensive brain activity dataset to evaluate and quantify the
contribution of multimodal pre-training in generating more brain-like, semantically-grounded visual representations.
Our results, through brain prediction, variance partitioning and representation visualization establish that CLIP
is much more accurate than single modality models at predicting higher-level visual representations in the brain.
Building on this result, we are able to successfully apply CLIP in conjunction with principal component analysis
(PCA) to learned representations to tease apart important semantic dimensions of visual knowledge and, thus,
provide insight into the fine-grained organization of knowledge in the human brain.

Results

Multimodal embeddings best predict high-level visual cortex
The central question of our current study is whether CLIP better predicts neural responses as compared to previous,
vision-only models. To address this question, we extracted representations from the CLIP image encoder and
used them to predict voxelwise responses (as measured by fMRI) across the brain. In Figure 1 we show the R2

performances in the held out data set across the whole brain. For visualization purpose, in the flatmap we only
plotted the voxels that are predicted significantly higher than chance (p < 0.05, FDR-corrected21). The encoding
model built with the last layer of CLIP’s visual encoder explains variances in voxels close to its noise ceiling
(see Supplementary Fig. S1 for performance measured in r for Subject S5). As a reference, earlier papers using
voxelwise encoding models for brain prediction report well below 0.7 in maximum correlation22, 23. In Allen et al.20

a brain optimized model of early visual cortex (V1-V4) explains up to 0.8 in R2, similar to what we observe here in
high-level visual cortex. However, directly comparing performance across wide range of models is challenging due
to the fact that different studies are carried out with very distinct experimental designs and rely on different data
preprocessing and fitting pipelines. Studies that report model performance in terms of averages within ROIs and
representation similarity (RSA) scores are also difficult to compare to our present results. Importantly, the high level
performance we observed was not idiosyncratic to a few subjects: both the overall level and the pattern of prediction
performance were highly consistent across S1-S8 (results for S5 are shown in Fig. 1, results for S1-S8 are shown in
Supplementary Fig. S2 and Fig. S3).

The CLIP encoder model’s superior prediction performance provides compelling evidence that joint supervision
from text information leads to representations that are better predictive of high-level visual cortex. We discuss this
further in the Discussion section. From a theoretical point of view, these results suggest that the semantic information
summarized in the image captions plays an important role in the organization of high-level visual knowledge in the
human brain.

Beyond overall performance metrics, performance peaks in the brain prediction maps were aligned with common
functionally-defined category-selective ROIs. In particular, peaks within regions implicated as scene-selective24,
body-selective25, and face-selective26, 27 were sufficiently well defined so as to allow localization of these ROIs
based solely on the prediction performance of CLIP. We speculate that these alignments signal the importance of
semantic associations in scene understanding and person recognition.

In order to rule out performance improvements based on a specific network architecture, we extracted features
from two available backbones for CLIP: visual transformer (ViT-32) and ResNet50. Differences in prediction
performance were small (see Supplementary Fig. S6), indicating that the improvement provided by CLIP is not due
to any particular neural-net architecture.

To explore whether captions associated with images could predict the brain activity in response to viewing the
corresponding image, representations extracted from the CLIP text encoder were also used to predict voxelwise
responses across the brain. To accomplish this we provided the CLIP text encoder with the captions of the images
viewed in the scanner by each subject. The text encoder representation was then used to make voxelwise brain
predictions. Somewhat surprisingly, in the absence of any image information, the model is still able to predict higher
level visual cortex similar to that of the model based on CLIP’s image encoder (Fig. 2), though the visual encoder
still explains most of the unique variance throughout the cortex (see Supplmentary Fig. S7). This result indicates the
efficacy of CLIP in capturing brain relevant visual-semantic information from the images and the captions. The
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“a living room scene with a laptop 
and a television.”

“a person eating with chopsticks and 
reading books in their living room”

“a few graphic novels and a laptop 
on a couch in front of a tv”
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Figure 1. Model pipeline and prediction performance for the CLIP visual encoder. (a) Representations from
the CLIP image and text encoders are extracted from images and captions, respectively. These representations are
used in voxelwise encoding models to predict brain responses to each image. (b) A 2D histogram of model
performance in R2 against noise ceiling across all voxels in the whole brain. Density of voxels are shown in a log
scale. Most voxels are predicted close to its noise ceiling. (c) Voxelwise prediction performance (measured in R2) on
a held-out test set is shown for Subject S5 in lateral (top-middle), posterior (top-left); bottom (top-right) views.
(Bottom) The same prediction performance for S5 is shown in a flattened view of the brain. Performance
improvements based on network architecture were ruled out by extracting features from two backbones: ViT-32 and
ResNet50. Performance differences among architectures were small, indicating that the improvements afforded by
CLIP are not due to any particular network architecture.
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fact that both the image and text encoders have similar patterns of high predictive performance indicates that the
information encoded in these high-level visual areas is highly anchored in semantics.

Prediction Performance -

(all colored voxels p < 0.05, FDR corrected)

R2

NS

Figure 2. Prediction performance for the CLIP text encoder. Prediction performance for voxelwise responses –
R2 – in held out data for the CLIP text encoding model for S5 with overlays for functionally-defined,
category-selective ROIs. Although only have access to the captions of the images that the subjects viewed, the CLIP
text encoder is still able to predict fMRI data in many functionally-defined ROIs (e.g., EBA, PPA, RSC, FFA).

CLIP embeddings explain more unique variance than unimodal embeddings
As compared to the ImageNet trained ResNet50 (ResNetI), CLIP explains more variances in individual voxels across
the whole brain, as shown in 3a and Supplementary Fig. S5. In order to measure the unique variance accounted
for by CLIP as compared to unimodal models, we performed a variance partitioning analysis28, 29 (Fig. 3). Only
voxels with significantly higher than chance unique variance are plotted for both models (p < 0.05, FDR-corrected).
We compared the unique variance accounted for by the last layer of the CLIP image encoder with a ResNet50
backbone to that accounted for by ResNetI (which also has a ResNet50 architecture), ruling out potential performance
differences arising from model architecture.

Consistent with our results for prediction performance, CLIP accounts for the majority of the unique variance in
areas anterior to primary visual cortex, particularly in OPA, PPA and EBA – all functional ROIs implicated in scene
and person perception. To evaluate ROI-level improvement we also present a series of voxel scatter plots for a range
of functional ROIs in Figure 3b. With the exception of early visual areas (e.g., V1v, h4v), CLIP accounts for a much
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Figure 3. Performance for the CLIP visual encoder using a ResNet backbone as compared to ResNetI (a) 2D
distribution plots of voxels from the whole brain in S5 in model performance (in R2) and unique variance comparing
between CLIP and ResNetI . The red lines indicates equal performance for the two models. CLIP predicts much
better in terms of total variance and unique variance. (b) Unique variance accounted for by CLIP as compared to
ResNetI for 12 different ROIs for all eight subjects. Individual voxels are plotted as blue points. The red lines
indicate iso-variance, that is, (y = x). CLIP accounts for overwhelmingly more variance than ResNetI in
higher-level visual cortex. In contrast, ResNetI only accounts for more variance in ventral V1 and a reasonable
proportion of the variance in ventral V4. (c) Unique variance accounted for by CLIP as compared to ResNetI for S5
– obtained by subtracting R2 for each model from that of the joint model (with concatenated feature spaces). Voxels
where CLIP accounts for greater unique variance are orange and voxels where ResNetI accounts for greater unique
variance are blue.
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larger portion of the unique variance for the majority of voxels in these high-level ROIs. Beyond category-selective
ROIs that respond to faces, places, and bodies, we also identified ROIs such as TPOJ and Angular Gyrus (AG) that
were much better explained by CLIP. Interestingly, these two areas are held to be related to theory of mind and
language30.

Note that the last layer of CLIP explained less of the variance in early visual cortex as compared to ResNetI;
however, this does not imply that CLIP fails to capture information represented in these regions. The last layer
of CLIP is the bottleneck layer that captures the image embeddings optimized to match in similarity with the text
embeddings. As shown in Supplementary Figure S8, the entire visual pathway is best predicted by a progression of
CLIP layers (including ones below the bottleneck layer). More generally, CLIP is the best predictive model for the
whole of visual cortex.

A variance partitioning analysis comparing CLIP embeddings constructed from image captions to BERT
embeddings of those same captions likewise found that CLIP accounts for almost all unique variance (Supplementary
Fig. S9). Thus, the advances we observed in brain prediction using CLIP do not appear to arise from incorporating
complex semantics alone, but rather, can be attributed to a meaningful mapping between visual and semantic
representations.

CLIP embeddings capture contextual and semantic similarities in the absence of visual similarity

To further explore why CLIP outperforms unimodal models, we compared the similarities of the CLIP and ResNetI
representations for 1000 randomly selected stimulus images. After obtaining the distances between each pair of
images in both representations, we ranked each pair according to the differences between the similarities (measured in
correlation). Namely, Si, j = SimCLIP

i, j −SimResNetI
i, j ,∀i, j ∈ {1, ...,1000}, where SimCLIP

i, j and SimResNetI
i, j are correlations

of representations between Image i and Image j in CLIP and ResNetI , respectively. Figure 4 plots the images that
are most similar in CLIP and dissimilar in ResNetI (ranked by Si j) and vice versa. These visualizations illustrate that
with natural language as training feedback, representations within CLIP capture contextual similarities that are not
present in ResNetI (which seems much more anchored in visual similarity). To the extent that higher-level visual
representations in the brain reflect both semantics and visual appearance, this visualization of representation space
helps to explain why CLIP is better than earlier models at predicting neural responses to complex, real-world scenes.

The principal semantic dimensions of the CLIP encoding model capture core axes of brain
organization

To better understand the semantic dimensions learned in the encoding model, we performed principal component
analysis (PCA) on the learned weight matrix concatenated across the 20000 top predicted voxels of all eight subjects.
We projected the voxels onto the principal component (PC) dimensions to understand the tuning of the entire voxel
space, following previous work23, 32. By visualizing each PC of the learned model and its corresponding voxel
projection, we were able to uncover some of the semantic bases that underlie semantic organization in the brain.
To capture the information captured by different PCs, we visualized the images that correspond to the highest
magnitude along a given PC (Fig. 5). These images were identified by computing the dot product of CLIP image
embeddings with the vector corresponding to the PC direction. As illustrated in the middle row of Figure 5 and in
Figure 6d, we observed that animate and inanimate images are separated by PC1; its brain projections correspond
to functionally-defined body and face regions (e.g., FFA and EBA). As illustrated in the bottom row of Figure 5,
we observed that scenes and food images are separated by PC2 when we split the functional areas identified from
PC1 with PC2; its brain projections corresponded to functionally-defined place regions (e.g., PPA, RSC, OPA) and
the food region31, 33, 34. Of note, we obtained interpretable PC dimensions up to PC10 (despite the relatively low
explained variance from PC6 onwards), allowing us to identify more fined-grained semantic distinctions within
high-level visual cortex. Images visualization of the rest of the PCs are shown in supplementary Fig. S11.
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Figure 4. Pairwise representation similarity emphasizes semantically similar images using CLIP and visually
similar images using ResNetI . Images represented similarly in CLIP, but not ResNetI , are semantically related. For
example, within CLIP, images of people surfing and skateboarding are grouped together and images of giraffes and
an elephant are grouped together. In contrast, within ResNetI , images with different contexts are grouped according
to visual similarity. For example, people wearing dark suits with a white shirt and contrasting tie.

Regions that benefit most from CLIP embeddings encode scenes of humans interacting with their
environment
We directly compared the brain projection for PC1 and the unique variance map for CLIP. We found that voxels that
have large negative values on the PC1 overlay the majority of the time with voxels where CLIP has the largest unique
variance (Figs. 6a and 6b). These voxels clustered in ventral EBA, FFA-1, FFA-2, as well as ventral RSC. Figure
6c further validates this finding by showing a strong negative correlation for the voxels with a negative projection
between the magnitude of this projection and the unique variance explained by CLIP. Note that the sign of the PC
is arbitrary and can be flipped; we use “negative” here to refer to one of the sides of PC1.) Thus, PC1 appears to
separate the regions of high-level visual cortex that benefit the most when CLIP is used to predict performance.

Figure 6d shows the top 10 images for both ends of PC1. Top negative images are people participating in
sports, whereas the top positive images are indoor scenes. This separation is consistent with the location of the best
predicted voxels from CLIP being centered on the EBA. Category distributions of images that are on the two sides
of the PC1 further validate this finding. We leveraged the known category and super-category labels of images in
COCO and found that images that lie on the negative end of the PC1 are more likely to contain people, animals,
and sports items. These observations suggest that the representation of people in CLIP is the domain for which the
model provided the most leverage in terms of predicting brain responses (i.e., as compared to ResNetI). From an
ecological standpoint this finding appears to capture high-level semantic statistics regarding the world around us:
scenes of people and human interactions are heavily present in our daily life. Returning to our original hypothesis, by
including natural language as input (image captions) along with complex scenes, CLIP is more effective at capturing
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Figure 5. Cortical semantic organization as revealed by the principal components of the CLIP encoding
model. Brain regions well predicted by CLIP can be hierarchically decomposed using the model PCs. PC1
separates animacy regions (EBA and FFA) from other regions, which are themselves separated by PC2 into place
and food regions31. The rest of the tree is not shown due to space constraints.

the rich semantics of scenes as compared to models trained with image/label pairs pre-training (e.g., ImageNet). As
such, we hold that CLIP is a better candidate model for understanding representation in high-level visual cortex,
especially for regions such as EBA, FFA and the cingulate cortex.

Discussion

We evaluated and quantified the contribution of multimodal pre-training in generating more human-like, semantically-
grounded representations. We found that the multimodal CLIP model is extraordinarily good at predicting voxelwise
neural responses to viewing scenes in the Natural Scenes Dataset20. A related studies confirm our findings, reporting
that CLIP excels at predicting responses in NSD as compared to 85 other deep network models35. However, our work
provides a range of analyses that are an advance over that study. First, we applied variance partitioning to localize
where in the brain we observed the most benefit from CLIP predictions. We found that neural responses in high-level
visual cortex are exceptionally well predicted by CLIP. Second, we visualized the representation from CLIP and
the unimodal network. We showed that CLIP captures more semantic based representations, which corroborates
our hypothesis about complex semantic representations in high-level visual cortex. Third, we used PCA analyses
to reveal that, the more fine-grained representation of scenes depicting human interaction in CLIP gain the most
leverage in brain prediction, which in turn elucidated some of the underlying reasons why CLIP yields such excellent
performance. This analysis suggests that CLIP captures information about humans interacting with the world, and
that this information is predictive of these regions.

It is hard to definitively state that natural language feedback is what makes CLIP excel at few-shot tasks or its
superior brain prediction. In fact this question is still being debated within the field of computer vision. Alternatively,
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Figure 6. Better representations of scenes with people in CLIP can account for gains in unique variance. (a)
Unique variance explained by CLIP plot on flatmap from S5. (b) Projection of voxels onto PC1 of the learned CLIP
model for S5. Voxels that are best explained by CLIP overlap largely with the voxels that lie on positive side when
projected onto the 1st PC. (c) Voxelwise scatter plot illustrating that for voxels lying on the negative side of 1st PC
projection, the further down the voxel lies on the projection, the better it is explained by CLIP. (d) Images are
grouped in to “+” and “−” depending on which side the image lies on when projected onto the PC1. The top 10
images that best align with either end of the PC1 are shown in the yellow and green boxes respectively. For the
positive projection we observe images of indoor scenes, whereas for the negative projection we observe images of
people participating in outdoor sports. (e) Category distribution of two groups of images validates that images on the
negative side consist more of people, animal, and sports, relative to images on the positive side.

one could attribute CLIP’s superior performance to the extremely large size of the training dataset. However, we are
skeptical that training set size is the main contributor to the high level of brain prediction we obtain with CLIP. In
particular, we conjecture that even if we were able to re-train ResNet50 on a 400x bigger dataset, but still included
only category labels, the resultant model would be unlikely to learn fine-grained representations of human centered
scenes. Such information is simply not carried by category labels. Therefore, we hypothesize that the natural
language feedback CLIP receives is crucial to its excellent performance, at least in the case of brain prediction as
presented in our work here.

Building on the findings detailed above, PCA on the learned CLIP encoding model allowed us to tease apart
important semantic dimensions and gain further insight into how fine-grained visual knowledge is represented within
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visual cortex. Taken together, our results suggest that both better overall prediction performance and the ability to
capture fine-grained dimensions in representation are rooted in the natural language feedback that CLIP receives as
part of training. As such, earlier approaches to brain prediction that focused on object or scene representation in and
of themselves, failed to capture a fundamental dimension of visual representation – that of complex scenes in which
humans and other actors are interacting with one another and the world around them.

CLIP’s ability to predict neural responses opens up new possibilities for developing a better understanding of
cortical functional architecture. Our results provide evidence, consistent with the developmental literature discussed
earlier, that the organization of knowledge within visual cortex may be best characterized as multimodal. Exploring
this idea further will require new ways of thinking about visual cortex. As such, we suggest that any future large-scale
studies of visual representation should incorporate stimuli, representations, and models that reflect such complexity.

Methods

Datasets
fMRI data. Neural data were obtained from the the Natural Scenes Dataset (NSD)20, an open dataset of 7T whole
brain high-resolution fMRI responses from eight subjects (S1-S8) who each viewed ∼10,000 unique images of
natural scenes, each image repeated 3 times. These scene images were a subset of the images in the annotated
Microsoft Common Objects in Context (COCO) dataset36. Of the 70,566 total images presented across subjects,
∼1,000 images were viewed by all subjects. fMRI data were collected during 30-40 scan sessions. Stimulus images
were square cropped, presented for 3 s at a size of 8.4◦ × 8.4◦ with 1 s gaps in between image presentations. Subjects
were instructed to fixate on a central point and to press a button after each image if they had seen that image
previously.

The functional MRI data were acquired at 7T using whole-brain gradient-echo EPI at 1.8-mm resolution and
1.6-s repetition time. Preprocessing steps included a temporal interpolation (correcting for slice time differences)
and a spatial interpolation (correcting for head motion). Single-trial beta weights were estimated with a general
linear model. In this paper we used the betas f ithr fGLMdenoiseRR preparation of the betas. FreeSurfer37, 38 was
used to generate cortical surface reconstructions to which the beta weights were mapped. The beta weights were
z-scored across run and were averaged across repetitions of the image (up to 3 repetitions of each image), resulting
in one averaged fMRI response to each image per voxel, in each subject. NSD also includes several visual ROIs
that were identified using separate functional localization experiments. We drew the boundaries of those ROIs for
each subject on their native surface for better visualization and interpretation of the results (e.g., Fig. 1). All brain
visualizations were produced using Pycortex software39.

Natural scene images. All stimulus images used in NSD and in our experiments were drawn from the COCO
dataset36. COCO is unique among large-scale image datasets in that COCO images contain contextual relationships
and non-iconic (or non-canonical) object views. In comparison to ImageNet17, COCO contains fewer labeled
categories (91), but includes more examples for each category (> 5,000 for 82 of the categories). Note, however,
that many labeled categories in ImageNet are at the subordinate level – COCO likely contains at least as many
unlabeled subordinate categories. The complete set of COCO images and additional details can be found on the
COCO website: https://cocodataset.org.

Feature extraction for models
Each NSD stimuli images are input to the both the standard ImageNet pretrained ResNet 50 and CLIP model.
For CLIP model we use pretrained CLIP model released by OpenAI for both ResNet50 and ViT-32 transformer
backbone. Model activations across layers in both architectures are used in the voxelwise encoding models. For
image captions, we use the human generated captions for each of the NSD images provided by the COCO dataset
and input them into both BERT and CLIP text encoder for their layerwise activations. On average, COCO provides
5-6 captions for each image. Caption embeddings for a image are extracted individually and the average is used in
the encoding models.
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Voxelwise encoding models
We build ridge regression model (implemented in PyTorch; see koushik2017torchgel) to predict one averaged
fMRI response to each image per voxel, in each subject. We chose to use a ridge regression model instead of
more complicated models in order to retain the interpretability of model weights, which may provide insights into
the underlying dimensions of the brain responses. We randomly split the total number of images a subject sees
into training and test set with a 4-to-1 ratio. For each subject, each voxel’s regularization parameter was chosen
independently via 7-fold cross-validation across the training set. Model performance was evaluated on the test
data using both Pearson’s correlation and coefficient of determination (R2). To determine the significance of the
predictions, we perform a bootstrap test where we resample the test set with replacement for 2000 times and compute
the FDR corrected p-values threshold for various performance statistics.

Variance Partitioning
To obtain unique variance by two model A and B, we first create joint model of A and B by concatenate features from
these two models. We then fit voxelwise ridge regression model to the joint model and obtain R2

AB. The variance
explained by individual model A and B are R2

A and R2
B, respectively. We calculate the unique variance for model A

and B, where R2
A = R2

AB −R2
B, R2

B = R2
AB −R2

A.

PCA analysis
We performed principal component analysis (PCA) on the learned matrix to recover the semantic basis of the
learned model. We select the 20000 best predicted voxels after noise correction and concatenate weight matrices
corresponding to these voxels from all eight subjects along the voxel dimension. We then apply PCA on this weight
matrix and obtain the first 20 PCs. Explained variance by these PCs are plotted in supplementary figure S10.
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Supplementary Figures

Prediction Performance -

(all colored voxels p < 0.05, FDR corrected)

r

NS

Supplementary Figure S1. Prediction performance meansured in corrlation using the CLIP visual encoder.
Voxelwise prediction performance (measured in r) on a held-out test set is shown for S5 in a flattened view of the
brain.
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Supplementary Figure S2. Prediction performance with CLIP visual encoder for all eight subjects. Voxelwise
prediction performance (measured in R2) on a held-out test set is shown for S1-S8 in a flattened view of the brain.
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Supplementary Figure S3. Scatterplots of noise ceiling against model performance in R2 for all subjects.
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Supplementary Figure S4. Unique variance accounted for by CLIP as compared to ResNetI (noted as RN in
the figure) for all eight subjects. Voxels where CLIP accounts for greater unique variance are orange and voxels
where ResNetI accounts for greater unique variance are blue.
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Supplementary Figure S5. Total variance accounted for by CLIP as compared to ResNetI for S5 Voxels where
CLIP accounts for greater variance are orange and voxels where ResNetI accounts for greater variance are blue.
White voxels are where both models explain well.
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Supplementary Figure S6. Performance 2D map between CLIP (ViT-32) and CLIP (RN50).
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Supplementary Figure S7. Unique variance by CLIP visual encoder and CLIP text encoder.

Layers

Supplementary Figure S8. Layer preference by voxels across the brain.
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Supplementary Figure S9. Performance comparison between CLIP text encoder with BERT Unique variance
accounted for by CLIP as compared to BERT for S5 – obtained by subtracting R2 for each model from that of the
the concatenated model. Voxels where CLIP accounts for greater unique variance are orange and voxels where
BERT accounts for greater unique variance are blue.
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Supplementary Figure S10. Explainable variances across 20 PCs
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Supplementary Figure S11. Top 15 images for top 5 PCs
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